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S u m m a r y .  - -  Taking into account some considerations developed in 
the past by Cattaneo wc suggest a modified Navier-Stokes equation 
which includes the inertial property of the momentum flux. The linearized 
system of hydrodynamic equations where the inertial properties of both 
momentum and heat flux are taken into account leads to a new dispersion 
equation which does not exhibit the theoretical disadvantages of the 
Kirchhoff equation. Also the consistency with the experimental results 
about sound dispersion in rarefied monoatomic gases is definitely improved. 

l .  - I n t r o d u c t i o n .  

Several years ago CATTA~EO (1) suggested a modification of the heat dif- 

fusion equation in order to overcome the well-known paradox, due to the 

parabolic character  of the equation, according to which heat  diffuses with 

infinite velocity. Ten years later, VERNOTTE (2), re-examining the difficulties 

related to the classical theory  of heat  diffusion, proposed a similar change 

of the heat  diffusion equation. Apparent ly ,  the subject was not pursued 

in the following years although LUT•OV (3), in his recent  textbook on heat 

diffusion theory, quotes the conclusions of CATTA~O and VEI~]NOTTE aS an 

established result. I t  is worth-while to recall the main aspects of the previously 

(*) Work partially supported by C.N.R. groups for mathematical research. 
(1) C. CATTANEO: Atti Sem. Mat. ~is. Univ. Modena, 3, 83 (1948). 
(2) P. VERNOTTE: Compt. Rend., 246, 3154 (1958). After this work the same authors 
published the following papers: C. CATTANEO: Compt. Rend., 247, 431 (1958); 
P .  VERNOTTE: Compt. Rend., 247, 2103 (1958). 
(3) A. V. LUIKOV: Analytical Heat Di]]usion Theory (New York, 1968). 
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ment ioned equation.  I f  we consider a homogeneous isotropic medium in which 
thermal  expansion can be disregarded, the first law of the thermodynamics  

can be wr i t ten  

~T 
(1.1) eCv - ~  = - -  d i v s  

where ~ is the  (constant,  uniform) densi ty,  Cy is the specific heat  a t  constant  

volume and J~ is the heat  flow per unit  t ime across the uni t  sm'face. Coupling 
the equat ion (1.1) with Fourier 's  phenomenological  law of heat  conduction 

(1.2) J~ = - - k  grad T ,  

the well-known heat  diffusion equation is obtained if the thermal  conduct iv i ty  k 

is t empera tu re  independent  

~T (1.3) - ~  = Z . A T  . 

Here  Xv = k/~Cv is the so-called thermometr ic  conduct iv i ty  and A is the usual 
Laplace operator .  Nevertheless,  the coupling of the two equations (1.2) and (1.3) 
does not  seem completely legi t imate because Fourier 's  law is exper imental ly  
established only in s ta t ionary  conditions. I t  appears reasonable to modify  
eq. (1.2) by  adding a t e rm which describes, at  least in a t ransi tory phase,  the 

inert ial  p rope r ty  of the thermal  flow with respect  to the origin of the flow 
itself. The proposed change is 

(1.2') J~ = - -  k grad T ~ ~ ~t ' 

where v, is a constant  with the dimension of t ime.  We note  tha t  the law (1.2') 
is justified by CATTANEO on the basis of a revision o f  the t ranspor t  equat ion 
in the kinet ic  theory  of gases; in this way one is able to evaluate the order 
of magni tude  of ~, in terms of microscopic parameters .  The order of magni- 

tude  of T, for gases is A/S ~--10 -9 s, where A and S are the mean free pa th  

and the mean velocity,  respectively.  Coupling (1.2') with (1.1) we obt~in the 

following equat ion instead of (1.3): 

%T " T �9 ~2T 
(1.4) ~t-zvA - ~ "  

Equat ion  (1.4) is of the hyperbol ic  type  known as (~ the telegraph equ:~tion ~. 
So, if (1.4) is the governing equat ion of heat  diffusion, the thermal  energy 
automat ical ly  assumes a finite propagat ion veloci ty wi thout  losing the essen- 

t ial  fea ture  of a diffusive phenomenon  (*). In  this paper  we suggest a modifi- 

(*) See C. CATTA~O: ref. (1). 
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cation of the hyd rodynamic  equat ions  of viscous fluids following the same line 

of thought  as t ha t  which leads to eq. {1.4). As is well known,  the equat ion 
of mot ion  of a fluid part icle ,  in the absence  of ex terna l  forces, can be wr i t t en  (*) 

d v  cr 

(1 .5 )  ~ dt  - -  ~ P - -  ~ z ~  ' 

where we have  spli t  the to ta l  p ressure  tensor  into a scalar hydros ta t ic  pa r t  P 

and a viscous pressure  tensor  ~z ~z. We shall assume here  t ha t  the pressure 

tensor  is symmet r i c .  Equa t ion  (1.5) mus t  be  coupled with  the cont inui ty  

equat ion,  the first law of the rmodynamics  and  two other  functions of s ta te  

if the in te rna l  energy  u and  t e m p e r a t u r e  T, as well as ~ and P, are unknown 

funct ions.  However ,  the  sys tem of nonlinear equat ions becomes a definite 
one only if the  phenomenologica l  equat ions governing hea t  flow (Fourier  law) 

and m o m e n t u m  flow are given.  
The l~t ter  one is given by  a general ized bTewton law of fr ict ion 

(1.6) ~ z = - - 2 # U ~ - - ~ ( ~ r v ~ ) g  ~ , 

where U~z=  l ( ~ v Z +  ~ v  ~) is the  ra te  of s t ra in tensor.  F r o m  eq. (1.5), 

using (1.6), the well-known Navier -S tokes  equat ion follows. We shall confine 

ourselves to an analysis  of the lineariz+d sys tem of hyd rodynamic  equations,  

using the same res t r ic t ion as t ha t  appl ied to the heat  diffllsion equation.  Such 

a res t r ic t ion  leads to the s tudy  of sound p ropaga t ion  in a viscous fluid where 
the  s ta te  pa rame te r s ,  as well as the  velocity,  are considered sm~dl pe r tu rba t ions  

wi th  respec t  to the equi l ibr ium v~dues. Therefore,  referr ing to such a problem,  
the analysis  of the sys tem of the hyd rodynamic  equat ions leads to the well- 
known Kirchhoff  equat ion  which links the absorp t ion  length and the wave 
n u m b e r  wi th  the f requency  o) of the different e l emen ta ry  wnves, whose super- 

posi t ion describes the acoustical  pe r tu rba t ion .  57evertheless, the governing 
equat ions of the  dynamics  of a viscous fluid do not  allow the definition of a 

wave  f ront  as a character is t ic  surface (4) of the sys tem of differential  equations.  
This fea ture  of the  whole sys t em is also found with  the l inearized sys tem,  

agains t  all exper imenta l  evidence, i n  several  respects  this difficulty resembles  

the  one m e t  in the  hea t  equat ion,  a l though here we should ta lk  about  (< impos- 

s ibi l i ty  of wave propag~t ion  ~> (5) ra ther  t han  propaga t ion  at  infinite velocity.  

(*) Here the covariant notation for spatial co-ordinates X 1, X 2, X 3 is used for the sake 
of convenience. The metric being Euclidean g~=g~--6~p,  v~=v~ and ~=~--5 /~cx  ~. 
Later on we shall denote the local temporal derivative by ~t and the substantial one 
by d /d t=  ~t4-v~5/~x ~. The index notation with the usual summation convention 
from 1 to 3 is used. 
(4) T. •EvI-CIVITA: Caratteristiehe dei sistemi diJ/erenziali e propagazione ondosa 
(Bologna, 1931). 
(5) G. LAMPARIELLO: Rend. Acead. Lineei, 13, 688 (1931). 



~ ' ~  M. CARRASSI a n d  A. ]~ORRO 

The afore-mentioned anomalous result may be related to the behaviour of the 
phase velocity of elementary waves which describe the acoustical perturbation. 
In  fact, if the phase velocity tends to a finite limiting value v ~  for very high 

v~lues of the frequency, then, as shown in Appendix A, there is wave propa- 
gation and the characteristic surface moves with velocity v ~ .  Thus we can 
state that  from the Navier-Stokes equation it  follows that  the phase velocity 

is not finite but  increases towards infinity when the frequency w increases. 
In this work we will show that,  substituting the phenomenologieal law (1.6) 

with the following one: 

(1.6') ~=--21~U~- - ) ' (~Vv~)g~B- - zv  ~t ' 

there do not exist any harmonic components of the solution, however high 
the frequency may be, for which the phase velocity is unlimited; this implies 
the existence of a wave front in all cases. I t  is clear that  the corrective term 

in eq. (1.6') can be justified on the basis of the kinetic theory of gases by 
means of considerations analogous to the ones of CATTA.SrEO: in fact, they refer 

to general transport  phenomena, and therefore they apply to momentum 
transfer a.s well as to energy transfer. In this work we will study essentially 
the consequences on sound propagation resulting from eqs. (1.6'), (1.2r/. For  
this purpose, in Sect. 2 we will review the standard theory of sound dispersion 
showing the difficulties mentioned above. In Sect. 3 we will derive the new 
dispersion relation by introducing eqs. (1.2') and (1.6') in the linearized system 
and will obtain the limited value of phase velocity, in  Sect. 4 we will consider 
the ease of rarefied monoatomic gases and the results obtained will be com- 
pared with experimental data on sound dispersion. I t  will be shown that  there 
is good agreement even in the spectral region where the Kirchhoff formula fails. 

2. - The theory of aeustieal waves and the Kirehhoff dispersion equation. 

The starting point of the standard theory of sound is the hydrodynamic 

system of equations which we report  here: 

(2.1) 

(2.2) 

(2.3) 

(2.a) 

~tP + ~(qv~) = 0 ,  

dv r 
dt  ~ ~ - -  ~ P ' 

du 

e = ~(T, P ) ,  u = u(T,  t ' ) .  

(a, fl = 1, 2, 3) , 

Equations (2.1) and (2.2) are the law of muss conservation and the momentum 
balance equation for a fluid when external forces are absent and ~ =  P~--_Pg~ 
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is the  viscous pressure  tensor  of the  fluid. Equa t ion  (2.3) follows f rom the con- 

serva t ion  of the to ta l  energy  and  represen ts  the  first law of the rmodynamics  
where u is the  specific in te rna l  energy;  the  last  two t e rms  on the  r ight -hand 

side of (2.3) are  the hea t  a m o u n t  absorbed  by  the  fluid part icle  on account  

of the  energy  lost by  viscous fr ic t ion f rom the surrounding fluid and the hea t  

amoun t  absorbed  on account  of t e m p e r a t u r e  gradients ,  respectively.  Equa-  
t ion (2.4) contains  funct ions  of s ta te  of the  fluid which mus t  be considered 

funct ions  expl ici t ly  known b y  means  of the  t he rma l  proper t ies  of the fluid 

itself,  i.e. specific hea t  a t  cons tan t  pressure  and  a t  cons tant  volume,  i sothermal  

and  adiabat ic  compress ib i l i ty  and  the  coefficient of the rma l  expansion. The 

sys t em of the  seven equat ions (2.1)-(2.4) with the seven unknown funct ion 
v ~, ~, u, P,  T can be considered a defined one if the phenomenological  laws 

are specified: 

J~ = - -  h~ ~' T 
(~ .5)  

:~  = - 2 ~  u ~ ' ~ -  (~] - ~ # ) ( ~ , v ~ ' ) g  =~ , 

where k is the  t he rma l  conduc t iv i ty  of the fluid, /~ the coefficient of viscosi ty  

and  ~ the coefficient of bu lk  v iscos i ty  (*). Fu r the rmore ,  if we choose P and T 

as independen t  pa rame te r s ,  we can inser t  the specific en tha lpy  (**) h = u 4- P /~  

in eq. (2.3) using the  re la t ion  

du dh d P  
(2.6) Q ~ : Q dt dt P(~:~v~)" 

By in t roducing (2.5) in the  s y s t em  of equat ions  (2.1)-(2.4), assuming  k, /x 

and ~ to be  cons tan t  and using (2.6) we obta in  

(2 .1 ' )  ~ + ~ ( ~ v ~ )  = 0 ,  

(1)  
(2.2') ~ d t  dv~ ~ P 4 - # A v ~ 4 -  ~ 4 - 3 #  ~ ( ~ v ~ )  

dh d P  
- -  + ~ 4 - k A T ,  

Q dt dt 
(2.3') 

(2.43 = Q(P, T ) ,  h = h(P,  T ) .  

(*) The coefficient ~ is linked to the so-called second coefficient of viscosity 2, used 
in eq. (1.6), by the relation ~ =  ~§167 We prefer using the coefficient of bulk vis- 
cosity because it is usually negligible in gases. 
(**) Some authors (6), in connection with the thermodynamics of irreversible processes, 
prefer to introduce the specific entropy s; using this state function, the energy equation 
becomes ~(ds/dt) = - -  O~(J~/T)-- (1/T~)J~O~T - ( 1 / T ) z ~ U ~ .  In this way one makes 
clear the entropy production and the irreversibility of the process, but we are not 
interested in the following to emphasize these well-known features of the process. 
(6) See, e.g., S. R. DE GROOT and P. MAZUR: Nonequilibrium Thermodynamics (Am- 
sterdam, 1962). 
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Equat ion (2.2') is the well-known ~avier-Stokes equation, whereas eq. (2.3') 
restates the first law of thermodynamics,  and the scalar invariant  quant i ty  
turns out to be everywhere positive as i t  must  be since i t  has the meaning of 
heat  produced by friction (per uni t  of t ime and volume). Explicit ly we have 

(2.7) = - - ~  U ~  = (V + ~tt)(~,vr) ~ + 

§ 2/~[(~1v2 § ~2Vl) 2 § (~2v3 § ~3v2) 2 § (~1v3 § ~3~)1)2] , 

In  the theory of sound one considers the fluid motion corresponding to u small 
disturbance from the equilibrium state of the fluid where all thermodynamic 
quanti t ies are constant  in space and time. Hence i t  is appropriate to linearize 
the hydrodynamic  equations by  replacing each of these quantit ies by their  
equilibrium values plus a small fluctuation, ignoring terms which are of second 
order (in the fluctuations). So, if Po and To are the equilibrium values, we put  

(2.s) 
P(r ,  t) = Po § P ' ( r ,  t ) ,  

T(r, t) = To § T ' ( r ,  t ) .  

Fur thermore  we assume, for simplicity, tha t  the equilibrium flow velocity 
is zero, so tha t  

(2.9) v ( r ,  t) : v ' ( r ,  t) . 

In  the following part ,  simplifying the notations, we will denote the perturba- 
t ion or the primed quanti t ies  P ' ,  T' and v' by  p, ~ and v, respectively, 
according to the notat ion of MoRsE and II~GARD (~). Using (2.8) we obtain 

(2.10) 

P ,  h = h o + x = h o +  g--~ ~+ g-p~ 

where the derivatives, computed for the equilibrium values P0 and To, are 
constant  with respect to p and 3. Recalling the defiDitions of isothermal com- 
pressibili ty and coefficient of thermal  expansion 

1(0 ) 1r 

(7) P. M. MORSE and K. INGARD: Theoretical Acoustics (New York, 1968), p. 278. 
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and using the well-known t h e r m o d y n a m i c  relat ions 

we can wri te  (2.10) in t e rms  of the t he rm a l  coefficients character iz ing the fluid. 

Final ly ,  subs t i tu t ing  the specific en tha lpy  h in the energy equat ion and  tak ing  

into  account  t ha t  d/dt-+~t, according to our hypotheses ,  one obtains  the 

linearized sys tem 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

3t5 + 9o(~zv~) = 0 ,  

~oC~(G'r 7--1GP) =kAr ,  
o~y 

= ~ (P - -  ~ ) ,  

where (2.13) is again the first law of the rmodynamics  and  (2.14) the  equat ion 

of s ta te  of the  fluid with y = C~/Cv, ot = fl/K~, and 

( ~p)_  1 

is the  well-known Laplace  sound ve loc i ty  in a.n ideal fluid (i.e. without  vis- 
cosi ty  and hea t  conduction) in t e rms  of adi~batic compress ib i l i ty  K~: We 
no te  t ha t  troy vec tor  funct ion of posi t ion,  such as v, can always be separa ted  

into a longi tudinal  (or lamellar)  I):~rt v~, for which cu r ly ,  = 0, and a trans-  
verse (or rotat ional)  pa r t  v• for which div v •  Therefore,  if we use 

the  iden t i ty  

curl  curl  v = grad  div v - -  A v ,  

the  equat ion of mot ion  can be spli t  into two separa te  equations,  one reh~ting p 

to the longi tudinal  pa r t  of v, tile o ther  giving the behaviour  of the t ransverse  

p a r t  of v, unre la ted  to pressure  waves:  

(2.12') 

(2.13') ~0 ~v~ = - - /~Av~,  

thus  the two par t s  of the veloci ty  solution, v,  and v• can be solved separa te ly  

and  need not  be combined  unt i l  we ('ome to s~tisfy the boundary  conditions. 
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In  the following considerations~ since we are not  in teres ted in boundary  condi- 
t ions, we can l imit  ourselves, in eqs. (2.12) and (2.13), to consider only the 
longitudinal  pa r t  of the velocity.  Taking into account  also the assumed isotropy 
of the medium,  we will consider the one-dimensional case thus avoiding cum- 
bersome formulae superfluous to the s tudy  of the general  propert ies  of the 
solution of the system in an unl imi ted  medium. El iminat ing (~(x, t) f rom the  
sys tem (2.11)-(2.14) we obta in  

7 (2.15) ~ P  = ~i [~u(P - -  ctT) - -  lv e ~  ~t(p - -  :r 

(2 .16)  3 ~  ~ - ~ ,  �9 :r p ' 

(2.17) ~ o ~ , V = - - ~ , [ p + ~ - ~ , ( p - - o ~ ) ] ,  

where 1 v and lq are two character is t ic  lengths defined by  

(2.18) l, -- ~ -}- }/~ lq - -  k 
qoe ' ~oeC~ " 

The system (2.15)-(2.17) consists of three  l inear equations with the unknowns 
p,  7: and v. I f  we examine the first two, which contain only p and % we can see 
tha t ,  in the  absence of viscosity and thermal  conduct iv i ty  {Iv= l~ = 0), t he  
pressure f luctuat ion satisfies the well-known wave equat ion in an ideal fluid: 

1 
O,~p - - ~  ~ p  ---- 0 . 

When viscosi ty and thermal  conduct iv i ty  are not  negligible, as in real  fluids, 
we still obtain equations which sat isfy p and 7. One usually studies the prop- 
ert ies of the general  solution in an unl imited medium assuming tha t  i t  can be  
expressed by  the  Four ie r  integral  

(2.19) p(x ,  t) - -  

-boo -bOO 

1 

- o O  - o O  

exp [i(kx - -  eot)]dkdco, 

where the ampli tudes of the  par t ia l  waves are given by  the Fourier  t ransform 

( 2 . 2 0 )  

-boo -boO 

 lkol=  f ,xtl 
- c o  - o o  

exp [ ~  i (kx  - -  wt)]dxdt .  



A MODIFIED NAVIER-STOKES EQU&TION, AND ITS CONSEQUENCES ETC. 329 

The definit ion of the Four ie r  t ransform (2.20) can be extended to complex values 
of k or, a l ternat ively ,  (o provided tha t  the imaginary par ts  of these quanti t ies  
sat isfy suitable conditions tha t  ensure the convergence of the integral  (2.20). 
For  simplici ty and for a direct  reference to the exper iment  described in Sect. 4, 
we will assume a forced pe r tu rba t ion  so tha t  we can consider (o real. In  this 
way eq. (2.19) describes the solution by  means of superposit ion of damped 
par t ia l  waves with ampl i tude  ~(k, (o) exp [--]m{k}x],  direction of propagat ion 

along the x-axis and phase veloci ty  v~ = (o/Re {k}. The properties of such a 
solution can be der ived direct ly  by  the analysis of the par t ia l  waves because of 
the l inear i ty  of eqs. (2.16) and (2.17). Therefore  writ ing 

(2.21) 
p(x, t) = ~(k, (o) exp [i(kx--(ot)] , 

~:(x, t) = ~(k, (o) exp [i(kx-- (ot)], 

and subs t i tu t ing  in (2.15) and (2.16), we obtain 

(2.22) 
;, [(o~(p - -  ~ )  -F ieolvck2(P -- ~ ) ] ,  

i(o[ ;,-1] 

The two algebraic equations,  in the Four ier  t ransforms ~ and ~, allow a non- 
vanishing solution only if the coefficient de te rminan t  vanishes. This gives a 
complex relat ionship between v9 and k of the form ](k, (o) = 0, which is equi- 
valent  to two real relat ions and gives the real and imaginary par ts  of k as a 
funct ion of co. The dispersion relat ion which one obtains f rom (2.22) is also 
called the Kirchhoff  equat ion:  

(2.23) l~ [;,lv + i c l ]  k4-4:- [ 1 - - i ~  (lv + Tl~)] k2-(o~ -- O e 2 

This equat ion can be solved exact ly  and the real  and imaginary par ts  of k can be 

p lo t ted  in te rms of (o. However ,  what  we want  to emphasize here is the fol- 
lowing result:  for high values of the f requency  o the real par t  of k 2 becomes 

negligible wi th  respect  to the imaginary par t  which increases with increasing 

f requency  (o. In  fact ,  f rom (2.23) we obtain the following behaviour  of k 2 at  
high frequencies:  

(2.24) + + e  
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where a and b are constants  connected to the characterist ic  lengths by  the 
equations 

--_ [ 21~ - -  yl~ - -  lv] 1 
71v lv--  71~ J "271vl~ ' t 

(2.25) 1 

b = [~ + 7~o • (~--y~o)] "2r~d~" 

F r o m  (2.24) we see tha t  the imaginary  par t  prevails  over the real par t  inde- 
penden t ly  of the choice of the sign in (2.25); in the l imit  of high frequencies 

we obtain 

1 [lv~-~l~•189 �89 
(2.26) Re  {k} = Im  {k} _~ ~ 2vlvl~ , 

Consequently the  phase veloci ty  of the corresponding e lementary  wave is 

co [ 71vl~ ] �89 . a)�89 
(2.27) v~-- Re{k} ~ 2  l v +  71~• (lv--yl~) ' 

and therefore  increases with the frequency.  This difficulty can be removed  
by  int roducing the terms added in the phenomenological  equations (1.2') 
and (1.6'). Final ly  we note  tha t  the sign can generally be chosen in order to 
make the real and imaginary  par ts  posi t ive;  however f rom the asymptot ic  
expression of k ~ (2.24) we can deduce only tha t  the phase veloci ty  in bo th  

cases increases according to o) �89 

3. - The modified Navier-Stokes equation and the new dispersion relation. 

Let  us now look for l inearized hydrodynamic  equations assuming tha t  the 
phenomenological  laws which give the heat  flux and the viscous pressure tensor  
are  not  those of FOUa~ER and ~EWTON (2.5)) bu t  the following ones: 

(3.1) J~ =--k~T-~o~,C,  

(3.2) z ~ = - -  2# U ~ -  (9 - -  ~/~)(~r v~) g ~ - -  vv ~ t ~  �9 

We note,  first of all, tha t  there  is no difficulty in introducing (3.2) into the 

equat ion of mot ion (2.2): we mere ly  need to differentiate eq. (2.2) with respect  
to t ime and then  we get  the t ime der ivat ive  of ~z ~. Taking into account  
the  cont inui ty  equat ion we can wri te  

dv ~ 
q di-  ---- ~(qv~') § ~(qv~v~) ' 



A MODIFIED NAVIER-STOKES EQUATION~ AND ITS CONSEQUENCES ETC. 331 

and so we get,  d i rect ly  f rom (2.2), 

(3.3) ~,~dr ~ - -  ~[O,(Ov ~) + ~(Ov~C) + ~P]. 

Subst i tu t ing  (3.2) in the r ight-hand side of the equation of mot ion and using 
(3.3), we obta in  

dv~ ~ p + t t  Av~_ff @ q - l# ) s~ (~ , v~ ) - - vvO~[~d~v~)q -~ (ev~ ' v~ )+~P] .  
( 3 . 4 )  e a t  - -  

]~quation (3.4) represents  the modified Navier-Stokes equat ion with only one 
t ime  constant  rv; this is not  surprising since we used only eq. (3.2) for the 
iner t ia  of m ome n tum flow. The procedure for obtaining the modifications in 

the energy equat ion (2.3) making use of (3.1) and (3.2) is more cumbersome 
than  the previous one. We must  take into account,  indeed, the consequences 

due to the new equat ion of mot ion (3.4) on the to ta l  energy conservat ion the- 
orem. Moreover, the modified energy equat ion can be formally wr i t t en  

d u  

(3.5) ~ dt - -  - - - -  O~P + k A T - -  

where,  of course, we have ye t  to subst i tute  the viscous tensor.  Nevertheless,  
since we are  in te res ted  in the l inearized theory,  we remark  tha t  only the first 
th ree  terms in the r ight-hand side of (3.5) give a contr ibut ion,  because the other  
ones are a quadrat ic  expression of veloci ty  gradients by  v i r tue  of (3.2). The 
linearized equat ions can now be easily obt~tined. The last  t e rm of (3.4) can be 
wr i t ten  

] 
and, therefore ,  according to the hypothesis  of small pe r tu rba t ion  used in the 

preceding Section, we obta in  

(3.4') ~ , [ ~ ( ~ v  ~) + ~(~v~v ~) + ~'P] ~_ r ~ [ q 0 ~ v  ~ + ~ p ] .  

Analogously, the third t e rm of the r ight-hand side of (3.5) can be wri t ten 

where we have also made use of the definition of specific enthalpy.  Therefore,  
on account  of (2.10) and of the thermodynamic  relat ion ah'eady used in Sect. 2, 
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we obtain 

(3.5') v, ~,[~(eu) + ~#(~uv~) § P(~#v~)] _~ v, eo C, ~, [~, 
L 
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9'--1 ~tp] 
] $ 

From (3.4) and (3.5), inserting (3.4') and (3.5'), we obtain the linearized system 
of equations corresponding to the system: (2A1)-(2.14) 

(3.6) 

(3.7) 

(3.s) 

(3.9) 

o~? P kAv--Ta@oCv~tt T ? - -1  

= ~ (p - -  a~).  

~p],  

Here all physical quantities are denoted by the same symbols used in the 
previous Section. Here again we can confine ourselves to consider the one- 
dimensional case and substituting (3.9) in (3.6) we obtain 

(3.10) 

(3.11) 

(3.12) 

(1 § vv~t)a,xp = ~ ~,[(1 + ~vat)~t (p--av)- - lvc~(p--~v)] ,  

p , 

@o(1 A-~v ~,)~,v = -  ~, [(1-4- "~,,~)p -4- ~ ~,(P -- :r �9 

The system (3.10)-(3.12) reduces to the system (2.15)-(2.17) when ~q= ~ v = 0  
as expected. Again, following the conventional method for studying dispersion 
and absorption of sound, we can analyse the damped partial waves whose super- 
position gives us the solution of (3.10) and (3.11). Therefore, on account of 
(2.21), from {3.10) and (3.11) we get 

(3.13) 

(1 --  icoTv) k 2 ~ = -~ [o~2(1 --  i~Tv)(~ --  a~) + io)lvck~(~ -- a~)] 

From the system (3.13), taking into account that the determinant of the coef- 
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ficients of ~ and  ~ mus t  vanish,  we obta in  the generalized dispersion equat ion 

(3.14) l~[Tl~ + i c ( 1 - - i w T v ) ] k 4 ~ 0 )  

+ { ( 1 - i 0 ) ~ " ) ( 1 - i 0 ) % ' ) - i ~  [(1-- iwv~)lv  -4-(1--i0)%,)yl~]}k ~ + 

0 )  8 

- - -  ( 1 -  q~0)Tq)(1- iwvv) = 0 .  
C 2 

We can mul t ip ly  eq. (3.14) b y  the  p roduc t  (1 §  so t ha t  the  

last  t e r m  is a real  one. F u r t h e r m o r e  i t  is useful  to in t roduce the charac- 

te r i s t ic  t imes  

lv ~ + ~ #  l~ k 
(3 .15)  tv tq = - -  

0 Qoe 2 ~ C ~oc2C~ " 

As we will see by  compar ing  these quant i t ies  wi th  those given b y  the  kinet ic  

t heo ry  of gases, t hey  have  the  order of magni tude  of the  mean  t ime  be tween  

two collisions (or the  inverse  of collision frequency).  

w r i t t e n  

(3.16) A k  4 + B k  2 -  C = O , 

where  

Thus eq. (3.14) can be 

A = A1 + iA2  = (al  + a~eo ~) + i 1 (as + a~o)2) , 
(2) 

B = B : - - i B 2  = (1 ~-b;w 2 +b'~w 4) - - i w ( b 2 ~  b~'ofl), 

C C 1 , 2 g 4 tll 6 : = c 1 ~  +ClOJ +Cl0 )  �9 

The  coefficients as, bi and c~ are given in t e rms  of the t imes  tq, tv, ~ and ~ 

b y  the  re la t ions 

[ ax = c 2 tq(yt v -  %),  
(3.17a) / a' 1 = - -c2 t  ~vT~(ytv -- vv) , 

a = e 2 tq , 

I 
a2 = o ~ t~ [ ~  § ~tr(~ ~ § Vv)], 

(3.17b) 

f 
b: = ~ -~ ~ -~- tvT: v Jr yt ~q , 

y 

b 2 = ~ j v ( ' v ~ v §  tvv~§ ~ t~v) ,  

b2 = t v § 7t~ 

+ 

2 2 2 

(3.17v) , = _1 ,, r ~ _ _ +  T~ ,,r Tvv~ 81 (~2) Cl - -  ~2 ) Cl = (:2 

We are now able to show tha t  the dispersion equat ion  (3.16) does not  lead 

to the  difficulty men t ioned  a t  the  end of the previous  Section. We know tha t  
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such a difficulty arises f rom sound waves for high values of ~o. Therefore,  if 
we confine ourselves to consider the values of k 2 for ~t~ >> 1 (4 and 6 have  
the same order  of magni tude) ,  we obta in  f rom (3.16) 

(3.18) k 2 - -  
~  

2(a~)--- ~ a;[--b~ :J= (b~2 + 4a;c~)�89 -F 

' a2bl)[(b, +aaxc, )~-b '~]T 2a; " " 1 1 a 2  c~. 4 -  i ( a ;  b2 + ' " ,,2 - , ,,,,�89 

(5; 2 + 4a;e~')�89 ~of 

Relat ion  (3.18) shows tha t  for high frequencies the imaginary  p a r t  of k ~ is negli- 

gible wi th  respec t  to the real  par t .  This implies t ha t  the  real  p a r t  of # becomes 

(3.19) Re{k} ~_ [--b'~ ~ (b~2-F 4a[c'~')�89 �89 
2a~ - o .  

Hence  the  phase  veloci ty  v~ = w/Re {k} approaches  a cons tan t  value,  inde- 

penden t  of o ,  for high frequencies.  I n  Appendix  B, according to the r e m a r k  

a l ready made  in the  In t roduc t ion ,  we deduce the p ropaga t ion  veloci ty  of the 

wave  f ron t  d i rec t ly  f rom the sys t em (3.10)-(3.12) showing tha t  i t  is equal  to 

the phase  ve loc i ty  ob ta ined  f rom (3.19). We r e m a r k  moreover  tha t  for damped  
progress ive  waves  we mus t  have  

(3.20) Re { k } > 0 ,  I m { k } > 0 ,  

and,  as a consequence,  

(3.21) I m  {k 2} > 0 .  

As we previous ly  noted,  the condit ion (3.21) general ly leads to the choice of 
the  sign. This is also evident  in the a sympto t i c  expression of k 2 (3.18) where 

the  real  p a r t  is a lways pos i t ive  on account  of (3.17). However  the choice of 
the  sign depends on the  values of ~ and v v included in the  coefficients a~, b~ 

and  c~. Of course,  if we pu t  ~ = ~ v = 0  in (3.18) such a re la t ion  becomes 
f I I f  ! I l l  

meaningless  because the  coefficients al, a2, b,, b 2 and c 2 vanish;  in this case 

we obta in  again  the re la t ion (2.24) since (3.16) reduces to (2.23). However  

i t  is worth-while  to r e m a r k  t ha t  if we pu t  a l t e rna t ive ly  ei ther  ~ = 0 or ~v = 0 

the  behav iour  of k in t e rms  of o ,  which follows f rom (3.16), depends on the  

choice of the  sign. By  the  way, we observe tha t  this cannot  be seen f rom (3.18), 

and  then  we mus t  analyse  (3.16) a t  a different order in ~o. F r o m  our point  of 
view, such a c i rcumstance  is wi thout  physical  meaning  because ~ and ~v, 
connected to the  same origin of the delay phenomenon,  cannot  be separa te ly  

vanishing.  Nevertheless ,  if we assume tha t  only one T vanishes,  i t  can be 

shown f rom (3.16) tha t  the  phase  veloci ty  can be ei ther  finite or infinite, for 
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(o-~ c~, according to the  choice of the sign; one thus meets  the same difficulties 

po in ted  out  b y  FRENKEL (s), who considers the t ime  cons tant  ~ related only 

to viscosi ty.  

4. - Compar i son  wi th  exper imenta l  m e a s u r e m e n t s .  

In  the  previous  Sect ion we were concerned only wi th  the  dispersion equa- 

t ion (3.14) and the resul t ing p roper t i es  of the  phase  ve loc i ty  on account  of 

phenomenologica l  equat ions (3.1) and (3.2). I f  we regard these last  two equat ions 

as macroscopical  laws, the resul ts  ob ta ined  can be appl ied equally well to the 
p ropaga t ion  of sound waves  e i ther  in a dense med ium (homogeneous and iso- 

tropic) or in ~ r~refied gas. However ,  if we wan t  to compare  theoretical  resul ts  

wi th  exper imentM data,  we have  to choose the  sys tem and therefore  to fix 

exper imentM p a r a m e t e r s  C~, k, # and c (in addi t ion to ~0 and To). In  this 

Section we shall be concerned wi th  exper imen ta l  results  in monoatomic  rarefied 
gases. The mos t  ex tens ive  exper iments  on sound propaga t ion  in diluted mono- 

a tomic  gases are still  those of GtCEENSPA:N (9) and  of M~YE~ and SESSLE~ (lO) 

in argon;  they  are of the source p rob lem type  and  are of ten referred to in 
the liter~.ture as bases for theoret ica l  discussion (~1.1~). I n  those exper iments  

sound is gener:~ted b y  a piezoelectr ic  t r a n s m i t t e r  and detected b y  a movable  

piezoelectric receiver.  As the  dis tance be tween  t r a n s m i t t e r  and receiver is 
changed,  the phase  and  ampl i tude  of the signal f rom the receiver  change, and 

f rom this one can infer  the  phase  ve loc i ty  and absorp t ion  length. Of course, 

the main  in te res t  of a compar ison with  exper iments  in monoatomic  gases is 
s t r ic t ly  l inked to the possibi l i ty  of deriving eqs. (3.1) and  (3.2) f rom the kinet ic  
theory  of gases. By  a s ta t is t ical  procedure  CATTi~EO (1) ob ta ined  the following 

express ion for 

(4.1) T~= =-, 
vlv 

is the  square  mean  value of the free pa th  and vl--~v is the mean  value where  1 v 
of the p roduc t  be tween  ve loc i ty  and  free pa th  of the molecules wi th  veloci ty  v. 

I t  is easy  to prove,  a t  leas t  referr ing to the e l emen ta ry  a rguments  on t r anspor t  

p roper t i es  which lead to (4.1), t ha t  Tv= ~ .  Therefore,  on the basis of the 

kinet ic  theory  of gases, we can deduce t ha t  the  two constants  v v and % m a s t  

(s) J. FRENKEL: Kinetic Theory o/ Liquids, Chap. 4 (Oxford, 1947). 
(9) M. GREENSPAN: Journ. Acoust. Soe. Am., 28, 644 (1956); 31, 155 (1959). 
(10) E. MEYER ad G. SESSLER: Zeits. Phys., 149, 15 (1957). 
(11) See, e.g., J. D. FOCH and G. W. FORD : The dispersion o] sound in monoatomie gases, 
in Studies in Statistical Mechanics, Vol. 5 (Amsterdam, 1970). 
(12) L. SIROVlCH and J. K. TRUnB~R: Journ. Aeoust. Soe. Am., 37, 329 (1965). 
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be equal  and of the  order  of magn i tude  of A/~, as one infers f rom (4.1) 

(A = mean  free path) .  We will assume at  once zv = z~ = z and we will have  

a t  our  disposal,  in the  dispersion equat ion (3.14), only one pa rame te r ,  t v and  t~ 
be ing  fixed b y  the  na tu re  of the gas. Therefore ,  the  comparison with the experi-  
m e n t a l  da ta  should provide,  first of all, an  explicit  value of ~ consis tent  wi th  

the  order of magn i tude  expected  f rom (4.1). Howeve r  the ma in  point  of in teres t  

in such an analysis  is the  behav iour  of the phase  veloci ty  in t e rms  of the fre- 
quency  w. The exper iments  of GREENSP2~N and of MEYER and SESSLER give 

oS 0.8 

o6t- o~176 

0.2 

0 t i 
101 10 0 10 -I 10 -2 

Fig. l . -  Dispersion in argon; experimental data from GREENSPAN (9) and MEYER 
and SESSLER (10) : O experimental values of MEYER and S E S S L E R ,  tl experimental values 
o f  G R E E N S F A N ,  - . . . . . .  K I R C H H O F F .  

the  dispersion of sound waves  and  show (see Fig. 1) t ha t  the ra t io  ely, tends 
to an  a lmos t  cons tan t  value when ~o increases (in Fig. 1 the rat ioA/2o,  known 
as  Knudsen  number ,  is p ropor t iona l  to w), in cont ras t  to the  previsions of the  
~av i e r -S tokes  equat ion according to which this rat io  should vanish.  I n  order 

to compare  these  resul ts  wi th  those expec ted  f rom eq. (3.14), we briefly 

recall  t h a t  the  s ta te  equat ion  for a rarefied gas is 

P K T  
(4.2) 

m 

where  K is the  Bo l t zmann  cons tan t  and m the mass  of the molecules. F r o m  (4.2) 

i t  follows t h a t  

1__ 
e \ @ / ,  r P '  

and,  as a consequence,  the p ropaga t ion  ve loc i ty  v of the  sound is 

1 _ ~ K T i � 8 9  
(4.3) c----(~oKs)�89 \ m / ' 
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where y = CJC v = ~ for monoatomic  gases. Taking this into account  and also 
the relat ion between the coefficient of viscosity # and the mean free path of 
molecules we can ident i fy  (*) the mean free pa th  with the quant i ty  

( 4 . 4 )  A - -  -~-~. 
~oc 

Fur the rmore ,  recalling tha t  the coefficient of bulk viscosity ~ is vanishing and 
tha t  the dimensionless ra t io  

k 
(4.5) ] = ~Cr 

is constant  both  theoret ical ly and exper imenta l ly  (la) for all monoatomic gases, 
we can wri te  the Kirchhoff  dispersion equation using dimensionless coefficients 
and variables 

~oA 
(4.6) ~ : - - ,  u : Ak  

C 

and the Kirchhoff  dispersion equat ion (2.23) becomes 

where we have used (4.4) and the definitions (2.18) to get  

t 3 I 
A 3 '  A y 5 " 

Analogously the dispersion equat ion (3.14) can be wr i t t en  

3 1 (1 -- iZ~)]  z4 + 

where Z = eT/A, Using (4.8) one can calculate the rat io ~/~ in terms of ~ 
~o get  a direct  comparison with the exper imenta l  data  p lo t ted  in Fig. 1. In  

(*) See J. D. FocH and G. W. FORD: ref. (11). 
(13) S. CttAI~MAN and T. G. COWLING" The Mathematical Theory o] Nonuni/orm Gases 
(Cambridge, 1958), p. 241. 

22 - l l  Nuovo Cimenfo B. 
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fact ,  f rom the definitions (4.6) i t  follows tha t  

, 

and t h a t  ~ is p ropor t iona l  to the  ra t io  A/2o, where the  sound wavelength  is 

ind ica ted  b y  2o----2~c/co: 

A 
~ = m  e - - 2 ~  . 

One can see immedia te ly  f rom the g raph  of Fig. 1 t h a t  a t  low frequencies  the  

behav iour  of e/v~ corresponding to  the Kirehhoff  equat ion follows the experi-  
men t a l  data ,  whereas  there  are m a rked  discrepancies in the Knudsen  reg ime 

where  the  wave leng th  is shor t  compared  with the  mean  free pa th .  Therefore ,  

b y  compar ing  equat ions (4.8) and  (4.7) one sees tha t ,  for A/2to ~ 10 -1, the  va lue  

of the  cons tan t  ~ m u s t  be  such t h a t  the  p roduc t  ~Z = o)3 is negligible wi th  

respec t  to unity~ whil% for A/;to--~ 1, i t  can be of the  order of uni ty .  An 

es t ima te  of ~ can be ob ta ined  b y  imposing the  condit ion e)o~ = 1, where coo 

is the f requency  corresponding to A/2 ,  = 1. Taking  into  account  t ha t  A/,~o = 

=A~o/2~c we have  

e 4 1 
(4.9) COo --~ 27~ = 2~tv , 

where  we have  used the  re la t ion t v--- 4#/3Qo c ~ 4A/3c. 
F r o m  the condi t ion e%~ ~-1  we ob ta in  

1 1 A  
( 4 . 1 0 )  T . . . . .  

CO O 2~ 0 ' 

so t h a t  ~ is of the  order of magni tude  of the  reciprocal  of the collision fre-  

q u e n c y A / c  according to (4.1). The quan t i t y  Re  {z/~)---- e/v~ for different values  

of the  f requency,  orA/~o,  has been  calculated with  the value of ~ f rom (4.10). 

F r o m  numer ica l  calculations we were able to see t h a t  the  value of v which 

bes t  fits the  exper imen ta l  da ta  on dispersion is slightly lower than  ~---- 

~- (1/z)A/c~ thus  confirming the  considerat ions abou t  i ts  order of magni tude .  

I n  the following Table  we have  r epor t ed  some values of e/v~ for v =A/7~e, 

TABLE I. -- Numerieal values o] the ratio e/v~, derived ]rom eq. (4.7) or Kirehho]] equation, 
]rom eq. (4.8) and ]rom the experimental data; the range o] values o] the latter ones corre- 
sponds to an evaluation o/ the uncertainty due to the interpolation procedure. 

A/2o 0.25 0.5 1 2 4 7 

(c/v~)xirc ~ 0.40 0.26 0.19 0.13 0.10 0.07 

(c/vr)<a.s ~ 0.52 0.43 0.44 0.47 0.48 0.49 

(e/%)~p 0.51--0.55 0.46--0.50 0.50--0.52 0.46--0.50 0.46--0.49 0.46--0.49 
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the  corresponding expe r imen ta l  da ta  and  the  values 
Kirchhoff  equat ion.  

These resul ts  arc p lo t ted  in Fig. 2. 

calculated f rom the 

1.0 

0.8 

0.6 

-c 

0.4 

0.2 

o 

�9 x 

I I I 

101 10 0 10 -1 

A/,~ o 

Fig. 2. - Dispersion in argon for some values of A/2o; the range of values of experi- 
mental data corresponds to an evaluation of the uncertainty due to the interpolation 
procedure: I experimental values, �9 Kirchhoff equation, �9 eq. (4.8). 

As can be seen, the  behav iour  of c/v~ according to the Kirchhoff  equat ion 
depar t s  f rom the expe r imen ta l  da ta  more  and more  as -/1/,~o increases, while 
the behav iour  of c/v according to eq. (4.8) remains  more  or less constant  and  

reproduces  fa i r ly  well the  expe r imen ta l  da ta  in Fig. 1. I t  is clear tha t  a more  

detai led numer ica l  analysis  is necessary  for an accurate  de te rmina t ion  of 

f rom the expe r imen ta l  data .  This analysis  is also useful for examining  the  
cont r ibut ion  of iner t ia l  t e rms  to the sound absorpt ion.  Although pre l iminary  

calculat ions show t h a t  the behav iour  of I m  {~/~} as a funct ion of A/~o is in 
be t t e r  ag reement  wi th  exper imen t s  t han  t ha t  der ived f rom the Kirchhoff  

equat ion,  we shall pos tpone  a discussion of this quan t i ty  which is ve ry  sensi t ive 
to the  value of ~ chosen to fit d ispers ion data .  

5 .  - C o n c l u s i o n s .  

The addi t ion  in the  phenomenologica l  equations (1.2') and (1.6') of t e rms  

which describe the  iner t ia l  p r o p e r t y  of energy  flux as well as m o m e n t u m  flux 

has led to the  two following ma in  resul ts :  on the  one hand,  we have  overcome the 

difficulty re la ted  to the  imposs ib i l i ty  of wave  p ropaga t ion  in a viscous medium,  

and,  on the other  hand,  we have  shown tha t  the  order  of magn i tude  of the  

t ime  cons tan t  ~ inferred f rom exper imen t s  in monoa tomic  gases coincides 

wi th  the order  of magn i tude  expec ted  on the  basis of s ta t is t ical  considerations.  
This last  c i rcumstance ,  along wi th  the fact  t ha t  both the inert ial  t e rms  added 

allow the overcoming  of the pa radox  concerned wi th  the  wave  propaga t ion  
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in a viscous fluid, suggests tha t  a closer inspection of eqs. (1.2') and (1.6') from 
the point  of view of the kinet ic  theory  of gases is probably  useful taking 

account  also of the developments  tha t  this theory  h~s achieved in recent  years.  
In  any  case, eqs. (1.2') and {].6') can be considered as phenomenological  or 
macroscopical  laws. One could indeed assert ,  following the Maxwellian point  
of view on re laxat ion phenomena  suppor ted  by  VERNOTTE, tha t  the establish- 
ment  of a flux of a thermomechanic  quant i ty ,  produced by  t empera tu re  or 
veloci ty  gradients,  is always joined to a react ive  (( force ~) which contrasts ,  in 
the ini t ial  phase,  with the es tabl ishement  of the flux itself. Following this 

point  of view we have shown in this paper  that ,  al though the t rans i tory  phases 
are difficult to measure di rect ly  by  exper iments  because of the ve ry  small 
value of ~, the consequences of the iner t ia l  character  of u ~  and J~ becomes 

re levant  when the t rans i to ry  phase reveals a recurrence in t ime with a period 
of the order  of (or smaller than) z, just  as in the  case of sound waves in rarefied 

gases. 
Finally,  we remark  tha t  hydrodynamics ,  t rea t ing  energy fluxes and mo- 

m e n t u m  fluxes on the same foot,  appears  to be the natural  f ramework for 
any  relat ivist ic  theory  of heat  t ranspor t .  Thus, we believe tha t  in a hydro-  
dynamic  context  the problems arising f rom relat ivist ic  heat  equations, as the 
ones given by  KRA~u (~4) and VAN KAMPEN (~s), could be be t t e r  clarified. 

The authors  sincerely wish to thank  Prof.  C. CATTANEO for cri t icism and 
helpful suggestions during the preparat ion of this manuscript .  

APPENDIX A 

I t  is well known tha t  the  notion of wave propagat ion related to  any  kind 
of physical  phenomena,  governed by  a sys tem of differential eqaations,  can 
be associated with the  definition of a characterist ic surface or a wave front.  
We shall briefly recall, following LEW-CIVlTA (4), the  definition of a wave 
front .  Consider the  phenomena  described by  the  system of differential equa- 
t ions 

(A.1) E ,  ~ •- E ~'~l'''~f~ ~0 ~, ~. + r ~, X) = 0 
8xo ~x~ ... 8x, 

(# ---- 1, 2 , . . . ,  m) ,  

(14) M. KRANYS: ~VUOVO Cimento, 42 B, 51 (1966). 
(15) N. G. VAN KAMI'EN: Physica, 46, 315 (1970). 
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where  s is t he  m a x i m u m  order of differentiat ion of m unknown functions % (here 
we assume tha t  the  m a x i m u m  order s is equal  for all ~v~) of n ~- 1 independen t  
var iables  x~; g is a symbol  of t he  par t ia l  der ivat ives  of ~ wi th  respec t  to the  
var iables  xj but  of an order lower t han  s. The hypersur faces  Z(Xo, x~, . . . ,  x~) = 
=- const are called wave  fronts  if t h e y  are the  space regions across which the  

~vJ~Xo ~x~ ... ~x~ ~ have  a discontinuity,  whereas the  functions ~ and  quant i t ies  ~ Jo ~1 
the i r  der ivat ives  up to the  order s - - 1  are continuous functions.  These surfaces 
are also called character is t ic  manifolds because the  Cauchy-Kowalewski  
t heo rem is not  valid for the  points  of those  surfaces. This fact  has the  impor-  
t a n t  consequence t h a t  the  character is t ic  manifolds mus t  sat isfy a differential  
equation.  One can show tha t ,  b y  introducing the  n ~ - i  independent  var iables  
z, z~, z2, .. . ,  z, ins tead  of t he  var iables  Xo, x~, x 2, .. . ,  x , ,  the  character is t ic  
manifold mus t  sat isfy t he  following differential  equat ion:  

t r . . . . .  

(A.2) ~,joj,...j,E~~176 p~" = 0 (tt, v = 1, 2 , . . .  m ) ,  
(Zi~=s) 

where p~ = 8z/8~, .  Withou t  solving eq. (A.2), one can find the  p ropaga t ion  
veloci ty  of the  wave  f ront  

IVol 
(A.3) a - -  ~ 

if ~he p~ are not  identical ly vanishing.  
The  above-ment ioned  results  can be p u t  in a different way  if one considers 

a homogeneous l inear sys t em with  cons tant  coefficients ins tead of the  general  
sys tem (A.1). Under  these  cfi 'cumstances the  solutions ~v, can be wr i t ten  as a 
Four ier  in tegra l  

( A . 4 )  

where k and x are t he  n- tup le  (k~, k2, . . . ,  k , )  and (x~, x2, . . . , x , )  respect ively.  
Equa t i on  (A.1) can t h e n  be wr i t t en  

(A.5) E ,  = ~ J~ j~ ~' ~, .s ^ . . .  k .  (~) ~ + = ~,joj,...~,E,,~ ko k~ ~ O, 
v = l  (Z j~=s) 

where  ~ is the  t r ans fo rm of F(% Z) and y~ is now a homogeneous linear func- 
t ion of ~ and  Z and, moreover ,  in compliance with  the  preceding notat ion,  

we p u t  x o = t ,  k o = - - - w .  
F r o m  (A.5) an equat ion follows (a general izat ion of the  Kirchhoff  equation) 

re la t ing  kj and co. Now we suppose  tha t ,  wha t eve r  the  relat ion be tween kj 
and  w is, the  phase  veloci ty  v ~ = w / k ,  where  k - - - - ( k ~ + k ~ - . . . + k ~ ) � 8 9  is 
finite when e9 increases for all values  of the  p ropaga t ion  vector  u = k / k .  
Denot ing  the  l imi ted  value of t he  phase  veloci ty  b y  v ~ ,  we will show tha t ,  
if such a l imit  exists, i t  is equal  to  the  p ropaga t ion  veloci ty  defined in (A.3). 
I n  fact ,  if v ~  is l imi ted for a n y  values of the  lJropagation vector  u, i t  follows 
f rom the  definition of phase  veloci ty  i tself  t h a t  kj mus t  be  propor t iona l  to  ~o 
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(kj _~ rico) for high values of co. Therefore, the system (A.5) becomes 

. . . k ,  % 1 - { - 0  : 0 .  
Y=I (Z i~=s) 

Disregarding all terms of the order 1/co, a nontrivial solution of system (A.6) 
for ~ exists, for high values of co, provided the determinant of the coefficients 
vanishes: 

E~, k0 k: ... : 0 .  
(~. J~=s) 

Equa t ion  (A.7) is equal  to  eq. (A.2) and  therefore  i t  follows t h a t  the  quan t i ty  

defined b y  the  rat io  Ikol k~ �89 is ident ical  to t he  p ropaga t ion  veloci ty  of 

the  wave  front ,  if such a f ront  exists. 

APPEEDIX B 

As ment ioned  in the  In t roduc t ion  the  l~avier-Stokes equation, the  continu- 
i ty  equat ion and  the  s ta te  equat ion e = ~(P) lead to the  s t range resul t  t h a t  
wave  p ropaga t ion  is impossible in a viscous m ed ium (4.5). I t  can be easily seen 
t h a t  if T is an  unknown funct ion and  the  energy equa t ion  (2.16) is added to 
the  sys tem,  the  previous result  is unchanged.  On the  other  hand,  the  addit ion 
of inert ial  t e r m s  corresponding to  energy and m o m e n t u m  fluxes leads to a 
l imi ted value of t he  lJropagation velocity.  For  the  sake of s implici ty  we will 
now show this  in a one-dimensional  case. Using (A.2) and (A.3) wi th  rela- 
t ion to the  sys t em of equat ions (3.10)-(3.12) we obtain  

QoTvPo 

(B.1) p~ 0 

0 

f rom which it  follows 

(~v + ~tv)Pl - -  aytvpl  

y - - 1  ~ 2 ~ 2 
~Po t~c P: - -  ~Po ay 

-, 2 YTV (~V ) 

TqTV 2 2] 
(B.2) ~TvpSo (Tv ~- ytv)t~c~P~-- ~ -  P4o - -  (~(~v ~- ~qtv + 7~vt~)plPo 

Using the  re la t ion  (3.17), if Po :~ 0, we have  

(B.3) , 4 ,, 2 2 ,,~ alp:  ~- blPlPo -~- o1Po : 0 , 

= 0 ,  

----0. 
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~ n d  t h e r e f o r e  

(B.4) r - ,  1 Pl --b'~ • to1 - - a a l e , )  | = 1 

-d= E = [  2a'  J 

t h i s  c o m p l e t e s  t h e  p r o o f .  

�9 R I A S S U N T 0  

Riprendendo  aleune eonsiderazioni  svol te  in passato dal Cat taneo,  si propone una  
modifica del l 'equazione di Navier -Stokes  che t iene conto dell ' inerzial i t~ del flusso di 
impulso.  I1 s is tema l inearizzato delle equazioni  del l ' idrodinamica,  o r e  si consideri  Finer- 
zial i ts  del flusso di calore un i t amen te  a quello di impulso,  conduce ad una  nuova  equa- 
z ione di dispersione che non presenta  gli inconvenicn t i  dc l l ' equazionc di Kirchhoff .  
La  teor ia  della dispersione del suono cosi modif icata  ~ coerente  con i r isul ta t i  speri- 
menta l i  re la t iv i  ai gas monoa tomic i  rarefat t i .  

MO~IHdpHIIHpoBaHHOe YpaBHeHHe HaBbe-CToKca n e r o  cJIe~CTBHII ~dI~i )mcnepcm~ 3ByKa. 

PeamMe ( * ) . -  HprmriMan BO BH~IMaHrle HeKoTopbIe pacCMOTpeHrIfl, pa3BnTbm paHee 
KaTTaneo, MbI npe~naraeM MO~r~qbHt~HpoaaHnoe ypaBHenne HaBbe-CToI(ca, roTopoe  
BKYttOqaeY uHepmIanbnoe CBOHCTBO rioroKa HMrIynbca. JInHeapi43oBannafl CI~CTeMa rH~po- 
~rInaMnqeCKHX ypaBnennfi ,  a KOTOpbIX yqHTblBalOTCfl HHeplAHanbnbIe CBO~CTBa I,I HOTOKa 

nMrlyylbca i4 nOTOKa Tenna, npaao~nT i~ HOBOMy ~ncnepcHOHHOMy ypaaHeHmo, KOTOpOe 
He 06Hapy~aBaer TeopeTaqecKnx Hey~o6CTB ypaBnenrla Kr~pxroqba. TaK~e 3aMeTrIO 
yylyqtuaeTca coraacae  c 9Kcrtep~4MeHTaJlbH6tMI4 pe3yYlbTaTaMn }1ha ~ucnepcm~ 3By~a B 
pa3pe~ennbix O~HOaTOMHbIX ra3ax. 

(*) IlepeeeOeno pebaKoue~. 


