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Summary. — Taking into account some considerations developed in
the past by Cattaneo we suggest a modified Navier-Stokes equation
which includes the inertial property of the momentum flux. The linearized
system of hydrodynamic equations where the inertial properties of both
momentum and heat flux are taken into account leads to a new dispersion
equation which does not exhibit the theoretical disadvantages of the
Kirchhoff equation. Also the consistency with the experimental results
about sound dispersion in rarefied monoatomic gases is definitely improved.

1. — Introduction.

Several years ago CATTANEO (') suggested a modification of the heat dif-
fusion equation in order to overcome the well-known paradox, due to the
parabolic character of the equation, according to which heat diffuses with
infinite velocity. Ten years later, VERNOTTE (3), re-examining the difficulties
related to the classical theory of heat diffusion, proposed a similar change
of the heat diffusion equation. Apparently, the subject was not pursued
in the following years although Lutkov (3), in his recent textbook on heat
diffusion theory, quotes the conclusions of CATTANEO and VERNOITE as an
established result. It is worth-while to recall the main aspects of the previously

(*) Work partially supported by C.N.R. groups for mathematical research.

(1) C. Cartanro: Atti Sem. Mat. Fis. Univ. Modena, 3, 83 (1948).

() P. VERNOTTE: Compl. Rend., 246, 3154 (1958). After this work the same authors
published the following papers: C. CATTANEO: Compt. Rend., 247, 431 (1958);
P. VERNOTTE: Compt. Rend., 247, 2103 (1958).

(®) A. V. Luikov: Analytical Heat Diffusion Theory (New York, 1968).
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mentioned equation. If we consider a homogeneous isotropic medium in which
thermal expansion can be disregarded, the first law of the thermodynamics
can be written

(1.1) oCy aa—l; = —divJ,,

where p is the (constant, uniform) density, O, is the specific heat at constant
volume and J, is the heat flow per unit time across the unit surface. Coupling
the equation (1.1) with Fourier’s phenomenological law of heat conduction

(1.2) Jo=—kgrad T,

the well-known heat diffusion equation is obtained if the thermal conductivity %
is temperature independent

(1.3) aa—ff =y, AT.

Here y, = k/oC, is the so-called thermometric conductivity and A is the usual
Laplace operator. Nevertheless, the coupling of the two equations (1.2) and (1.3)
does not seem completely legitimate becanse Fourier’s law is experimentally
established only in stationary conditions. It appears reasonable to modify
eq. (1.2) by adding a term which describes, at least in a transitory phase, the
inertial property of the thermal flow with respect to the origin of the flow
itself. The proposed change is

oJ,
(1.2") qu—kgradT~rqé~,
where 7, is a constant with the dimension of time. We note that the law (1.2')
is justified by CATTANEO on the basis of a revision of the transport equation
in the kinetic theory of gases; in this way one is able to evaluate the order
of magnitude of 7, in terms of microscopic parameters. The order of magni-
tude of 7, for gases is A/v ~10-*s, where /1 and v are the mean free path
and the mean velocity, respectively. Coupling (1.2) with (1.1) we obtain the
following equation instead of (1.3):
oT 0T
14 = =y AT —71,—.
(14) o A o
Equation (1.4) is of the hyperbolic type known as « the telegraph equation ».
So, if (1.4) is the governing equation of heat diffusion, the thermal energy
automatically assumes a finite propagation velocity without losing the essen-
tial feature of a diffusive phenomenon (*). In this paper we suggest a modifi-

(*) See C. CarTanko: ref. (}).
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cation of the hydrodynamic equations of viscous fluids following the same line
of thought as that which leads to eq. (1.4). As is well known, the equation
of motion of a fluid particle, in the absence of external forces, can be written (*)

(1.5) 9% =— " P — 9gn*?,

where we have split the total pressure tensor into a scalar hydrostatic part P
and a viscous pressure tensor a*’. We shall assume here that the pressure
tensor is symmetric. Equation (1.5) must be coupled with the continuity
equation, the first law of thermodynamics and two other functions of state
if the internal energy u and temperature T, as well as p and P, are unknown
functions. However, the system of nonlinear equations becomes a definite
one only if the phenomenological equations governing heat flow (Fourier law)
and momentum flow are given.

The latter one is given by a generalized Newton law of friction

(1.6) 7t = — 20U — }("0,) ",

where U = %(8“@’3 + ¢°v*) is the rate of strain tensor. From eq. (1.5),
using (1.6), the well-known Navier-Stokes equation follows. We shall confine
ourselves to an analysis of the linearized system of hydrodynamic equations,
using the same restriction as that applied to the heat diffusion equation. Such
a restriction leads to the study of sound propagation in a viscous fluid where
the state parameters, as well as the velocity, are considered small perturbations
with respect to the equilibrium values. Therefore, referring to such a problem,
the analysis of the system of the hydrodynamic equations leads to the well-
known Kirchhoff equation which links the absorption length and the wave
number with the frequency o of the different elementary waves, whose super-
position describes the acoustical perturbation. Nevertheless, the governing
equations of the dynamics of a viscous fluid do not allow the definition of a
wave front as a characteristic surface (*) of the system of differential equations.
This feature of the whole system is also found with the linearized system,
against all experimental evidence. In several respects this difficulty resembles
the one met in the heat equation, although here we should talk about «impos-
sibility of wave propagation » (°) rather than propagation at infinite velocity.

() Here the covariant notation for spatial co-ordinates %, %, #° is used for the sake
of convenience. The metric being Euclidean g*f=g,5= 0,5, v*=v, and 8*=20,=20/dx".
Later on we shall denote the local temporal derivative by 8, and the substantial one
by d/dt=2,+ v*8/dxz*. The index notation with the usual summation convention
from 1 to 3 is used.

(8 T. Levi-Civita: Caratteristiche dei sistemi differenziali e propagazione ondosa
(Bologna, 1931).

(®) G. LAMPARIELLO: Rend. Accad. Lincei, 13, 688 (1931).
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The afore-mentioned anomalous result may be related to the behaviour of the
phase velocity of elementary waves which describe the acoustical perturbation.
In fact, if the phase velocity tends to a finite limiting value v, for very high
values of the frequency, then, as shown in Appendix A, there is wave propa-
gation and the characteristic surface moves with velocity v,,. Thus we can
state that from the Navier-Stokes equation it follows that the phase velocity
is not finite but increases towards infinity when the frequency w increases.
In this work we will show that, substituting the phenomenological law (1.6)
with the following one:

*fB
(1.6") b= -2yU“‘3—l(8"v,,)g°‘5—‘ry-a%t- )

there do not exist any harmonic components of the solution, however high
the frequency may be, for which the phase velocity is unlimited; this implies
the existence of a wave front in all cases. It is clear that the corrective term
in eq. (1.6") can be justified on the basis of the kinetic theory of gases by
means of considerations analogous to the ones of CATTANEO: in fact, they refer
to general transport phenomena, and therefore they apply to momentum
transfer as well as to energy transfer. In this work we will study essentially
the consequences on sound propagation resulting from egs. (1.6'), (1.2"). For
this purpose, in Sect. 2 we will review the standard theory of sound dispersion
showing the difficulties mentioned above. In Sect. 3 we will derive the new
dispersion relation by iutrodueing eqs. (1.2') and (1.6') in the linearized system
and will obtain the limited value of phase velocity. In Sect. 4 we will consider
the case of rarefied monoatomic gases and the results obtained will be com-
pared with experimental data on sound dispersion. It will be shown that there
is good agreement even in the spectral region where the Kirchhoff formula fails.

2. — The theory of acustical waves and the Kirchhoff dispersion equation.

The starting point of the standard theory of sound is the hydrodynamic
system of equations which we report here:

(2.1) 210 + 0p(pv?) =10,
do> B

(2.2) QTit—z"—aﬁn“ — 0P, (0, =1,2,3),
du 8 o8 5

(2.3) Qa =—~Paﬁv — T U,,ﬁ—~agJ, B

(2.4) Q=Q(T,P)y u:u(T7P)

Equations (2.1) and (2.2) are the law of mass conservation and the momentum
balance equation for a fluid when external forces are absent and 7*f = p*f_ pg*?
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is the viscous pressure tengsor of the fluid. Equation (2.3) follows irom the con-
servation of the total energy and represents the first law of thermodynamics
where u is the specific internal energy; the last two terms on the right-hand
side of (2.3) are the heat amount absorbed by the fluid particle on account
of the energy lost by viscous friction from the surrounding fluid and the heat
amount absorbed on account of temperature gradients, respectively. Equa-
tion (2.4) contains functions of state of the fluid which must be considered
functions explicitly known by means of the thermal properties of the fluid
itself, i.c. specific heat at constant pressure and at constant volume, isothermal
and adiabatic compressibility and the coefficient of thermal expansion. The
system of the seven equations (2.1)-(2.4) with the seven unknown function
v*, 0, %, P, T can be considered a defined one if the phenomenological laws
are specified:

J =—ke"T,
(2.5)
2 = — 20U — (1 — § (2,9,

where & is the thermal conductivity of the fluid, u the coefficient of viscosity
and 7 the coefficient of bulk viscosity (*). Furthermore, if we choose P and T

as independent parameters, we can ingert the specific enthalpy (**) h=u + P/o
in eq. (2.3) using the relation

du dn dP

(2.6) T P 7]

— P(3,v").

By introducing (2.5) in the system of equations (2.1)-(2.4), assuming k, u
and » to be constant and using (2.6) we obtain

(2.1) 9:0+ Op(ev”) =0,
do* 1
(2.2%) g% = — P+ pAv* + (17 +§ ,u) 2%(8,07) ,
, dr dP
(2.3) g-at—-ﬁ—(ﬂ—l—:rc—}—kAT,
(2.49) o=0o(P,T), h=nP~P,T).

() The coefficient 5 is linked to the so-called second coefficient of viscosity 4, used
in eq. (1.6), by the relation n= 4+ 2u. We prefer using the coefficient of bulk vis-
cosity because it is usually negligible in gases.

(**) Some authors (%), in connection with the thermodynamies of irreversible processes,
prefer to introduce the specific entropy s; using this state function, the energy equation
becomes g(ds/dt) = — p(J2/T) — (1/T%JE 0T — (1/T)7*# U,p. In this way one makes
clear the entropy production and the irreversibility of the process, but we are not
interested in the following to emphasize these well-known features of the process.

(®) See, e.g., S. R. DE GrooT and P. MazUR: Nonequilibrium Thermodynamics (Am-
sterdam, 1962).
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Equation (2.2') is the well-known Navier-Stokes equation, whereas eq. (2.3')
restates the first law of thermodynamics, and the scalar invariant quantity =
turns out to be everywhere positive as it must be since it has the meaning of
heat produced by friction (per unit of time and volume). Explicitly we have

(2.7) n=—aU=(n+$u)0,")° +

+ 2:“[(817)2 + 0:01)2 + (0505 + 0305)* + (0,05 + 030,)%].

In the theory of sound one considers the fluid motion corresponding to a small
disturbance from the equilibrium state of the fluid where all thermodynamic
guantities are constant in space and time. Hence it is appropriate to linearize
the hydrodynamic equations by replacing each of these quantities by their
equilibrium values plus a small fluctuation, ignoring terms which are of second
order (in the fluctuations). So, if P, and T, are the equilibrium values, we put

P(r,i) = P, + P'(r, 1),
(2.8)
Tr,ty=T,+T'(r, t).

Furthermore we assume, for simplicity, that the equilibrium flow velocity
is zero, so that

(2.9) v(r,t) =v'(r, 1) .

In the following part, simplifying the notations, we will denote the perturba-
tion or the primed quantities P’, T' and v by p, v and v, respectively,
according to the notation of MorseE and INGARD (7). Using (2.8) we obtain

_ — de do
e=ati=o+ () T+ (55,

oh ch
h=h0+x=ho—l—(:cﬁ,) T—l—(@) ?,

(2.10)

where the derivatives, computed for the equilibrium values P, and T,, are
eonstant with respect to p and 7. Recalling the definitions of isothermal com-
pressibility and coefficient of thermal expansion

_1(%p 1 (0
=3, =36,

("} P. M. MorsE and K. INGARD: Theoretical Acoustics (New York, 1968), p. 278.
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and using the well-known thermodynamic relations

oh _1 T (09 _Tﬂz
(a_P)Tw§+E(a—17)P, Cﬂ_OV_QKT,

we can write (2.10) in terms of the thermal coefficients characterizing the fluid.
Finally, substituting the specific enthalpy % in the energy equation and taking
into account that d/d¢— ¢,, according to our hypotheses, one obtains the
linearized system

(2.11) 0,0 + QO(aﬂvﬂ) =0,
1
(2.12) o= — 0 + ot 1 +§u) 2 (20f)
y—1
(2.13) 0,0, | 0,7 — ¢, p) = kAT,
oy
(2.14) 8= 2’—2 (p—at),

where {2.13) ig again the first law of thermodynamies and (2.14) the equation
of state of the fluid with y = C,/C,, a« = /K, and

c2 = (?ﬁ) — _1,,,
o0/, oK

is the well-known Laplace sound velocity in an ideal fluid (¢.e. without vis-
cosity and heat conduction) in terms of adiabatic compressibility K,: We
note that any vector function of position, such as v, can always be separated
into a longitudinal (or lamellar) part »,, for which curlv, =0, and a trans-
verse (or rotational) part v,, for which divwe, =90. Therefore, if we use
the identity

curlemrl v = grad dive — Avw,

the equation of motion can be split into two separate equations, one relating p
to the longitudinal part of v, the other giving the behaviour of the transverse
part of », unrelated to pressure waves:

(2.12") 0,0,0F = — 0%p + (n + $p) A0S,

(2.13') 0,0,0% = — uAv?

thus the two parts of the velocity solution, v, and v, can be solved separately
and need not be combined until we come to satisfy the boundary conditions.
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In the following considerations, since we are not interested in boundary condi-
tions, we can limit ourselves, in eqs. (2.12) and (2.13), to consider only the
longitudinal part of the velocity. Taking into account also the assnmed isotropy
of the medium, we will consider the one-dimensional case thus avoiding cum-
bersome formulae superfluous to the study of the general properties of the
solution of the system in an unlimited medium. Eliminating é(z,t) from the
system (2.11)-(2.14) we obtain

(2.15) 0up = L[8ulp —ar) by 0d0p —an)],
_1 y—1
(2.16) bt = 30 [1: il
yAid
(2.17) 0000 =—2, [p +Zap —ar)] :

where 1, and I, are two characteristic lengths defined by

4
(2.18) =1tse R
Qo€ 00¢Cp

The system (2.15)-(2.17) consists of three linear equations with the unknowns
p, v and ». If we examine the first two, which contain only p and 7, we can see
that, in the absence of viseosity and thermal conductivity (I,=1,=0), the
pressure fluctuation satisfies the well-known wave equation in an ideal fluid:

1
azzp _Z'z' attp =0.

When viscosity and thermal conductivity are not negligible, as in real fluids,
we still obtain equations which satisfy p and z. One usually studies the prop-
erties of the general solution in an unlimited medium assuming that it can be
expressed by the Fourier integral

+o© +o

(2.19) ple, t) = (217)2 f fp?(k, w) exp [#(kz — wt)]dkdw ,

-0 —-®

where the amplitudes of the partial waves are given by the Fourier transform

+® +©

(2.20) Dk, w) =f fp(m, t) exp [— ¢ (ko —wt)]dedt .

— —w
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The definition of the Fourier transform (2.20) can be extended to complex values
of k or, alternatively, o provided that the imaginary parts of these quantities
satisfy suitable conditions that ensure the convergence of the integral (2.20).
For simplicity and for a direct reference to the experiment described in Sect. 4,
we will assume a forced perturbation so that we can consider w real. In this
way eq. (2.19) describes the solution by means of superposition of damped
partial waves with amplitude P(k, o) exp [ Im{k}x], direction of propagation
along the z-axis and phase velocity v, = w/Re {k}. The properties of such a
solution can be derived directly by the analysis of the partial waves because of
the linearity of eqs. (2.16) and (2.17). Therefore writing

gpt%t)=:ﬁdaanexp[ﬂkw——wnL
(2.21)

{x,t) = T(k, ») exp [¢(ke — wi)],

and substituting in (2.15) and (2.16), we obtain

K p = L0} —a) +ivl ok —o?)],
(2.22) .
kz-,;__@_a_) 7T — ——1{)
cl, oy

The two algebraic equations, in the Fourier transforms $ and 7, allow a non-
vanishing solution only if the coefficient determinant vanishes. This gives a
complex relationship between w and k of the form f(k, w) =0, which is equi-
valent to two real relations and gives the real and imaginary parts of k as a
function of w. The dispersion relation which one obtains from (2.22) is also
called the Kirchhoff equation:

2

1 .
(2.23) I, [yz,, + e 5] Tt o+ [1 —z% Iy + qu)] k2-% —0.

This equation can be solved exactly and the real and imaginary parts of & can be
plotted in terms of w. However, what we want to emphasize here is the fol-
lowing result: for high values of the frequency « the real part of k* becomes
negligible with respect to the imaginary part which increases with increasing
frequency . In fact, from (2.23) we obtain the following behaviour of %* at
high frequencies:

(2.24) It — [a(lq, 1) + O(wi?)] 44 [b(lq, ZV)% + 0(%)] )
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where ¢ and b are constants connected to the characteristic lengths by the
equations

a4 — [(1 —y)lv+ qu:ii (ZV_Vla) *

21, —yl, — ZV] 1
yly by —yl,

2l
(2.25) Vvt
b=l 1 — )] —.
[V+)’a:|: (ZV V4 )] 2')/lqu
From (2.24) we see that the imaginary part prevails over the real part inde-
pendently of the choice of the sign in (2.25); in the limit of high frequencies
we obtain

(2.26) Re {k} = Im {k} ~ \% [ZV + quz :ytly(llv —qu)]g ot

Consequently the phase velocity of the corresponding elementary wave is

) vy 1, ]%
= ~2 -}
Re {k} [lv + e+ (b —yl) “h

(2.27) v,

and therefore increases with the frequency. This difficulty can be removed
by introducing the terms added in the phenomenological equations (1.2')
and (1.6"). Finally we note that the sign can generally be chosen in order to
make the real and imaginary parts positive; however from the asymptotic
expression of %? (2.24) we can deduce only that the phase velocity in both
cases increases according to .

3. — The modified Navier-Stokes equation and the new dispersion relation.

Let us now look for linearized hydrodynamic equations assuming that the
phenomenological laws which give the heat flux and the viscous pressure tensor
are not those of FOURIER and NEWTON (2.5), but the following ones:

(3.1) J* = —kd*T—1,0,J%,

(3.2) 2t = — 20U — (n— $u)(@,0") 9" — 7, 8,75

We note, first of all, that there is no difficulty in introducing (3.2) into the
equation of motion (2.2): we merely need to differentiate eq. (2.2) with respect
to time and then we get the time derivative of z*”. Taking into account
the continuity equation we can write

do~

0 gy = 2dev?) + ap(ov*0f)
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and so we get, directly from (2.2),
(3.3) 8,05 = —0,[0,(0v") + 04(0v*v°) + 0*P] .

Substituting (3.2) in the right-hand side of the equation of motion and using
(3.3), we obtain

do= 1
3.4) o Hvt_ =—0"P++ulAv>+ (97 + 3 ,u) 0%(0,07)— 7 2,[0,(0v*) + O(0v*vP) 4 0" P].

Equation (3.4) represents the modified Navier-Stokes equation with only one
time constant v,; this is not surprising since we used only eq. (3.2) for the
inertia of momentum flow. The procedure for obtaining the modifications in
the energy equation (2.3) making use of (3.1) and (3.2) is more cumbersome
than the previous one. We must take into account, indeed, the consequences
due to the new equation of motion (3.4) on the total energy conservation the-
orem. Moreover, the modified energy equation can be formally written

du

(35 og

=—0"P+ kAT —
— 7, 0:[0,ou) + Os(ouv’) + P(9,0")] — 7 Upp — 7, 0:(n* Upp) ,

where, of course, we have yet to substitute the viscous tensor. Nevertheless,
since we are interested in the linearized theory, we remark that only the first
three terms in the right-hand side of (3.5) give a contribution, becaunse the other
ones are a quadratic expression of velocity gradients by virtue of (3.2). The
linearized equations can now be easily obtained. The last term of (3.4) can be
written

do>

7,8, [g o T a“P] ,

and, therefore, according to the hypothesis of small perturbation used in the
preceding Section, we obtain

(3.4") 7,0,[0,(00%) + 85(0v*0") + 8*P1~ 7,0,[0,0,0% + 0*p] .
Analogously, the third term of the right-hand side of (3.5) can be written

du oh 4P
Al — —
7,0, [Q a + P(dg0 )jl Tq 0y [Q az dt] ’

where we have also made use of the definition of specific enthalpy. Therefore,
on account of (2.10) and of the thermodynamic relation already used in Sect. 2,
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we obtain

(3.5 7.2040u) + 2ploun®) + P(350°)] = 405Gy 0 [a,r —V;yl 8:20] .

From (3.4) and (3.5), inserting (3.4') and (3.5’), we obtain the linearized system
of equations corresponding to the system: (2.11)-(2.14)

(3.6) 3,6+ 0,007 =0,

1
(3.7) 00 040% = — 0%p + pAv™ + (7'] + g,u) 0% (0p0°) — 7y 0, [00 0,0* -+ 0% p],
(3'8) @Ooﬂat [7_% p] ZkAT_IaQO Cpatt [T—% p] ’

3.9 6=2(p—ar).

c?

Here all physical quantities are denoted by the same symbols used in the
previous Section. Here again we can confine ourselves to consider the one-
dimensional case and substituting (3.9) in (3.6) we obtain

(3.10) 1+ 77 0,) 0p = % 0.L(1 + 77 0,) 0ulp — oT) — by 00(p —a7)],

—1
(311)  Tyedut = (1+ 7,8,) 8,[r—% p] ,

(312) el 4 7000 =—2, [(1 T rya0p + T ap— ow)] .

The system (3.10)-(3.12) reduces to the system (2.15)-(2.17) when 7,=17,=0
as expected. Again, following the conventional method for studying dispersion
and absorption of sound, we can analyse the damped partial waves whose super-
position gives us the solution of (3.10) and (3.11). Therefore, on account of
(2.21), from (3.10) and (3.11) we get

(1 —iwr) k2B = L [0*(1 —iwt,)(B —af) + il ok*(p — )] ,

02

(3.13)

~ . ~ —1.
lock?*T =i (1 ——mra)(r 7 p) .

From the system (3.13), taking into account that the determinant of the coef-
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ficients of p and £ must vanish, we obtain the generalized dispersion equation
G141, [yly + ai) o1 — fiwr,,)] Kt -

+ {(1 —iwT)(1 —ilwTy) — @'(—g [(1—lwt)ly + (1 — ia)‘ry)qu]} k2 4-

w? . .
5 (1 —dot)(1l—iwt,) =0.

We can multiply eq. (3.14) by the product (1+iwt,)(1+iw7,) so that the
last term is a real one. Furthermore it is useful to introduce the charac-
teristic times

l, n+ %,u l, k

3.15 t:—-: t:_:"
( ) 14 ¢ 9002 ’ (4 P 900209

As we will see by comparing these quantities with those given by the kinetic
theory of gases, they have the order of magnitude of the mean time between
two collisions (or the inverse of collision frequency). Thus eq. (3.14) can be
written

(3.16) Akt + Bk2—C =0,
where
. ' .1 '
A=A, +1i4,= (a,+ a;0°) ‘l‘"; (az - a;0°),
B =B, —iB,= (1+bj0* +bjw*) —iw(b,+ b0,
C=0C=cio®*+cio* 4+ cfw®.

The coefficients @, b, and ¢; are given in terms of the times ¢, t,, 7, and 7,
by the relations

a, = c? ta(ytv— Tq) ) Gy = c? ta ’
(3.17a) { 2 .
a, = — T, T (vl + Tp) a, = 6*t,[75, + yir, + )],
517 lb; =2+ 4 t,T, T, by =1, + 1,
b'; = T,7,(T, T, + 1,7, + ¥1,7,) b; =72 + ytarf, ,
1 2 2 2_.2
(3.17¢) G=%,  d=" :: IR A

We are now able to show that the dispersion equation (3.16) does not lead
to the difficulty mentioned at the end of the previous Section. We know that
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such a difficulty arises from sound waves for high values of w. Therefore, if
we confine ourselves to consider the values of k* for wt,>>1 (f, and ¢, have
the same order of magnitude), we obtain from (3.16)

(318) o= 2(%,)2{«»{[— I L (8 + daldl)] +
1

L @5+ a7 + dale)} F 1] T 2ajaley g}

B+ dafel)t of

Relation (3.18) shows that for high frequencies the imaginary part of k* is negli-
gible with respect to the real part. This implies that the real part of k& becomes

_ " e 1 III% %
(3.19) Re{k}:’[ bt +4“101)] o

14
2a,

Hence the phase velocity v, = w/Re {k} approaches a constant value, inde-
pendent of w, for high frequencies. In Appendix B, according to the remark
already made in the Introduction, we deduce the propagation velocity of the
wave front directly from the system (3.10)-(3.12) showing that it is equal to
the phase velocity obtained from (3.19). We remark moreover that for damped
progressive waves we must have

(3.20) Re{k}>0, Im{k}>0,
and, as a consequence,
(3.21) Im {k2} > 0.

As we previously noted, the condition (3.21) generally leads to the choice of
the sign. This is also evident in the asymptotic expression of k? (3.18) where
the real part is always positive on account of (3.17). However the choice of
the sign depends on the values of 7, and 7, included in the coefficients a,, b,
and ¢;. Of course, if we put 7,=7,=0 in (3.18) such a relation becomes
meaningless because the coefficients ay, a,, b, b, and ¢, vanish; in this ecase
we obtain again the relation (2.24) since (3.16) reduces to (2.23). However
it is worth-while to remark that if we put alternatively either 7,=0 or 7,=0
the behaviour of k in terms of w, which follows from (3.16), depends on the
choice of the sign. By the way, we observe that this cannot be seen from (3.18),
and then we must analyse (3.16) at a different order in . From our peint of
view, such a circumstance is without physical meaning because 7, and 7,
connected to the same origin of the delay phenomenon, cannot be separately
vanishing. Nevertheless, if we assume that only one 7 vanishes, it can be
shown from (3.16) that the phase velocity can be either finite or infinite, for
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w — oo, according to the choice of the sign; one thus meets the same difficulties
pointed out by FRENKEL (3), who considers the time constant v related only
to viscosity.

4. — Comparison with experimental measurements.

In the previous Section we were concerned only with the dispersion equa-
tion (3.14) and the resulting properties of the phase velcecity on account of
phenomenological equations (3.1) and (3.2). If we regard these last two equations
as macroscopical laws, the results obtained can be applied equally well to the
propagation of sound waves either in a dense medium (homogeneous and iso-
tropic) or in a rarefied gas. However, if we want to compare theoretical results
with experimental data, we have to choose the system and therefore to fix
experimental parameters C,, k, p and ¢ (in addition to g, and T). In this
Section we shall be concerned with experimental results in monoatomic rarefied
gages. The most extensive experiments on sound propagation in diluted mono-
atomic gases are still those of GREENSPAN (*) and of MEYER and SESSLER (1°)
in argon; they are of the source problem type and are often referred to in
the literature as bases for theoretical discussion (**'%). In those experiments
sound is generated by a piezoelectric transmitter and detected by a movable
piezoelectric receiver. As the distance between transmitter and receiver is
changed, the phase and amplitude of the signal from the receiver change, and
from this one can infer the phase veloecity and absorption length. Of course,
the main interest of a comparison with experiments in monoatomic gases is
strietly linked to the possibility of deriving eqs. (3.1) and (3.2) from the kinetic
theory of gases. By a statistical procedure CATTANEO (') obtained the following
expression for

Ly
(1) Ty=
oly
where 12 is the square mean value of the free path and »l, is the mean value
of the product between velocity and free path of the molecules with velocity ».
It is easy to prove, at least referring to the elementary arguments on transport
properties which lead to (4.1), that t,=1,. Therefore, on the basis of the
kinetic theory of gases, we can deduce that the two constants 7, and v, must

(®) J. FRENKEL: Kinetic Theory of Liguids, Chap. 4 (Oxford, 1947).

(®) M. GREENSPAN: Journ. Acoust. Soc. Am., 28, 644 (1956); 31, 155 (1959).

() E. Mever ad G. SESSLER: Zeits. Phys., 149, 15 (1957).

(1Y) See, e.g., J. D. FocH and G. W. ForD: The dispersion of sound in monoatomic gases,
in Studies in Statistical Mechanics, Vol. D (Amsterdam, 1970).

(12) L. SmrovicH and J. K. THURBER: Journ. Acoust. Soc. Am., 37, 329 (1965).
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be equal and of the order of magnitude of A/, as one infers from (4.1)
(A = mean free path). We will assume at once 7, = v, = v and we will have
at our disposal, in the dispersion equation (3.14), only one parameter, #, and ¢,
being fixed by the nature of the gas. Therefore, the comparison with the experi-
mental data should provide, first of all, an explicit value of 7 consistent with
the order of magnitude expected from (4.1). However the main point of interest
in such an analysis is the behaviour of the phase velocity in terms of the fre-
quency w. The experiments of GREENSPAN and of MEYER and SESSLER give
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Fig. 1. — Dispersion in argon; experimental data from GREENsPAN (°) and MEYER
and SESSLER (1%): o experimental values of MEYER and SESSLER, o experimental values
of GREENSPAN, --——— KIRCHHOFF.

the dispersion of sound waves and show (see Fig. 1) that the ratio ¢/v, tends
to an almost constant value when w increases (in Fig. 1 the ratio 4/4,, known
as Knudsen number, is proportional to w), in contrast to the previsions of the
Navier-Stokes equation according to which this ratio should vanish. In order
to compare these results with those expected from eq. (3.14), we briefly
recall that the state equation for a rarefied gas is

(4.2)

where K is the Boltzmann constant and m the mass of the molecules. From (4.2)
it follows that

and, as a consequence, the propagation velocity ¢ of the sound is

1 (yKT E
{4.3) c= (QoKs)% = ( pon ) ,
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where y = C,/C, = 3 for monoatomic gages. Taking this into account and also
the relation between the coefficient of viscosity 4 and the mean free path of
molecules we can identify (*) the mean free path with the quantity

(4.4) A

Nl

Qo€

Furthermore, recalling that the coefficient of bulk viscosity » is vanishing and
that the dimensionless ratio

(4.5) f=—=

is constant both theoretically and experimentally (13) for all monoatomic gases,
we can write the Kirchhoff dispersion equation using dimensionless coefficients
and variables

(4.6) = —, x= Ak
and the Kirchhoft dispersion equation (2.23) becomes

@) [§f+i§f%]x4+[l—é(f+§)§] =0,

where we have used (4.4) and the definitions (2.18) to get

ol

SN
s
I
-
|

o

Analogously the dispersion equation (3.14) can be written

a9 [3r+idiza—im]e

+ [(1 ity —i (f + -;f) £ —iéx)] xt— E(1 —iEg)i=0,

where y =c¢v/A, Using (4.8) one can calculate the ratio x»/¢ in terms of &
to get a direct comparison with the experimental data plotted in Fig. 1. In

(*) See J. D. FocH and G. W. Forp: ref. (11).
(**) 8. CrapMAN and T. G. CowriNGg: The Mathematical Theory of Nonuniform Gases
(Cambridge, 1958), p. 241.

22 ~ Il Nuovo Cimenfo B.
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fact, from the definitions (4.6) it follows that

—c— = Re{k} = Re{ﬁ}7
Uy wle &

and that & is proportional to the ratio A/4,, where the sound wavelength is
indicated by 1, = 2mc/w:

A
f = a); = 2%7'0 .
One can see immediately from the graph of Fig. 1 that at low frequencies the
behaviour of ¢/v, corresponding to the Kirchhoff equation follows the experi-
mental data, whereas there are marked discrepancies in the Knudsen regime
where the wavelength is short compared with the mean free path. Therefore,
by comparing equations (4.8) and (4.7) one sees that, for A/4,< 10, the value
of the constant v must be such that the product &y = w7 is negligible with
respect to unity, while, for A/, =~ 1, it can be of the order of unity. An
estimate of T can be obtained by imposing the condition w,t =1, where w,
is the frequency corresponding to A/, =1. Taking into account that A/, =
=Aw/(2m¢ we have

¢c 4_ 1
(49) w0=2n71:_—_——2n%;,
where we have used the relation ?, = 4u/3g, ¢* = 44/3¢.
From the condition w,7 =1 we obtain

(4.10) r:——:lé,
w, 2me

so that 7 is of the order of magnitude of the reciprocal of the collision fre-
queney A/c according to (4.1). The quantity Re {x/¢} = ¢/v, for different values
of the frequency, or //4,, has been calculated with the value of v from (4.10).
From numerical caleulations we were able to see that the value of v which
best fits the experimental data on dispersion is slightly lower than v =
= (1/n)A/e, thus confirming the considerations about its order of magnitude.
In the following Table we have reported some values of ¢fv, for v =A/ne,

TABLE 1. — Numerical values of the ratio cfv, derived from eq. (4.7) or Kirchhoff equation,
from eq. (4.8) and from the experimental data; the range of values of the latter ones corre-
sponds to an evaluation of the uncertainty due to the interpolation procedure.

Afdq 0.25 0.5 1 2 4 7
(/) gien  0.40 0.26 0.19 0.13 0.10 0.07
(/) s 0.52 0.43 0.44 0.47 0.48 0.49

(¢/Vp)exp 0.51+-0.55 0.46—=-0.50 0.50=0.52 0.46--0.50 0.46--0.49 0.46-:-0.49
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the corresponding experimental data and the values calculated from the
Kirchhoff equation.
These results are plotted in Fig. 2,
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Fig. 2. — Dispersion in argon for some values of A/4;; the range of values of experi-
mental data corresponds to an evaluation of the uncertainty due to the interpolation
procedure: 1 experimental values, e Kirchhoff equation, = eq. (4.8).

As can be seen, the behaviour of ¢/v, according to the Kirchhoff equation
departs from the experimental data more and more as A/1, increases, while
the behaviour of ¢/v, according to eq. (4.8) remains more or less constant and
reproduces fairly well the experimental data in Fig. 1. It is clear that a more
detailed numerical analysis is necessary for an accurate determination of 7
from the experimental data. This analysis is also useful for examining the
contribution of inertial terms to the sound absorption. Although preliminary
calculations show that the behaviour of Im {»/£} as a function of A/}, is in
better agreement with experiments than that derived from the Kirchhoff
equation, we shall postpone a discussion of this quantity which is very sensitive
to the value of 7 chosen to fit dispersion data.

5. — Conclusions.

The addition in the phenomenological equations (1.2’) and (1.6') of terms
which describe the inertial property of energy flux as well as momentum flux
hagled to the two following main results: on the one hand, we have overcome the
difficulty related to the impossibility of wave propagation in a viscous medium,
and, on the other hand, we have shown that the order of magnitude of the
time constant v inferred from experiments in monoatomic gases coincides
with the order of magnitude expected on the basis of statistical considerations.
This last circumstance, along with the fact that both the inertial terms added
allow the overcoming of the paradox concerned with the wave propagation
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in a viscous fluid, suggests that a closer inspection of eqs. (1.2’) and (1.6’) from
the point of view of the kinetic theory of gases is probably useful taking
account also of the developments that this theory has achieved in recent years.
In any case, eqs. {1.2') and (1.6’) can be considered as phenomenological or
macroscopical laws. One could indeed assert, following the Maxwellian point
of view on relaxation phenomena supported by VERNOTTE, that the establish-
ment of a flux of a thermomechanic quantity, produced by temperature or
velocity gradients, is always joined to a reactive «force » which contrasts, in
the initial phase, with the establishement of the flux itself. Following this
point of view we have shown in this paper that, although the transitory phases
are difficult to measure directly by experiments becanse of the very small
value of 7, the consequences of the inertial character of z*# and J, becomes
relevant when the transitory phage reveals a recurrence in time with a period
of the order of (or smaller than) z, just as in the case of sound waves in rarefied
gases.

Finally, we remark that hydrodynamics, treating energy fluxes and mo-
mentum fluxes on the same foot, appears to be the natural framework for
any relativistic theory of heat transport. Thus, we believe that in a hydro-
dynamic context the problems arising from relativistic heat equations, as the
ones given by KrRANYS (14) and VAN KAMPEN (%), could be better clarified.

% %k %

The authors sincerely wish to thank Prof. C. CATTANEO for criticism and
helpful suggestions during the preparation of this manusecript.

APPENDIX A

It is well known that the notion of wave propagation related to any kind
of physical phenomena, governed by a system of differential equations, can
be associated with the definition of a characteristic surface or a wave front.
We shall briefly recall, following Luvi-Civira (%), the definition of a wave
front. Consider the phenomena described by the system of differential equa-
tions

m a (p
m,...:,, i _
(A.1) g jzﬂon in By ax"’aw’l . a + Gul@, 0, 2) =0

(1) M. Kraxys: Nuovo Cimento, 42 B, 51 (1966).
(%) N. G. VaNn KAMPEN: Physica, 46, 315 (1970).
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where s is the maximum order of differentiation of m unknown functions ¢, (here
we assume that the maximum order s is equal for all ¢,) of #» -1 independent
variables #,; y is a symbol of the partial derivatives of ¢ with respect to the
variables «; but of an order lower than s. The hypersurfaces 2(x,, @, ..., Z,) =
= const are called wave fronts if they are the space regions across which the
quantities 0%, /cxy dxlt ... dw)r have a discontinuity, whereas the functions ¢, and
their derivatives up to the order s—1 are continuous functions. These surfaces
are also called characteristic manifolds because the Cauchy-Kowalewski
theorem is not valid for the points of those surfaces. This fact has the impor-
tant consequence that the characteristic manifolds must satisfy a differential
equation. One can show that, by introducing the n+1 independent variables
2,21, 2y ..., 2, instead of the variables w,, &, ®,,..., 2, the characteristic
manifold must satisfy the following differential equation:

Jodue.ein pomd i
Zinil--.inEuovl "Po Py P
EE) '

(A.2) H(E S

=0 (u, v =1,2,...m),

where p; = Jz/0x,. Without solving eq. (A.2), one can find the propagation
velocity of the wave front

[Pl

(27)

3

(A.3) a=

)

if the p, are not identically vanishing.

The above-mentioned results can be put in a different way if one considers
a homogeneous linear system with constant coefficients instead of the general
system (A.1). Under these circumstances the solutions ¢, can be written as a
Fourier integral

(A.4) @y, 1) = f f P(k, ) exp [i(k-x — wt) dkdo ,

where k and x are the n-tuple (ky, ky, ..., ks) and (#;, 2,, ..., @,) Tespectively.
Equation (A.1) can then be written

(A.5) E, =2 - e BRIk kMY @, + 9, =0,
y=1

ji=5)

where 9 is the transform of (g, ¥) and p is now a homogeneous linear func-
tion of ¢ and y and, moreover, in compliance with the preceding notation,
we put z, =1, ky = —o.

From (A.5) an equation follows (a generalization of the Kirchhoff equation)
relating k,; and o. Now we suppose that, whatever the relation between k;
and © is, the phase velocity v, = w/k, where k= (Af +%; +... + kY, is
finite when o increases for all values of the propagation vector u = kjk.
Denoting the limited value of the phase velocity by v,., wWe will show that,
if such a limit exists, it is equal to the propagation velocity defined in (A.3).
In fact, if v,. is limited for any values of the propagation vector u, it follows
from the definition of phase velocity itself that k; must be proportional to w
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(k; =~ fw) for high values of w. Therefore, the system (A.5) becomes

L i i 4 i 2 1
(A.6) G2 Dieiin B PRk L D, [1 * 0(—)] =0
v=1 (T ji=s) @

Disregarding all terms of the order 1/w, a nontrivial solution of system (A.6)
for @, exists, for high values of w, provided the determinant of the coefficients
vanishes:

=0.

(A7) ]l DN o Y0 O
H(Zje=s)

i

Equation (A.7) is equal to eq. (A.2) and therefore it follows that the quantity
defined by the ratio |k0|’(z k?)* is identical to the propagation velocity of
=1

the wave front, if such a front exists.

APPENDIX B

As mentioned in the Introduction the Navier-Stokes equation, the continu-
ity equation and the state equation ¢ = o(P) lead to the strange result that
wave propagation is impossible in a viscous medium (*5). It can be easily seen
that if 7 is an unknown function and the energy equation (2.16) is added to
the system, the previous result is unchanged. On the other hand, the addition
of inertial terms corresponding to energy and momentum fluxes leads to a
limited value of the propagation velocity. For the sake of simplicity we will
now show this in a one-dimensional case. Using (A.2) and (A.3) with rela-
tion to the system of equations (3.10)-(3.12) we obtain

QoTvPo (ty + )01 —aylyPs

y—1
xy

(B.1) pil 0 ToPo 4Pl —Tops | =0,

T T
0 Getrnt=Lre o (Ei-u)

from which it follows

7,1
(B.2) eowps [(TV + ytv)taozpi‘_ czypﬁ —(ToTp + Toly + VTVta)pipg] =0.

Using the relation (3.17), if p,+ 0, we have

(B.3) a;pi + bipive + ¢ps =0,
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and therefore

1 1
(B.4) == ’71

R Al
Do

!
2a,

this ecompletes the proof.

® RIASSUNTO

Riprendendo alcune considerazioni svolte in passato dal Cattaneo, si propone una
modifica dell’equazione di Navier-Stokes che tiene conto dell’inerziality del flusso di
impulso. Il sistema linearizzato delle equazioni dell’idrodinamieca, ove si consideri 1'iner-
zialitd del flusso di calore unitamente a quello di impulso, conduce ad una nuova equa-
zione di dispersione che non presenta gli inconvenienti dell’equazione di Kirchhoff.

La teoria della dispersione del suono cosi modificata & coerente con i risultati speri-
mentali relativi ai gas monoatomici rarefatti.

Moaudmmnposantoe ypasHenne Hapbe-CToKca H ero clie/icTBusl Il JUCTIEPCHH 3BYKA.

Pestome (*). — IlpuHEnMast Bo BHMMAHHE HEKOTODHIE DACCMOTDEHHA, DAa3BHTHIC paHee
Katraneo, Mpl mpenmaraemM Momudunuposansoe ypaBHenne Hasbe-CToxca, KoTopoe
BKITFOYAET MHEPIUAIbHOE CBOMCTBO MOTOKA MMITYJIbca. JIMHeapu3OBaHHAS CHCTEMa THAPO-
JAHAMAYECKHX YPaBHEHH, B KOTODPBIX YYMTHIBAKOTCA MHEPLUAJIBHBIE CBOMCTBA U IOTOKA
HMITYJIbCA M MOTOKA Telsid, IPUBOINT K HOBOMY IUCIIEPCHOHHOMY ypaBHEHMIO, KOTOPOE
He OOHapyXuBaeT TCOPETHUYECKMX HeynoOCTB ypaBueHumsa Kupxroda. Takxe 3aMeTHO
YNYYMIaeTcs COINAcHe € JKCIEPMMEHTAIbHBIMA DPe3yabTaTaMya ANA AUCIIEPCHM 3BYKa B
pa3peReHHbIX OAHOATOMHEIX Ta3ax.

(*) Ilepesedeno pedaryuei.



