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Summary. In any quantum theory, in which the metric tensor of 
Einstein's gravi tat ional  theory is also quantized, it  becomes meaningless 
to ask for an initial space-like surface on which to specify the conven- 
t ional  field commutators.  The covariant  quantum formalism, in which all 
fields either commute or fail to do so only when the field's points co- 
incide, is proposed as being suitable to quantize gravity.  The extension 
of the covariant  quantum formalism to general boson fields tha t  interact  
in an intrisically nonlinear way with external  fields is analysed in some 
detail .  This formalism is applied to the case of the free gravi ta t ional  
field. In  a functional representation, the measure en metrics is found 
to be tha t  proposed by Misner. A basic state of the quantized gravi- 
ta t ional  theory is proposed, which involves a summation over all per- 
missible metrics in the entire space-time manifohl. 

1 .  - I n t r o d u c t i o n .  

I n t e r e s t  in  t h e  q u a n t i z a t i o n  of t h e  E i n s t e i n  g r a v i t a t i o n a l  f ield s t ems  f r o m  

a v a r i e t y  of reasons .  These  r a n g e  i) f r om the  m o d e s t  des i re  for  c o m p l e t e n e s s  

in  t h e  q u a n t i z a t i o n  of k n o w n  fields a n d  a c u r i o s i t y  a b o u t  i n t r i n s i c a l l y  non-  

l i nea r  f ields,  ii) to  a bel ief  t h a t  d ive rgence  diff icul t ies  in  e l e e t r o d y n a m i e s ,  e tc . ,  

m a y  be  a l l e v i a t e d  if t h e  s p a c e - t i m e  m e t r i c  is q u a n t i z e d ,  a n d  t h u s  t h e  d ive r -  

g e n c e - b e a r i n g  s h a r p  l igh t  cone is s m e a r e d ,  iii) to  t h e  s p e c u l a t i o n  t h a t  quan -  

t i z e d  s p a c e - t i m e  is i t se l f  a suf f ic ien t ly  r i ch  s t r u c t u r e  to  r e p r e s e n t  n a t u r e .  The  

q u a n t i z a t i o n  of t he  g r a v i t a t i o n a l  f ield is be ing  s t u d i e d  w i t h  a v a r i e t y  of ap-  

p r o a c h e s  (1). BERGMAI~N a n d  co -worke r s  e m p h a s i z e  s t r o n g l y  t h e  i m p o r t a n c e  

(1) See, for example:  Proc. o] the Con]erence on the Role o] Gravitatio~ in Physics, 
C. and B. DEWITT Editors (University of ~oi ' th  Carolina, 1957). For  more recent 
work see the forthcoming volume The Theory o] Gravitation, L. WITTJ~N Editor,  (New 
York). 
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of isolating the true obserwt.bles of the theory in ana.loiz'y with accepted quan tum 

mechanical practice (2). AR~OWITT, I)ESER and MISNER in a series of papers 

have re-expressed general relativity in terms of independently-specifiable, co- 

ordinate-transformation-inw~riant canonical variables, secured by  a repeated 

elimination of the coustraint equations (:~). The la.tter formult~tion is closely 

related to tha t  of ])ira(, based on a recent extension (~) of his well-known 

Hamil tonian formalism with constraints (~). In  many  such treatments  general 

covariall('e is forsaken in order to exhibit the unique role assigned to the time 

co-ordinate tha t  is demanded by Hamil tonian formalisms. Even in cases where 

general covarianee is explicitly maintained the b~,sic quantum-mechanicfL1 

postulates still remain logically equivalent tot hose of the conventional Hamil- 

tonian formalism (~). 

In  so far as these formalisms are transcriptions of techniques successful 

in a ftat Lorentz space-time, they ignore a unique problem peculiar to general 

relativity.  Conventional field theories deal, in particular, with commutat ion 

rules, which, when employed for the fields separated by a space-like interval!, 

have an especially simple form. Whether  two uearby points are or are not 

space-like is a metric-question tha t  can be asked (and in principle answered) 

not only in :-~ ttat space but also in ~ny space with a preassigned curved metric 

as well. However as soon as the space-time metric g,~(x) becomes a dynam- 

ical var iable--as  in Einstein's t heo ry - - t hen  an initial space-like surface on 

which to specify commutators  of any two fields be(,omes a meaningless concept. 
This impossibility to define an initi~l spa(.e-like surface for commutators  arises, 

in particular, in the quan tum theory of the free aTavitational field, where the 

only fieht is then the metric tensor. We devote our ~ttention in this paper 

to this simplest example of a genel"ally (,ow~riant quan tum theory, tha t  of ihe 

free gravitat ional  field. 

In an effort to circumvent  the problem introduced by the absence of space- 

like surfaces, we seek an alternative quantum formulation, especially one with 

different ( .ommutation rules. An appropri:~te formalism, suitable for our pur- 

poses, has been discussed by several authors (T H) with respect ~o its appli- 

(z) ]'. (;. BER(~MANN: Rev. Mod. Phy,~., 33, 510 (1961). 
(:3) ~ .  ARNOWITT,  S. DESER and C. W. M~SNEt~: Phys. Rev., li6, 1322 (1959), and 

following papers. 
(a) 1 ). A. M. l)IR.x(:: t'roc. Roy. ,~'oc. London, A246, 333 (1958); Phys. l~'ev., 114, 

924 (1959). 
(~) I ~. A. M. DIRA(': ('t~t~. Jour~. Matl~, 2, 129 (1950). 
(6) B. S. ])EWITT: Journ. Math. Phys., 2, 151 (1961), and prepriul. 
(;) J. S(:IIWIN(~En: Prec. Nat. Acad. ,~'ci., 37, 452 (1951). 
(s) y.  NAMBU: Progr. Theor. Phys. (Japan), 4, 331, 399 (1949). 
(9) F. (~OESTER: Phys. Rev., 95, 1318 (1954). 

(10) j .  M. JAUCI~: Helv. Phys. Acta, 29, 287 (1954). 
(11) J. (;. VALAT1N: Prec. Roy. ,~oc. Londo~, A 229, 221 (1955). 
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cat ions  to  Lo ren t z - i nva r i an t  theories.  However ,  as we shall see, i t  is a s imple  

t a sk  to  a p p l y  such me thods  successful ly to  genera l ly  cova r i an t  theor ies  a.s 

well (1:). 

The essence of this f o r m  of q u a n t u m  t h e o r y  t h a t  we shal '  a d o p t  can be 

briefly s t a t ed  as follows (1~,~3): 

A) All opera to r  fields e i ther  c o m m u t e  eve rywhere  or fail to  c o m m u t e  

only  at  the  same space- t ime point ,  i.e., if the  two points  of field eva lua t i on  are 

coincident .  

B) D y n a m i c s  is added  to  this space b y  requir ing t h a t  all phys ica l ly  

accep tab le  (~ dynamica l  ~) vec tors  be long  to  an  i nva r i an t  subspace  ann ih i l a t ed  b y  

an  appropr i a t e  H e r m i t i a n  c om bi na t i on  of field operators .  

As a simple example  of this cova r i an t  fo rmal i sm let us briefly consider  

its appl ica t ion  to  an  H e r m i t i a n  scalar  field ~(x) in  a Lo ren t z  space.  F o r  all 

points  x and  y this field satisfies 

(1.1) [~(x), ~(y)] = o ,  

consis tent  with pos tu la te  A). 

Besides ~ we in t roduce  an  H e r m i t i a n  field ~(x) which  c o m m u t e s  every-  

where  wi th  itself, b u t  toge the r  wi th  q~ satisfies (~4) 

(~ .2) [~(x), n(y)] : - -  i 5(x - -  y ) ,  

with 6(x) a four -d imens iona l  6-function.  

The fo rm for the  H e r m i t i a n  d y n a m i c a l  opera to r  of pos tu la te  B) follows 

h ' o m  the  conven t iona l  ac t ion  principle in an (~ externa l  field ~). As a general  

example ,  consider the  H e r m i t i a n  ac t ion  sum 

(~.3) = d x ,  

where  the  do t  signifies an Hermi t i an  symmet r i z ing  opera t ion :  

~-z~ = ~((;~ + :~(p). 

The t e rm I{~} represents  the  u n p e r t u r b e d  act ion,  e.g., t h a t  app rop r i a t e  to 

a free par t ic le  field of rest  mass  m, pe rhaps  invo lv ing  in add i t ion  a self-inter- 
...... 

(12) For a preliminary account of this work see: Y. R. KLAUDER: NUOVO Cimento, 
19, 1059 (1961). 

(~3) J. V. NOVOZILOV gild A. V. TULUB: Forts. d. Phys., 6, 50 (1958). 
(st) We choose units such that h = c - -  16z~G = 1. 
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action te rm proport ional  to ~4, etc. The dynamical  Hermi t ian  operator  of 
interest  for postulate B) is defined by 

i 

Assume for the moment  tha t  F and z~ were classical c-number fields and, 
apar t  from a factor  i, the brackets, in (1.2) and (1.4) were (( Poisson brackets )~. 
Eere,  we have made a generalization of the ordinary Poisson brackets for fields 
such tha t  the bracket  between a field and its <( conjugate )) field is proport ional  
to  a Jour-dimensional &function. In  this classical analogue, then, a constraint 
requiring eq. (1.4) to vanish generates the classical equations of motion. Finally,  
when these fields are quantized the constraint  requiring (1.4) to vanish be- 
comes a subsidiary condition imposed on acceptable dynamical  vectors, in 
accord with s tandard procedures (1% (This heuristic argument  serves only to 
make plausible the postulated dynamical  constraint  equation. I t  can, of course, 
be derived as a consequence of the conventionql quantum-mechanical  forma- 
lism for the Lorentz- invar iant  theories.) 

All of the dynamical  s tatements  are contained in the constraint  

(1.5) 

which all dynamical  vectors [D) are required to satisfy. 
nmy be wri t ten in the form 

(].6) 19) = Io o), 

Solutions to (1.5) 

where :;(Oo) is the eigenvector of n with eigenvalue zero: n(x) iv%) = 0. Inas- 
much as (1.5) involves a differential operator,  various solutions for I~r2) in (1.6) 
arise for various supplementary boundary  conditions. Of these solutions it 
is convenient  to select one- -commonly  the vacuum-vacuum transition element 
for the present example - - fo r  fur ther  analysis. ('all this choice I Do); all phys- 
ical informat ion is contained therein. In particular,  fo rour  example, the 
inner p roduc t  (w~lY2o) of ]f2o) with lo~), an eigenvector of tile operator  n(x), 
is equivalent  to the Schwinger T-product  generating functional  (7). Interpre-  
tat ions then  may  proceed along s tandard lines (1% 

Equat ions  (1.2) and (1.5) can be taken as a postulat ional  basis for a quan- 
t um theory  (xo.~l), which is therefore quite symmetr ic  in its t rea tment  of space 
and time. Equa t ion  (1.2), with which (1.5) is evaluated, is a commutat ion  
rule not  valid simply on ~ space-like surface but  valid everywhere;  it  ~ asks ~ 

(~) E. FERMI: Rev. Mod. Phys., 4, 125 (1932). 
(is) H. LEHMANN, K. SYMANZIK and W. ZIM_~ER.~ANN: Nuovo Cimento, 1, 214 

(1954). 
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simply whether  the points x and y coincide or not, which is not a metr ic  ques- 
tion. The extension of this covar iant  postulut ional  basis to the g rav i t a t iona l  

field is the subject  of the present  paper .  Our work is somewhat  related to t h a t  
of KLEIN (1:) who proposed commuta t ion  rules such as (1.2) for various fields 

directly from the point  of view of general covariance.  Following up the work 

of KLEIn, LAURENT (~s) suggested t ha t  eq. (1.2), applied to symmet r i c  tensor  

fields, should have  a bearing on the q u a n t u m  theory  of gravi ta t ion.  H o w e v e r  

both  KLEIN ~nd LAUI~E~T consider nonhermi t ian  subsidiary conditions, ana~- 
logous to (1.5), involving principal ly annihilation-like operators.  This non- 

Hermi t i an  choice is of course suggested by  the Gupta-Bleuler  approach to the 
electromagnet ic  field. While this difference is in pa r t  a m a t t e r  of choice (1,~) 

we feel t ha t  the applicabil i ty of He rmi t i an  subsidiary constraints  in the co- 
va r ian t  formal ism under  discussion is well subs tan t ia ted  by  the correspondence 

of the above and other Lorentz -covar ian t  examples  to conventional  q u a n t u m  
mechanics (~3). At the present  sta2"e of development  it seenls preferable  to 

ask for a functional  representa t ion  directly in te rms  of the field of in teres t  

(Schr6dinger representat ion),  ra ther  than  a representa t ion in te rms  of an in- 

creasing number  of bare quanta ,  i.e., gravi tons  (Fock representat ion).  KLEIN 

and LAURENT do not consider any  par t icular  realizations of the operators  and 
vectors  they  discuss. 

The necessary extension of the covar iant  quant izat ion formal ism involves 
one new feature  not heretofore t reated.  I t  is a conventional  assumpt ion  t h a t  
the field under  s tudy  (for example,  q¢ above) enters l inearly into the inter-  
action Lagrangian  (see (1.3)). I f  we choose g" as basic gravi ta t ional  variables,  
then  the very  nature  of the gravi ta t ional  field dictates the in teract ion t e rm  

(1.7) j v#~'gF"V '-- gdx  

where v, is dynamical ly  independent  of g ' ' .  I n  (1.7) it is seen t ha t  gt,,, does 

not  enter  linearly. An al ternate  possibili ty is to adopt  g,, as basic; then the 

(17) 0. KLEIN: in Niels Bohr and the Development o] Physics (London, 1955), p. 96. 
(18) B. ]~. LAURENT: Ark. ]or Fys. (Sweden), 16, 237 (1959). 
(~') The operator - -A ~/~.s is Hermitian in the SchrSdinger representation, hut it 

acts as a shift operator on a state 

~// ~ i (In ;7:n 
n=0 

which, for example, represents a generating function for amplitudes in an harmonic 
oscillator basis. The interpretation of x is of course quite different in these cases, 
as is the representation of the inner product in Hilbert space. 
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interaction term 

(1.8) f w  ~'~- g ,~ / - -  g dx , 

is appropriate where w ~" is taken dynamicMly independent of the metric tensor. 

Again the metric does not enter linearly. There is naturally a close relationship 

between these two descriptions. Ill order to be able to discuss and compare 

these different descriptions of tile gravitational field, we extend the conven- 

tional covariant  quantization formalism ill Section 2 to examples wherein the 

field of interest does not enter the interaction term linearly. 

The extension developed in Section 2 is particularly interesting in regard 

to a functional realization of the Hilbert space in question. In  this repre- 

sentation either the metric tensor or its conjugate (v,, or w "~) are taken as 

diagonal, i.e., actintz' as multiplication on functionals. The conjugate to the 

diagonal variable is then represented by functional differentiation. Non-linear 

interaction terms such as (1.7) or (1.8) will have an influence on both the form 

taken by the functional differentiation and on the formal resolution of uni ty  

in terms of the eigenvectors of the diagonal operator. Furthermore,  the form 

taken by the resolution of uni ty  has a direct bearing' on the question of the 

(( measure on metrics ~> in a Feynman  sum-over-histories formulation of quan- 

tized gravity.  The measure we find (eq. (3.16)) is identical to that  found by  

MISNER (.,0) from invariance arguments,  ~md by LAUREN-T (el) from a trans- 

formation Jacobian.  We emphasize that  in the present analysis the form as- 

sumed by the measure on metrics is a consequence of the form of the inter- 

action term, say eq. (1.7). The realization of the Hilbert space in terms of 

functionals is discussed in Section 2 in a general way, and is applied to the 
gravitat ional  field in Section 3. 

I n  Section 4 an impor tant  four-dimensional physical state vector for the 

gravitat ional  field is discussed that  treats all metrics equivalently. Finally a 

direct operator approach to covariant quantizat ion is suggested by means of 

a distribution analysis of the basic fom'-dimensional commutat ion relations 
and of the dynamical  constraint.  

2. - General properties of the eovariant quantum formalism. 

We shall discuss the quantization of a general set of boson fields, ]A(x)~ 
A----l, 2, ..., 2V, which we distingish by ~ subscript A, or any capital La t in  

letter, taking the values 1 to N. For  conventional tensor fields A stands for  

(20) C. W. MISNER: Rev. Mod. Phys., 29, 497 (1957). 
(21) B. E. LAURENT: Ark. /or Fys. (Sweden), 16, 279 (1959). 
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the collective space-t ime indices of the tensor.  I f  we adop t  the s u m m a t i o n  
convent ion  for these indices as well, then  a general act ion funct ional  in the 
presence of (~ external  fields )) denoted by  X A, is s imply 

(2A) I {], X} ---- I {]} +/FA [/(y)] "Xa(y)dy. 

I{1} represents the action funct ional  in the absence of external  fields, and / ~  

signifies a set of inver table  functions of the IV fields /A at  a point.  As in (1.3), 

the  dot denotes an hermit izat ion operation.  
The generalized four-dimensional  commuta t ion  rules are 

(2.2) 

~nd 

[F~ [](~)],  X ' ( y ) ]  = - i ~  ~(x - y) 

[ ] A x ) , / , ( y ) ]  = [ x ~ ( x ) ,  X ' ( y ) ]  - o .  

We adopt  an Hermi t i an  operator  fo rm of the conventional  equations of mot ion  

and  constrain the physical  s ta te  vectors  to be their  null eigenvectors:  

~F~ El(x)].X~(x)~ I-Q) = o. (2.3) .~z {1} + . . . . . . .  

The basic field variables XB(x) define a formal  set of s imultaneous eigenvectors 

[O~z,), such tha t  

(2.4) x~(~) 1~,) = x '~(~)[~ , ) ,  

where X '  is the c-number  eigenfield. 
The ma t r ix  element of direct physical  interest  is 

(2.5) (~x, 19), 

which we subject  to the normal izat ion condition ((o01Y2)= 1 when X'---- 0. We 

now proceed to analyse eqs. (2.2)-(2.4) so as to s tudy  (2.5) further.  
The field X ~ is dynamica l ly  independent  of F ,  and of any  funct ion thereof.  

I n  par t icular  X B is independent  of the basic fields ]~ themselves.  I t  follows 

tha t  the c o m m u t a t o r  of X B with any  funct ion of ]~ can be at  mos t  a funct ion 

of ]~. Therefore (2.2) always implies 

(2.6) (~F~/~i~)  [ lAx) ,  X~(y) ]  = - i q ~ ( x -  y). 

Since F ,  is assumed inver table  the ma t r ix  ~FA/~]~ has an inverse, say ~]~lOF~, 
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Hence 

or equivalent ly  

[/c(x), X ' (y)]  = - -  i ( ~ I ~ / ~ F B )  b ( x  - -  y )  , 

[/c(x), X ' ( y ) ]  ( ~ F B / ~ ] A ) ( y )  - -  i 5 ~  ~(X - -  y ) .  

Bringing the t rans format ion  mat r ix  within the c o m m u t a t o r  we find 

(2.7) [t~,(x),  X*(Y)] = - -  i ( ~  (~(x - -  y )  , 

where the Her lni t ian  operator  

(2.8) z ~ = -  ( ~ F 2 ~ L ) .  x ~ . 

According to (2.2), we m a y  say tha t  ~ is conjugate to X~; we now see as a 

consequence t ha t  ]A is conjugate to the Hermi t i an  operator  Z A. The pair  of 

conjugate  variables  F A and X B are unitari ly related to the conjugate pair  /A 

and Z B. 
The question arises as to the connection between eq. (2.3) and a possible 

a l ternate  choice, which is also at  first sight seemingly valid. Consider the 

constraint  

! ~ I {1}  X~(x)1 - /~F:(x) + ~l~)= 0. (2.9) 

This equat ion demands  also tha t  some vector,  I~) ,  be the eigenvector of an 
Hermi t i an  operator .  I t  is just  the q u a n t u m  transcr ipt ion of the classical equa- 
tions of mot ion  assuming /~c itself to be the (( basic )) field. Equa t ion  (2.9) is 
not  s imply unitar i ly equivalent  to (2.3) because for this purpose it would be 
necessary to change F into ] and X into Z everywhere  they  appear.  In  order 
to show the relat ion between (2.3) and (2.9) we derive an equat ion of the form 
of (2.9) directly f rom (2.3). This derivat ion will be very  useful in evaluat ing 
(2.5) as well. 

F r o m  (2.3) it  follows tha t  

which differs f rom (2.9) in tha t  the last  operator  is not Hermit ian .  The desired 
Hermi t i an  opera tor  X ~ is just  

(2.11) X ~ = (~L/~Fc) .Z A 

35 . I I  N u o v o  C i m e n t o .  
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which is a consequence of the general rule 

(X  ~ . B ) . C  = X A'(BC) 

valid for any B and C which are functions of J alone. With (2.11), eq. (2.10) 
becomes 

(2.12) [~fo(x) + X~(x) + g [ 0 F ~ '  z" 19) = o .  

The non-hermit ian par t  is now displayed in the commutator .  This term is 
proport ional  to 6 (x - -x )  -= 5(0), a formal, infinite factor, bu t  its functional  form 

is of more interest.  Thus 

~Fo '  ZA = X ~ = - - i 6 ( 0 )  

and on interchanging the D and C derivatives, 

(2.13) [OFo, ZA] = - -  iet(0) \-~-A ~ - ;  @ ~ ]  -- 

~']/~FI, X ] 

where 

I ~J/~F I ~ det [ ~]a (x) /~FB(x) ] . 

Therefore the additional te rm in (2.12) is a gradient (or a commuta to r  with 
respect to Xe). This suggests defining 

(2.14) [9) = H I ~  ) , 

where H = H , H ( x )  is a functional  of the operator  ]A alone. The factor  H fails 

to commute  only with X ° in (2.12), and therefore 

(2.15) H ~F~ + x ~ 15) + {[x °, H] + 1H[ln l at/aFI, x~]} i~) = o.  

If  we let 
H(x)  = I ~t/~FI ~, 

then  the last bracket  in (2.15) vanishes. 

Since 

(2.16) H = H~I ~J/~F[ ½ = [D//DF[ ½ 
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is nonsingular, eq. (2.15) leads to (2.9). Thus we have deduced (2.9) from 
(2.3) and at the same t ime related the state ].(2) to the state ]~).  ;Now H, 
al though adjusted to be uni ty  in the special case F a = ] , ,  is certainly not a 
uni tary  t ransformation.  Rather  H arises from the t ransformat ion to new 
variables. Such ~ factor has an analogue in many elementary problems, one 
of which we now illustrate. 

The inner product  of states in an elementary one-particle system has the 
form 

(2.17) (iP~ t iP2) =fiP*(r) r ~ dr iP_~(r) , 
J 

when expressed in spherical co-ordinates (radial par t  only). The representa- 
t ion of the radial momen tum operator  

(2.18) p,. = - -  tr- (c/cr)r 

is Hermit ian  in this form of inner product.  I t  is often very  convenient to 
define (~ wave funetions )) u( r )~ryJ ( r ) ,  in whieh ease (2.17) becomes simply 

(2.19) . fun(r) dru2(r) . 

In this inner product  Pr = - - i  ~/~r. One might  be tenlpted then to introduce 
in the abstract  one-particle Hilber t  space a (( state )) 

(2.20) ]u) ~ r liP), 

where here r is an operator.  However  an a t t empt  to realize the imler product  
of two such states would, f rom (2.17), give 

( ul i u2} = f u*(r)r~ dr u2(r) , 

in contradiction with (2.19). Ins tead an equation like (2.20) signi/ies a change 
in the weight /unction taking place in tha t  realization of the Hilbert  space by  

functions in which r is diagonal, i.e., where r acts simply as multiplication. 

I t  can be argued tha t  neither realization is strictly correct, but  tha t  one form 
(here (2.17)) is more useful to s tudy (rotational) invariauce properties, while 
the other form (here (2.19)) is perhaps more useful for computations.  

We now identify relation (2.14) as an analogue of (2.20), namely tha t  both 
states Igg) and ID) have the same normalization, it  is only their  represen- 
tat ions which differ, a difference readily displayed in a representat ion which 
diagonalizes /a(x). 
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Let  us, therefore, introduce formal states [#<') in which the operators /~ 

and F A are diagonal: 

(2.21) 
/=(x) I/') I /9 

G ( x )  I/') = G [ / ' ( x ) ]  I/9 • 

We fur ther  adopt  the state If2) as <~ more fundamenta l  >> than  lag) analogous 
to I~0} in preference to lu}). Therefore we are interested in a realization of 
the Hilbert  space for the states I D), which we define as 

(2.22) 

Here  H simply stands for a c-number functional of ]~ like tha t  given by  (2.16), 
and ~ /  signifies a measure on histories ye t  to be determined. I t  is clear ac- 
cording to (2.14) tha t  the identification ~ ( / ) =  f2(J)/H(]) leads to the alter- 

nate  form (analogous to (2.19)) 

(2.23) ( f211 f2~ ) = / ~ *  (/) H~J  
d 

We s tudy the measure N/  on/ -his tor ies  by  using the eigenstates [o~x) , de- 
fined in eq. (2.4), which are appropria te  for the operator  X A. These vectors 
also provide a realization of the Hilber t  space, which we take in the form 

(2.24) ( ~1 ! -(~2) : / ~ ( ~ ( X ) . D X  ~e~2(X ) , 

where D X  is t ranslat ionally invar iant :  

(2.25) D X  =- D(X  + X')  oc I1 ~dXA(x). 

(The symbol D as par t  of a measure will always be used along with a trans- 
lationally invar iant  measure.) The uniform weighting in eqs. (2.24) and (2.25) 
may  be justified in several ways. For  example, such a weighting is appropriate  
in conventional  theories with a simple interact ion te rm F ~ ( / ) ~ / ~ .  Since the 
nonlineari ty enters in the field ]A and has nothing to do with the test  field X ~, 
the appropriate  measure (2.25) should remain unchanged. Al ternate ly  we can 
observe tha t  our interact ing classical field X ~ must  ul t imately be produced 
by  some external  system. Justif ication for a nonquan tum t rea tment  of this 
system, as with all test apparatus,  is tha t  its inertial  aspects are enormous;  
it  only disturbs the quantum system and is not  disturbed by  it. When the 
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inertial aspects become increasing larger, only smaller and  smaller deviat ions 

f rom equil ibrium are impor tan t .  Thus the l imiting action funct ional  for a 
test  sys tem is s imply quadrat ic  in the probe field, an adequa te  representa t ion  
for small deviations.  As is well known, a t ransla t ional ly  invar ian t  h is tory 
measure  is appropr ia te  for actions quadrat ic  in the fields (2~). 

Equa t ion  (2.24) has a direct bear ing on the measure  on J-histories. Adopt ing 
a convenient  shor thand nota t ion  

F X  = f  FA (x) X ~ (x) dx 

e t c ,  and pu t t ing  aside questions of normalizat ion,  we introduce a Four ier  
t rans format ion  over  histories 

9(F) =j'~xp [iFx] rex) DX, 

and obtain for (2.24) 

(2.26) 

The t ransformat ion  f rom F~ to ]. introduces a Jacobian,  

DE----]DF/D]ID ] = H-2D] , 

and comparison with (2.22) shows tha t  

(2.27) ~]  = H-1D] oc I-I~I'~F/~I] ½114 d]~(x), 

which apar t  f rom a normal izat ion factor  expresses the form of the needed 
measure.  We now s tudy  the physical ly  impor t an t  ma t r ix  element  (ox' 1~9), 
and discover as well the reason for our interest  in the unusual  measure ~ ] .  

The solution to eq. (2.3) can be wri t ten in the form 

(2.28) 12) = exp [iI(]}] 1~5o) 

where the necessary constraint  is now 

i.e., !~o) is an eigenvector of X A w i th  eigenvalue zero, whence the subscript. 

(22) For the particular externM field v~riables discussed in Section 3.1 the vMidity 
of eqs. (2.24) and (2.25) can be explicitly ve~'ified by more conventional procedures. 
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A solution of similar form may be wri t ten for eq. (2.9), namely 

(2.29) I D) : exp [i z{]}] 

where the vector  ]~oo) satisfies simply 

X (x) = o ,  

and is thus one of the vectors defined in (2.4). The relation (2.14) between 

112) and ]~) together  with (2 .28)and  (2 .29) imply  tha t  

(2.30) [05o) = H IoJo) , 

and thus, tha t  the eigenstate IO5o) is related through the operator  H to the 
state I~oo) whose representat ion properties we know. 

Combination of (2.28) and (2.30) determines our matr ix  element of inte- 

rest to be 

(2.31) (o~ x I-(2) = (co~ ]exp [ii{])] H logo) • 

The proper  representat ion of the states in this matr ix  element is clearly given 

by  (2.24), and thus by  (2.22). 
Because 

(o~ x ]1) = ~o*(1) oc exp [ i F X ]  

it  then follows tha t  

(2.32) (o,x In) = N-lfexp [ iFx + iI{]}] 

N representing a cumulat ive normalization factor determined by the requi- 
rement  (Wol-Q)=1. Note tha t  the factor  H in (2.31) cancelles the H -1 in 

(2.22) leaving just  the measure ~ ]  defined by  (2.27). 
Equat ion  (2.32) represents the desired resolution of the physical matr ix  

element  in terms of a realization of the Hilber t  space by ]-history funetionals.  
The form of (2.32) is not unlike tha t  of the Feynman  sum-over-histories. 
However  impor tan t  differences in in terpreta t ion should be observed. The in- 
tegrals in (2.32) extend over all space-time; no variable boundary  values are 
preserved to characterize <( the propagator  ~). Ins tead the (( label ~) in (2.32) is 
provided by  the test  function X A with which the system interacts.  Equa-  
t ion (2.32) therefore represents the interact ion of the quantized field ].5 with 
the entire external  system. The form taken by  the quan t i za t ion- -no tab ly  the 
form of ~ ] - - i s  dictated by  the interact ion t e rm F X .  I t  is thus dic ta ted by  
the way in which the (( conjugate v~riables )~ enter  into the action functional.  
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This is of course in agreement  with the conventional  t ime development  form 

of the sum-over-histories.  
I t  remains  to discuss (2.32) in the light of the resolutions in (2.22) and (2.23). 

Why  did a result  arise which seems to be in termedia te  to bo th  of these choices? 
This arose s imply because, according to (2.29) it is the vector  I~)  which 
th rough  [~Oo), is directly related to the ket  of interest,  ]o)x). The a l ternate  
ma t r ix  element  

would be expressed in a more conventional  form like (2.32) with an addit ional  

factor  H - k  The choice of this la t ter  ma t r ix  element,  however,  fails to re- 

cognize t ha t  the basic var iable  is ]A and not  FA; it  fails to recognize t ha t  the 

in teract ion t e rm is really nonlinear in In, and only formal ly  linear in the va- 

riables F A . This a rgument  is admi t ted ly  not  compelling, but  unfor tuna te ly  

the correct choice can not  be discovered by a s tudy  of our e lementary  analogue 

in (2.17); this example  is merely  a reparamet r iza t ion  of essentially linear inter-  
actions. Our two possibilities coincide, however,  in the linear interact ion case 
Fa =-Ja. Perhaps  (2.32) 'could be looked at  in the e lementary  f ramework  as 
the inner product  of two vectors,  one of which is best  in terpre ted  as a ((]~v>)) 
vector  while the other  is best  in terpreted as a (( l u> ~ vector .  In  the four- 
dimensional form of q u a n t u m  mechanics,  such inner products  are of basic 

importance ,  in contras t  to the conventional  formalism. The basic weight func- 
t ion for the measure  on histories (in the functional  representa t ion of the ma t r ix  

e lement  of physical  interest) is thus al tered and, as we shall i l lustrate in the 

case of the gravi ta t ional  field, the group of invariance t ransformat ions  is altered 
a.s a consequence. 

3. - Appl icat ion  to the gravi tat ional  f ield.  

The applicat ion of the preceding general formal ism to the Einstein gravi-  
ta t ional  field is s t raightforward.  We adopt  the (~ free ~) conventional  action 
funct ional  

(3.]) I (g'"} =/R~,,g'%/- g d x ,  

expressed in na tura l  units (14). As (( basic ~ gravi ta t ional  variables we adopt  

first the con t ravar ian t  fo rm of the metr ic  tensor g'~(x). These variables cor- 

respond to the variables ]~ of Section 2. F r o m  these variables we can form 
other  quantit ies,  such as g,~ or g =  det g,~. The Ricci tensor R,v is cons- 
t ruc ted  f rom f ~ ,  g~ and their  derivatives.  
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A )  Contravariant  metric  tensor as basic. - For  the interact ion term for 
the gravitat ional  field with an external  source we adopt  the action 

(3.2) f v,~ . g ~ V - -  g d x  . 

The symmetric  field v~,~(x) = v~,,(x) represents the external  source (i.e., X "~) and 
is, by  assumption, functionally independent  of g'" (and thus of g,,). The non- 
linear appearance of g"~ in (3.2) is clear, and it  follows tha t  the relevant  func- 

t ion / ~  is determined by  

(3.3) F~ --> 6"~(g ~ )  - -  g'~ V ~ g  . 

The fundamenta l  commuta t ion  relations then  take the form 

(3.4) 

(3.5) 

1 "  t t  t t  v [~q"~(x), v~(y)] = - -  ~[5~ 5~ ~- 5~ ~ ]  ~(x- -  y ) ,  

IgOr(x), g~(y)] = [v,,(x), v~(y)] = 0 .  

A straightforward calculation at a point  shows tha t  

(3.6) 

In  analogy with eq. (2.8) we define a new Hermi t ian  quant i ty  

(3.7) ~ = v ~  . X / - -  g - -  el v,~ "g"  g~V/ - -~g;  

thus ! ~  corresponds to the operator  Z A. This new variable obeys the com- 

muta t ion  relation 

1 '  ~ v - -  ~ 5~] ~ (x  - -  y ) .  (3.8) [g"'(x), ~ ( y ) ]  = ~ [ 5 ~ b ~ +  " 

Additional commuta t ion  relations may  be found as a direct consequence 

of the above relations. We list several of these wi thout  proof, although, as 
an example we discuss the first of these in the Appendix.  Some additional 

commutat ion  relations are: 

(3.9) [ ~ / Z  g(x), v~(y)] = - -  ½ igcmS(x - -  y ) ,  

(3.10) [ ( - -  g)~g~'~(x), ! ~ ( y ) ]  = 0 .  
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Still further relations may  be found by raising or lowering various indicies. 
For example, 

[g,~(x), !8~(y)] = --  g~,~(x) [gX~(x), ~ z ( y ) ]  g,~(x), 

which follows as a simple identi ty.  Let  us define various contravariant  Her- 
mit ian v-operators by 

(3.11) vl, ~ = vt,~'g ~ ; v ~'~ = v~,'g~'~g ~° , 

and similarly for 93~. Then, for example, 

[0(x), v"~(y)] = g ' * ( y ) [ 0 ( x ) ,  v , , ( y ) ] g ' ~ ( y ) ,  

etc., where 0 is an arbi t rary g-dependent operator. Note tha t  

0 

since v "* is not functionally independent of the metric. 
The dynamical constraint equation, analogous to (2.3), is given by 

(3.12) { ~ # x )  + ~.~(x)} ]~) = O, 

where we employ the conventional abbreviation 

@,,~ = (R,,~ --  ½ g , , . R ) x / ~  g .  

The corresponding alternate dynamical  equation like (2.9) is simply 

+ 19) = 0 .  

A derivation of (3.13) from (3.12) shows on the basis of the general s tudy in 
Section 2 tha t  

(3.14) H ( x )  = det ½ [?g'z~/~q'~] - -  [--g(x)] -~, 

a calculation considerably simplified by the observation tha t  apart  from the 
factor (--g)½ the matr ix  on the r ight-hand side of (3.6) equals its own inverse. 
Thus only the (--g)-½ part of ~ g ~ ' / ~ ' ~  effectively survives the determinant  
operation (~3). 

The matr ix element of physical interest is (w~ [~), where [Wv) is a simul- 
taneous eigenvector of the operator v ~ ( x ) .  In a functional representation of 

(2a) See also the remarks m~de in connection with eq. (3.28). 
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this Hi lber t  space in te rms of functionals of metric,  eq. (2.32) becomes 

(3.15) (~o~ If2) = iV 1 exp (v,~ 4- R,~)9 dx ~ g ,  

where, f rom (2.27) and (3.14), 

(3.16) 2g ~ ~r~ [ -  g(x)]~ L r ~  dg,'(x). 

This measure  on metrics is just  the one proposed originally by  MIS~'ER (~0) 

based on invar iance a rguments  in his s tudy  of a F e y n m a n  quant iza t ion  of 

general re la t ivi ty .  Here  we observe t h a t  this measure  follows as a consequence 

of the fo rm t aken  by  the in teract ion with  an external  source. 
Before a fu r ther  discussion of (3.15)is made  we point  out  t ha t  a similar 

equat ion  can also be derived under  differing hypotheses.  

B) Covariant metric tensor as basic. - Suppose ins tead of the contra-  

va r ian t  tensor g~  we wished to call the covar iant  tensor g~  (( basic ~>. Then the 

in teract ion t e rm  

~ e  .g~V_ g dx, (3.17) 
J 

would involve ye t  a new opera tor  w ~ which is funct ional ly  independent  of 
g~z. Clearly v t" (in 3.11) is not  a direct candidate  for w ' ' .  The new commu-  

ta t ion  relat ion replacing (3.4) is 

(3.18) [ . % ~ ( x ) , w ~ ( y ) ]  = - - - 1 "  " ~ " ~ x - -  ~ [ 5 ~ 8 ~  4- (~ ~ ]  (~( y ) .  

I t  follows f rom the relat ion 

(3.19) 
1 ~ / : g  , 

~g~ 

t ha t  the Hermi t i an  operator  

(3.20) 

satisfies 

(3.21) 

~9~(x) =~ w~'t3(x). (~g~/~go~) = w o ~ . v / ~ g  + ½ w ~ ' g ~ g ( ' ~ / Z  g , 

~,t,[5~5~ + ( ~ ]  ( - -  y ) .  [gaff(X) ' ~ a V ( y ) ]  : 1 '  (r r a v (~ X 

According to the discussion in A) we m a y  lower the indices of ~ and  
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raise those  of g~s wi th  only  a net  chunge of sign. Thus  eq. (3.21) impl ies  

[g~%'), ~o~(y)] : ~,.[5o b~ + ~  " ~ ~ b~-~ b~] 5 ( x -  Y), 

where  ff_)3,~ : !33 ~"  g~, g ~ .  
A c o m p a r i s o n  of this  resul t  wi th  (3.8) indicates  t h a t  

(3.22) ~9~ = - -  ~.~ : 

a n y  possible  difference in the  fo rm of a funct ion  of the  me t r i c  is ru led  out  b y  

the  n o n d e p e n d e n c e  of v ~  and  w ~ on g,~. 

An a p p r o p r i a t e  cons t r a in t  equa t ion  in the  p resen t  case is 

(3.23) (--C~J ~z + ~;~3 ~} [A) = 0 ,  

[A) be ing  a new s ta te  vec tor .  
is now 

(3.24) 

where  we define 

(3.25) 

The  new m a t r i x  e l emen t  of phys ica l  in te res t  

(a,o, I A) ,  

The  fo rma l  solut ion to (3.23) is 

(3.26) I A) = exp  [ i t{I}]  ]~0), 

where  

This  so lu t ion  can be re la ted  to the  solut ion of the  a l t e rna t e  cons t ra in t  

{ - -  R ~ 4- . '"~) ! ;~) O . 

H e r e  the  solut ion is 

!,3) = exp  r;,Ü), 

and  based  on the  genera l  analys is  of Sect ion  2, it follows t h a t  

(3.27) I~0) ---- g '  I).,,) , 

(3.28) H ' :  [ ~g=,l /~ ,~[  ~ . 

I n  order  to e v a l u a t e  (3.28) we use the  fol lowing s imple  a r g u m e n t ,  for which 
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we introduce the 10 ×10 matrices M(A) defined by  

1 O' "g O" ~ G'~" ~ [ ~ ÷  5~¢,-i- A g ~ g  ]. 

I t  follows directly tha t  

(3.29) M(A) M(B) : M(A ~- B 4- 2AB) ,  

an algebraic relation obeyed also by  their  determinants  d(A) --  det  M(A). The  
appropriate solution to (3.29) for the determinants  is 

d(A) = (1 -~ 2A) 2 , 

and is independent  of g~  for all A. Application of this result to (3.19) then 

shows tha t  

(3.30) H ' =  H~ 1 [ _  g(x)]-.~ = ~/gH, 

namely, tha t  apar t  f rom a formal  normalizat ion factor  ~ ' ,  H '  and H are 
identical. We now derive (3.23) and an expression for (3.24) f rom the rela- 
tions established in par t  A) above. 

If we raise bo th  indieies of (3.12), then 

+ = 0 .  

In order to hermitize the last term, we mult iply b y / / ~  [--g(x)] ~, and employ 
eq. (3.10). Thus, with the definition (3.14) for H, we find 

{ ~ ( x )  + g~'~'~,~g~(x)} H-l[ ff2) = O. 

The identification (3.22) then leads to 

{ ( ~ ( x )  - -  ~g~(x)} H-~ l D) = 0 ,  

and comparison of this equat ion with (3.23) indicates tha t  

(3.3]) ]A) = H-~I 9)  . 

F rom the general arguments of Section 2 we must  interpret  (3.31) as a change 
taking place in the weight function of the functional  realization of the Hil- 
bert  space. 

To determine what  weight change is to be associated with (2~ I in (3.24} 
we argue as follows for the part icular  ease (201. If  we ignore the numerical  



COVARIANT QUANTIZATION OF THE GRAVITATIONAL F I E L D  561 

weight factor  ,~t', then  we find 

H]~o0 ) = [(50) = HI'o) = H212,)) 

from eqs. (2.30), (3.26), (3.27) and (3.31). Thus generalizing to nonzero eigen- 
values, we obtain 

(3.32) ]~,o) = H - ~  [ o , 3  • 

The content  of (3.31) and (3.32) is tha t  IA) and I2,~) are not  to evaluated 
in the conventional  form of inner product  eq. (2.22), but  ra ther  in the alter- 
hate form (2.23). Still ignoring the factor ~ ,  we find 

(3.33) (A~ [A) = (Aw [exp [ii {]}3 H IL) =f)?w(/) HD/exp [iI {/}] 2,0(/) • 

In the present application of (2.23) the variable ]A are the eovariant  metric 
g,~ and 

Therefore (3.33) becomes 

(3.31) 

where 

2*(]) ¢c exp i w~fl~zdx . 
I 

(,~.IA) = N-lfexp if(w~¢+ R~Z)g~dx] ~g, 

~ g  Qc Hx [-- g(x)] -~//~<~ dg/,~(x), 

which is just  an al ternate  and equivalent  form for (3.16). Therefore the same 
measure on metrics arises in the covariant  metric formulat ion as arose in the 
contravar iant  metric formulation. 

The similarity in the form of the functional  representat ion of (3.15) and 
(3.34) is noteworthy.  The expression (3.15) is discussed somewhat fur ther  in 
the next  section. 

4.-  Conclusion. 

We have generalized the conventional  covariant  quantizat ion procedure to 
nonlinear interact ion terms and have applied this formalism to the gravi- 

tat ionM field. The functional  representat ion (such as (3.15), (3.16)) shows a 
striking formal similarity to the results of Misner for a F e y n ma n  quantizat ion 
of general relat ivity.  
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Since the arbi t rary  field v,~ is at  our disposal it is suggestive to choose very  
simple and symmetric  boundary  conditions on the integrals in (3.15), namely,  
to sum over all permissible metric histories in the entire manifold. Such a 
choice singles out no metric in part icular  as i t  t reats  them all alike. Indeed,  
if the manifold were closed in the t ime direction this would have to be re- 
cognized in summing over all permissible metrics. This impor tan t  physical 
state vector  we call [tOo); it  may  well play the role of a (( vacuum ~) state. I f  
we adopt  the physical state Ito0) then no space-like surfaces ever enter  the  
discussion; space and time are t rea ted  everywhere on an equal footing. 

Funct ional  derivatives with respect to the test  field v~ will generate mat r ix  

elements of the metric, if we give to (3.15) a sum-over-histories interpretat ion.  
I t  is of course possible, therefore, to ask surface-dependent  questions of 
the final expression (~]to0).  However  the advantage of the present analysis 
is tha t  it saves all such questions to the very  last step. 

Unfor tunate ly  fur ther  calculation of the functional integrals involved in 
(3.15) seems not  possible at present since the techniques for continuous in- 
tegrations are as ye t  insufficiently advanced. One ma y  have to be content  
with exploiting the invariance of ~g,  as was done by  M I s ~  by  t~OSEN (~4). 
The resulting measure on metrics is invariant  under the t ransformat ion 

at each point, i.e., 

which then reflects itself in the s t ructure  of (3.15). 
Finally it should be remarked tha t  the operator  form of the relevant  equa- 

tions (2.2) and (2.3), may  be directly approachable with distribution theory.  
In  the ease of the gravi tat ional  field the commuta t ion  relation (3.4) would, 
af ter  multiplication with ~ / - - g ,  become 

(4.1) 

where 

[g(~), v(~)] = - - i ( ~ ,  ~) ,  

g(~) =f~i~g ~/--gdx , 

z ~Pv~Z. V Z g d x ,  v(~) f 
(~, ~)-- I V - -  gdx.  

(24) G. ROSEN: Thesis (Princeton, 1959). 
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Here ~ and ~:z are two <( test )~ functions in the distribution sense. 
mical constraint eq. (3.12) becomes 

(4.2) 
where 

{a(v) + v(v)}lg)  = o ,  

G(~) = f ~  C~ dx, 

V (~7) -- f ~ 7 ~ d x  . 

The dyna-  

The remarkable property of the dynamical  constraint  (4.2) in the case 
of the gravitat ional  field is tha t  the operators therein, G(~) and V(~), de- 
pend on no higher powers of the local fields than  do the basic distributions 
which appear in (4.1). 

I t  is possible tha t  a rigorous approach to the covariant quantization of  
the gravitational field could be based on (4.1) and (4.2). 

A P P E N D I X  

Herein we derive the typical commutat ion relation 

(A.1) [~/~-g(x), vow(y)] = -- ½-ig,~(~(x- y) ,  

and, in particular, show its dependence on the dimension of space-time, which 
in this section we initially keep arbitrary. Observe tha t  the 1, 1-element of the 
commutat ion relation eq. (3.4), 

(A.2) [~/-Z-gg"V(x), vn(y)] = --  i~S;5(x  --  y) ,  

vanishes unless #~--v=l.  Consider, then, the commutator  

(A.3) [det gg"v(x)}, = C.  

In the expansion of the determinant  in (A.3) only one term is nonvanishing 
so tha t  (suppressing x and y) 

(A.4) C = Minorn { ~ Z g g  "v} [ ~ = g g ~ ,  vn] = --  i Minorn ( ~ / ~ g " ~ }  (~(x-  y ) .  

By  definition 

(A.5) Minorn {~/~ggg~} = det { v / Z  ggt,,} (~/--  ggt.,~);:. 
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I f  n ( # 2 )  denotes  the  d imens ion  of space- t ime,  t hen  

(A.6) Get {V/~ggg "~} ---- - -  (--  g)<n-2),~, 

(A.7) ( ~ / - ~  g g " ) 5 1  = g n / V  ~ -  g . 

Using  eqs (A.6) and  (A.7) we find 

(A.8) _ [ ( _  g)<,, 2)/2, Vll] = i ( - -  g)<" ~)~2gnS(x - -  y ) ,  

and,  if we assume t h a t  the  c o m m u t a t o r  of v~  wi th  any  func t ion  of g~  depends  
on ly  on g~, t hen  

(n - -  2)(--  g)(n ~)t~ [ V - -  g, v n ]  = - -  i ( - -  g ) ~ - 3 ) ' ~ g ~ a ( x  - -  y )  . 

Fina l ly ,  genera l iz ing to  each of the  e lements  of v ~ ,  it follows t h a t  

(A.9) vow(y)] - -  y) 
- -  n - -  2 ' 

which,  as desired, reduces  to (A.]) for n----4. 

R I A S S U N T O  (*) 

In ogni teoria quantistiea, nella quale sia anche quantizzato il tensore metrico 
della teoria gravitazionale di Einstein, diventa privo di senso richiedere una superficie 
spaziale iniziale su cui specifieare i commutatori di campo convenzionali. Si designa 
il formalismo quantistico covariante, in cui tutti  i campi o commutano o non com- 
mutano solo quando i punti dei campi coincidono, come adatto a quantizzare la gra- 
vith. Si analizza un po' dettagliatamente l'estensione del formalismo quantistico cova- 
riante a campi bosonici generali che interagiscono in modo intrinseeamente non lineare. 
Si applica questo formalismo al caso del eampo libero gravitazionale. Si trova che, in 
una rappresentazione funzionale, la misura sulle metriche ~ quella proposta da Misner. 
Si propone uno stato fondamentale della teoria gravitazionale quantizzata, ehe eom- 
porta una sommatoria estesa a tutte le metriche possibili in tutto il complesso spazio- 
tempo. 

(*) Tradvzione a cura della Redaz~one. 


