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Summary. — In any quantum theory, in which the metric tensor of
Einstein’s gravitational theory is also quantized, it becomes meaningless
to ask for an initial space-like surface on which to specify the conven-
tional field commutators. The covariant quantum formalism, in which all
fields either commute or fail to do so only when the field’s points co-
incide, is proposed as being suitable to quantize gravity. The extension
of the covariant quantum formalism to general boson fields that interact
in an intrisically nonlinear way with external fields is analvsed in some
detail. This formalism is applied to the case of the free gravitational
field. In a functional representation, the measure on metrics is found
to be that proposed by Misner. A basic state of the quantized gravi-
tational theory is proposed, which involves a summation over all per-
missible metrics in the entire space-time manifold.

1. — Introduction.

Interest in the quantization of the Einstein gravitational field stems from
a variety of reasons. These range i) from the modest desire for completeness
in the guantization of known fields and a curiosity about intrinsically non-
linear fields, ii) to a belief that divergence difficulties in electrodynamics, ete.,
may be alleviated if the space-time metric is quantized, and thus the diver-
gence-bearing sharp light cone is smeared, iii) to the speculation that quan-
tized space-time is itself a sufficiently rich structure to represent nature. The
quantization of the gravitational field is being studied with a variety of ap-
proaches (!). BERGMANX and co-workers emphasize strongly the importance

(1) See, for example: Proc. of the Conference on the Role of Gravitation in Physics,
C. and B. DEWrrr Editors (University of North Carolina, 1957). For more recent
work see the forthcoming volume The Theory of Gravitation, .. WitTEN Editor, (New
York).
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of isolating the true observables of the theory in analogy with accepted quantum
mechanical practice (2). Ar~owITT, DESER and MISNER in a series of papers
have re-expressed general relativity in terms of independently-specifiable, co-
ordinate-transformation-invariant canonical variables, secured by a repeated
elimination of the constraint equations (*). The latter formulation is closely
related to that of Dirac based on a recent extension (*) of his well-known
Hamiltonian formalism with constraints (°). In many such treatments general
covariance is forsaken in order to exhibit the unique role assigned to the time
co-ordinate that is demanded by Hamiltonian formalisms. Even in cases where
general covariance is explicitly maintained the basie quantum-mechanieal
postulates still remain logically equivalent tot hose of the conventional Hamil-
tonian formalism (5).

In so far as these formalisms are transcriptions of techniques successful
in a flat Lorentz space-time, they ignore a unique problem peculiar to general
relativity. Conventional field theories deal, in particular, with commutation
rules, which, when employed for the fields separated by a space-like interval,
have an especially simple form. Whether two nearby points are or are not
space-like is a metric-question that can be asked (and in principle answered)
not only in a flat space but also in any space with a preassigned curved metric
as well. However as soon as the space-time metric g (x) becomes a dynam-
ical variable—as in Einstein’s theory—then an initial space-like surface on
which to specify commutators of any two fields becomes a meaningless concept.
This impossibility to define an initial space-like surface for commutators arises,
in particular, in the quantum theory of the free gravitational field, where the
only field is then the metric tensor. We devote our attention in this paper
to this simplest example of a generally covariant quantum theory, that of the

free gravitational field.

In an etfort to circumvent the problem introduced by the absence of space-
like surfaces, we seek an alternative quantum formulation, especially one with
different commutation rules. An appropriate formalism, suitable for our pur-
poses, has been discussed by several authors (“!') with respect to its appli-

(?) . G. BEremann: Rev. Mod. Phys., 33, 510 (1961).
(*y R. ArvowirT, S. DESER and C. W. MisNERr: Phys. Rev., 116, 1322 (1959), and
following papers.
(Y) P. A. M. Dirac: Proc. Roy. Soc. London, A 246, 333 (1958); Phys. Rev., 114,
924 (1959).
3y PoAL M. Dirac: Can. Jowrn. Math | 2, 129 (1950).
5y B. 3. DeWrrt: Journ. Math. Phys., 2, 151 (1961), and preprint.
J. SCHWINGER: Proc. Nat. Acad. Sei., 37, 452 (1951).
. NaMBU: Progr. Theor. Phys. (Japan), 4, 331, 399 (1949).
. COESTER: Phys. Rev., 95, 1318 (1954).
I. M. Jaucu: Helv. Phys. Acta, 29, 287 (1954).
J. G. Varatin: Proc. Roy. Soc. London, A 229, 221 (1953).
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cations to Lorentz-invariant theories. However, as we shall see, it is a simple
task to apply such methods successfully to generally covariant theories as
well (12).

The essence of this form of quantum theory that we shall adopt can be
briefly stated as follows (*-13):

A) All operator fields either commute everywhere or fail to commute
only at the same space-time point, ¢.e., if the two points of field evaluation are
coincident.

B) Dynamics is added to this space by requiring that all physically
acceptable « dynamical » vectors belong to an invariant subspace annihilated by
an appropriate Hermitian combination of field operators.

As a simple example of this covariant formalism let us briefly consider
its application to an Hermitian scalar field ¢(#) in a Lorentz space. For all
points « and y this fleld satisfies

(1.1) [p@), py)] = 0,

consistent with postulate 4).
Besides ¢ we introduce an Hermitian field z(x) which commutes every-
where with itself, but together with ¢ satisfies (14)

(1.2) [g(), n(y)] =—id@—y),
with d(x) a four-dimensional é-function.
The form for the Hermitian dynamical operator of postulate B) follows

from the conventional action principle in an «external field ». As a general
example, consider the Hermitian action sum

(1.3) Iy, np = Li{g} + |@-mda,

where the dot signifies an Hermitian symmetrizing operation:

g 7 = YHon + 7).

The term I{g} represents the unperturbed action, e.g., that appropriate to
a free particle field of rest mass m, perhaps involving in addition a self-inter-

(*2) For a preliminary account of this work see: J. R. KLAUDER: Nuovo Cimento,
19, 1059 (1961).

(**) J. V. Novozirov and A. V. TurLuB: Forts. d. Phys., 8, 50 {1958).

(**) We choose units such that # = ¢= 16aG = 1.
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action term proportional to ¢*, ete. The dynamical Hermitian operator of
interest for postulate B) is defined by

(1.4) i (@), Hy, 7]

Assume for the moment that ¢ and & were classical ¢-number fields and,
apart from a factor ¢, the brackets in (1.2) and (1.4) were « Poisson brackets ».
Here, we have made a generalization of the ordinary Poisson brackets for fields
such that the bracket between a field and its « conjugate » field is proportional
to a four-dimensional d-function. In this classical analogue, then, a constraint
requiring eq. (1.4) to vanish generates the classical equations of motion. Finally,
when these fields are quantized the constraint requiring (1.4) to vanish be-
comes a subsidiary condition imposed on acceptable dynamical vectors, in
accord with standard procedures (**). (This heuristic argument serves only to
make plausible the postulated dynamical constraint equation. It can, of course,
be derived as a consequence of the conventionnal quantum-mechanical forma-
lism for the Lorentz-invariant theories.)

All of the dynamical statements are contained in the constraint

(1.5) iln(x), Hg, 2}] 10Q) =0,

which all dynamical vectors |£) are required to satisfy. Solutions to (1.5)
may be written in the form

(1.6) [£2) == exp [iI{g}]| o) ,

where [w,) is the eigenvector of x with eigenvalue zero: m(x)jw,) = 0. Inas-
much as (1.5} involves a differential operator, various solutions for [£) in (1.6)
arise for various supplementary boundary conditions. Of these solutions it
is convenient to select one—commonly the vacuum-vacuum transition element
for the present example—for further analysis. Call this choice |£); all phys-
ical information is contained therein. In particular, fo rour example, the
inner product (w,|$2,) of |2,) with |w,), an eigenvector of the operator n(x),
is equivalent to the Schwinger 7-product generating functional (). Interpre-
tations then may proceed along standard lines ().

Equations (1.2) and (1.5) can be taken as a postulational basis for a quan-
tum theory ('), which is therefore quite symmetric in its treatment of space
and time. Equation (1.2), with which (1.5) is evaluated, is & commutation
rule not valid simply on a space-like surface but valid everywhere; it « agks »

(13) E. FErMIi: Rev. Mod. Phys., 4, 125 (1932).
(%) 0. LeamManN, K. Symanzik and W. ZIMMERMANN: Nuove Cimento, 1, 214
(1954).
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simply whether the points # and y coincide or not, which is not a metric ques-
tion. The extension of this covariant postulational basis to the gravitational
field is the subject of the present paper. Our work is somewhat related to that
of KLEIN () who proposed commutation rules such as (1.2) for various fields
directly from the point of view of general covariance. Following up the work
of KLEIN, LAURENT (%) suggested that eq. (1.2), applied to symmetric tensor
fields, should have a bearing on the quantum theory of gravitation. However
both Krrix and LAURENT consider nonhermitian subsidiary conditions, ana-
logous to (1.5), involving principally annihilation-like operators. This non-
Hermitian choice is of course suggested by the Gupta-Bleuler approach to the
electromagnetic field. While this difference is in part a matter of choice (%)
we feel that the applicability of Hermitian subsidiary constraints in the co-
variant formalism under discussion is well substantiated by the correspondence
of the above and other Lorentz-covariant examples to conventional quantum
mechanics (?). At the present stage of development it seems preferable to
ask for a functional representation directly in terms of the field of interest
(Schrodinger representation), rather than a representation in terms of an in-
creasing number of bare quanta, i.e., gravitons (Fock representation). KLEIN
and LAURENT do not consider any particular realizations of the operators and
vectors they discuss.

The necessary extension of the covariant quantization formalism involves
one new feature not heretofore treated. It is a conventional assumption that
the field under study (for example, ¢ above) enters linearly into the inter-
action Lagrangian (see (1.3)). If we choose g as basic gravitational variables,
then the very nature of the gravitational field dictates the interaction term

(1.7) Jw gV —gda

where v, is dynamically independent of ¢*”. In (1.7) it is seen that g does
not enter linearly. An alternate possibility is to adopt g, as basic; then the

(") O. ILIN: in Niels Bohr and the Development of Physics (London, 1955), p. 96.

(18) B. E. LAURENT: Ark. for Fys. (Sweden), 16, 237 (1959).

(1) The operator — 4 8/dx is Hermitian in the Schrodinger representation, but it
acts as a shift operator on a state

which, for example, represents a generating function for amplitudes in an harmonic
oscillator basis. The interpretation of x is of course quite different in these cases,
as is the representation of the inner product in Hilbert space.
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interaction term
(1.8) fu‘“” gV — gda,

is appropriate where 1/ is taken dynamically independent of the metric tensor.
Again the metric does not enter linearly. There is naturally a close relationship
between these two descriptions. In order to be able to discuss and compare
these different descriptions of the gravitational field, we extend the conven-
tional covariant quantization formalism in Section 2 to examples wherein the
field of interest does not enter the interaction term linearly.

The extension developed in Section 2 is particularly interesting in regard
to a functional realization of the Hilbert space in question. In this repre-
sentation either the metric tensor or its conjugate (v, or w") are taken as
diagonal, ¢.e., acting as multiplication on functionals. The conjugate to the
diagonal variable is then represented by functional differentiation. Non-linear
interaction terms such as (1.7) or (1.8) will have an influence on both the form
taken by the functional differentiation and on the formal resolution of unity
in terms of the eigenvectors of the diagonal operator. Furthermore, the form
taken by the resolution of unity has a direct bearing on the question of the
« measure on metrics » in a Feynman sum-over-histories formulation of quan-
tized gravity. The measure we find (eq. (3.16)) is identical to that found by
MiIsNER (%) from invariance arguments, and by LAUREXNT (2') from a trans-
formation Jacobian. We emphasize that in the present analysis the form as-
sumed by the measure on metrics is a consequence of the form of the inter-
action term, say eq. (1.7). The realization of the Hilbert space in terms of
functionals is discussed in Section 2 in a general way, and is applied to the
gravitational field in Section 3.

In Section 4 an important four-dimensional physical state vector for the
gravitational field 18 discussed that treats all metrics equivalently. Finally a
direct operator approach to covariant quantization is suggested by means of
a distribution analysis of the basic four-dimensional commutation relations
and of the dynamical constraint.

2. ~ General properties of the covariant quantum formalism.
We shall discuss the quantization of a general set of boson fields, f,(z),

A=1,2,.., N, which we distingish by a subscript 4, or any capital Latin
letter, taking the values 1 to N. For conventional tensor fields A stands for

(3) C. W. MISNER: Rev. Mod. Phys., 29, 497 (1957).
(?') B. E. LAURENT: Ark. for Fys. (Sweden), 16, 279 (1959).
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the collective space-time indices of the tensor. If we adopt the summation

convention for these indices as well, then a general action functional in the
presence of « external fields » denoted by X*, is simply

(2.1) I{f, X} = I{f} + | F.[f] X*(y)dy .

I{f; represents the action functional in the absence of external fields, and F,
signifies a set of invertable functions of the N fields f, at a point. As in (1.3),
the dot denotes an hermitization operation.

The generalized four-dimensional commutation rules are

(2.2) [F, [f@)], X*@)] = — i6% o(x —y)

[f.@), F,()] = [X*(x), X*()] = 0.

We adopt an Hermitian operator form of the conventional equations of motion
and constrain the physical state vectors to be their null eigenvectors:

. SL{f} | CFalf@)] va, oy _
(2.3) {SfA(l’) - af-A(‘”) @1 Q) = 0.

J

The basic field variables X*(z) define a formal set of simultaneous eigenvectors
|wg), such that

(2.4) Xo(@) wy) = X (@) o) ,

where X' is the ¢-number eigenfield.
The matrix element of direct physical interest is

(2.5) (wye ]2,

which we subject to the normalization condition (w,(£2)=1 when X'= 0. We
now proceed to analyse eqs. (2.2)-(2.4) so as to study (2.5) further.

The field X® is dynamically independent of ¥, and of any function thereof.
In particular X® is independent of the basic fields f, themselves. It follows
that the commutator of X2 with any function of f, can be at most a function
of f,. Therefore (2.2) always implies

(2.6) (0F ,[0f,) [fol@), X7 (y)] = —i0}0(@—y).

Since ¥, is assumed invertable the matrix oF,/0f, has an inverse, say of,/ oF,:
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Hence
[fc y ‘XB( ] - l(efo/aFB) 5(90—3/) ’

or equivalently

[fo(@), X7 ()] (OF,[0f, Wy) = — 167 (x —y) .
Bringing the transformation matrix within the commutator we find

(2.7) [fol@), ()] = —iogol@ —y),
where the Hermitian operator

(2.8) %= (eF,/of,) X°

According to (2.2), we may say that F, is conjugate to X*; we now see as a
consequence that f* is conjugate to the Hermitian operator y*. The pair of
conjugate variables F, and X” are unitarily related to the conjugate pair f,
and %,

The question arises as to the connection between eq. (2.3) and a possible
alternate choice, which is also at first sight seemingly valid. Consider the
constraint

(2.9) {7{1{} + X”(m)}lf?) =0.

This equation demands also that some vector, |!~2), be the eigenvector of an
Hermitian operator. It is just the quantum transcription of the classical equa-
tions of motion assuming F, itself to be the « basic» field. Equation (2.9) is
not simply unitarily equivalent to (2.3) because for this purpose it would be
necessary to change F into f and X into y everywhere they appear. In order
to show the relation between (2.3) and (2.9) we derive an equation of the form
of (2.9) directly from (2.3). This derivation will be very useful in evaluating
(2.5) as well.
From (2.3) it follows that

(2.10) {;{ {{; A} Q) =0,

which differs from (2.9) in that the last operator is not Hermitian. The desired
Hermitian operator X° is just

(2.11) X0 = (8f,/0F,)" 5"

35 - Il Nuovo Cimenlo.
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which is a consequence of the general rule
(X*-B)-C = X*-(B()

valid for any B and C which are functions of f alone. With (2.11), eq. (2.10)
becomes

3L{f} L, 1lof, _
SF,(x) + X% () +§[8FU ' X ”|'Q) =0.

(2.12) {

The non-hermitian part is now displayed in the commutator. This term is
proportional to d(x — ) = d(0), a formal, infinite factor, but its functional form
is of more interest. Thus

Ofa | _OFp [0 ol oF, 0,
[EFC’X]_TL a0 X | T 0O oy G

and on interchanging the D and C derivatives,

P RN - R I A
ean |75 2| == 0 (52 o5 (7r,) -

— — i5(0) 5;, In |8f/6F | = [In | 2f/F |, X°],

where
|0f|0F |= det [0f, (2)/0F,(@)] .

Therefore the additional term in (2.12) is a gradient (or a commutator with
respect to X°). This suggests defining

(2.14) Q) = H|2),

where H =II H(x) is a functional of the operator f, alone. The factor H fails
to commute only with X¢ in (2.12), and therefore

s

[0
@15 Hig

+ X”}lﬁ) +{[X%, H] + } H[ln |3f/aF|, X°]}|2)= 0.
If we let
H(z) = |9f/0F |},

then the last bracket in (2.15) vanishes.
Since

(2.16) H = I1,|%f/oF|* = | Df/DF|}
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is nonsingular, eq. (2.15) leads to (2.9). Thus we have deduced (2.9) from
(2.3) and at the same time related the state |Q) to the state |f)). Now H,
although adjusted to be unity in the special case F,=1{,, is certainly not a
unitary transformation. Rather H arises from the transformation to new
variables. Such a factor has an analogue in many elementary problems, one
of which we now illustrate.

The inner product of states in an elementary one-particle system has the
form

(2.17) Lyl yey f ) r2drys(r),

when expressed in spherical co-ordinates (radial part only). The representa-
tion of the radial momentum operator

(2.18) pr = — irNC[cr)r

is Hermitian in this form of inner product. It is often very convenient to
define « wave functions » wu(r) =ry(r), in which case (2.17) becomes simply

(2.19) [ui‘(r) dru,(r) .

In this inner product p,=—+id/ér. One might be tempted then to introduce
in the abstract one-particle Hilbert space a «state »

(2.20) W=7y,

where here r is an operator. However an attempt to realize the inner product
of two such states would, from (2.17), give

(U [2hs > :[’uf(’r)rf drus(r) ,

in contradiction with (2.19). Instead an equation like (2.20) signifies a change
in the weight function taking place in that realization of the Hilbert space by
functions in which r is diagonal, i.e., where r acts simply as multiplication.
It can be argued that neither realization is strictly correct, but that one form
(here (2.17)) is more useful to study (rotational) invariance properties, while
the other form (here (2.19)) is perhaps more useful for computations.

We now identify relation (2.14) as an analogue of (2.20), namely that both
states |2) and |D) have the same normalization, it is only their represen-
tations which differ, a difference readily displayed in a representation which
diagonalizes f,(x).
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Let us, therefore, introduce formal states [f) in which the operators f,
and ¥, are diagonal:

L@ ) = f@)|f)
(2.21)
F,(@)|f) = F (@) |f) = F,[f@]If) .

We further adopt the state |£2) as « more fundamental » than |3) (analogous
to |y) in preference to |u)). Therefore we are interested in a realization of
the Hilbert space for the states | ), which we define as

(2.92) (2,12)) = f Q) H- 9] HO)

Here H simply stands for a e-number functional of f, like that given by (2.16),
and 9f signifies a measure on histories yet to be determined. It is clear ac-
cording to (2.14) that the identification ﬁ(f):Q(f)/H(f) leads to the alter-
nate form (analogous to (2.19))

(2.23) (2,]19,) = f T HIIDA -

We study the measure 2f on f-histories by using the eigenstates |w,), de-
fined in eq. (2.4), which are appropriate for the operator X*. These vectors
also provide a realization of the Hilbert space, which we take in the form

(2.24) (2,192;) :f.Q’f(X)DXQz(X) .
where DX is translationally invariant:

(2.25) DX = D(X+ X') o IT,, dX*() .

(The symbol D as part of a measure will always be used along with a trans-
lationally invariant measure.) The uniform weighting in eqs. (2.24) and (2.25)
may be justified in several ways. For example, such a weighting is appropriate
in conventional theories with a simple interaction term F,(f)=/f,. Since the
nonlinearity enters in the field f, and has nothing to do with the test field X*,
the appropriate measure (2.25) should remain unchanged. Alternately we can
observe that our interacting classical field X* must ultimately be produced
by some external system. Justification for a nonquantum freatment of this
system, as with all test apparatus, is that its inertial aspects are enormous;
it only disturbs the quantum system and is not disturbed by it. When the
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inertial aspects become increasing larger, only smaller and smaller deviations
from equilibrium are important. Thus the limiting action functional for a
test system is simply quadratic in the probe field, an adequate representation
for small deviations. As is well known, a translationally invariant history
measure is appropriate for actions quadratic in the fields (22).

Equation (2.24) has a direct bearing on the measure on f-histories. Adopting
a convenient shorthand notation

FX =|F, () X*(x)dex,

ete.,, and putting aside questions of normalization, we introduce a Fourier
transformation over histories

QF) — j exp [iFX]Q(X)DX
and obtain for (2.24)

~

(2.26) (2,12, :J QNF)DF Qy(F) .

The transformation from F, to f, introduces a Jacobian,
DF = |DF|Df|Df = H2Df,
and comparison with (2.22) shows that
(2.27) 2f = H'Df « I1,| 2F|of| }11, df, () ,
which apart from a normalization factor expresses the form of the needed
measure. We now study the physically important matrix element (w,.|£),

and discover as well the reason for our interest in the unusual measure 2f.
The solution to eq. (2.3) can be written in the form

(2.28) 12) = exp [{I{f}] | @)
where the necessary constraint is now
1@ @) =0,
i.e., |®) is an eigenvector of y* with eigenvalue zero, whence the subscript.

(#2) For the particular external field variables discussed in Section 3.1 the validity
of eqs. (2.24) and (2.25) can be explicitly verified by more conventional procedures.
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A solution of similar form may be written for eq. (2.9), namely
(2.29) |3) = exp [ 1{f}] | wy) ,
where the vector |w,) satisfies simply
X)) =0,

and is thus one of the vectors defined in (2.4). The relation (2.14) between
|Q) and [Q) together with (2.28) and (2.29) imply that

(2.30) |@g) = H |wy) ,

and thus, that the eigenstate |@,) is related through the operator H to the
state |m,) whose representation properties we know.

Combination of (2.28) and (2.30) determines our matrix element of inte-
rest to be

(2.31) (0,12) = (wg|exp [(I{f}] H|w,) .

The proper representation of the states in this matrix element is clearly given
by (2.24), and thus by (2.22).
Because
(0, 1f) = w3(f) oc exp[i FX]
it then follows that

(2.32) (g Q) = N—‘fexp [iFX +iI{}]9f ,

N representing a cumulative normalization factor determined by the requi-
rement (w,|£) =1. Note that the factor H in (2.31) cancelles the H~' in
(2.22) leaving just the measure Zf defined by (2.27).

Equation (2.32) represents the desired resolution of the physical matrix
element in terms of a realization of the Hilbert space by f-history functionals.
The form of (2.32) is not unlike that of the Feynman sum-over-histories.
However important differences in interpretation should be observed. The in-
tegrals in (2.32) extend over all space-time; no variable boundary values are
preserved to characterize « the propagator ». Instead the «label » in (2.32) is
provided by the test function X* with which the system interacts. Equa-
tion (2.32) therefore represents the interaction of the quantized field f, with
the entire external system. The form taken by the quantization—notably the
form of Zf—is dictated by the interaction term FX. It is thus dictated by
the way in which the « conjugate variables » enter into the action functional.
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This is of course in agreement with the conventional time development form
of the sum-over-histories.

It remains to discuss (2.32) in the light of the resolutions in (2.22) and (2.23).
Why did a result arise which seems to be intermediate to both of these choices?
This arose simply because, according to (2.29) it is the vector [.(NJ) which
through [w,), is directly related to the ket of interest, |w. ). The alternate
matrix element

(0, 12)

would be expressed in a more conventional form like (2.32) with an additional
factor H-'. The choice of this latter matrix element, however, fails to re-
cognize that the basic variable is f, and not F,; it fails to recognize that the
interaction term is really nonlinear in f,, and only formally linear in the va-
riables ¥,. This argument is admittedly not compelling, but unfortunately
the correct choice can not be discovered by a study of our elementary analogue
in (2.17); this example is merely a reparametrization of essentially linear inter-
actions. Our two possibilities coincide, however, in the linear interaction case
F,=f,. Perhaps (2.32) could be looked at in the elementary framework as
the inner product of two vectors, one of which is best interpreted as a «|y)>»
vector while the other is best interpreted as a «|u)» veetor. In the four-
dimensional form of quantum mechanics, such inner products are of basic
importance, in contrast to the conventional formalism. The bagic weight func-
tion for the measure on histories (in the functional representation of the matrix
element of physical interest) is thus altered and, as we shall illustrate in the
case of the gravitational field, the group of invariance transformations is altered
as a consequence.

3. — Application to the gravitational field.

The application of the preceding general formalism to the Einstein gravi-
tational field is straightforward. We adopt the «free» conventional action
functional

(3.1) I{g"} = f R,V —gdx

expressed in natural units (*4). As « basic» gravitational variables we adopt
first the contravariant form of the metric tensor ¢*’(x). These variables cor-
respond to the variables f, of Section 2. From these variables we can form
other guantities, such as g, or g=det 9.~ The Ricel tensor R, is cons-
trueted from ¢*%, g and their derivatives.



556 J. R. KLAUDER

A) Contravariant metric tensor as basic. — For the interaction term for
the gravitational field with an external source we adopt the action

(3.2) fvw gV — gz .

The symmetric field v,,(z)=v,,(®) represents the external source (i.e., X*) and
is, by assumption, functionally independent of ¢ (and thus of ¢,,). The non-
linear appearance of ¢* in (3.2) is clear, and it follows that the relevant funec-
tion F, is determined by

(3.3) F,—>g"(g") =¢"Vv—g.

The fundamental commutation relations then take the form

(3.4) [9(%), vup(y)} = — §i[ 0505+ 030,16z —y) ,
(3.5) [9" (@), g% (W)] = [v,,(®), v5H)] = 0.

A straightforward calculation at a point shows that

7
8g“5

1 v v v
(3.6) = 518505 + 040l — 9" gug] Vg -

In analogy with eq. (2.8) we define a new Hermitian quantity

og*’
Bap = Vv Kk

(3.7) Bog= 77(,‘,3-\/—:4'— %vw-g‘“’gaﬁ\/:g;

thus 8,, corresponds to the operator y*. This new variable obeys the com-
mutation relation

(3.8) [0 (), Bop(y)] = — hi[0£6} + 840716l — ).

Additional commutation relations may be found as a direct consequence
of the above relations. We list several of these without proof, although, as
an example we discuss the first of these in the Appendix. Some additional
commutation relations are:

(3.9) [V—9@), 2p®)] =— }igasdlc —y),
[\/; g_("%f)v }Bzxﬂ(y)] = %igaﬂa(m — ),

(3.10) [(—9¥g"@), B,y] =0.
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Still further relations may be found by raising or lowering various indicies.
For example,

[gyv(w)7 ';'Bzxﬁ(y)] = gpl(w) [gk(x)’ %45(3/)] gw(l') )

which follows as a simple identity. TLet us define various contravariant Her-
mitian v-operators by

(3.11) /I/"uv — ,v;.w' .gcw ; /Ulw — ”10‘ . g/l'tgva ,
and similarly for B, ;. Then, for example,

[0@), v ()] = ¢ () [0@), v, ) ,

etc., where O is an arbitrary g¢-dependent operator. Note that
[v* (@), v4(y)] # 0

since v is not functionally independent of the metric.
The dynamical constraint equation, analogous to (2.3), is given by

(3.12) {8,,@) + B,,@)}Q) =0,
where we employ the conventional abbreviation

@;w = (R;w— %ng)\/; g.

The corresponding alternate dynamical equation like (2.9) is simply
(3.13) {R (@) + v,@)}H Q) =0.

A derivation of (3.13) from (3.12) shows on the basis of the general study in
Section 2 that

(3.14) H(z) = det*[3g™/2g""] = [— g(x)] F,

a calculation considerably simplified by the observation that apart from the
factor (— g)! the matrix on the right-hand side of (3.6) equals its own inverse.
Thus only the (—g)™* part of 9¢g*//93*” effectively survives the determinant
operation (23).

The matrix element of physical interest is (w,|Q), where |w,) is a simul-
taneous eigenvector of the operator v,5(®). In a functional representation of

(**) See also the remarks made in connection with eq. (3.28).
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this Hilbert space in terms of functionals of metric, eq. (2.32) becomes

(3.15) (w,]2) = leexp liif(vm, + R,,)8" dx| 29,
where, from (2.27) and (3.14),
(3.16) 9y o [1,[—g@]* <, dg™ (@) .

This measure on metrics is just the one proposed originally by MISNER (%)
based on invariance arguments in his study of a Feynman quantization of
general relativity. Here we observe that this measure follows as a consequence
of the form taken by the interaction with an external source.

Before a further discussion of (3.15) is made we point out that a similar
equation can also be derived under differing hypotheses.

B) Covariant metric tensor as basic. — Suppose instead of the contra-
variant tensor ¢*° we wished to call the covariant tensor 9,5 ¢ basic». Then the
interaction term

(3.17) fw“ﬂ +gusV — g du,

would involve yet a new operator w* which is functionally independent of
9,5- Clearly v (in 3.11) is not a direct candidate for w*’. The new commu-
tation relation replacing (3.4) is

{3.18) [a,5@), w=(y)] = — §i[63,85 + 056 18 —u) .
It follows from the relation

0 &, 1 g {7 g QT oT o
(3.19) of _ 16305 + 8305 + gusg™1V—9,

Ofse 2

that the Hermitian operator

(3.20) W) = wP(2) (09./0000) = 07 V=g + b gupg"V—yg,
satisfies

(3.21) [9.5(x), BW*(y)] = — 4i[ 6765+ G5 1 o( —y)

According to the discussion in A) we may lower the indices of W and



COVARIANT QUANTIZATION OF THE GRAVITATIONAL FIELD 559
raise those of g, with only a net change of sign. Thus eq. (3.21) implies
[97(@), B, (y)] = 3i[o; 07+ 07 0,]0(x —y)

where 2, =W”-g,g,.
A comparison of this result with (3.8) indicates that

(3.22) N, =—LB,
any possible difference in the form of a function of the metric is ruled out by
the nondependence of v,; and w? on g, .

An appropriate constraint equation in the present case is

{3.23) {_@\ﬁ 4 2}3%/3} A) =0,

|1) being a new state vector. The new matrix element of physical interest
is now

(3.24) (lwr A),

where we define

{(3.25) w(@)|A,) = w @) |A,) .
The formal solution to (3.23) is

(3.26) Ay = exp [i{}] | 1),

where
W () [4) = 0.

This solution can be related to the solution of the alternate constraint

[— B* 4w ) = 0.
Here the solution is

1 A) = exp [{ I{f}] |7)

and based on the general analysis of Section 2, it follows that

(3.27) A) = H'|A)

1

(3.28) H'=|¢cq,lcg,,*

In order to evaluate (3.28) we use the following simple argument, for which
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we introduce the 10 x 10 matrices M(4) defined by
305,05+ 0305 + Ag,p07].

It follows directly that

(3.29) M(AYM(B)= M(4A+ B+ 2AB),

an algebraic relation obeyed also by their determinants d(4) = det M(4). The
appropriate solution to (3.29) for the determinants is

d(4) = (1+24)2,

and is independent of g,, for all A. Application of this result to (3.19) then
shows that

(3.30) H=IL}[—g@x] =#H,
namely, that apart from a formal normalization factor .#, H' and H are
identical. We now derive (3.23) and an expression for (3.24) from the rela-
tions established in part A) above.
If we raise both indicies of (3.12), then
{(35"“9(90) + g""‘gﬂ”%w(w)} Q) =0.

In order to hermitize the last term, we multiply by I, [— g(m)]%, and employ
eq. (3.10). Thus, with the definition (3.14) for H, we find

(&% (@) + gD, g @)} H-1|Q) = 0.

The identification (3.22) then leads to
(& (@) — WP (@)} H|Q) =0,

and comparison of this equation with (3.23) indicates that
(3.31) |A) = H'|Q) .
From the general arguments of Section 2 we must interpret (3.31) as a change
taking place in the weight function of the functional realization of the Hil-
bert space.

To determine what weight change is to be associated with (4,| in (3.24)
we argue as follows for the particular case (,]. If we ignore the numerical



COVARIANT QUANTIZATION OF THE GRAVITATIONAL FIELD 561
weight factor .#, then we find

H‘(‘)O) :‘E(Do) = leo) = H*

ln)

from eqs. (2.30), (3.26), (3.27) and (3.31). Thus generalizing to nonzero eigen-
values, we obtain

(3.32) [2.) = H ' o,) .

The content of (3.31) and (3.32) is that |[A) and [4,) are not to evaluated
in the conventional form of inner product eq. (2.22), but rather in the alter-
nate form (2.23). Still ignoring the factor .#, we find

338 (A1) = (4 lexp i (17| 2) = [220) HDF exv [ (120

In the present application of (2.23) the variable f, are the covariant metric

9, and

AE(f) o exp 'i/'w“‘ggaﬂdmj )
Therefore (3.33) becomes
(3.34) (A,]4) = N- fexp i f W™ + R)g.pde| 29,

where
Dg oc I, [—g(x)| 1T, dg ,(x) ,

which is just an alternate and equivalent form for (3.16). Therefore the same
measure on metrics arises in the covariant metric formulation as arose in the
contravariant metric formulation.

The similarity in the form of the functional representation of (3.15) and
(3.34) is noteworthy. The expression (3.15) is discussed somewhat further in
the next section.

4. — Conclusion.

We have generalized the conventional covariant quantization procedure to
nonlinear interaction terms and have applied this formalism to the gravi-
tational field. The functional representation (such as (3.15), (3.16)) shows a
striking formal similarity to the results of Misner for a Feynman quantization
of general relativity.
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Since the arbitrary field v, is at our disposal it is suggestive to choose very
simple and symmetric boundary conditions on the integrals in (3.15), namely,
to sum over all permissible metric histories in the entire manifold. Such a
choice singles out no metric in particular as it treats them all alike. Indeed,
if the manifold were closed in the time direction this would have to be re-
cognized in summing over all permissible metries. This important physical
state vector we call [£,); it may well play the role of a « vacuum » state. If
we adopt the physical state |,) then no space-like surfaces ever enter the
discussion; space and time are treated everywhere on an equal footing.

Functional derivatives with respect to the test field v, will generate matrix
elements of the metric, if we give to (3.15) a sum-over-histories interpretation.
It is of course possible, therefore, to ask surface-dependent questions of
the final expression (w,|,). However the advantage of the present analysis
is that it saves all such questions to the very last step.

Unfortunately further calculation of the functional integrals involved in
(3.15) seems not possible at present since the techniques for continuous in-
tegrations are as yet insufficiently advanced. One may have to be content
with exploiting the invariance of 2y, as was done by MISNER by ROSEN (24).
The resulting measure on metrics is invariant under the transformation

1V puv(m) w3
g — g =ny nﬂ

v

at each point, i.e.,
@g(n) _ gg

which then reflects itself in the structure of (3.15).

Finally it should be remarked that the operator form of the relevant equa-
tions (2.2) and (2.3), may be directly approachable with distribution theory.
In the case of the gravitational field the commutation relation (3.4) would,
after multiplication with 4/— g, become

(4.1) [9(6), v(m)] = —i&, m)

where

0(6) = [£0"V=gar,
v(n) :fn“’s'vaﬂ- V—gdax,

(&, 7})=f§a57}°"3\/—_gdm.

(24) G. ROSEN: Thesis (Princeton, 1959).
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Here &,; and 7*f are two « test » functions in the distribution sense. The dyna-
mical constraint eq. (3.12) becomes

(4.2) &) + Vi Q) =

) =fn“ﬁmaﬁax,

Vin) :[n"‘ﬁ%_wdx )

where

The remarkable property of the dynamical constraint (4.2) in the case
of the gravitational field is that the operators therein, G(5) and V(y), de-
pend on no higher powers of the local fields than do the basic distributions
which appear in (4.1).

It is possible that a rigorous approach to the covariant quantization of
the gravitational field could be based on (4.1) and (4.2).

APPENDIX

Herein we derive the typical commutation relation

(AI) [\/ : vcn ] — Zgo'r m - ?/) ’
and, in particular, show its dependence on the dimension of space-time, which

in this section we initially keep arbitrary. Observe that the 1, 1-element of the
commutation relation eq. (3.4),

(A.2) [V— 99" @), ou(®)] = — i046]0(x —y),
vanishes unless y=v=1. Consider, then, the commutator
(A.3) [det {V—gg”@)}, vu(y)] = C.

In the expansion of the determinant in (A.3) only one term is nonvanishing
so that (suppressing z and y)

(A.4) € = Minor,, {V— g¢g*} [V—gg", vss] = — i Minor,, {V—gg"} bz — ) -
By definition

(A.5) Minor,, {V.— g¢”"} = det {V— gg"}(V— 94" )5} -
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If n{z2) denotes the dimension of space-time, then

(AG) det {'\/:‘;]_glw Ep— (_ g)(n—z)lz ,
(A7) (\/:Eglw);ll = gu/\/:l) .

Using eqs (A.6) and (A.7) we find

(A.8) —[(— )22, 0] = i(— )" 2g,, 8(x — y) ,

and, if we assume that the commutator of v, with any function of ¢°f depends
only on ¢**, then

(n — 20— g)n—¥i [\/—“79; '011] = —i(— gy ¥gy o@ —y) .
Finally, generalizing to each of the elements of v,,, it follows that

— i

(A.9) [V—9@) ve®)] = — — gord@— ).

which, as desired, reduces to (A.1) for n = 4.

RIASSUNTO (Y

In ogni teoria quantistica, nella quale sia anche quantizzato il tensore metrico
della teoria gravitazionale di Einstein, diventa privo di senso richiedere una superficie
spaziale iniziale su cui specificare i commutatori di campo convenzionali. Si designa
il formalismo quantistico covariante, in cui tutti i campi o commutano o non com-
mutano solo quando i punti dei campi coincidono, come adatto a quantizzare la gra-
vita. Si analizza un po’ dettagliatamente 1’estensione del formalismo gquantistico cova-
riante a campi bosonici generali che interagiscono in modo intrinsecamente non lineare.
Si applica questo formalismo al caso del campo libero gravitazionale. Si trova che, in
una rappresentazione funzionale, la misura sulle metriche ¢ guella proposta da Misner.
8i propone uno stato fondamentale della teoria gravitazionale quantizzata, che com-
porta una sommatoria estesa a tutte le metriche possibili in tutto il complesso spazio-
tempo.

) Traduzione a cura della Redazione.



