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Thermal Excitation of Nucleons in Relativistic High-Density 
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(ricevuto il 26 Gennaio 1976) 

Summary. - -  The possibility of excitation of nucleonic resonances in 
relativistic heavy-ion collisions is investigated. The high-density nuclear 
shock waves are treated in a relativistic hydrodynamical model. 

1 .  - I n t r o d u c t i o n .  

The possibil i ty of p ropaga t ion  of densi ty waves through nuclear m a t t e r  
was suggested in early papers  (1-5). One has to distinguish, however,  the  pro- 
pagat ion  of sound waves with small densi ty ampli tudes,  which t rave l  with 

sound velocity, and which are considered in ref. (~), f rom shock waves wi th  
high-density ampli tudes,  for which the  rest  densi ty  in the  shock zone is large 

compared  to the equil ibrium densi ty (2). The  la t te r  waves  are denoted as 
(( high-densi ty nuclear shock waves ~> ( H D ~ S W ) .  These high-densi ty waves (~) 

arc of grea t  fundamen ta l  importance,  because they  furnish the key  mechanism 

(*) Supported by Btmdesministerium ffir Forschung und Technologie and by the 
Gesellschaft ffir Schwerionenforschung (GSI). 
(1) A . E .  GLASSGOLD, W. HECKROTTE and K. M. WATSON: Ann. o] Phys., 6, 1 (1959). 
(2) W. Scm~ID, It. MtiLLEZ and W. GREI~E~: Phys. Rev. Zett., 32, 741 (1974). 
(8) W. SCHEID, J. HOFMAN~" and W. G]~EIN]~R: Proceedings o] the Sy,tposium on 
Physics with t~elativistic Heavy Ions at LB~ (Berkeley, Cal., 1974). 
(4) G . F .  CHAPLI~]~, M. H. JOHNSOX, E. T]~LLER and M. S. WEISS: Phys. Rev. D, 8, 
4302 (1973). 
(5) C. Y. WoNc, and T. A. WELTO~: Proceedings o] the International Con]erence on 
Reactions between Complex Nuclei, Vol. 1 (Amsterdam, 1974); Phys. Lett., 49 B, 243 
(1974). 
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0 0 for producing high nuclear densities (@ [~o>~2), which are in turn important 
to study the behaviour of nuclear matter under strong compressions (com- 
pressibility, density isomers, pion condensation, a-condensation, etc.). Fur- 
thermore it has been shown in ref. (s) that  only HDNSW describe the mea- 
sured angular distributions of Mach-shock particle emission in high-energy 
nucleus-nucleus collisions. 

The aim of this paper is the generalization of the nonrelativistic model 
of ref. (2) to relativity, the inclusion of nucleon resonances (which we call thermal 
pionization (")), and the study of their influence on the angular distribution 
of Mach-shock particles ejected in high-energy heavy-ion collisions. 

The validity of hydrodynamics was extensively discussed in previous pa- 
pers (t-7). Even though the longitudinal-momentum decay length (7) r~ises ~t 
laboratory energies above 700 MeV/N, shock waves will also occur above this 
energy, because of thermal excitation of nucleons into nucleonic resonances, 
pion production (4) and pion condensation phenomena (8) reducing the mean 
free path appreciably. Even though the hydrodynamical picture and concepts 
are used in our investigations, it should be clearly kept in mind, that  they are 
limited for describing all the variety of new phenomena encountered in a rela- 
tivistic nucleus-nucleus collision. A model description is therefore appropriate, 
especially because it allows to formulate the nonstandard hydrodynamical 
effects (pionization, crystallization of matter in phase transitions to density 
isomers) in a simple and clear way. 

2 .  - T h e  m o d e l .  

In order to learn the essential features of a relativistic compression process, 
we restrict ourselves to relativistic central collisions of two identical nuclei 
whose volumes are divided into three parts, namely an ellipsoid with axes 
a(t), b(t) sandwiched between two cut-off spheres with radius R which are rela- 
tivistically contracted. The relative coordinate between the centres of these 
spheres is r(t). The problem is treated in the centre-of-momentum system 
(c.m. system). In this system the cut-off spheres will move unperturbed with 
constant velocity ~= v,. They have the nuclear equilibrium density @~ which 

/%/ 2 ~ 
is seen from the c.m. system as @o= ~o9~ with ~o~--1 1--vo/c.  Choosing 

-~ const, during the collision, we are dealing with three degrees of freedom, 
namely a, b, r (fig. 1). :Nonrelativistic calculations (") show that  the velocity 

(6) H. G. BAUMGARDT, J. U. SCnOTT, Y. SAKAMOTO, E. SCHOPPER, H. STSCKER, 
J. HOF~A)~N, W. SCHEID and W. GR]~IN~R: Zeits. Phys., 237A, 359 (1975). 
(7) M.I. SOBEL, P. J. SIEMENS, J. P. BO~DO~F and H. A. BETHE: Nucl. Phys., 251 A, 
502 (1975). 
(s) V. I~UCK, l~. GYULASSY and W. GRE]N~R: October 1975, to be published in Zeits. 
Phys. 
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turns out  to be pract ical ly t ime independent .  Hence  we choose ~ =  

2vo/(1-~-v2olc 2) = const, i.e. we are concerned with the  t ime  dependence of 
a ~nd b. 

* v o - v o - =  

\\\. \ \ / / // 

Fig. 1. - The basic features of the rel&t iv ist ic model are shown as seen in the c.ui, 
system. The compression el l ipsoid witi~ senti-axes a and b is s~ndwiched by the ell ipsoids 
which &re spheres with radius R in their own rest systems (dashed curves). Their rela- 
tive distance is denoted by r. As the two ellipsoids move with velocity v0,--%, 

respectively, their radius is rclativistically contracted to R ' =  ~v/1--(v~/c2)R. 

The exact  solution of the full hydrodynamieM problem is very  complicated (9) 

Our model  is more  feasible and lucid than  the full-scale numerical  compute r  
solution, and it contains the essential physical  features in a t r ansparen t  w~y. 

3 .  - M a n y - p h a s e  h y d r o d y n a m i c s  for  h a d r o n i c  m a t t e r .  

To s tudy the format ion  of nucleonic resonances in the dense, hot  m a t t e r  
region, i.e. in the compression ellipsoid, and its in terplay with the intensi ty  

of the shock waves, we consider a the rmodynamicM theory  of nucleons and 
their excited states.  The to ta l  rest  densi ty of all isobars is denoted by  ~o, t h a t  

of the unexci ted nucleons by  ~ and the  densities of the nucleons in exci ted 

isobaric s ta tes  i shall be ~o. I f  we are concerned with n isobaric states,  the  rela- 
t ion holds 

i=i 

Quant i ta t ive  r e su l t s - - a s  presented in the fol lowing-- indicate  tha t  during 
the collision nuclear m a t t e r  will be strongly compressed for a t ime of 2.10 -23 s. 

(~) A.A.  AMSDEN, G. F. B]~RTSC!4, F. H. HALLOW and J. R. Nix:  .Phys. Rev. Left., 
35, 905 (1975). 
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On the other hand~ the cross-section for meson production at  relevant energies 
is of the order of ( 1 0 -  30)mb.  If  we take Qo~ 3¢oo the equilibration t ime 
for the excitation of mesonic degrees of freedom in the shock zone is of the 
order of 6.10 -34 s (ref. (4)). This enables us to use equilibrium thermodyna-  
mics (4) as ~ first approximation. Therefore--within the validity of this mode l - -  
the densities of the excited states (resonances) are given by the Bol tzmann 
distribution law 

[ ~ ]  (2)  5 ° = ~ ,0~  ° e x p  - ¥  , 

, 3 3  
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Fig. 2. - The temperature dependence of the occupation numbers ~ is depicted for 
nucleons and JV*(~, ~)-rcsonances and for nucleons and resonances with Me2< 1600 MeV, 
respectively (lo). The ~*(~,  ~)-state is predominantly occupied. 

(lo) Tables o] Particle Properties (Gen~ve, 1974). 
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where E~= (M .... - -Mo)c~ are the excitat ion energies of the isobaric reso- 

nances and T is the tempera ture  of the isobaric gas. 
The factor v~ describes the different occupation probabilities of the excited 

states i connected with spin and isospin 

(3) "~, -- 
(28 .... ÷ 1)(21 .... + 1) 

By  (1) we get 

~ exp [-- E J T ]  
(4) ~ = .  

rk exp [-- E~/T] 
k = l  

~o - ~ (T)  ~o. 

The tempera ture  dependence of 2~(T) (fig. 2) shows tha t  a t  T ~ 2 0 0  MeV 
about  50 % of baryonic  ma t t e r  is isobaric. 

4.  - A n s a t z  for the  e n e r g y  o f  the  m o d e l .  

The to ta l  energy E is given by  

(5) E = fTW(c~°, T) ~ d V  . 

IIere ~ denotes the densities in the individual regions: ~----~o in the cut-off 

spheres and ~ > ~o in the ellipsoidal region. The velocity field enters the total  

energy (5) by  the factor  y ~ 1 /~ /1 - -  v~/c ~. The energy per particle W(~ °, T) 
is measured in its rest frame, depending on the rest density ~o and tempera ture  T 
and has the following structure:  

(6) W(() °, T) z Moc~-~ B o ~  E . . . .  ~- Eth .... + E . . . .  

t t e re  we denote the nucleon mass Moc2~ 939 MeV, the binding energy of 

unexcited ground-state ma t t e r  Bo ~ - -16  MeV, the thermal  energy Ether m and 
the energy of the resonance excitat ion Ero .. For  the compression energy we 
use the simplified ansatz 

C 
(7) Eoo~o - 2coco (e ° -  e~) ~ , 

which is quadrat ic  in the deviation of the rest density ~o from the equilibrium 

value og ~ 0.17 fm -a. The constant  C is related to the compression constant  K 
of nuclear ground-state  ma t t e r  

(8) K ---- 9C ---- 9~)~) 2 ~2W(o°' T = O) Q'=Q~ 
~ o 2  
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The compression term depends on the total  density, i.e. it is assumed to be 

the same for all isobaric resonances, and contains approximat ively the mutual  

interactions between them. For  the thermal  energy per baryon we use an ansatz 

quadrat ic  in the temperature  representing a Fermi gas 

n 

( 9 )  = 
i~1 

with the statistical weight factors 

(I0) / 3 , = \  s / (~c)~ " 

These all are simplifying approximations to the isobaric gas. We accept  them 

presently, because of the limited knowledge about  the isobaric gas. Obviously 

the resonance excitation energy is 

(11) E.,.,= ~ E,k,(T) 
i=1 

with g~ defined in eq. (4). 
Figure 3 shows (W(~ °, T)--Moc ~) for different values of T. Obviously 

the minimum of nuclear mat te r  shifts with temperature  towards higher densities, 

20 

10 

4) 

--10 

I 
I 

[ i I 
--200 1 2 3 4 

eOl Oo 

Fig. 3. - The energy density functional in infinite nuclear matter is shown for tem- 
peratures of T =  0 MeV to T =  20 MeV. The Fermi-gas model of nuclear matter is 
used to calculate the thermal energy. The compression constant is K =  300 MeV. 
The shift of the minimum is a result of the additional thermal energy. 1) T = 0 MeV, 
2) T ~ 1 0 M c V ,  3) T=15MeV,  4) T=20MeV.  
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which is plausible. To calculate the energy as funct ion of the geometr ical  co- 

ordinates a, b and r and their  velocities, we make  the following assumptions 

about  the density distribution, and the veloci ty  field (fig. 4): The rest  densi ty 

in the cut-off spheres is the equil ibrium density 9~. The density in the ellipsoid 
is assumed to be homogeneous. I t s  value can be calculated using ba ryon  con- 
servat ion as 

2R 3 -  (3/2:r)Y0 V~ph ~o. 
(12) ~ = ab 2 

shock front 

V 

= 7Q ° - ~ ~i 
i=1 

W(~, T) 

o 
~o 70 ~o 

O) 

P o  = 0 

-NZ 

d~ 

Fig. 4. - T h e  sharp discontinuity, i.e. the shock front, is schematically depicted. 
I t  separates regions with different velocity fields and variables of state. In the c.m. 
system the velocity of the shock front, is equivalent to the velocity d~ of the geometrical 
co-ordinate. 

Therein the volume of one of the contracted cut-off spheres is given by  

(13) = 2  a yo c)_ab2(l_fi)2(l q_ ~) ] Eo~ ~ [ y o R  ( 1 - - ~ ) ~ ( 1 +  ~ 

with a =  (zo--r/2)/R, f i= zo/a and 

(14) Zo=2(b2/a2 y2o ) + N - - y ;  ~o + y~r ~ 1 - - 1  . 

Because o is assumed to be homogeneous,  the rest  density ~0= o/7 is co- 

ordinate dependent .  The veloci ty field v for the various isobaric resonances 

is assumed to be the same as for the nucleons which holds as long as the reso- 
nance rest  mass M,c  ~ is comparable  to the nucleon rest  mass.  Ill our calcula- 

tions we take  M~c"<1600 MeV. To avoid extensive numerical  difficulties, we 

disregard also the pionic field in this calculation. I t s  velocity field wouht dra- 

stically deviate  f rom the nucleonic one. We therefore expect  tha t  in our cal- 
culation the t empera tu re  of the isobaric gas will be overest imated,  because 
the pions s temming f rom isobar decay will cool the sys tem (runaway pions). 

23 - I1 Nuovo Cimenlo A .  
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We will see later  from our calculations, tha t  these arc not  very much pions 
(about 10), bu t  nevertheless their  influence on the thermodynamic  properties 
of the excited ma t t e r  is important .  Those pions stemming from pion conden- 
sation are of great importance and, in fact,  help considerably to init iate the 

shock wave, ~s h~s been pointed out  by  l~uct~, GYULASSY et al. (s). The inter- 
play of the pion condensation gas with the isobaric gas will be discussed in 
for thcoming paper. 

The velocity field of the isobaric gas is assumed to be homogeneous within 
the two cut-off spheres, namely equai to the velocity of the respective centres 

(15) 2 = 1 -H v~o/c 2' 

where vo is related to tile energy per nucleon in the e.m. system Eo.~. by  

(16) v° = ] / 1 - -  1 

(~ t ( E  . . . .  /Moc ~ -  1) 2. 

In  the compression ellipsoid an irrotat ional  velocity field is assumed 

(17) v = grad q), 

which has to fulfil the  equation of cont inui ty  

8q 
(18) div (ev) Jr ~ = 0 .  

Because of the homogeneous density ~o this can be rewri t ten as 

1 ~ 
(19) A~ -- 

e 8t 

I f  we use the boundary  condition v----b and v.e~----0 along the circle z----0, 
x 2 ~  y~----b 2, the solution of (19) is easily obtained as 

(20) v =  ~ (xe~-y%)- -  ~ +  2 zez. 

With the densities and the velocity field one can now calculate the total  energy 
according to eq. (5) 

(21) E ~ E,~h- I- E n , 

where 
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and 

(22) E e , l =  (M0c2 ~ - B o ) o f ~ ' d V - [ -  @(Eoom,+ E~. . . . .  -[- ~res ) d v "  

e l l  ell 

Since the compression, thermic and resonance energies are depending on the 
nonhomogeneous rest frame density ~2 ° in the ellipsoidal region, the integrals 
over the thermal  and resonance energies lead to elliptic integrals. For  simpli- 
fication, we introduce an average rest density ~o in the compression zone by  

3 f . 3 ofdV 
ell e l l  

und obtain 

('24) Eo,,=q{Mo~2+ B,÷ E~..(5°)÷ Ero~(5°)}fydV+@E~o..dY, 
ell 

for which one finds easily analytic expressions. 

5. - The equat ions  o f  m o t i o n .  

The idealization of our model is the sharp discontinuity between the com- 
pressed and uncompressed region, which we fur theron denote as (( shock front  ~) 
(fig. 4). At  this shock front  the state variables, i .e.  the density o °, the energy 
W and the pressure p are discontinueous, whereas we require the cont inui ty  of 
baryon flux, momentum flux and energy flux. This results in the relativistic 
Rankine- t tugoniot  equation (RRH-equat ion)  

/W(~°, T) W(~)o°,T = 0 ) ] _ _ 0 .  
(25) W"(q °, T ) -  W2(q °, T = 0) ÷ (p --Po) / ~ - -  Oo ° 

The pressure p in the ellipsoidM region is given by 

(26) 

T 

0 

and in the cut-off spheres Po--~ 0. Equat ion  (25) yields a unique connection 
between the rest  density 90 and the tempera ture  T which has to be solved by 

iteration. Figure 5 shows this function for two cases, namely without nucleon 

resonances, and under  inclusion of resonances with masses up to 1600 MeV. 
Earlier nonrelativistic calculations (3.7) show a pole in the density excitation 
function at e°/~o ° = 4 for nucleons and at somewhat higher densities if isoba- 
ric resonances are included, whereas in the correct relativistic t rea tment  these 
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poles  v a n i s h  (6). T h e  v e l o c i t y  of t he  shock  f r o n t  is eas i ly  c a l c u l a t e d  as (~'~) 

(fig. 6) 

( ~ 7 ) ~': = ] / :: : P ~:'(~}~; I Y ) ; : ' I ; i : 
c ~ (W(0  °, f ) 0  ° -  W(0 °, T o)0°)(WCoo °, T = o)0o b p)" 

:2 

t 

100 I- 
a )  

50 

o ~ - J - - ~  . _ _  1 . . . . . . . . . . . . .  I t I 
2 3 /., 5 

0 0 

Fig. 5. - T h e  density dependence of the temperature  T is shown for K = 300 MeV 
as obtained by  the RRH equation. As further calculatious show, only few reso- 
nances are formed during the collision (about 10), but  their  influence on the tempera- 
ture is important .  As the resonances cool the nuclear mat ter  to temperatures  small 
compared to the actual Fermi temperature,  the quadrat ic  ansatz for the thermal  energy 
(eq. (9)) is justified: a) no resonances, b) resonances up to 1600 MeV. 

Since  th is  r e l a t i o n  ho lds  in t he  res t  f r a m e  of t he  u n s h o e k e d  fluid,  i.e. in one  of 

t h e  cut-off  spheres ,  we h a v e  to  t r a n s f o r m  to t h e  e l l ipsoid  m o v i n g  wi th  ,% to 

ge t  t h e  shock  v e l o c i t y  as seen f r o m  t h e  c .m.  s y s t e m  

V s - -  V 0 

(ll) L. D. LAND,kU and E. M. LIFSHITZ: Hydrodynamics (London, 1958). 
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In  turn v: ~' is identical with the velocity ~ of the ellipsoidal semi-axis 

( 2 s )  a = ~ v<,~,d~'-' 

353 

1.Or 

0.8 

0.6 

0,4 

0.2}.,.4.- 

0 
1 

I .~L I 
4. 5 6 

Fig. 6. - T h e  velocity of the shock f~'ont v,/e for K =  300MeV as seen from the 
laboratory system is shown, v.~/c only in the low-density limit approximates the velocity 
of sound e d c - -  0.18. For large densities, vs/c goes to 1. The influencc of thc rcsona.nces 
is significant: a) no resonances, b) resonances up to 1600 MeV. 

Thus one obtains the two equations 

(29) ¢) o 
F =  E - - - A T o W ( o o  , T---- 0 ) ~  0 , 

(30) G - -  a v , - - v o  - -  O ,  
1 - -  VoVs/V 2 

which have to be integrated. Equat ion (29) expresses energy conservation, 

while the second one is identically with eq. (28) and gives the connection between 

the various velocity fields. The two equations are sufficient to obtain the time 
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Fig.  7. - The  t ime  dependence of the  geometr ica l  co-ordinates  r, b, a is depic ted  for 
b~boratory energies per  nucleon E~D/~V= 250 (1)), 500 (2)), 1000 (3)), 2000 MeV (4)) 
and K - -  300 MeV. As # - -  const, r is represented  by s t ra ight  lines. For  b(t) also the  
l imi t ing  curve  b = ct is shown, h i  contras t  to b(t) the  co-ordinate  a(t) is essent ial ly 
cons tan t  for high energies, which reflects the  fact  t ha t  m a t t e r  is e jected main ly  per- 
pendicular ly  to the  collision axis. Resonanccs  (Me2< 1600 MeV/. 

Fig.  8 . -  The  t ime  dependence of the  averaged  densi ty  as defined in eq. (23) for 
K - - 3 0 0 M e V  and El~D/N=250 (1)), 500 (2)), 1000 (3)), 2000 (4)), 4000MeV (5)) is 
shown. A t  these energies the  compress ion lasts ~ 5 .10 -~3 s. This  justifies the  use of 
equi l ibr ium the rmodynamics  0). There  is no l imi t ing densi ty  at ~°/e0° = 4 as in t he  
nonre la t iv i s t ie  t r e a t m e n t  (8,7). Resonances  (Me 2< 1600 MeV). 

Fig.  9. - The  t ime  dependence of the  t e m p e r a t u r e  T for K = 300 MeV and E1~b/N = 
= 250 (1)), 500 (2)), 1000 (3)), 2000MeV (4)) for resonances wi th  M c ~ < 1 6 0 0 M e V  
is depicted.  The influence of the  resonances is ev iden t  from the  comparison of curve  4) 
and 5). They  resonably lower ti le t empera tu re  in the  collisiou zone. 5) E 1 J N  = 
= 200 McV, no resonances.  
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dependence of a(t) and b(t). In order to solve these equations for a(t) and b(t) 
it is advantageous to integrate the following system of first-order differential 
equations: 

~F 817 ~I,'. ~ F .  
~ a +  ~ b +  ~h- po + #Fpb = 0, 

(31) ~-b+-~p ~ . = o ,  

P ~  = ~ , Pb = b . 

45 

30 

o 25 5- 

uj ~ 20 

15 

lO 

2) 

,o I- 

" 4 -2 0 2 4 -4 -2 0 2 4 

rffrn) 

Fig.  10. - The  comprcssion and the rma l  energies per nucleon are shown as funct ion 
of the  re la t ive  d is tance  of the  two coll iding nuclei  for K =  300 MeV and E~b/N= 
= 250 ( l ) ) ,  500 (2)), 1000 (3)), 2000 MeV (4)). At  low labora tory  energies compres-  
sion and the rmal  energy are of the  same Inagnitude.  At  high energies Ether m is large 
compared  to t i le compression energy,  i.e. the re  is a t rans i t ion  from nuclear  ma t t e r  to 
a hadronic  gas. Resonances  (Me2< 1600MeV). 
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The quant i ta t ive  results of the numerical integration of the equations of mo- 
tion (eq. (31)) arc depicted in fig. 7, 8 and 9 for laboratory energies per nucleon 
E~b/N ~ {250~ 500~ 1000, 2000} MeV and K--~ 300 MeV. Obviously the isoba- 
ric ma t t e r  is predominant ly  ejected perpendicular to the central collision axis, 

3 

0 1000 2000 3000 
ELaD/N (MeV) 

Fig. 11. - The percentage of excited A~*(~, 23) is depicted as function of E~,b/N. The 
curve has been obtained by taking the maximum temperature during the collision and 
calculating 2 (eq. (4)) with it. The higher resonances are cxcited to a much smaller 
extent than the ~'*(~, ~-)-resonanee. K : 300 MeV, resonances (Mc2< 1600 MeV). 

which is infered by  the great  advance of the semi-axis b(t) with time. Con- 

t ra ry  to b(t)~ the semi-axis (~(t) is practically t ime independent  at  high collision 
energies. Figure 10 shows the compression and thermal  energies per nucleon 

in the ellipsoidal region, respectively~ for those energies. To estimate the 

number  of thermal  pions produced during the collision, we calculated the per- 
centage of excited 1236 MeV resonances as function of the laboratory energy 
by  inserting the maximum tempera ture  reached during the collision into eq. (4) 
(fig. ] 1). At energies about  3 GeV/nucleon only about  five percent  of all nucleons 
are in the (3, 3)-resonunce state. 
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6 . -  Application of  the model to the interpretation of  heavy-ion collision 
experiments. 

Recent  exper iments  (6) of bombard ing  AgC1 detectors with ~, 1~C, 160 a t  

energies between 250 MeV/nucleon and 2.1 GeV/nucleon show significant peaks  

in the  angular  distribution. The peak  angles shift  with increasing energy to 

lower values. This behaviour  can be in terpre ted  as signatures for Mach shock 
waves of high densities. 

I f  a light nucleus penet ra tes  a larger one, a Maeh cone will be  formed due 
to high-densi ty shock travell ing to the  sides of the projectile, p ropaga t ing  

through the t a rge t  as an energy wave and ejecting particles when it reaches the 

surface into an angle 

V~ 
(32) cos ~ - Vloo ' 

where v~ is the propagat ion  veloci ty of the shock wave,  and rio n the  labora tory  

0,8 
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Fig. 1 2 . -  %/c as function of E,,b/.V is shown for different compression constants 
K = 200 (1)), 300 (2)), 400 MeV (3)). The theoretical prediction (full curves)is obtained 
by taking the maximum averaged density ~m~x-° during the collision and inserting it 
into eq. (27). The experimental values--shown with error bars--are obtained from 
the experiment (B) by the procedure described in the text. Resonances (Me2< 1600 MeV). 
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veloci ty of the projectile. As 7' and V,o. are well defined in the experiment ,  

we can determine v.. We assume tha t  the projectile veloci ty remains unchanged 

during the collision. To predict  v~ one needs the  densi ty in the compression 

zone (Mach-shock zone). As tim model yields an averaged density (fig. 8), 

it is justified to tM~e the Mach-shock density according to the predictions of 

the above-described model. Figure 12 shows the velocities v~(E~,h/N) as obtained 

f rom the exper iment  via the outlined pro(.edure. The theoretical  value for it 

is obta ined by  calculating within the symmetr ic  collision model  the averaged 

compression density ~o and inserting it into eq. (27). 
The only free p a r a m e t e r  to :~djust the theoretical  predict ion for vs obtained 

f rom the model  to the (( e x p e r i m e n t a l ,  value,  is the compression constant  K. 

Figure ]2 shows vth¢°/c as function of E ,Snuc leon  for different compression 

constants  K(200 MeV < K < 400 MeV). 
Obviously a t  energies E~b/N > i1 GeV the compression constant  K has no 

significant influence on v~/c, i.e. E¢o,,,,<<Eth ..... • This reflects the transi t ion 

f rom nuclear m a t t e r  to "~ hadronic gas, whose propert ies  are essentially deter- 

mined b y  thermodynamics .  

At  energies E,~,/nucleon < 5 0 0  MeV the constant  K has only ~ small 

influence on v~/c. The ( (exper imenta l ,  value a t  250MeV/nucleon gives 

300 M e V <  K <  500 MeV as reasonable values. This single da ta  point  is not  

sufficient to give an appreciable value for K. Fur the r  experiments  in the range 

of 100 MeV < E,~Unucleon < 500 MeV a.re ea.lled for. 
Moreover  we find tha t  the da ta  point  a t  E,.b/nucleon-----2100 MeV is out 

of range of the theoretical  predict ion which yields t ha t  Vs/C-~l  for 

E,~b/nucleon -+ ~ .  F r o m  tha t  we conclude tha t  there has to be a special struc- 

ture  in W((~, T) which causes % to decrease at  E ,~ /nuc l eon~  2 GeV. The 
theoretical  implications ~n'e discussed in ref. (12). 

We thank  H.  ST()CI(ER for valuable discussions. 

(12) j .  HOFMANN, H. ST0CKER, IT. HEINZ, W. SCg~ID and W. G~EI~m~: Phys. Rev. 
Lett, 36, 88 (1976). 

• RIASSUNTO (*) 

Si studia la possibilit~ di eecitazione delle risonanze nucleoniche helle collisioni rela- 
tivistichc di ioni pesanti. Si trattano le onde d'urto nucleari ad alta den~ith in un modello 
relativistico idrodinamico. 

(*) Traduzione a cura deUa Redazio~e. 
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Tell.ylOBOe n o 3 6 y ~ e m t e  HyKJIOltOB B pe~$1TIIBilCTCKI4X ~l,~epHblX y~apub~x BO~IHaX C BblCOKO~ 

HJIOTHOCTbIO. 

Pe3ioMe (*). - -  Hccne) lyeTcn BO3MOhYHOCTb BoB6y~K~eH~a IJyKno~n1,1X pe30~a~coB n p ~  
penaTrmriCTCKrlx coy~apeH~nx  T~l~eJlblX ~IOIiOB. $1~epHl,~e y)lapnb~e BOnHl, I C Bl,lCO~O~ 
nnOTHOCTbIO paccMaTprmatoTca  B peJ~aTHBrICTCKO~ r r r )~po~HaMn~ecKo~ M O ~ e ~ .  

(*) HepeseDeno pe3amtue~. 


