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Summary. - -  The initial-value problem for hyperbolic differential equa- 
tions with the initial data given on a null plane in Minkowski space is 
considered in detail for the Klein-Gordon and Dirac equations. Existence 
and uniqueness theorems are given. The quantum field-theoretic analogue 
involves the commutation relations on the null plane and the null transla- 
tion operator off that plane. The formal theory of interacting fields is 
stated briefly in the Feynman-Dyson spirit. I t  is pointed out that an 
interaction that involve~ the null co-ordinate derivative of the field in 
the direction off the initial plane leads to additional complications. 

1 .  - I n t r o d u c t i o n .  

Quantum field theory off null planes was first used by  one of us  (1) about  

two years ugo. I t  arose in a natural  manner  in s tudying quan tum electro- 

dynamics in a laser beam. If  such a beam is pictured as a coherent wave train 

of finite length but  infinite width it will fill a null slab, i.e. the four-volume 

between two purallel three-dimensional null hyperplanes in Minkowski space. 

5Tull co-ordinates are therefore the natural  co-ordinate system. 

Quite independent of this physical problem the s tudy of the infinite-mo- 

men tum limit in current algebras also leads to quan tum field theory off null 

planes (~). So there is now a double purpose in s tudying this new formulation 
of quan tum field theory. 

(') Work supported in part by a grant from the National Science Foundation. 
(**) Present address: Department of Physics, University of Calgary, Calgary, Alberta. 
(1) R. A. NEVILLE: P h . D .  thesis, Syracuse University (August 1968). 
(2) H. L•VTWYLER: Acta Phys Austriaca Suppl., $ (1968) (VII  Schladming Meeting); 
K. BARDAKCI and M. B. HALP]~RN: .Phys..Rev., 176, 1686 (1968). 
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This problem also offers new mathematical questions: the usual formula- 
tion of fiel4 theory is based on the well-understood Cauchy-Kowalewski theory 
of hyperbolic equations, which provides theorems for the existence and 
uniqueness of solutions when the field and its time derivative are known on 

spacelike hyperplane. A somewhat different initial-value problem has re- 
cently found considerable attention in the theory of gravitational radiation. 
This is the characteristic initial-value problem where the initial data are spe- 
cified on the surface of a (future) characteristic half-cone (a). 

The present problem asks for initial data on a null plane and the condi- 
tions for existence and uniqueness of solutions for that  situation. Given a point 
above such a plane its (past) characteristic cone would cut out of it a hyper- 
surface area which is infinite and has a parabolic boundary. This infinite 
domain of dependence that  is open in one direction thus differs essentially from 
the bounded domains of dependence involved in the above two initial-value 
problems. 

An important physical distinction between the initial-value problem on 
null cones in relativity and the one on null planes used here is the elimination 
of dynamical fields, moving in the null planes, by boundary conditions implied 
by the postulated existence of null-translation generators. 

I t  will be the first task of the present paper to study this problem for the 
most common free fields of physics in order to have a better understanding 
of the existence and uniqueness questions on which one will have to build. 
This is done in Sect. 3, culminating in a few theorems. The important result 
is that  under suitable conditions the knowledge of the field alone (i.e. half 
the usuat initial data) on the null plane suffices to yield a unique solution. 

In  the quantized case the knowledge of the commutation relations on the 
initial surface is essential. The dynamics is brought about by a self-adjoint 
operator (the Hamiltonian in the usual case) which generates the unitary trans- 
formation characterizing the time development. In  the present case these 
time translations will be replaced by translations in null directions generated 
by null translation operators which take the place of the Hamiltonian. These 
operators are actually projections of the four-momentum in null directions. 
The quantum dynamics is then expressed by null translations, and the physical 

assumption of the existence of the momentum operators already goes a long way 
to ensure the desired solution. Section 4 is devoted to this question. 

Having thus obtained a better understanding of the free fields propagated 

(a) J. HADAMARD: Lectures on Cauchy's Problem (New Haven, Conn., 1923; New 
York, 1952); R. COURANT and D. HILB~.aT: Methods o/ Mathematical Physics, Vol. 2 
(New York, 1962); F. G. FRIEDLANDER: Prec. Roy. See., A269, 53 (1962); 279, 386 
(1964); R. PENROS~.: Null hypersur]ace initial data ]or classical ]ields o/ arbitrary spin 
and ]or general relativity (proprint in P. G. Bergmann's report: Quantization el generally 
covariant ]ield theories, ARL63-56, Wright-Patterson AFB, Ohio). 
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off a null plane b y  the new dynamics,  we tu rn  to the in teract ion of fields in Sect. 5. 
Here  the prob lem is t r ea ted  entirely formally,  without ,  however,  forget t ing the 
ma thema t i ca l ly  ill-defined na ture  of the in teract ion operator .  Bu t  in the  spirit of 
the usual  F e y n m a n - D y s o n  approach to field theory,  a pe r tu rba t ion  solution can 
be given which is ve ry  close indeed to the s tandard  techniques. The main  new 
feature  seems to be the difficulty b rought  about  b y  the dependence of some 

interact ion operators  (and perhaps  mos t  physical ly  interest ing ones) on the  

der iva t ive  of the field in the null direction off the null surface. At  the present  

t ime this difficulty can be overcome at  best  b y  t rea t ing  the in teract ion ope- 

ra tor  itself as an infinite series in the expansion p a r a m e t e r  (coupling con- 
stant).  All problems of convergence are, of course, wide open. 

Our results on the free scalar field are complemented  b y  a number  of rigorous 
results obta ined  recent ly  b y  KLAUDER, LEUTWYLER, and STREIT (4). 

After  conclusion of this work our a t ten t ion  was also drawn to other recent  

papers  t h a t  t r ea t  the F e y n m a n - D y s o n  approach to null planes in fur ther  
detail  (5). 

2.  - N u l l  c o - o r d l n a t e s .  

We consider (1 + 3)-dimensional ]~[inkowski space with metric  signature 

d -2  and the usual pseudo-Cartesian co-ordinates as the cont ravur iant  compo- 
nents of the posit ion vector  x----(x °, x 1, x ~, x3). The two null vectors  

1 1 
(2.1) m = / - -  (1, O, O, - -  1) and n ~-- ~ _  (1, O, O, 1) 

V 2  V 2  

satisfy m , n  ~ ~ m . n  ~ - -  1, m . m  ~ 0 ~ n . n .  They  are or thogonal  to the two 

unit  vectors  e l = ( 0 , 1 , 0 , 0 )  and e 2 = ( 0 , 0 , 1 , 0 ) ,  m , n ,  el, e2 fo rm a basis, so 
t ha t  the vector  x can be wri t ten  

(2.2) x = u m  ~ vn  d- X'lel ~- X2e2 • 

The null co-ordinates u and v are therefore defined by  

1 1 
(2.3) u ~ - - n ' x = ~ ( x ° - - x  "~) and v ~ - - m . x =  / ~ ( x ° d - x 3 ) .  

The co-ordinate u increases along m,  and v along n. For  any  vector  A the cor- 

(4) J. I~. KLAUDER, H. LEUTWYLER and L. STREIT: ~YUOVO Cimento, 66 A, 536 (1970). 
(5) S.-J. CHANG and S.-K. MA: Phys.  Rev., 18{), 1506 (1969); J. B. KOGUT and D. E. 
SOPER: Phys.  Rev. D,  March 15 (1970). 
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responding components along m and n must  be defined by  

(2.4) A~,=----m.A = ~ (A° + A ~) and 
1 

Ao ~ - - n . A  = ~ ( A ° - - A s ) ,  

so tha t  A~ is the coefficient of the basis vector  n(!), and A~ of m: 

(2.5) A---- A ,m + A~n + A~e~ + A~e~. 

As a special case of (2.3) the derivative operation is: 

(2.6) ~,, ~ - -  m- 3 --  ~u and ~ ---- - -  n .  ~ ~-- - -  ~v" 

I t  will be convenient to use the notat ion x and A for the corresponding 

vectors in the two-dimensional subspace spanned by  el and e~. Similarly, we 

we shall use 5 a n d A  for the vectors in the subspace spanned by  n, e,, e~, i.e. in 

the null hyperplane u = const. 
F rom (2.5) follows tha t  two vectors A and B have the inner product  

(2.7) A . B = - - A . B . - - A ~ B . +  A . B .  

The corresponding metric tensor, labelled by  m, n, el, e2, therefore has the form 

(2.8) g,~ = g'~ = 

(01o ) 
--1 0 0 

0 0 1 

0 0 0 

In  analogy to the usual situation when initial data are given on a space- 

like plane x ° = const and the development in t ime t = x ° is sought, the null 

plane u ---- const (or v ---- const) will carry initial data  and u (or v) shall play 

the role of time. For  symmet ry  reasons we need to investigate only u ---- const. 

3. - Existence and uniqueness  of  the initial-value problem on a null  plane. 

Consider the Klein-Gordon equation in null co-ordinates 

(3.1) 2~ ~¢(x)-~ (a~--m~)¢(x) , 

with ¢(x) specified on the null plane u----%. Under what  conditions does 

there exist a solution to this initial-value problem and when is i t  unique? 
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A first in tegral  of (3.1) on u----u0 is 

629 

(3.2) 

c o  

~u¢(Uo, V~ X)~ - - l  f s(v--v')(~2-- m2)¢(uo~ v'~ x)dv' ÷ F(Uo, x), 

provided the  integral  converges. Since ¢ is given on %, this equat ion  will yield 
a unique funct ion ~ ¢  on u0 provided, conditions are imposed which ensure 

t h a t  /7(uo, x ) =  0. This can be done b y  imposing 

(3.3) t im 3.¢  = 0 on Uo. 

One can now ask wha t  fur ther  conditions are necessary such t ha t  a s tep-by-s tep  
in tegra t ion  s tar t ing with (3.2) will converge and yield ¢(x) a t  u, a finite distance 

off the  null p lane uo. 
While such a me thod  is cer ta inly feasible, the  following considerations lead 

to the  desired answer in a ve ry  short  and  elegant  way. l~ote tha t  we do not  

wan t  to assume t h a t  ¢ in (3.1) be infinitely differentiable or, even stronger,  
t h a t  ¢ be analytic.  Of course, when t rea ted  as a generalized funct ion ¢ is n-fold 
differentiable if the test  functions are. 

Fur the rmore ,  we note tha t  the procedure indicated b y  (3.2) shows a break-  
down for m == 0 if 5{inkowski space is l imited to 1-~1 dimensions. The r ight  

side of (3.1) then  vanishes.  We shall exclude this except ional  case; bu t  other- 

wise the following considerations are applicable to any  number  of dimensions 
l + s  ( s~-0 )  and m e e 0  or m----0. 

The Cauehy problem i.e. the  prob lem of finding a solution ¢ of (3.1) with 
given ¢ and ~¢/8t on a spaeelike plane t = 0 has a unique solution which has 
the well-known form 

4---> 

where ~ means  ~ -  ~ and  where 3 is the usual invar ian t  funct ion (see Ap- 

pendix  I I ) .  The integrat ion extends over a bounded  domain  since d ( x -  x ' ) =  0 

for x - - x '  spacelike. I n  fact  any  domain  which contains the  <( domain  of 

dependence >) of the  poin t  x (the closed hyperdise~ a three-dimensional  closed 

ball, cut b y  the  pas t  l ight cone with ver tex  a t  x f rom the hyperp lane  t = 0) 
will surffice. 

Now the eq. (3.1) leads in a well-known manner  to the divergence-free 
expression 

! ! d(x--x') ~¢(x ). 
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I n  Fig. 1 the  u-v plane of Minkowski space is shown. The point  x is denoted 

b y  P.  The t = 0 plane intersects the  backward  cone f rom P.  W e  consider 

the  four-dimensional  volume V whose project ion in the u-v plane is indicated 

P 

A 8 

o 

Fig. 1. - Four-volume of integration for the proof of eqs. (3.5) and (3.7). 

b y  ABDC. I t  is infinite in the  x direction and  bounded  b y  the  p lane  t----0, 

and  the  null planes v----v0, u = Uo, and  u----ul.  Gauss '  theorem yields 

O--=f ( f ÷ f ÷ f ÷f) A<x--+)v 
V A B  BD DO OA 

The integrat ions over  the  hyperp lane  par t s  are indicated symbolically.  The  

integrals  over  the  d is tant  ends in the  Ix I -~ ~ directions are omit ted,  be- 
cause these t imelike areas are spacelike with respect  to P so t h a t  A vanishes. 

B u t  the  same is t rue  for CA. Taking into account  tha t  v --= - - m  and v ---- - - n  
on CD and DB, respectively,  we find with (3.4) 

(3.5) d=x'd+ ÷fA<x 2 ¢(x') ' dv'. ¢(x) =f/l(x-x') ~, ¢(x') - x ' )  ~v' 
OD DB 

B u t  the  normal  to a null plane lies in t ha t  plane;  therefore the knowledge 

of ¢ on the  null planes implies its normal  der ivat ives  (~¢/~u on v = v0 and 

~¢/~v on u ---- Uo). Thus we have  the  following theorem.  

Theorem 1. The solution of the  Klein-Gordon equat ion  (3.1) for m > 0  is 

uniquely  de termined by  (3.5) in the  convex region bounded  b y  the  wedge formed 
b y  the null planes ~----~o and  v = vo if ¢ is specified on these planes;  the  
knowledge of ¢ on the  wedge bu t  outside the  characteris t ic  cone (backward  

null cone) is not  necessary. 
I n  the  evaluat ion  of (3.5) the knowledge of A and its normal  der iva t ive  

on a null p lane  is necessary. This auxi l iary informat ion is contained in Ap- 

pendix  I I .  
A special case of grea t  interest  is obta ined  b y  moving  the  null p lane  
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v = Vo to the distant  past, and by  taking ¢ = 0 on it. This means 

(3.6) lim ¢ = 0 ,  
v--c*- co 

One thus obtains 

(3.7) 

4---+ 

f ¢(x) = z l (x - -x ' )  ~7¢(x ' )d~x 'dv  ' 

t$ r--U I 

for all x, U>Uo. 

and the following theorem. 

Theorem 2. Given ¢ on the null plane u = u0 and the asymptot ic  con- 

dition (3.6), then the Klein-Gordon equation (3.1) for any m > 0  has a unique 

solution given by (3.7) in the half-space u > %. 

As a corollary we have tha t  any solution of {3.1) which satisfies (3.6) and 

which vanishes on a null plane u = eonst, vanishes everywhere in U>Uo. 
I t  is easily seen tha t  the asymptot ic  condition (3.6) is not  only sufficient 

to yield uniqueness but  is also necessary for m = 0. The reason lies simply in 

the fact  tha t  for m = 0 any  differentiable funct ion of one null co-ordinate 

only, ¢ = ](g) for example, is a solution. Thus there are solutions which can 

be entirely contained in a region u > ~to; these would contradict  the corol- 

lary if they  were not eliminated by  (3.6). Physically, (3.6) eliminates waves 

in a null direction parallel to a u = const plane. 

For  m # 0 this argument  breaks down. However, a simple example shows 

tha t  the condition (3.6) is also here necessary. Let  ~v(x) be a solution of 

(O~--m2)q~(x) = 0; then ¢ ( x ) =  O(u--~o)q~(x) is a solution of (3.1) which van- 

ishes for u <  ~o- Wi thout  (3.6) the solution (3.7) would not  be unique. 

We note tha t  (3.6) is, of course, weaker than  square-integrability, which 
would exclude the above example. 

I n  eq. (3.5) the integrals extend from the edge of the wedge (at D) to 

+ c~, but  those parts  of the null planes which are outside the characteristic 

cone from P do not contribute. Similarly, in eq. (3.7) the v-integration extends 

f r o m -  c~ to + c~, even though the open set v '~ (v ,  c~) does not contri- 

bute, since d vanishes for spacelike arguments.  However one cannot  terminate 

the integration on the characteristic cone because of the singularity on it. I t  is 

exactly there where the distribution nature of z] enters in an essential way. 

The points of the characteristic cone must  all be interior points of the domain 
of integration. 

I t  follows that  ¢(~) will be correctly given by these equations for any 

u >  uo but  in the limit as u approaches ~0 a convergence condition for 

v -+  + c~ of the integral in (3.7) will become necessary. With  this additional 
restriction 

l i m e = O ,  on u = u o  
v ----~co 
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one can easily ver i fy  the consistency of (3.7) b y  taking P on the Uo null plane: 
f rom (A-II.5) with u = ~o 

¢(x) = i s (v - -v ' )dv  O~(x--x') ~ ¢(u, v', x')d~x ' --  

+.-), co 

= - -  ~ ¢(u, v', x) e(v--  v') dr '= ¢(u, 

--¢o 

Here  we used integrat ion by  par ts  and ~s(v)/~v = 2~(v). Similarly, 

~v (x) = g ~ ( v - - v ' ) d r '  02(x--x') ~ ¢(u, v',  x ' ) d ' x ' =  

co 

--¢o 

V~ X )  . 

¢(u, v, x) -~--~-~ 

1 
Y~ = - -  m . y  = -~-  (y o + y ')  

%/2 
and 

7.' = o ,  r'o = o ,  {n ,  ~ }  = - 2 ,  [7., 7~] = - 2 7 ° ~  3. 

The initial-value problem with ~ given on a spacelike plane ( t ' =  0, say) 
is well known. I ts  unique solution is 

(3.11) y)(x) -~ f S(x --  x') Yo ~/(x') d~x , 

$ ' - 0  

with S---- (7.8 - -  m) A. Applying Gauss' theorem to the  divergence of the  diver- 

gence-free expression 

S(x--x ' )r~,  ,p(x') , 

1 
~,o = - n ' r  = -Te  ( r ° - ~ " )  , 

%/2 

(3.8) 

where 

(3.9) 

so tha t  

(3.10) 

We conclude this Section by  noting tha t  the Dirac equat ion can be t rea ted  
in a ve ry  similar manner.  I n  null co-ordinates i t  is 
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yields, in complete analogy to the Klein-Gordon ease, 

(3.12) 
OD DB 

This equat ion corresponds to (3.5). Theorem 1 is therefore also applicable to 

the Dirae equat ion (3.8) with its unique solution (3.12). 
The removal  of CD to the distant  past  requires again 

(3.13) lim ~ - 0  for all x,  U ~ U o .  

The solution is then given by  the initial da ta  on one null plane only (u'---- %), 

(3.14) ~f(x) ~-- - -  I S ( x  - -  x ')  ~,~, ~f(x ~) d~x , dv'. 

:Theorem 2'. Given W on the null plane u = Uo and the asymptot ic  con- 
dition (3.13), then  the Dirac equat ion (3.8) has a unique solution given by  
(3.14) in the half-space u ~ %, valid for m ) 0 .  

4 .  - N u l l  t r a n s i t i o n s .  

At this point  i t  is not  clear whether  problems of physical  interest  with 
initial da ta  on a null plane would yield unique solutions, because it  m ay  not  

be possible to satisfy the necessary asymptot ic  conditions on physical grounds. 
In  order to investigate this problem we recall the ve ry  basic condition of 

t ranslat ion invariance common to all closed physical systems. Associated with 
this invariance is the existence of the four infinitesimal generators,  i.e. the  four- 
vector  _P. In  part icular,  quantum dynamics is characterized by  the un i t a ry  
operator  exp [iHt], where H = p0 in the generator  of t ime translations. This 
is the content  of Heisenberg's  equat ion of motion. I t  gives a complete speci- 
fication of the dynamics provided the  commuta t ion  relations are known. We 
shall now apply this idea to translations along null directions. 

Translat ion invariancc of the quan tum field ¢(x) implies 

(4.1) ¢(x)  = e x p  [--iP.x]¢(O) exp  [iP.x], 

from which we can obtain the well-known differential form 

(4.2) ~¢(x)  = i[¢(x), ~ ] .  

Translations in the null direction m are therefore given by  the null t ranslat ion 

4 1  - l l  Nuovo  Cimento A .  
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generator  

(4.3) 

and the equat ion 

(4.4) ¢(u, v, x) = exp [iP, u]¢(O, v, x) exp [ - - iP ,  u] . 

The null- translat ion generator  / ~  is easily obtained by  inspection of the  clas- 
sical limit of the Klein-Gordon field ¢. One finds (see Appendix I) 

This operator  is self-adjoint and positive definite for the free field ¢. 
I f  we wish to t ranslate  off the null surface u----Uo we need to know the 

commuta t ion  relations on tha t  surface. F rom Appendix I I  (A-IL5), 

(4.6) ! [¢(x), ¢(x ) ] ~ _ . , = 0 ,  
i 

[¢(x), Ct(x')]._., = - ¥ e(v - v')~,(x - x ' ) .  

This is a surprising result because it  implies tha t  the canonical commuta tor  
on the null plane is 

(4.7) 

since 

(4.8) 

i 
[¢(x), ~(x ')] , . . ,  = ~ ~, ( z -  ~ ' ) ,  

~(x) = 8¢t(~) /Sv.  

The unexpected factor  1 in (4.7) is however not  an error. I t  is due to the lack 
of independence of ¢ and its canonical conjugate, ~, on a null plane. A modi- 
fication of the  usual canonical formalism taking this dependence into account  
is necessary. Such a formalism is not  unknown in general re la t ivi ty  (e). I ts  

use leads indeed to the commuta t ion  relation (4.7). 
Returning  to the computat ion of the u-derivat ive by  means of (4.4) to (4.6) 

one has 

(6) p .  A. M. DIRAC: Prec. l~oy. Soc., A246, 326 (1958); P. G. B~RG~A~ and A. B. 
KOMAR: in Recent Developments ~n General Relativity (New York, 1962), p. 31. We 
are indebted to our colleague, J. GOLDBERG, for informative discussions on this point. 



QUANTUM F I E L D  THEORY OFF NULL PLANES 6 3 ~  

Apart from the operator character of ¢ this result is identical to (3.2) with 
Y(u, x ) =  0 for all u. Thus, the equivalent to the asymptotic condition (3.6) 
is implied by the existence of the null translation. 

The recovery of the Klein-Gordon equation by differentiation of (4.9) is 
trivial. Thus we are lead to the following result: 

Theorem 3. Any representation of the commutation relations (4.6) by oper- 
ator-valued distributions on Hilbert space for which P ,  (4.5) is a self-adjoint 
operator and for which [¢, ~P.] has a meaning, is a solution of the Klein-Gordon 
equation, given by (4.4). 

We note that  the commutation relations do not contain the mass; nor does 
the Hilbert space of the associated test functions. The latter involves the 
measure for the inner product in momentum space d a ~ =  d2pdp~/Ip~[ (see 
e.g. (A-II.4)), which is independent of the mass. As was pointed out by KLAUDER, 
LEUTWYLER~ and STnEIT (4), this has the important consequence that, in con- 
tradiction to the commutation relations on a spacelike plane, the representations 
of (4.6) which refer to different masses are unitarily equivalent. The mass 
that  appears in the Klein-Gordon equation (3.1) enters only through P, ,  {4.5). 
We also note that  the translations P~ and P in the null plane are mass-inde- 
pendent: 

(4.10) P~ = 2 ( ' ~ ¢ ~  ~ ¢ ' d ~ ,  P = ( ' 0¢+~ ,¢  + ~¢+0¢:d  ~ ~, 
d J 

as shown in Appendix I. 
The quantum field-theoretic analogue of the classical initial-value problem 

on a null plane governed by Theorem 2 is simply the statement: The self-adjoint 
operator P~, (4.5) together with the algebra (4.6) determines ¢(x) uniquely 
for all x via (4.4) for any ¢(0, v, x) of that  algebra given on the plane u ~ 0. 

This indicates the completeness of the field on the null plane, which is re- 
flected by its irreducibility (4). 

Null translations can also be carried out for the Dirac case. Here we find 
{see Appendix I) 

(4.11) P .  = : ~ 7 ~ : d ~  

and the rather complicated anticommutation relations (Appendix II) 

(4.12) {~(x), ~(xr)}._.. = o ,  

(4.13) 
i i 

{~(x), ~(x')},.~, = ~ r~ ~ 3 ( ~ -  ~') ÷ ~ ~(v-- v ')(~,-~- m) ~ ( x -  x') + 

+ i-g :~°(~ --  m~) d~(x --  x ' )  (v - -  v") dr" e ( v " - - v ' ) .  
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:First we observe the presence of so-called (( Schwinger terms ~> in this relation. 
B u t  this formal  expression must  of course be understood as a generalized func- 
tion. Using tes t  functions ] and g in the three-space v, x, we can write (4.13) 
more meaningfully as 

) 4 
(4.14) {~(1), ,~(g)},,-., = ~ m ( l ,  g - T ((~'~ + re)l, a) - ~ ~ ,J (o~-  m~)~, a ) ,  

where ~ is defined in terms of ] by  

x) ~ I-- t / (v'  , x) ~(v, dr' 

and analogously G in terms of g. 

Actual ly  (4.13) gives more than  necessary. Consider the ant icommutators  

(4.15) 

i , i 

i i 
r~(~(x), ~(x')},.,, = ~ r ~ m ~ . ( ~ -  ~') + ~ r ~ ( v -  v')(y.0-- m ) ~ ( ~ -  x ' ) .  

Equat ions  (4.15) correspond to the  canonical commutat ion  relations since the 
canonical conjugate of ~o is z = vj$. when the (~ t ime ~> is u and the Lagran- 
gian is (A-I.9). We note again the (( noncanonieal  ~) appearance of (4.15). The 
comments made  in connection with (4.7) are also valid here. 

Even  more restrict ive than  (4.15) are the relations obtained b y  mult iplying 
the  first of these by  ?~ on the left~ the second b y  ~. on the right, leaving only 
a single te rm on the right side: 

(4.16) 

i 
r~{~(x), ~(x')},-.,ro = ---~ r ~ r ~ ( v - -  v')(.~.a + m) ~Cx - ~') , 

i 
?o(~(x), ~(x')}.-~,m = - -  ~ r . r , ~ ( v - -  v')(•.0 + m) ~ ( x -  x' ) .  

As we shall see below, only these ant icommutat ion  relations, ra ther  t han  the 

more general ones in (4.13) are needed in the evaluat ion of the derivatives 

~ v  and ~ ~. 
Bu t  we also notice an explicit  dependence of the an t ieommuta tor  on the 

mass of the field. Clearly, a uni ta ry  equivalence of representations associated 
with different masses cannot  be expected of this algebra. 

B y  means of (4.16) it  is easily verified tha t  the null t ranslat ion operators P . ,  

(4.11) and P~, 

(4.17) P ~ =  :~r/~ ~ ~v" d3 ~ 



QUANTUM FIELD THEORY OFF NULL PLANES 637 

lead to the Dirac equation 

1 m)fdv'e(v -- v') ~, ~(u, v', x) = g~,~m(y.a + = 

= ~ ?~?~(y'a d- m) (u, v', x) O~s(v-- v') 

Similarly, 

1 a 
=--~TvY,(Y" + m ) v ( x ) .  

y~ ~ V = iy~[V(x), _P~] = --½y~y~((y.a) + m) V(x). 

Combining these results and observing {y,, y,} = - - 2 ,  which follows from (3.10), 
we find the Dirac equation (3.8). Thus we conclude with the following theorem. 

Theorem 4. Any representation of the ant icommutat ion relations (4.12) 
and (4.16} by operator-valued distributions on t t i lbert  space for which Pv 
and P~ of (4.11) and (4.17) are self-adjoint operators and for which [% P,]  
and [V, P~] have a meaning, is a solution of the Dirac equation (3.8). 

Of course, if we use the homogeneous Green function S instead of the null 
translation generators and represent the Cauchy solution by (3.14) then only 

~ ( x )  ~ 7 ~ ( x )  

is needed. I ts  ant icommutat ion relations are 

, - X r , (4.18) (~ (x) ,  ~ ( x  )}~_,, 0 ,  {~o(x), ~ (  )}~.~, = i ~ a ~ ( ~ - ~ ' )  

i.e. are mass independent. The more general commutator  (4.13) then follows 
from (4.18) and (3.14). But  then an asymptotic condition like (3.13) must  
be imposed. 

5.  - I n t e r a c t i n g  f ie lds .  

The considerations at  the beginning of Sect. 3 for the free scalar field can 
easily be generalized to equations of the form 

(5.1) 2 ~  ~v¢(x) = L¢(x), 

where L is a linear differential operator which is symmetric and does not  con- 
tain 3,. The latter condition is essential so tha t  the integration over v yields 
an explicit expression for 3~ ~b in terms of an integral over q~ in the null 
plane. 
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Despite  this severe restr ict ion there  are field-theoretic problems of con- 
siderable physical interest  of this type.  With  minimal electromagnetic coupling, 
D~,~ ~ , - - i e A u ,  eq. (3.1) becomes 

(5.2) ( D , D ~  + D~D,,) q~ = ( D  2 - -  m 2) ~ . 

This equat ion will bo of the form (5.1) with L independent  of 0. provided 

(5.3) A, ~ - -  n . A  ---- 0 . 

This condit ion is satisfied for a t ransverse external  field moving in the  z-direc- 
t ion so t h a t  A = A. A laser field in the  form of a wave t ra in  of finite length 

can be described this way  with A----A{u) and A ( u ) - ~  0 for [u I > u0. This 
would be a plane wave with infinite wave fronts in the x direction. 

I t  is therefore not  surprising tha t  an exact  solution for this system has 
been known for a long t ime (7), a l though i t  was not  pu t  in terms of null co- 
ordinates,  where it  takes its simplest and most  t rac table  form (1). 

This par t icular  system also clarifies the physical  significance of condition 
(3.6) and even suggests the stronger condition of making ¢ compact  in v. 
Otherwise the scalar electron described by  ~b is not  outside the laser beam at  
any  finite t imes t <  to and t > tl. Previous t rea tments  of this problem have 
led to  serious ambiguities because the  interact ion t ime was not  finite. These 
mat te rs  will be discussed in detail in a separate publicat ion devoted to quan tum 
eletrodynamics in a laser beam (8). 

Returning now to (5.1) and the importance of the requirement  t h a t  L b e  
independent  of 0~, we consider the quant ized problem corresponding to (5.2), 
i.e. the  interact ion with a quant ized electromagnetic field. The condition (5.3) 
can be satisfied here only by  choosing a special gauge. A gauge t ransformat ion 

I A u-+ Au----Au q- 0~A can always be chosen so tha t  one component  of the po- 

tential ,  e.g. A: ,  vanishes. This is the gauge used also by  KOGUT and SOPEI~ (~). 
I n  a for thcoming paper  (8) we shall show tha t  this gauge, characterized b y  (5.3), 

is indeed necessary if one works with initial da ta  on a null plane. 
The Lagrangian method of Appendix I can be generalized to minimal 

electromagnetic interaction in a standard way. One finds for the null transla- 

tion operator which translates • off the initial null plane u = u0 

(5.4) P,, = f d  3 .~[(Dq)) t. D ~  + m 2 ~b t q) - -  i eA. (~  )~ ~ q))] • 

(?) D. M. VOLKOV: Zeits. Phys., 94, 250 (1935). 
(8) R. A. NEVILLE and F. •OHRLICH: Quantum eleetrodynamics in a laser beam (to 
be published in .Phys. Rev.). 
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Here  ~ is defined as ~ - - ~ .  Similarly, the null t ranslat ion operator  in the 
u = const plane is 

(5.5) P~ = d ~ [ 2 ~ b * ~ . q  ~ + ieA~(qS*Ovqb)]. 

These operators do not  depend on a~ even though the gauge (5.3) has not  
been used in their  derivation. However  the associated translat ions (4.4) will 
not  reproduce the field equat ion (5.2) unless the gauge choice (5.3) is made. 

When A ,  is the quantized self-field or a superposition of t h a t  field with 
an external  field, these expressions are no longer mathemat ica l ly  well-defined 

operators in Hi lber t  space. In terac t ing  fields cannot  be normal  ordered in 
general. We shall take them here in the usual formal sense, in the spirit of the 
conventional  (divergent) Lagrangian field theory.  

In  part icular,  one can go into the Dirae picture (interaction picture) b y  
means of the usual formally uni ta ry  t ransformat ion and use the free-field com- 
muta t ion  relations (4.6) on the null plane. Or, if one can solve the external  
field problem at  hand  exactly,  one can go to the F u r r y  picture and use the com- 
muta t ion  relations which take into account  the external  field only. An example 
of the la t ter  method  will be given for the quan tum eleetrodynamics of the laser 
beam (s). 

For  the Dirac picture one separates P~ 

(5.6) p .  (o) pu~ 

and one finds for the interact ion operator  in the Dirac picture 

f (5.7) P(')(u) = :[-- iea.(¢ + 3¢) + e2a2¢+¢J:d3~. 

Here  ¢(~) and a(x) are the particle and electromagnetic fields in the Dirac 
picture (free fields). The usual Dyson solution for the scattering operator  
is then given by  means of a posi t ive-u-ordered (rather than  time-ordered) 
expression : 

(5.s)  s =  

This is converted into normal-ordered products  by  Wick's theorem which car- 
ries over unchanged. In  part icular  

(5.9) < = 

= O ( u - - u ~ ) A + ( x - - z  ') + O ( u ' - - u ) A + ( x ' - - x )  = A ° ( x - - x ' ) ,  

which is the usual causal propagator  (in our normalization). The reason for 
this lies in the fact t ha t  for timelike x one has 0 ( ±  u)----0(± t), while for 

spacelike x the 0-functions in (5.9) combine to 1, since A+(x)= A+(--x). 
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I t  follows t ha t  the  F e y n m a n  rules can be taken  over formally unchanged, 
bu t  i t  will of course be convenient  to use null co-ordinates in p-space as well 
as in x-space. The propagator  in p-space then  follows from Appendix I I .  

I t  seems ra ther  fortui tous tha t  the minimal electromagnetic coupling per- 
mits an easy elimination of the ~. terms of L in (5.1) b y  a suitable choice of 
gauge. I t  is clearly conceivable tha t  there exist interactions in nature  where 

the field equat ion (5.1) will contain ~, terms in L. The question of existence and 
uniqueness of solutions for such equations with initial da ta  on a null plane is 
apparent ly  open. Bu t  it  seems tha t  the corresponding null- translation oper- 
a tor  P .  would then  also have  to  contain ~. terms. This means tha t  the  trans- 
format ion  to the  Dirac picture  would yield an integral  equat ion for iP~D>(u) 
and not  an explicit  expression. I f  t ha t  integral  equat ion can be solved by  
t reat ing the ~. terms as a per turba t ion  one would be led to 

c o  

'~' u ~ g~ V(">(u) • (5.10) P~ ( ) = g 
n--0 

The <( in teract ion Hamil tonian  ~> in the Dyson S-matr ix  (5.8) would then  be 
an infinite series in the coupling constant  of this perturbat ion.  

In  any  case, i t  is clear tha t  the presence of a, terms in 15 would lead to con- 

siderable complications. 

APPENDIX I 

Derivation of the null-translation operators. 

In  a classical field theory  of a complex field ¢~ with N components  
(A = 1, 2, ..., N) the  well-known theorem by  NOETHEg states tha t  the  trans- 
lation invariance of the Lagrangian densi ty -~¢[¢~, a¢~] implies the  existence 
of a divergence-free tensor  

~£f ~5f 

This~ in turn,  implies a conserved vector  P which generates the  translat ions 
and which is defined in t e rms  of an integral  over a three-dimensional  hyper-  
surface with element  d3~ 

(A-I.2) P~ ------IT~ d3a ~ . 
J 

This theorem is quite general and is not  res t r ic ted to the  usual Minkowski 
diagonal metric.  I f  the surface normal  is n so tha t  daa~= n~d3a, t hen  the  
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(A-I.10) P~ = 7~ ~ ~pd3~, 

(A-I.11) P~ = 7 ~ d 3 2 ,  

(A-I.12) P = . 
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project ion of P on any  vec tor  ~ is 

(A-I.3) v . P = f n . T . ~ d 3 ~ .  

Wi th  the  metr ic  (2.8) and the  nota t ion  of t ha t  Section we have  for the  
complex scalar field 

(A-I.4) Z e =  ~ , ¢ * ~ ¢  + ~ ¢ * ~ u ¢  a¢*'0¢- -m~¢*¢  

and the  well-known 

(A4.5) T,,~ = - -  ~,¢* ~,,¢ - -  0~¢* ~ ¢  --g,,.~f. 

The null m o m e n t a  P , = - - m . P  and P ~ = - - n . P  then  follow f rom (A-I.3) 
as integrals  over  the  null p lane  u = eonst wi th  normal  vector  n given b y  (2.1) 
and  d3a = d2x dv ~ d~2 

= f ( 0 ¢ * .  0¢ + m~¢*¢) d82, (A-I.6) P ,  

The two m o m e n t a  P=--~:.P in the  two space directions or thogonal  to m 
and n are 

(A-I.8) P ----f(a¢* ~ ¢  + 0~¢'a¢)  d32. 

For  the  quant ized theo ry  the  t rans la t ion operators  of the  free field are 
defined as the  normal  ordered products  of funetionals  formal ly  identical  to 
the  classical case. This leads to (4.5) and (4.10). 

For  the  Dirac field the  choice for the  Lagrangian  is 

+--+ ~ O 

and the  t rans la t ion  generators  are in the  nota t ion  of (3.9) ~nd Sect. 2, 
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APPENDIX II 

T h e  i n v a r i a n t  f u n c t i o n  o n  a n u l l  p l a n e .  

The invar iant  funct ion is defined by  its Fourier  representa t ion 

i 
(A-II.1) A (x) -- (2~) a f e x p  [ ,p-x]  s(po) (~(p2 + m*) ddp. 

Null co-ordinates in p-space yield 

1 p~ = __ m .p  = = :  (pO + p , ) ,  
V2 

1 

%/2 

(A-II.2) 

so t ha t  on the  mass shell 

( (A-II.3) P_2-  1 1 . po ~ +p >o, ~>0 

Therefore  A(x) can be wri t ten,  using the  nota t ion of Sect. 2, 

A ( x ) -  (2~) 3 xp[ip.x--ip,u--ip~v]s(pv)ei(p2 +m~--2pup~)d2pdp~dp,,. 

For  p~ > 0 and p~ < 0 this expression yields A+(x) and A_(x) in null co-ordi- 
nates. The p~ integrat ion is easily done, yielding 

c o  ¢ o  

1 fd of [ 
I f  we pu t  u = O ,  

(A-II.5) /t (x)lu-o = ~(v)  ~dx) .  

Because of the  symmet ry  in u and v, an  analogous 
e(po) = e(p~) and in tegrat ing first over p~ yields 

(A-II.6) d (x) l~-o = ~ ~(u) G(x) .  

calculation using 
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We note  t ha t  s(v) in (A-II.5) (and s imilar ly  ~(u) in (A-II .6)) is  defined b y  
the  in tegral  

(A-II.7) = 2 (sinpov dpo, 
~ J  P~ 

0 

so t h a t  i t  is not  only specified for v >  0 and v <  0 as e ( v ) =  + 1 and  - - 1 ,  
bu t  also for v = 0, giving ~ ( 0 ) =  0. 

The scalar free field has the  commuta t i on  relat ions 

(A-II .8)  [¢(x), Ct(x')] = - -  izJ (x - -  x ' ) .  

Rest r ic t ion of this equat ion to the  u ~ - u '  hyperp lane  now yields the  resul t  
(1.6) in view of (A-II.5).  

For  the  spinor field we mus t  res t r ic t  

(A-II .9)  {~(x), ¢(x')} = i S ( x - - x ' ) ,  

where S ( x ) =  ( y . ~ - - m ) z l ( x ) ,  to the  u = u '  plane.  Since A mus t  sat isfy the  
same Klein-Gordon equat ion as ¢ in (4.9) we have  

¢o 

if (A-II .10) O~zJ(x)l'-° = - - 4  e ( v - - v ' ) ( a 2 - - m ~ ) A ( u '  v', x ) l ~ o d v ' =  

- - ¢ o  

-- 161 _Is( v __ v ' ) s ( v ' )  d v "  (a S - -  m~)c}~(x) 

- - c o  

The rest r ic t ion of S(x)  to u = 0 is therefore  

(A-II.11) S(O, v, x)  = ( y . a - - m - - r ~ - - r , ~ u ) z J ( u  , v, x ) l , .  o = 

= ~ (y -a - -m)e (v )d , (x )  4- ~ y~03(~) + y~(a2-- m2)d~(x) e ( v - - v ' ) e ( v ' ) d v ' .  

The resul t  (4.13) now follows f rom this and (A-II.9).  

• R I A S S U N T O  (*) 

Si considera in dettaglio per le equazioni di Klein-Gordon e Dirac il problema dei valori 
iniziali per ]e equazioni differenziali iperboliche con i dati iniziali in un piano nullo nello 
spazio di Minkowski. Si espongono i teoremi di esistenza e unicit~. L'analogo per la 

(*) Traduzione a cura della Redazione. 
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teoria dei campi quantici eomporta l'uso di relazioni di eommutazione sul piano nullo 
e dell 'operatore di traslazione nulla fuori di quel piano. Si enuncia brevemente la  
teoria formale dei campi interagenti,  hello spirito della teoria di Feynman-Dyson.  Si 
met tono in evidenza le eomplicazioni ul~eriori ehe sorgono dalla derivata della eoordi- 
nata  nulla del campo nella direzione al di fuori del piano iniziale. 

KBaHTOBa~ TeopHR HO~H BHe Hy~eBblX H~O~KOCTeH. 

Pe3IoMe (*). - -  ~ ypaBHerrr~ Kne~ma-Fop~oaa n ~npaxa xIo~po6Ho pacCMaTpHBaeTc~ 
npo6aeMa Ha~anbnbix 3naaeHm~t )Xa~ ranep6omaaecr.nx ~aqbqbeperimia~bnbix ypaBHerm~ 
c 3a,~aHImlMH aaqa~bablMrI ~aHnblIVrrI Ha nyJIeBO~ HJIOCKOCTH B npocTpaHCTBe i~lm~OBCKO- 
to. I"IpHBO/~J:ITC~q TeopeMl~I cymeCTBOBaHH~I H e~I,IHCTBeI~IOCTH. TeopeTHqeCKB~ aHa,IIOr 
KBaHTOBOFO HO.II~ BKJnOqaeT KOMMyTatIBOHHble COOTtiomeH~I,q Ha ~IyJIeBO~ IUIOCKOCTH It 
oIIepaTop HyIIeBblX TpaHc~Igl~rI~t BHe 3TO~ IIJIOCKOCTH. B CMblCYIe ~efii-iMaHa-~a~coHa 
BKpaTILe dpOpMyJll4pyeTca d~opManbHaa Teopl, l~ a3altMO~e~cTByiom.rlX nonefi. OTMeqaeTc~, 
tITO B3aI4MOJIe~ICTBHe, KOTOpOe BKnIoqaeT Hy$IeByIO KOOp~HaTrlyIO IIpOH3BO]IHylO IIOYL¢I B 
rlalipaBnermri OT Haqanl:,HO~ IUIOCKOCTH, IIpHBO,/~HT K ~OIIO.lIBIITeJII:,I-IblM ycJIo~Kaem, mM. 

(*) flepeae3eno pabamtueft. 


