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Summary. — The possibility of excitation of nucleonic resonances in
relativistic heavy-ion collisions is investigated. The high-density nuclear
shock waves are treated in a relativistic hydrodynamical model.

1. — Introduction.

The possibility of propagation of density waves through nuclear matter
was suggested in early papers (1%). One has to distinguish, however, the pro-
pagation of sound waves with small density amplitudes, which travel with
sound velocity, and which are considered in ref. (*), from shock waves with
high-density amplitudes, for which the rest density in the shock zone is large
compared to the equilibrium density {2). The latter waves are denoted as
« high-density nuclear shock waves » (HDNSW). These high-density waves (2)
are of great fundamental importance, because they furnish the key mechanism
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for producing high nuclear densities (9°/93>2) , which are in turn important
to study the behaviour of nuclear matter under strong compressions (com-
pressibility, density isomers, pion condensation, ¢-condensation, ete.). Fur-
thermore it has been shown in ref. (¢) that only HDNSW describe the mea-
sured angular distributions of Mach-shock particle emission in high-energy
nucleus-nucleus collisions.

The aim of this paper is the generalization of the nonrelativistic model
of ref. (2) to relativity, the inclusion of nucleon resonances (which we call thermal
pionization (3)), and the study of their influence on the angular distribution
of Mach-shock particles ejected in high-energy heavy-ion collisions.

The validity of hydrodynamics was extensively discussed in previous pa-
pers (17). Even though the longitudinal-momentum decay length (*) raises at
laboratory energies above 700 MeV/N, shock waves will also occur above this
energy, because of thermal excitation of nucleons into nucleonic resonances,
pion production (*) and pion condensation phenomena (*) reducing the mean
free path appreciably. Even though the hydrodynamical picture and concepts
are used in our investigations, it should be clearly kept in mind, that they are
limited for describing all the variety of new phenomena encountered in a rela-
tivistic nucleus-nucleus collision. A model description is therefore appropriate,
especially because it allows to formulate the nonstandard hydrodynamical
effects (pionization, crystallization of matter in phase transitions to density
isomers) in a simple and clear way.

2. — The model.

In order to learn the essential features of a relativistic compression process,
we restrict ourselves to relativistic central collisions of two identical nuclei
whose volumes are divided into three parts, namely an ellipsoid with axes
a(t), b(t) sandwiched between two cut-off spheres with radins E which are rela-
tivistically contracted. The relative coordinate between the centres of these
spheres is 7(f). The problem is treated in the centre-of-momentum system
(c.m. system). In this system the cut-off spheres will move unperturbed with
constant velocity -+ v,. They have the nuclear equilibrium density oo Which
is seen from the c.m. system as gy= y,00 With y,= 1/\/ 1 —wg/c®. Choosing
R = const, during the collision, we are dealing with three degrees of freedom,
namely a, b, r (fig. 1). Nonrelativistic calculations (*) show that the velocity

(®) H. G. Baumearpr, J. U. ScHorr, Y. Saxamoro, E. SCHOPPER, H. STOCKER,
J. HorMaN¥N, W. ScuEip and W. GREINER: Zeils. Phys., 237 A, 359 (1975).

(") M. I. SomEL, P. J. S1EMENS, J. P. BoNporF and H. A, BETHE: Nucl. Phys., 251 A,
502 (1975).

(®) V. RUCK, M. Gyurassy and W. GREINER: October 1975, to be published in Zeits.
Phys.
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7 turns out to be practically time independent. Hence we choose 7=
= 20,/(1 4- vy/c’) = const, i.6. we are concerned with the time dependence of
a and b.

Fig. 1. — The basic features of the relativistic model are shown as seen in the e.m.
system. The compression ellipsoid with semi-axes « and b is sandwiched by the ellipsoids
which are spheres with radins E in their own rest systems (dashed curves). Their rela-
tive distance is denoted by r. As the two ellipsoids move with velocity vy, —vg,

respectively, their radius is relativistically contracted to R’=V1— (v2/c?) R.

The exact solution of the full hydrodynamical problem is very complicated ()
Our model is more feasible and lucid than the full-scale numerical computer
solution, and it contains the essential physical features in a transparent way.

3. — Many-phase hydrodynamics for hadronic matter.

To study the formation of nucleonic resonances in the dense, hot matter
region, i.e. in the compression ellipsoid, and its interplay with the intensity
of the shock waves, we consider a thermodynamical theory of nucleons and
their excited states. The total rest density of all isobars is denoted by g°, that
of the unexcited nucleons by ¢! and the densities of the nucleons in excited
isobaric states ¢ shall be p;. If we are concerned with » isobarie states, the rela-
tion holds

(1) '=20.
i=1

Quantitative results—as presented in the following—indicate that during
the collision nuelear matter will be strongly compressed for a time of 2-10-23 g.

(®} A. A. AuspEN, G. ¥. BErtscH, F. H. Harrow and J. R. Nix: Phys. Rev. Lett.,
35, 905 (1975).
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Oun the other hand, the cross-section for meson production at relevant energies
is of the order of (10 =-30) mb. If we take ¢~ 3¢] the equilibration time
for the excitation of mesonic degrees of freedom in the shock zone is of the
order of 6-10-2¢s (ref. (*)). This enables us to use equilibrium thermodyna-
mics (%) a8 a first approximation. Therefore—within the validity of this model—
the densities of the excited states (resonances) are given by the Boltzmann
distribution law

E,
. 2= vaten-2],

1470 1535 1520
1 |

i
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Fig. 2. — The temperature dependence of the oceupation numbers ; is depicted for
nucleons and N*(3, §)-resonances and for nucleons and resonances with Mc* <1600 MeV,
respectively (1°). The N*(%, §)-state is predominantly occupied.

{(10) Tables of Particle Properties (Genéve, 1974).
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where F,= (M, — M,)c* are the excitation energies of the isobaric reso-
nances and 7 is the temperature of the isobaric gas.

The factor 7, describes the different occupation probabilities of the excited
states ¢ connected with spin and isospin

3) v, = (28 0+ 1);21,“‘_% 1) .

p —FE. /T
(4) o= R IEMT] o p iy,

i 7 exp [— E,/T]

The temperature dependence of 1,(T) (fig. 2) shows that at 7 ~ 200 MeV
about 50 %, of baryonic matter is isobaric.

4, — Ansatz for the energy of the model.
The total energy F is given by
(5) B=[yW(e, T)gdV .

Here ¢ denotes the densities in the individual regions: 9 = g, in the cut-off
spheres and g > g, in the ellipsoidal region. The velocity field enters the total
energy (5) by the factor y = 1/\/T :‘v?/g2 The energy per particle W(g° T)
is measured in its rest frame, depending on the rest density o° and temperature 7'
and has the following structure:

(6) W7(()D7 T) - M002+ BO—'I_ Ecomp+ Etherm+ Eres .

Here we denofe the nucleon mass M,c®*~ 939 MeV, the binding energy of
unexcited ground-state matter By~ — 16 MeV, the thermal energy K, and
the energy of the resonance excitation F _,. For the compression energy we
use the simplified ansatz

¢
(N Beomp = m(@o—@g)zy

which is quadratic in the deviation of the rest density ¢° from the equilibrium
value ¢) &~ 0.17 fm~3. The constant C is related to the compression constant K
of nuclear ground-state matter

:W(e% T =0)

8 K =9C = 9 )
(3) %o 3o et
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The compression term depends on the total density, i.e. it is assumed to be
the same for all isobaric resonances, and contains approximatively the mutual
interactions between them. For the thermal energy per baryon we use an ansatz
quadratie in the temperature representing a Fermi gas

(9) B =¥ 28477,

therm ~
=1

with the statistical weight factors

27,7\t M, ¢?
10 e L) % .
o) = (557)

These all are simplifying approximations to the isobaric gas. We accept them
presently, because of the limited knowledge about the isobaric gas. Obviously
the resonance excitation energy is

(11 B— 3 EA(T)

i=1

with A, defined in eq. (4).
Figure 3 shows (W(g° T)— M,c?) for different values of I. Obviously
the minimum of nuclear matter shifts with temperature towards higher densities,

20

4) 3/ 2) 1)
10—
| |

— | i |
200 1 02 . 3 4
o/e,

wip®, T)—Mocz(MeV)
o

Fig. 3. — The energy density functional in infinite nuclear matter is shown for tem-
peratures of T'=0 MeV to T'=20MeV. The Fermi-gas model of nuclear matter is
used to calculate the thermal energy. The compression constant is K = 300 MeV.
The shift of the minimum is a result of the additional thermal energy. 1) 7'= 0 MeV,
2) T=10MeV, 3) T=15MeV, 4) T=20MeV.
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which is plausible. To calculate the energy as function of the geometrical co-
ordinates «, b and r and their velocities, we make the following assumptions
about the density distribution, and the velocity field (fig. 4): The rest density
in the cut-off spheres is the equilibrium density of. The density in the ellipsoid
is assumed to be homogeneous. Its value can be calculated using baryon con-
servation as

20— (3/22) Vo

12 —
(12) 0 e
shock front
v 2y
0—ve"=2 o 2= 700
i=1 :
Wieo, T) Wiea, T = 0)
P Popy=0
b4
@
—2 5

Fig. 4. — The sharp discontinuity, i.e. the shock front, is schematically depicted.
It separates regions with different velocity fields and variables of state. In the c.m.
system the velocity of the shock front is equivalent to the velocity a of the geometrical
co-ordinate.

Therein the volume of one of the contracted cut-off spheres is given by

2 1 2 )
I R (ST R oY

with o= (2, —1/2}/R, = 2,/a and

oA bR\ (L MR
& z°_2<b2/a2—y%){V1+(a2 )G ) 1}’

Because ¢ is assumed to be homogeneous, the rest density o°= oy is co-
ordinate dependent. The velocity field v for the various isobaric resonances
is assumed to be the same as for the nucleons which holds as long as the reso-
nance rest mass M, c? is comparable to the nucleon rest mass. In our calcula-
tions we take M,c2<1600 MeV. To avoid extensive numerical difficulties, we
disregard also the pionic field in this calculation. Its veloeity field would dra-
stically deviate from the nucleonic one. We therefore expect that in our cal-
culation the temperature of the isobaric gas will be overestimated, because
the pions stemming from isobar decay will cool the system (runaway pions).

23 — Il Nuovo Cimento A.
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We will see later from our calculations, that these are not very much pions
(about 10), but nevertheless their influence on the thermodynamic properties
of the excited matter is important. Those pions stemming from pion conden-
sation are of great importance and, in fact, help considerably to initiate the
shock wave, as has been pointed out by RUCK, GYULASSY ef ¢l. (8). The inter-
play of the pion condensation gas with the isobaric gas will be discussed in a
forthcoming paper.

The velocity field of the isobaric gas is assumed to be homogeneous within
the two cut-off spheres, namely equal to the velocity of the respective centres

7 Vo

e 27 1 offet”

where 2, is related to the energy per nucleon in the c.m. system ¥ __ by

vy - 1
(16) P Vl (B Myc* + 1)2°

In the compression ellipsoid an irrotational velocity field is assumed
(17) v=grad g,
which has to fulfil the equation of continuity

. 8
(18) div (ov) + gt@ =0.

Because of the homogeneous density ¢ this can be rewritten as
(19) Ap=—~—.
e

If we use the boundary condition v=>4 and v-e,= 0 along the circle z =
x4 y2= b2, the solution of (19) is easily obtained as

Y

_?) 100 b
(20) v = I;(xem—{— yeu)—(§é7+ 25)zez.

With the densities and the velocity field one can now calecnlate the total energy
according to eq. (5)
(21) E=E_+E

ell ?

where

Esnh: 27%93(M002+ Bo) V;nh
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and

(22) Eell: (M002 —}_ BO) QJ '}’dV Ai— ny(Ecoynp+ Etherm+ Eres) dV N

ell ell

Since the compression, thermic and resonance energies are depending on the
nonhomogeneous rest frame density ¢ in the ellipsoidal region, the integrals
over the thermal and resonance energies lead to elliptic integrals. For simpli-

fication, we introduce an average rest density §° in the compression zone by

3 30 av
= __ 2 oqy . & 1T
(23) RTTE fg @ 47mb2f y

ell ell
and obtain

(24) Eell: Q{M002 —i— BO + Etherm(éo) + Eres(éo)}fyd‘/ + nyEcodeV b
ell

for which one finds easily analytic expressions.

5. — The equations of motion.

The idealization of our model is the sharp discontinuity between the com-
pressed and uncompressed region, which we furtheron denote as «shock front »
(fig. 4). At this shock front the state variables, ¢.e. the density o°, the energy
W and the pressure p are discontinueous, whereas we require the continuity of
baryon flux, momentum flux and energy flux. This results in the relativistic
Rankine-Hugoniot equation (RRH-equation)

Wie® T Wiog, T=0
(25) “72(90,17)—1/172(03,T:0)+(P—po){ (Qeo )— e )}:O.

0
9

The pressure p in the ellipsoidal region is given by

T
(26) p= % (¢*— o)+ 5 Te” f paar,
0
and in the cut-off spheres p,= 0. Equation {25) yields a unique connection
between the rest density ¢° and the temperature 7' which has to be solved by
iteration. Figure 5 shows this function for two cases, namely without nucleon
resonances, and under inclusion of resonances with masses up to 1600 MeV.
Earlier nonrelativistic calculations (*7) show a pole in the density excitation
function at ¢’Jos = 4 for nucleons and at somewhat higher densities if isoba-
ric resonances are included, whereas in the correct relativistic treatment these
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poles vanish (). The velocity of the shoeck front is easily caleulated as (611)
(fig. 6)

@) E_V Wy
¢ (W(e® T)o"— W{(gs, T=0)03)(W(03, T =0)03+ p) "

150 p—

100 —
= L a)
= L

I b)
50—
e z .

o'/e;

Fig. 5. — The density dependence of the temperature T is shown for A = 300 MeV
as obtained by the RRH cquation. As further calculations show, only few reso-
nances are formed during the collision (about 10), but their influence on the tempera-
ture is important. As the resonances cool the nuclear matter to temperatures small
compared to the actual Fermi temperature, the quadratic ansatz for the thermal energy
(eq. (9)) is justified: «) no resonances, D) resonances up to 1600 MeV.

Since this relation holds in the rest frame of the unshocked flnid, i.e. in one of
the cut-off spheres, we have to transform to the ellipsoid moving with », to
get the shock velocity as seen from the c.m. system

pemo— 0%
: 1—wvy0./e?

(**) L. D. Lanpavu and E. M. Lirsuirz: Hydrodynamics (London, 1958).
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In turn »™ is identical with the velocity @ of the ellipsoidal semi-axis

v,— Vg
= —— =,
1— 2, /c?

(28)

1 i | |
° i
o /e
Fig. 6. — The velocity of the shock front w,/¢ for K = 300 MeV as seen from the
laboratory system is shown. v./¢ only in the low-density limit approximates the velocity

of sound ey/¢ = 0.18. For large densities, v /¢ goes to 1. The influence of the resonances
is significant: a) no resonances, b) resonances up to 1600 MeV.

Thus one obtains the two equations

(29) F=E—24y,W(, T=0)=0,
Vy— T

30 G—=g— > """ _ ¢

(30) ¢ 1—v,0,/c? !

which have to be integrated. Equation (29) expresses energy conservation,
while the second one is identically with eq. (28) and gives the connection between
the various velocity fields. The two equations are sufficient to obtain the time
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Fig. 7. — The time dependence of the geometrical co-ordinates 7, b, a is depicted for
laboratory encrgies per nucleon K, /N = 250 (1)), 500 (2)), 1000 (3)), 2000 MeV (4))
and K = 300 MeV. As 7= const, r is represented by straight lines. For b(¢) also the
limiting curve b= ct is shown. In contrast to b(f) the co-ordinate a(t) is essentially
constant for high energies, which reflects the fact that matter is ejected mainly per-
pendicularly to the collision axis. Resonances (Me?<C 1600 MeV).

T'ig. 8. — The time dependence of the averaged density as defined in eq. (23) for
K =300 McV and E, /N =250 (1)), 500 (2)), 1000 (3)), 2000 (4)), 4000 MeV (5)) is
shown. At these energies the compression lasts a 5-10-2s. This justifies the use of
equilibrium thermodynamics (*). There is no limiting density at ¢%g)=4 as in the
nonrelativistic treatment (7). Resonances (Mc?< 1600 MeV).

Fig. 9. — The time dependence of the temperature T for K = 300 MeV and E,/N =
= 250 (1)), 500 (2)), 1000 (3)), 2000 MeV (4)) for resonances with Me%< 1600 MeV
is depicted. The influence of the resonances is evident from the comparison of curve 4)
and 5). They resonably lower the temperature in the collision zone. 5) E /N =
= 200 MeV, no resonances.
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dependence of a(l) and b{¢). In order to solve these equations for a(¢) and b(?)
it is advantageous to integrate the following system of first-order differential
equations:

oF . oF, oF . | oF .
a—aa+ézb+5gpa+£pb*07

(31) 06, ,.00y, 90, LG, _
T TPt P = 0,

45

40t

35
4)

30+ 150 -

N (Mev)
[N (MeV)
T

comp

E
N
=

T

therm

E,

0 [ S N WA N SR B 0 ety WS W U NUUU W SO |
4 -2 0 2 4 =4 ~2 0 2 4
r{fm)

Fig. 10. — The compression and thermal energies per nucleon are shown as funetion
of the relative distance of the two colliding nuclei for A = 300 MeV and By, /N =
=250 (1)), 500 (2)), 1000 (3)), 2000 MeV (4)). At low laboratory energies compres-
sion and thermal energy are of the same magnitude. At high energies Ei.., is large
compared to the compression energy, i.e. there is a transition from nuclear matter to
a hadronic gas. Resonances (Me?< 1600 MeV).
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The quantitative results of the numerical integration of the equations of mo-
tion (eq. (31)) are depicted in fig. 7, 8 and 9 for laboratory energies per nucleon
B, /N = {250, 500, 1000, 2000} MeV and K = 300 MeV. Obviously the isoba-
ric matter is predominantly ejected perpendicular to the central collision axis,

o (303)

| — i I 1 L L
0 1000 2000 3000
£ /N (Mev)

Fig. 11. — The percentage of excited N*(}, 3) is depicted as function of E,,/N. The
curve has been obtained by taking the maximum temperature during the collision and
caleulating 1 (eq. (4)) with it. The higher resonances are exeited to a much smaller
extent than the N*(3, 3)-resonance. K = 300 MeV, resonances (Mc®< 1600 MeV).

which is infered by the great advance of the semi-axis b(¢) with time. Con-
trary to b(t), the semi-axis a(t) is practically time independent at high collision
energies. Figure 10 shows the compression and thermal energies per nucleon
in the ellipsoidal region, respectively, for those energies. To estimate the
number of thermal pions produced during the collision, we calculated the per-
centage of excited 1236 MeV resonances as funetion of the laboratory energy
by inserting the maximum temperature reached during the collision into eq. (4)
(fig. 11). At energies about 3 GeV/nucleon only about five percent of all nucleons
are in the (3, 3)-resonance state.
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6. — Application of the model to the interpretation of heavy-ion collision
experiments.

Recent experiments (*) of bombarding AgCl detectors with «, 12C, 180 at
energies between 250 MeV/nucleon and 2.1 GeV/nucleon show significant peaks
in the angular distribution. The peak angles shift with increasing energy to
lower values. This behaviour can be interpreted as signatures for Mach shock
waves of high densities.

If a light nucleus penetrates a larger one, a Mach cone will be formed due
to high-density shock travelling to the sides of the projectile, propagating
through the target as an energy wave and ejecting particles when it reaches the
surface into an angle

(32) cos g =",

vlon

where v, is the propagation velocity of the shock wave, and v,,, the laboratory

0.8

[ |
0 500 1000 1500 2000
E.o /N (MeV)

Fig. 12. — v,/e as function of By, /N is shown for different compression constants
K =200 (1)), 300 (2)), 400 MeV (3)). The theoretical prediction (full curves) is obtained
by taking the maximum averaged density gy,, during the collision and inserting it
into eq. (27). The experimental values—shown with error bars—are obtained from
the experiment (¢) by the procedure deseribed in the text. Resonances (Mc?<< 1600 MeV).
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velocity of the projectile. As ¢ and v, are well defined in the experiment,
we can determine v,. We assume that the projectile velocity remains unchanged
during the collision. To predict v, one needs the density in the compression
zone (Mach-shock zone). As the model vields an averaged density (fig. 8),
it iy justified to take the Mach-shock density according to the predictions of
the above-described model. Figure 12 shows the velocities ¢,(E,.,/N) as obtained
from the experiment via the outlined procedure. The theoretical value for it
is obtained by caleulating within the symmetric collision model the averaged
compression density g¢ and inserting it into eq. (27).

The only free parameter to adjust the theoretical prediction for v, obtained
from the model to the « experimental » value, is the compression constant K.
Figure 12 shows /¢ as function of E_ /nucleon for different compression
constants K(200 MeV < K <400 MeV).

Obviously at energies E,,,/N > 1 GeV the compression constant K has no
significant influence on v,/e, i.e. E_ <« FE, . . This reflects the transition
from nuclear matter to a hadrounic gas, whose properties are essentially deter-
mined by thermodynamics.

At energies I/ /nucleon < 500 MeV the constant K has only a small
influence on ¢,/c. The «experimental» value at 250 MeV/nucleon gives
300 MeV < K < 500 MeV as reasonable values. This single data point is not
sufficient to give an appreciable value for K. Further experiments in the range
of 100 MeV < I, /nucleon <500 MeV are called for.

Moreover we find that the data point at E  /nucleon = 2100 MeV is out
of range of the theoretical prediction which yields that v,/e—1 for
E, ,/nucleon — co. From that we conclude that there has to be a special strue-
ture in W(o, T') which causes v, to decrease at I /nucleon~ 2 GeV. The
theoretical implications are discussed in ref. (12).

* 3k %k

We thank H. STOCKER for valuable discussions.

(*?) J. Hormany, H. STOCKER, U. Hrinz, W. Scueip and W. GREINER: Phys. Rev.
Lett, 36, 88 (1976).

® RIASSUNTO ()

Si studia la possibilitd di eccitazione delle risonanze nuecleoniche nelle eollisioni rela-
tivistiche di ioni pesanti. Si trattano le onde durto nucleari ad alta densitd in un modello
relativistico idrodinamico.

(*) Tradusione a cura della Redazione.
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Tensoboe B030YXK/eHHEe HYKJIOHOB B DeJATHBHCTCKHX SIIEPHBIX YAPHLIX BOJIHAX € BbICOKOH
AJIOTHOCTHIO.

Peatome (*). — HccieayeTcsi BO3MOXKHOCTL BO30OYXAECHHA HYKJIOHHBIX PE30OHAHCOB IIPU
PEJIATHBHCTCKMX COYAAPEHHAX TAXENbIX MOHOB. SnephHble yIapHbie BOJHBI C BLICOKOM
TUIOTHOCTHK PAcCMATPHBAIOTCS B PENIATUBUCTCKON I'MAPOAWHAMHYECKOHM MOZIENH.

(*) IIepesedeno pedaxyueii.



