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Summary. — The initial-value problem for hyperbolic differential equa-
tions with the initial data given on a null plane in Minkowski space is
considered in detail for the Klein-Gordon and Dirac equations. Existence
and uniqueness theorems are given. The quantum field-theoretic analogue
involves the commutation relations on the null plane and the null transla-
tion operator off that plane. The formal theory of interacting fields is
stated briefly in the Feynman-Dyson spirit. It is pointed out that an
interaction that involves the null co-ordinate derivative of the field in
the direction off the initial plane leads to additional complications.

1. — Introduction.

Quantum field theory off null planes was first used by one of us (1) about
two years ago. It arose in a natural manner in studying quantum electro-
dynamics in a laser beam. If such a beam is pictured as a coherent wave train
of finite length but infinite width it will fill a null slab, ¢.e. the four-volume
between two parallel three-dimensional null hyperplanes in Minkowski space.
Null co-ordinates are therefore the natural co-ordinate system.

Quite independent of this physical problem the study of the infinite-mo-
mentum limit in current algebras also leads to quantum field theory off null
planes (2). So there is now a double purpose in studying this new formulation
of quantum field theory.
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626 R. A. NEVILLE and F. ROHRLICH

This problem also offers new mathematical questions: the usual formula-
tion of field theory is based on the well-understood Cauchy-Kowalewski theory
of hyperbolic equations, which provides theorems for the existence and
uniqueness of solutions when the field and its time derivative are known on
a spacelike hyperplane. A somewhat different initial-value problem has re-
cently found considerable attention in the theory of gravitational radiation.
This is the characteristic initial-value problem where the initial data are spe-
cified on the surface of a (future) characteristic half-cone ().

The present problem asgks for initial data on a null plane and the condi-
tions for existence and uniqueness of solutions for that situation. Given a point
above such a plane its (past) characteristic cone would cut out of it a hyper-
surface area which is infinite and has a parabolic boundary. This infinite
domain of dependence that is open in one direction thus differs essentially from
the bounded domains of dependence involved in the above two initial-value
problems.

An important physical distinction between the initial-value problem on
null cones in relativity and the one on null planes used here is the elimination
of dynamical fields, moving in the null planes, by boundary conditions implied
by the postulated existence of null-translation generators.

It will be the first task of the present paper to study this problem for the
most common free fields of physics in order to have a better understanding
of the existence and uniqueness questions on which one will have to build.
This is done in Sect. 3, culminating in a few theorems. The important result
is that under suitable conditions the knowledge of the field alone (i.e. half
the usual initial data) on the null plane suffices to yield a unique solution.

In the quantized case the knowledge of the commutation relations on the
initial surface is essential. The dynamics is brought about by a self-adjoint
operator (the Hamiltonian in the usual case) which generates the unitary trans-
formation characterizing the time development. In the present case these
time translations will be replaced by translations in null directions generated
by null translation operators which take the place of the Hamiltonian. These
operators are actually projections of the four-momentum in null directions.
The quantum dynamics is then expressed by null translations, and the physical
assumption of the existence of the momentum operators already goes a long way
to ensure the desired solution. Section 4 is devoted to this question.

Having thus obtained a better understanding of the free fields propagated

() J. HapamarDp: Lectures on Cauchy’s Problem (New Haven, Conn., 1923; New
York, 1952); R. CouranT and D. HiLBerT: Methods of Mathematical Physics, Vol. 2
(New York, 1962); F. G. FRIEDLANDER: Proc. Roy. Soc., A 269, 53 (1962); 279, 386
(1964); R. PENROSE: Null hypersurface initial data for classical fields of arbitrary spin
and for general relativity (preprint in P.G. Bergmann’s report: Quantization of generally
covariant field theories, ARL63-56, Wright-Patterson AFB, Ohio).
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off a null plane by the new dynamics, we turn to the interaction of fields in Sect. 5.
Here the problem is treated entirely formally, without, however, forgetting the
mathematically ill-defined nature of the interaction operator. But in the spirit of
the usual Feynman-Dyson approach to field theory, a perturbation solution can
be given which is very close indeed to the standard techniques. The main new
feature seems to be the difficulty brought about by the dependence of some
interaction operators (and perhaps most physically interesting ones) on the
derivative of the field in the null direction off the null surface. At the present
time this difficulty can be overcome at best by treating the interaction ope-
rator itself as an infinite series in the expansion parameter (coupling con-
stant). All problems of convergence are, of course, wide open.

Our results on the free scalar field are complemented by a number of rigorous
results obtained recently by KLAUDER, LEUTWYLER, and STREIT (%).

After conclusion of this work our attention was also drawn to other recent
papers that treat the Feynman-Dyson approach to null planes in further
detail (®).

2. — Null co-ordinates.
We consider (1 + 3)-dimensional Minkowski space with metric signature

+ 2 and the usual pseudo-Cartesian co-ordinates as the contravariant compo-
nents of the position vector & = (2% ', 22, #*). The two null vectors

1 1
(2.1) m:ﬁ(],o, 0,—1) and n:\7§(1,0,0,1)
satisty m n* —=m-n=—1, m-m = 0 =n-n. They are orthogonal to the two

unit vectors ¢, = (0,1, 0, 0) and ¢, = (0, 0,1, 0). m, n, ¢, 6, form a basis, so
that the vector # can be written

(2.2} &= um - vn + 2,6, + Zy6, .

The null co-ordinates # and v are therefore defined by

(2.3) U=—nar=——(@—2) and v=—max=— ("4 2%).

The co-ordinate » increases along m, and » along n. For any vector A the cor-

(*) J. R. KLaupERr, H. LEUTWYLER and L. STREIT: Nuovo Cimento, 66 A, 536 (1970).
(®) 8.-J. Cuang and S.-K. Ma: Phys. Rev., 180, 1506 (1969); J. B. Kocur and D. E.
SopER: Phys. Eev. D, March 15 (1970).
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responding components along m and » must be defined by

1 1
24) A =-—m-A=-— (A4 A? d Ay=—nAd= "= (40— A4
(2.4) \/2( ) an n \/5( )y

so that A, is the coefficient of the basis vector n(!), and 4, of m:
(2.5) A=Am+ A,n+ A,e, + A,e,.
As a special case of (2.3) the derivative operation is:

_ ° _ @
(2.6) fo=—md=—z and g =—nd=—x.

It will be convenient to use the notation x and A4 for the corresponding
vectors in the two-dimensional subspace spanned by ¢, and ¢,. Similarly, we
we shall use Z and 4 for the vectors in the subspace spanned by =, ¢, ¢, t.6. in
the null hyperplane % = const.

From (2.5) follows that two vectors 4 and B have the inner product

(2.7) AB=—A,B,—A,B,+ A-B.

The corresponding metric tensor, labelled by m, n, e,, ¢,, therefore has the form

0 —1 0 0
-1 0 o0 0

2.8 , =" =
(2.8) 9w =g 0 1 0
0 o0 o0 1

In analogy to the usual situation when initial data are given on a space-
like plane #°= const and the development in time ¢ = 2° is sought, the null
plane % = const (or v» = const) will carry initial data and w (or v) shall play
the role of time. For symmetry reasons we need to investigate only # = const.

3. — Existence and uniqueness of the initial-value problem on a null plane.
Consider the Klein-Gordon equation in null co-ordinates
(3.1) 20, 0,$(w) = (8> —m*) p(w) ,

with ¢(w) specified on the null plane w = u,. Under what conditions does
there exist a solution to this initial-value problem and when is it unique?
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A first integral of (3.1) on % = %, is

©

(3.2) Oup(Ug, v, x) = _i'fs(v —0')(0% — m2) (i, v, x)do’ + F(u,, x) ,

—_—

provided the integral converges. Since ¢ is given on u,, this equation will yield
a unique function ¢,¢ on w, provided conditions are imposed which ensure
that F(u,, x) = 0. This can be done by imposing

(3.3) lim 2.9=0 on .

[ol—>

One can now ask what further conditions are necessary such that a step-by-step
integration starting with (3.2) will converge and yield ¢(z) at u, a finite distance
off the null plane #,.

While such a method is certainly feasible, the following considerations lead
to the desired answer in a very short and elegant way. Note that we do not
want to assume that ¢ in (3.1) be infinitely differentiable or, even stronger,
that ¢ be analytic. Of course, when treated as a generalized function ¢ is n-fold
differentiable if the test functions are.

Furthermore, we note that the procedure indicated by (3.2) shows a break-
down for m = 0 if Minkowski space is limited to 141 dimensions. The right
side of (3.1) then vanishes. We shall exclude this exeeptional case; but other-
wise the following considerations are applicable to any number of dimensions
1+s (s>-0) and m=%0 or m = 0.

The Cauchy problem ¢.e. the problem of finding a solution ¢ of (3.1) with
given ¢ and 0¢/ct on a spacelike plane ¢t = 0 has a unique solution which has
the well-known form

<>

(3.4) $(x) :fA(ac—x’) a% pla')da’,

d —_— «
where 0 means ¢ — o0 and where A is the usual invariant function (see Ap-

pendix II). The integration extends over a bounded domain since A(x — ') =0
for » —a&' spacelike. In fact any domain which containg the « domain of
dependence » of the point # (the closed hyperdise, a three-dimensional closed
ball, cut by the past light cone with vertex at # from the hyperplane ¢ = 0)
will surffice.

Now the eq. (3.1) leads in a well-known manner to the divergence-free

expression
g

Aw—a')8,p(x') .
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In Fig. 1 the w-v plane of Minkowski space is shown. The point # is denoted
by P. The t =0 plane intersects the backward cone from P. We eonsider
the four-dimensional volume V whose projection in the u-v plane is indicated

Fig. 1. — Four-volume of integration for the proof of eqs. (3.5) and (3.7).

by ABDC. It is infinite in the x direction and bounded by the plane { =0,
and the null planes v = v,, % = u,, and % = u,. Gauss’ theorem yields

0 :fa/”[A(ac——m’)8,',¢(x’)]d4w’= ( j-{—f—i—f—{—f) A(w——m’)v-(é,’gb(m’)d“c’.

AR BD DC (A

The integrations over the hyperplane parts are indicated symbolically. The
integrals over the distant ends in the |x] — oo directions are omitted, be-
cause these timelike areas are spacelike with respect to P so that 4 vanishes.
But the same is true for CA. Taking into account that y =—m and vy = —=u
on CD and DB, respectively, we find with (3.4)

K] 9
(3.5) d(x) =|A(x—a") 3 o) d%’du’—kfd(w——m') 507 P(a'yd2x'dv' .

oD

But the normal to a null plane lies in that plane; therefore the knowledge
of ¢ on the null planes implies its normal derivatives (d¢/cw on v = v, and
o¢/ov on u = u,). Thus we have the following theorem.

Theorem 1. The solution of the Klein-Gordon equation (3.1) for m>0 is
uniquely determined by (3.5) in the convex region bounded by the wedge formed
by the null planes % = %, and » =, if ¢ is specified on these planes; the
knowledge of ¢ on the wedge but outside the characteristic cone (backward
null cone) is not necessary.

In the evaluation of (3.5) the knowledge of A and its normal derivative
on a null plane is necessary. This auxiliary information is contained in Ap-
pendix II.

A special case of great interest is obtained by moving the null plane
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v = v, to the distant past, and by taking ¢ = 0 on it. This means

(3.6) lim ¢ =0, for all x, u>u,.

V—r—

One thus obtains

K
(3.7) é(x) :fA(m—w’) g ) e v’

[T

and the following theorem.

Theorem 2. Given ¢ on the null plane 4 = u, and the asymptotic con-
dition (3.6), then the Klein-Gordon equation (3.1) for any m>0 has a unique
solution given by (3.7) in the half-space u > u,.

As a corollary we have that any solution of (3.1) which satisfies (3.6) and
which vanishes on a null plane u = const, vanishes everywhere in > u,.

It is easily seen that the asymptotic condition (3.6) is not only sufficient
to yield uniqueness but is also necessary for m = 0. The reason lies simply in
the fact that for m = 0 any differentiable funetion of one null co-ordinate
only, ¢ = f(») for example, is a solution. Thus there are golutions which can
be entirely contained in a region u > u,; these would contradict the corol-
lary if they were not eliminated by (3.6). Physically, (3.6) eliminates waves
in a null direction parallel to a « = const plane.

For m =0 this argument breaks down. However, a simple example shows
that the condition (3.6) is also here necessary. Let ¢(x) be a solution of
(82— m2)p(x) = 0; then ¢(x) = O(uw— u,)p(x) is a solution of (3.1) which van-
ishes for u < %,. Without (3.6) the solution (3.7) would not be unique.

We note that (3.6) is, of course, weaker than square-integrability, which
would exclude the above example.

In eq. (3.5) the integrals extend from the edge of the wedge (at D) to
+ oo, but those parts of the null planes which are outside the characteristic
cone from P do not contribute. Similarly, in eq. (3.7) the v-integration extends
from — co to 4 oo, even though the open set v € (v, co) does not contri-
bute, since A vanishes for spacelike arguments. However one cannot terminate
the integration on the characteristic cone because of the singularity on it. It is
exactly there where the distribution nature of A enters in an essential way.
The points of the characteristic cone must all be interior points of the domain
of integration.

It follows that ¢(x) will be correctly given by these equations for any
%> u, but in the limit as w approaches w, a convergence condition for
»— 4 oo of the integral in (3.7) will become necessary. With this additional
restriction

Im ¢ =0, on u = U, ,

Py —>0
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one can easily verify the consistency of (3.7) by taking P on the u, null plane:
from (A-IL.B) with « = u,

o <~

d(x) = —fe(v —v’)dv’fﬁz(x —a) 5(?7 Hlu, v, x')d2x’ =

—0

|

R ed

1 r ! ! a ! 1 ( 7 a ! 14
=Zfs(v—v)dv é?¢(u,v,x)=—§f¢(u,v,x)—wa(v—v)dv=¢(u,'u,x).

Here we used integration by parts and oe(v)/dv = 2(v). Similarly,

9 1f Ef
—a% () = 5 fé(v—v’)dv’f&z(x—x’) 5 o(u, v’y x')d2%x’ =

A nd ©

1, B naw & s a2
=§f5('v—?;’)dv é?qb(u,@,x) =f6(v—@;)dv é?gé(u,'o,x):%gé(u, v, x) .

We conclude this Section by noting that the Dirac equation can be treated
in a very similar manner. In null co-ordinates it is

(3.8) Yo 0up = ((Y'0) + m—p.0) yp,

where

| =

1
(3.9) Y.=—my= (°+ 9% and y,,:—n-y=7§(y°—7“‘),

2
go that

(310)  yi=0, ¥i=0, {uyt=—2, [r,r7]=—2"".

The initial-value problem with ¢ given on a spacelike plane (i’ = 0, say)
is well known. Its unique solution is

(3.11) (@) =[S0 o)y pte’) 0

with §=(y-d—m)A. Applying Gauss’ theorem to the divergence of the diver-
gence-free expression

S(@—a)y,p@),
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yields, in complete analogy to the Klein-Gordon case,

(3.12) wplx) = ——fS(x — ")y, p(@) dzx’du’—fS(w —a' )y p(r’)d2a dv’.
oD DB

This equation corresponds to (3.5). Theorem 1 is therefore also applicable to
the Dirac equation (3.8) with its unique solution (3.12).
The removal of CD to the distant past requires again

(3.13) Iim =0 for all x, u>u,.

v —>—C

The solution is then given by the initial data on one null plane only (4" = u,),

(3.14) plw) = —fS(x — ")y, p(x')d2x'do’.

=ty

Theorem 2'. Given p on the null plane u = 4, and the asymptotic con-
dition (3.13), then the Dirac equation (3.8) has a unique solution given by
(3.14) in the half-space u > u,, valid for m>0.

4. — Null transitions.

At this peint it is not clear whether problems of physical interest with
initial data on a null plane would yield unique solutions, because it may not
be possible to satisfy the necessary asymptotic conditions on physical grounds.

In order to investigate this problem we recall the very basic condition of
translation invariance common to all closed physical systems. Associated with
this invariance is the existence of the four infinitesimal generators, 4.e. the four-
vector P. In particular, quantum dynamics is characterized by the unitary
operator exp [tH?], where H = P° in the generator of time translations. This
is the content of Heisenberg’s equation of motion. It gives a complete speci-
fication of the dynamics provided the commutation relations are known. We
shall now apply this idea to translations along null directions.

Translation invariance of the quantum field ¢(x) implies

(4.1) o(x) = exp [—iP-2]¢(0) exp [¢P-2],

from which we can obtain the well-known differential form

(4.2) 0, @) =1pla), B,] .

Translations in the null direction m are therefore given by the null translation

41 — Il Nuovo Cimento A.
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generator

(4.3) P=—m-P
and the equation
(4.4) d(u, v, x) = exp [+P,u]$(0, v, x) exp [— P, u] .

The null-translation generator P, is easily obtained by inspection of the clas-
sical limit of the Klein-Gordon field ¢. One finds (see Appendix I)

(4.5) P, =f:a¢+~a¢ T omrgtgds E

This operator is self-adjoint and positive definite for the free field ¢.
If we wish to translate off the null surface # = u, we need to know the
commutation relations on that surface. From Appendix II (A-IL.5),

(1.6)  [BE), @ e =0, [H0), 0 Nl = — 3 elo— 1) byl — )

This is a surprising result because it implies that the canonical commutator
on the null plane is

'L
(47) [¢ ]u-u = 5 x_x ) ’
since
(4.8) n(x) = opt(2)/ov .

The unexpected factor 1 in (4.7) is however not an error. It is due to the lack
of independence of ¢ and its canonical conjugate, 7, on a null plane. A modi-
fication of the usual canonical formalism taking this dependence into account
is necessary. Such a formalism is not unknown in general relativity (*). Its
use leads indeed to the commutation relation (4.7).

Returning to the computation of the u-derivative by means of (4.4) to (4.6)
one has

@9)  apa) = ilple), P = — - f (0 —0')(@° — mA)d(u, v, x) Q0.

—

(®) P. A. M. Dirac: Proc. Roy. Soc., A 246, 326 (1958); P.G. BERGMANN and A. B,
KoMAR: in Recent Developments in General Relativity (New York, 1962), p. 31. We
are indebted to our colleague, J. GOLDBERG, for informative discussions on this point.
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Apart from the operator character of ¢ this result is identical to (3.2) with
F(u, x) = 0 for all . Thus, the equivalent to the asymptotic condition (3.6)
is implied by the existence of the null translation.

The recovery of the Klein-Gordon equation by differentiation of (4.9) is
trivial. Thus we are lead to the following result:

Theorem 3. Any representation of the commutation relations {4.6) by oper-
ator-valued distributions on Hilbert space for which P, (4.5) is a self-adjoint
operator and for which [¢, P,] has a meaning, is a solution of the Klein-Gordon
equation, given by (4.4).

We note that the commutation relations do not contain the mass; nor does
the Hilbert space of the associated test functions. The latter involves the
measure for the inner product in momentum space d*p = dzpdp,/|p.| (see
e.g. (A-11.4)), which is independent of the mass. As was pointed out by KLAUDER,
LEUTWYLER, and STREIT (?), this has the important consequence that, in con-
tradiction to the commutation relations on a spacelike plane, the representations
of (4.6) which refer fo different masses are unitarily equivalent. The mass
that appears in the Klein-Gordon equation (3.1) enters only through P,, (4.5).
We also note that the translations P, and P in the null plane are mass-inde-
pendent:

(4.10) P— 2f:8v¢*8@¢:d39“c, P=f:a¢*a@¢ +8,¢'0¢:05F

as shown in Appendix I.

The quantum field-theoretic analogue of the classical initial-value problem
on a null plane governed by Theorem 2 is simply the statement: The self-adjoint
operator P,, (4.5) together with the algebra (4.6) determines ¢(#) uniquely
for all # via (4.4) for any ¢(0, v, x) of that algebra given on the plane % = 0.

This indicates the completeness of the field on the null plane, which is re-
flected by its irreducibility (4).

Null translations can also be carried out for the Dirac case. Here we find
(see Appendix I)

{(4.11) P, = %fﬁ@y;&wid%ﬁ

and the rather complicated anticommutation relations (Appendix II)
(4.12) {v(@), 9@}, =0,

(018)  (p0h @ N = 3 puBelE— B+ oo — )y — m) Sy — ) +

-+ f_ﬁ y”(az — mz) (52(x _ x’)fe(v —7)”) dv’ ¢ (,0”_,0/) .
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First we observe the presence of so-called « Schwinger terms » in this relation.
But this formal expression must of course be understood as a generalized funec-
tion. Using test functions f and g in the three-space v, x, we can write (4.13)
more meaningfully as

@14) Py $)omr = 37ulls 9)— 5 (4B + M), 6) — o 9@ —mt) F, ),

where F ig defined in terms of f by
B, 2) = [~[1w, a0

and analogously G in terms of g.
Actually (4.13) gives more than necessary. Consider the anticommutators

{TP(W), 1/_"(xl)}u-u"yv == '22 '}’u'yvas(f_‘ﬁl) _"43 %E(U —7),)(Ya + m) 62(x - x’) ’
(4.15)

Po{9(@), PN umw = 5 727u0sF— F) + £ yuc(v —0)(y-B—m)d(x — %)

Equations (4.15) correspond to the canonical commutation relations sinee the
canonical conjugate of v is @ = ¢y, when the «time» is # and the Lagran-
gian is (A-1.9). We note again the « noncanonical » appearance of (4.15). The
comments made in connection with (4.7) are also valid here.

Even more restrictive than (4.15) are the relations obtained by multiplying
the first of these by y, on the left, the second by 7, on the right, leaving only
a single term on the right side:

Yu{P(@)y PE )}y Vo = — Z@ VuVoE(®— ') (Y0 -+ m)dy(x — '),
(4.16)

y,,{gv(x), 'ﬂ‘_’(x,)}ﬂ-u'yu = z PoVus(v— 'U,)('Y'a +m)d(x —x) .

As we shall see below, only these anticommutation relations, rather than the
more general ones in (4.13) are needed in the evaluation of the derivatives
0,y and 0, 9.

But we also notice an explicit dependence of the anticommutator on the
mass of the field. Clearly, a unitary equivalence of representations associated
with different masses cannot be expected of this algebra.

By means of (4.16) it is easily verified that the null translation operators P,,
(4.11) and P,,

<~
(4.17) P, = %f:y':’y,,a,,'tpjd%_c
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lead to the Dirac equation

Y20y = iy [p(@), P,]= % fds’_“'%{w(fv), P )} yuOorp(a’) =

1 «—>
== gyvyu(y'a + m)|do'e(v —v') 0y p(u, v', x) =

= i YoVuly 0 + m)J}p(u, v, x)0,e(v—0') = — % Yoyu(Y-0+ m)plx) .
Similarly,
Yuloyp = ipu[y(@), P] = — Fyup((Y-0) + m) (@) .
Combining these results and observing {y,, v,} = — 2, which follows from (3.10),
we find the Dirac equation (3.8). Thus we conclude with the following theorem.

Theorem 4. Any representation of the anticommutation relations (4.12)
and (4.16) by operator-valued distribntions on Hilbert space for which P,
and P, of (4.11) and (4.17) are self-adjoint operators and for which [y, P,]
and [y, P,] have a meaning, is a solution of the Dirac equation (3.8).

Of course, if we use the homogeneous Green function § instead of the null
translation generators and represent the Cauchy solution by (3.14) then only

Yo(@) = o p(@)
is needed. Its anticommutation relations are

(4'18) {Wv(wL %(90')}“.“' =0 ’ {lpv($), 1/-),,(50/)}“_“, = i’}’v 53(55 - i/) 3

1.6. are mass independent. The more general commutator (4.13) then follows
from (4.18) and (3.14). But then an asymptotic condition like (3.13) must
be imposed.

5. — Interacting fields.

The considerations at the beginning of Sect. 3 for the free scalar field can
easily be generalized to equations of the form

(6.1) 20,0, P(x) = LO(x) ,

where L is a linear differential operator which is symmetric and does not con-
tain 0,. The latter condition is essential so that the integration over v yields
an explicit expression for 9,® in terms of an integral over @ in the null
plane.
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Despite this severe restriction there are field-theoretic problems of con-
siderable physical interest of this type. With minimal electromagnetic coupling,
D,=0,—ied,, eq. (3.1) becomes

(5.2) (D.,D,+ D,D,) D = (D*—m>) D .
This equation will be of the form (5.1) with L independent of 9, provided
(5.3) A,=—nA4=0.

This condition is satisfied for a transverse external field moving in the z-direc-
tion so that 4 = 4. A laser field in the form of a wave train of finite length
can be described this way with 4= A4(u) and A(u) =0 for |u| > u,. This
would be a plane wave with infinite wave fronts in the x direction.

It is therefore not surprising that an exact solution for this system has
been known for a long time (), although it was not put in terms of null co-
ordinates, where it takes its simplest and most tractable form ().

This particular system also clarifies the physical significance of condition
(83.6) and even suggests the stronger condition of making @ compact in w.
Otherwise the scalar electron described by @ is not outside the laser beam at
any finite times #<C{#, and ¢>t,. Previous treatments of this problem have
led to serious ambiguities because the interaction fime was not finite. These
matters will be discussed in detail in a separate publication devoted to quantum
eletrodynamics in a lagser beam ().

Returning now to (5.1) and the importance of the requirement that L be
independent of 0,, we consider the quantized problem corresponding to (5.2),
i.e. the interaction with a quantized electromagnetic field. The condition (5.3)
can be satisfied here only by choosing a special gauge. A gauge transformation
A”—>A; =A4,+ a”/l can always be chosen so that one component of the po-
tential, e.g. A, vanishes. This is the gauge used also by KocuT and SoPER (*).
In a forthcoming paper (&) we shall show that this gauge, characterized by (5.3),
is indeed necessary if one works with initial data on a null plane.

The Lagrangian method of Appendix I can be generalized to minimal
electromagnetic interaction in a standard way. One finds for the null transla-
tion operator which translates @ off the initial null plane u = u,

(5.4) P,= f & Z[(DD)}-D® + m* &' ® —ied, (' D,P)] .

(") D. M. VoLkovV: Zeits. Phys., 94, 250 (1935).
(® R. A. Nevitie and F. RoHRLICH: Quantum electrodynamics in a laser beam (to
be published in Phys. Rev.).
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Here D is defined as D — D', Similarly, the null translation operator in the
% = const plane is

>
(5.5) P,— f BF[20, D2, D + ieAd (D3, D)].

These operators do not depend on 2, even though the gauge (5.3) has not
been used in their derivation. However the associated translations (4.4) will
not reproduce the field equation (5.2) unless the gauge choice (5.3) is made.

When 4, is the quantized self-field or a superposition of that field with
an external fleld, these expressions are no longer mathematically well-defined
operators in Hilbert space. Interacting fields cannot be normal ordered in
general. We shall take them here in the usual formal sense, in the spirit of the
conventional (divergent) Lagrangian field theory.

In particular, one can go into the Dirac picture (interaction picture) by
means of the usual formally unitary transformation and use the free-field com-
mutation relations (4.6) on the null plane. Or, if one can solve the external
field problem at hand exactly, one can go to the Furry picture and use the com-
mutation relations which take into account the external field only. An example
of the latter method will be given for the quantum electrodynamics of the laser
beam (8).

For the Dirac picture one separates P,

(5.6) P,= P | P?,

and one finds for the interaction operator in the Dirac picture

(5.7) PP(u) :f:[— jea- (¢t 0f) + ardT G F.

Here ¢(») and a(xz) are the particle and electromagnetic fields in the Dirac
picture (free fields). The usual Dyson solution for the scattering operator
is then given by means of a positive-u—ordered (rather than time-ordered)
expression :

(5.8) 8= U,exp [— ifP‘D’(u)du] .

This is converted into normal-ordered products by Wick’s theorem which car-
ries over unchanged. In particular

(5.9)  (Us(p(@)9'(@))> =
=0uw—w)A(e—a)+ 0w —u)d (@ —z)= A (e —2),
which is the usual causal propagator (in our normalization). The reason for

this lies in the fact that for timelike # one has 6(d- u) = 6(d-¢), while for
spacelike # the f-functions in (5.9) combine to 1, since A.(x) = A (— ).
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It follows that the Feynman rules can be taken over formally unchanged,
but it will of course be convenient to use null co-ordinates in p-space as well
as in x-space. The propagator in p-space then follows from Appendix II.

It seems rather fortuitous that the minimal electromagnetic coupling per-
mits an easy elimination of the ¢, terms of L in (5.1) by a suitable choice of
gauge. It is clearly conceivable that there exist interactions in nature where
the field equation (5.1) will contain 9, terms in L. The question of existence and
uniqueness of solutions for such equations with initial data on a null plane is
apparently open. But it seems that the corresponding null-translation oper-
ator P, would then also have to eontain o, terms. This means that the trans-
formation to the Dirac picture would yield an integral equation for PP(u)
and not an explicit expression. If that integral equation can be solved by
treating the o, terms as a perturbation one would be led to

(5.10) PPw) = g3 " V() |

n=0

The «interaction Hamiltonian » in the Dyson S-matrix (5.8) would then be
an infinite series in the coupling constant of this perturbation.

In any case, it is clear that the presence of 0, terms in L would lead to con-
giderable complications.

ArPENDIX I

Derivation of the null-translation operators.

In a classical field theory of a complex field ¢, with N components
(A=1,2,..., N) the well-known theorem by NOETHER states that the trans-
lation invariance of the Lagrangian density £[¢,, 0¢,] implies the existence
of a divergence-free tensor

37 3¥
(A'I.l) T'u,; 86"¢ a ¢A 88"¢ a ¢A g,uv
This, in turn, implies a conserved vector P which generates the translations
and which is defined in terms of an integral over a three-dimensional hyper-
surface with element d®c,

(A-1.2) P, =|T,,d%".

This theorem is quite general and is not restricted to the usual Minkowski
diagonal metric. If the surface normal is » so that d*= n*d®», then the
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projection of P on any vector v is
(A-1.3) y-P=|n-T-vd3%.

With the metric (2.8) and the notation of that Section we have for the
complex scalar field

(A-I.4) L= 23,0% 0,0 - 0,0* 0,0 — 0¢* -0¢p — m2P*P
and the well-known
(A-1.5) Tw=-—0.9"0,¢ — 0,0" 0.9 — L.

The null momenta P,=—m-P and P,=-—n-P then follow from (A-I.3)
as integrals over the null plane » = const with normal vector » given by (2.1)
and d%¢ = d2xdv = d3%

(A-1.6) P, =f(a¢* 8¢ -+ mp*) AT ,

(A-1.7) P, =|208,¢*0,pd°% .

The two momenta P=x-P in the two space directions orthogonal to m
and n are

(A-1.8) P :f(agzs* 8.9 + 0,4 0¢) AT .

For the quantized theory the translation operators of the free field are
defined as the normal ordered products of functionals formally identical to
the classical case. This leads to (4.5) and (4.10).

For the Dirac field the choice for the Lagrangian is

«—> “«>

(A-1.9) L= —}P0 — .0, — pu0)p — mPy ,

and the translation generators are in the notation of (3.9) and Sect. 2,

>
(A-1.10) P,=1 f Py, O, p ATE |
(A-T.11) P, =1 f Py diE ,

>
(A-1.12) P — %—J-zpya,,y)dao_c.
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APPENDIX II

The invariant function on a null plane.

The invariant function is defined by its Fourier representation

(A-II.1) A(x) = (2;) fexp [ip-x]e(pe) (P2 + m2) d%p

Null co-ordinates in p-space yield

w=—mp=—=(p’+ p
r \/_ %),
(A-1I1.2)

Po=—mn'p = i(ﬁ *—p?),

v ’\/—
so that on the mass shell
pu 1 ( p3) p”

A-I1.3 —=-_{14+=})>0 —>0.
( ) Do V2 P° ’ Do

Therefore A(x) can be written, using the notation of Sect. 2,

A(x) = (é—];)—sfexp [ip-x —ip,u —ip,v] &(p,) 6(p* + m*—2p,p,)d2pdp,dp, .

For p,>0 and p,<< 0 this expression yields A (x) and A_(z) in null co-ordi-
nates. The p, integration is easily done, yielding

o ﬁ)

1 2 + m2
- 2 -
(A-11.4) 27y y [Pv’v + 20 u]
If we put u=0,
(A-I1.5) @)|ymo = 1£(v) 8a(x) .

Because of the symmetry in % and », an analogous caleulation using
&{p,} = &(p.) and integrating first over p, yields

(A-I1.6) A(@)]omo = F(u) Oa(x) .
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We note that s(v) in (A-II.5) (and similarly e(#) in (A-IL.6))is defined by
the integral

k4

2 (sin p,v
- == d
(A-TLT) on) = > f 22 ap,

¢

so that it is not only specified for v >0 and v< 0 as &)=+ 1 and —1,
but also for » = 0, giving £(0) = 0.
The scalar free field has the commutation relations

(A-IL8) [$(x), $'(x')] = —id(@—a) .
Restriction of this equation to the u = «' hyperplane now yields the result

(4.6) in view of (A-TL.5).
For the spinor field we must restrict

(A-IL9) {p(@), §(@)} = iS@—2') ,
where S(z) = (y-¢—m)A(x), to the w =« plane. Since 4 must satisfy the

same Klein-Gordon equation as ¢ in (4.9) we have

(A-I1.10) 0,4(%)|ymo = —% fs(?; — )@ —m2) A(u, V', x)|ymp do’=

-—c0

__1 g(v—v')e(v') dv'- (82— m?) d,(x) .

The restriction of S(z) to » = 0 is therefore

(A-IL11)  8(0, v, x) = (y'@ — M — p, 0p — Y4, 0u) A(U, ¥, X)|ymp =
1 1 _ 1 ¢ ; /
=1 (y-0—m)e(v)u{x) + 5 Vs 05(Z) +- 16 V(0% — m?) 52(x)f£(?) — v )e(v")dv'.

—

The result (4.13) now follows from this and (A-IL.9).

® RIASSUNTO (%

8i considera in dettaglio per le equazioni di Klein-Gordon e Dirac il problema dei valori
iniziali per le equazioni differenziali iperboliche con i dati iniziali in un piano nullo nello
spazio di Minkowski. Si espongono i teoremi di esistenza e unicitd. L’analogo per la

(*) Traduzione a cura della Redazione.
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teoria dei campi quantici comporta 1’uso di relazioni di commutazione sul piano nullo
e dell’'operatore di traslazione nulla fuori di quel piano. Si enuncia brevemente la
teoria formale dei campi interagenti, nello spirito della teoria di Feynman-Dyson. Si
mettono in evidenza le complicazioni ulteriori che sorgono dalla derivata della coordi-
nata nulla del campo nella direzione al di fuori del piano iniziale.

KeanroBasn TEOPHA 1OJISI BHE HYJICBBIX ILUIOCKOCTEi.

Peszrome (*). — Hna ypaBrenuit Knetina-I'opgona u Jupaka moapoGHO paccMaTpHUBAETCs
mpobieMa HavalbHBIX 3Ha4YeHwit A1 runepOonuvecknx auddbepeHIHanbHEIX ypaBHEHAH
C 3aJJaHHBIMP HA4YaJIbHBIMH JaHHBIMH Ha HYJEBOH MIOCKOCTH B pocTpaHcTBe MAHKOBCKO-
ro. UpmBomATCs TEOPEMBI CYIMECTBOBAHUSA M COUHCTBEHHOCTH. TeopeTudyeckdii apaor
KBAaHTOBOIO TOJSA BKIIOYaeT KOMMYTAlMOHHBIE COOTHOUIEHWS Ha HYJEBOM IIOCKOCTH H
ONEPATOpP HYNEBEIX TPAHCIALAM BHE 3TOM Iiockoctu. B cmbicnie Peitumana-Ilaiicona
BXpaTie hopMymipyeTcs: GopManbHas TeOpHs B3amMoaeiicTBylomux nosniei. OTMevaercs,
YTO B3aHMOJEHCTBHE, KOTOPOE BKIIFO4AET HYJEBYIO KOOPIMHATHYIO NPOU3BOMHYIO MOJA B
HAIPABJICHAH OT HAYAILHOM IUIOCKOCTH, IPHUBOOUT K ITOMOJHBHTEIBHBIM YCJIOKHCHHAM.

(*) Hepesederno peoaxyueil.



