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Summary. —— This work covers the caleculation of the correlation function
and power spectrum of a train of pulses of exponential shape and random
amplitude, distributed according to a law of probability experimentally
found by H. Sawapa in a research on the time inferval distribution in
the Barkhausen effect. All the features of the experimental power spectra
of the Barkhausen noise, found by many authors to be contradictory
with the interpretation of statistical independence of pulses, can thus
be completely explained. The remarkable physical significance of the
introduced distribution gives the results a more general interest.

1. — Introduetion.

It is known that many random processes of physical interest can be re-
duced to trains of overlapping random pulses. The problem can be defined
from a statistical standpoint, by giving the distribution of time intervals
which deseribes the shape of the single pulse. This function is generally as-
sumed to be the same for any pulse, except, at the very most, for an amplitnde
factor, which depends upon the pulse considered. Of course, both the distri-
bution function and the shape of the single pulse depend upon the particular
problem under consideration. Studies of trains of overlapping pulses were
made by many authors (I'*), but, as a matter of fact, except some results of

(1) 8. O. Rice: Bell. Sys. Tech. Journ., 23, 282 (1944).
() D. MmooreroN: An Introduction to Statistical Communication Theory (New

York, 1960).
() T. W. Lue: Statistical Theory of Communication (New York, 1960).
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a general nature obtained by 8. O. RICE (') ont the mean square value of noise,
other works generally assume that pulses are statistically independent, and
consequently that timme intervals are distributed according to Poisson’s law
of probability, as follows:

(1.1) P(r)y=vexp[—wnr].

In the above formula, P(r) is the probability density of time interval o
between subsequent pulses, and » is the average number of pulses per unit
time.

This is justified by the great importance which this case ussumes from a
physical standpoint, as many random phenomena, such as shot noise, thermatl
noise and other, are—or can be considered so as a rough approximation—con-
stituted by independent elementary processes. Nevertheless in tome cases the
statistical independence of pulses cannot be assumed.

A quite different type of distribution from Poisson’s was found by H.
SAWADA (%) in a research on the time interval distribution in the Barkhausen
effect (noise in ferromagnetic materials).

Assuming the symbols as having the same meaning as in eq. (1.1), this
distribution can be written as follows:

(1.2) P(r) = 2rexp[—2ur].

This law of probability, plotted in Fig. I, has an important physical signif-
icance, deduced in the paper by H. SAwspa mentioned betore, and derives
from the fact that the probability of an occurrence, in this case, becomes a
linearly increasing function of time, when pulse repetition frequency tends
to zero, instead of becoming constant, as in Poisson's case.

It can be used, at least as an approximation, in practically all the cases
in which the correlation between the elementary processes, which enter into
the noise formation, is such that each ocenrrence has an inhibiting effect on
the subsequent one which decreases in time.

Of course, for this kind of correlation, other types of distributions can be
found, which better fit each particular case. They are, however, more com-
plicated functions of # than eq. (1.2). That makes it almost impossible to
caleulate the most important statistical functions of noise, as the correlation
function and power spectrum.

This paper will caleulate the correlation function and power spectrum of
a train of overlapping pulses of exponential shape, arbitrary time constant
and random amplitude, distributed according to eq. (1.2).

(*) H. Sawapa: Jowrn. Phys. Soc. Japan, T, 575 (1952).
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This is chiefly in order to prove that this distribution can completely ex-
plain all the features of the experimental power spectra of the Barkhausen
effect, which many authors (®¢) found to be inconsistent with the statistical
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Pig. 1. — Curve 1: shape of the distribution function given by eq. (1.2), plotted on
dimensionless co-ordinates; curve 2: shape of Poisson’s distribution given by eq. (1.1),
plotted on the same co-ordinates.

>

independence of pulses. The study of this noise is thus based upon new foun-
dations.

The assumed shape of pulses is quite satisfactory in this case (57). Yet,
for the reasons given above, the conclusions of this study have more general
interest and can also be extended to trains of pulses having other than an
exponential shape.

2. — Calculation of the correlation function and power spectrum.

In order to calculate the correlation function and the power spectrum of
a train of overlapping pulses of exponential shape and random amplitude,
distributed according to eq. (1.2), a very general expression of the correlation

e}

) G. Biorct and D. PescErri: Journ. Appl. Phys., 28, 777 (1957).
6) K. G. WARREN: Electronic Technol., 38, No. 3, 89 (1961).
) R. 8. TeesLE, I. C. SkipMORE and W. D. CorRNER: Proc. Phys. Soc. London,
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funetion shall be used, drawn from a work by G. Broror and P. MAZZETTI (®).
This proves that for a train of overlapping pulses, singly described by a func-
tion a,F(t), and distributed according to an arbitrary but normalized func-
tion P(x), representing the probability density of the event that two subsequent
pulses of the sequence are separated by a ftime interval », the correlation
function (by definition given by

+7

(2.1) p(r) = lim % fI(t)I(t + 7)at,

r—>0

-7

where I(?) represents the summing function of all the pulses for any value
of time) can be expressed as follows:

(2.2) p(t) = v[a® () +a' (S, + 8] .

In the above equation, v is the average number of pulses per unit time, a*
and @ are respectively the mean square value and the square of the mean
value of the random amplitude factors a,, @(r)is the autocorrelation function
of F(t), defined by

4+
(2.3) D) = [F(t)F(t-— gt ,

—®

and calculated for &=1.
Finally, 8, and 8§, are the following two series of integrals:

@ w©

2.4) 8= [ P(e)(e + 7)di + f az, f o) Pla) Bl 4, + 7) dy +

1]

+fdx1jdx2fP(xl)P(x2).P(x,,)@(xl + 2+ @+ t)das + ...,
0 [ 1]

8

(2.5) S, =/P(m)d7(x— 7)dr +fd:vlfP(w1)P(x2)<D(wl + 2, — 1) do, -

0 @ o]

+ jda, dacsz(ovl)1?(902)13(:103)(15(001 + @+ 2z —1)dey + ...
0 Q 1]
() G. Brorct and P. MazzerTi: I Elettrotecnica, 48, 469 (1961), (in English).

84 - Il Nuovo Cimento.
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where P(x) is the distribution function previously defined, and @ represents
the function defined by eq. (2.3).

BEquation (2.2) holds whatever function F(f) is assumed to describe the
shape of pulses.

In this specific instance

(1.2) P(x) = k*x exp[— k] (k= 2),
(2.6) F@t) = 1(t) exp[—ot],

where 1/« is the time constant assumed for the single pulse.
By substituting this expression of F(f) in eq. (2.3), the following is easily
obtained:
exp [— |
20 '

D) =

The calculation of the sum of the two series of integrals 8; and S, is given in
the Appendix, with the following results:

k* exp [— at]
*D = G 2k
k k2 L
(2.8) Sz 8]{;2 PXp [ 2]0"[] m exp [— OCT] - % .

From eq. (2.2), on the basis of eq. (2.7) and (2.8), the following is obtained:

—24 ,

(a4 22E
Do\ o2 — 42

2.9) ()= g ) exp [—at] +

—2

+a exp[——2kr]—|—ai .

8% — 9 a2
This is the correlation function of the pulse train considered herein.
As an indication Fig. 2 shows the development of this function when

— -2
at=a

for a particular value of af/k (curve 1).
It can be seen that this function is not a monotonic decreasing function
of 7, as in the case where pulses are statistically independent (curve 2).
The power spectrum of the same pulse train can be easily obtained from
the correlation function of eq. (2.9), by means of Wiener’s transformation:
1 40'0 .
(2.10) D, (w) = om , y(7) exp [jor]dT,

w
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where, by convention, y(r) is considered as extended by symmetry to the
negative semi-axis of the 7’s.

- N [ S e i oL | S
0 10 2.0 30 [ 50 av
Fig. 2. — Curve 1: correlation funetion of a train of pulses distributed according to

eq. (1.2) and calculated through eq. (2.9) (a/k = 10 and @@ @« 1); curve 2: corve-

lation funetion of the same pulse train, the pulses heing distributed according to
Poisgson’s law, given by eq. (1.1).

After making the integration af the second member of eq. (2.10), and
bearing in mind that

XK

/eXp [jot]ldt = 2 () .

—0
where 8(w) is Dirac’s impulsive unit function, the following ix easily obtained:

a2 1 4 2.3 1 2,
2.11) D) = v Wy

27 o |- 2 a (@ - o) (1692 - m2) oy

The last term of the second member of this expression represents a line in the
origin of the «’s, the area of which is equal to the square of the average value
of function I(i), as defined at the beginning of this paragraph.

Evidently this line must be found in the power spectrum of any pulse train,
whatever the distribution the pulses are complying with.



1328 P. MAZZETTI

Equation (2.11) can be verified by integrating it with regard to « from
— oo to 4 co: the result is the expression of the mean square value of I(t)
as given by O. RICE (°), provided calculations are made according to the
distribution assumed herein (eq. (1.2)).

3. — Discussion of the results.

Equation (2.11) gives raise to several interesting observations.

Abstracting from the impulsive term in the origin of the w’s, which is not
peculiar to the pulse train being studied here, as said before, it can be seen
that the first term of the second member of eq. (2.11) represents the spectrum
of a train of pulses identical to the pulses of the train to which eq. (2.11) re-
lates, but statistically independent, .e. distributed according to Poisson’s law
of probability:

(1.1) P(r) =vexp[—rx].

This can be easily seen by Campbell’s theorem, which is one of the most
important consequences of Poisson’s distribution. For a train of pulses of
arbitrary shape it can be written as follows:

(3.1) D, () = va* | 8(w) |?,

S(w) being the Fourier spectrum of the single pulse, which in the present case
is given by

1

S(w) = —1t 1(t) exp [— at] exp [— jot] dt = L_ e
Von Vom %+ jo

However, the second term of the second member of the same expression is
peculiar to the introduced distribution of probabilities (1.2), and appears to
be a corrective term, taking into account the correlation between the pulses
implicitly introduced by eq. (1.2).

It is always negative, and this involves that, in regard to a case of stati-
stically independent pulses, said correlation causes a reduction to the power
associated with the noise.

This is obviously a consequence of the fact that the assumed distribution
involves a reduction of probability of an almost complete overlapping of sub-
sequent pulses (see Fig. 1).

(®) 8. O. Rick: Bell Sys. Tech. Journ., 23, 305 (1944) eqs. (1.5)-(9).
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It can also be noted that this term assumes its highest value (one half of
the value of the first term, when ?:dz), for w =0, and tends to become
negligible in respect to the latter, either with w tending to infinity or with »
tending to zero. This means that power reduction mostly takes place in the
low-frequency area of the spectrum, and increases when the pulse repetition
frequency increases.

When af = Ez, i.e. when the pulses have all the same amplitude a, eq. (2.11),
disregarding the impulsive term, can be written as follows:

_2

v a 1

mdt w2t (18]

(32) (Dp(w) =

whereby it appears thit the deviations from the case of statistical independ-
ence of pulses become higher than ~ 59, for values of analysis frequency
less than twice the puise repetition frequency », with a trend towards 509,
for very low values in regard to v.

Thus, frequency f,=2v can be taken to divide two areas of the spectrum.
In the area of frequencies higher than f,, Campbell’s theorem, given by eq. (3.1),
can be considered as being rather effective, while in the other area, it cannot
be applied, and the spectrum must be calculated only on the basis of eq. (2.11).

It could also be useful to note that in case ?;ﬁ&g, the influence of the
term that takes into account the fact that pulses are not statistically inde-
pendent, is reduced in any case.

4, — The case of the Barkhausen noise.

All the characteristics of the theoretical power spectra outlined in the dis-
cussion of eq. (2.11) fully agree with the power spectra of the Barkhausen
noise experimentally derived.

This is evident in making a comparison between the theoretical curves of
Fig. 3 and Fig. 4, derived directly from eq. (2.11), and the experimental curves
of Fig. 5 drawn from a research presently being carried out on the power spectra
of the Barkhausen noise.

It can be seen that also the experimental curves agree in the high frequency
area with Campbell’s theorem—eq. (3.1)—which is a consequence of Poisson’s
distribution, while in the low-frequency area the power density increases less
than linearly with f, (which is proportional to the average number of pulses
per unit time).

The amount of reduction in respect to Campbell’s theorem is remarkable
in this case, being of the order of 509,



)
3,

power spectrum (ViHz™

1330 . MAZZETTI

Such an etfect had already been observed in the experimental power spectra
by G. Biorc and D, PESCETTI (¢), and lately, by K. G. WARREN (%), relative

R T S
10’ 10° 10° 10°
frequency (Hz)
Fig. 3. - Theoretical power spectra calculated
through eq. (2.11), corresponding to a train of
pulses having a time constant 1/x= 107%s,
distributed according to eq. (1.2). The dotted
lines represent the spectra of the same pulse
train, when the pulses are distributed accord-
ing to Poisson’s law, given by eq. (1.1).
It is assumed that @&.=a — [. The parame-
ter » represents the average number of pulses
per unit time: enrve l: »== 12,5 8 ' cwrve 2:
v=25s"1; curve 3: w=50 st curve ¢:
v~ 100 s~1; curve 5: v == 200 s~'; curve 6:
poe 400 8L,

to the total power of the noise.

It is important to observe that
this feature of the experimental
spectra is inconsistent with Pois-
son’s distribution for any shape
assumed for the single Barkhausen

power spectrum (ViHz')

10’ 102 0’

frequency(Hz)
I"ig. 4. — The same as I'ig. 3, the
time constant of the pulses being
o = 1073 g1 curve L: v = 6.25 s
curve 2: »-- 12,581 curve 3:
pyo= 25 871; curve 4: v=: 50 871
curve 5: v 100 5715 curve 6:

y= 200 gL

pulse, and also if a dispersion in the time constants of pulses exists.
A quantitative discussion and a physical interpretation of the introduced

[AS SR VS I - & A e



STUDY OF NONINDEPENDENT RANDOM PULSE TRAINS, ETC. 1331

distribution of pulses in the Barkhausen noise will be given in another work,
to be published in the near future.

1040

A\
))
S/

power spectrum (V?HzZ'
Xig\
\
J
7
=

.
S

=

!
LI Rl

N

o

g

] S E— ,L_l 1 !
10’ 10° 10°
frequency (Hz)

v

—
o
rs

Fig. 5. — Power spectra of the Barkhausen noise detected on a .5 mm diam. and 20 mm

long pure iron cylindrical specimen, with a single pickup coil of 1750 turns. f, is the

frequency of the polarizing field, which is proportional to the average number of

pulses per unit time: curve 1: f,=0.0125Hz; curve 2: f,— 0.025 Hz; curve 3:

fm = 0.06 Hz; eurve 4: f, =0.1 Hz; cwrve 5: f,, = 0.2 Hz; curve 6: f,,= 0.4 Hz. Inte-
gration time on each analysis point is about 15 min.

Here we will remark that in the case of the experimental spectra of the
Barkhausen noise the average number of pulses per unit time » is not con-
stant, but depends upon the instantaneous value of macroscopic magnetization,
i.e. on time (*).

However this does not change the shape of the power spectra when the

{*) Averaging must be intended as being made at a certain instant of time in
the statistical ensemble, by the ergodic theorem.
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frequency of the polarizing field is much smaller than the lowest frequency
of analysis, as in the case of the spectra reported in Fig. 5 (*).

5. — Conclusions.

In this paper we have calculated the correlation function and power spec-
trum of a train of nonindependent pulses of exponential shape and random
amplitude, distributed according to eq. (1.2).

The important physical significance of this distribution allows application
of the results to a large class of random processes, in particular to the Bark-
hausen effect, for which the distribution of eq. (1.2) was experimentally found
by H. SAWADA.

In this case the agreement with experimental results is quite satisfactory.
This allows a simple explanation of many contradictions which arise assuming
Poisson’s distribution for the pulses.

Many results drawn from the discussion of eq. (2.11) (as for instance the
fact that deviations from Campbell’s theorem occur only in the low frequency
area of the spectrum and always cause a reduction to the power associated
with the noise) are characteristic of the introduced type of distribution and
do not depend, within large limits, upon the particular shape assumed for the
single pulse. Consequently they have more general interest.

%k ok

The author wishes to thank Professors G. BIOrcI, G. MONTALENTI, and
R. SArTORI for helpful discussions.

APPENDIX

1. — Caleulation of the sum of the series S, of eq. (2.2).

Let us evaluate the general verm of this series:
I =fdx1fdw2 ...fP(ml)P(wz) v Pl ) Oy + 2 - .. + 2, + 7)de,
0 0 ]

(*) This can be proved on the basis of an expression given by O. Ricz (1°). For
the modifications of the power spectra in the region of the analysis frequencies near
the polarizing frequency, due to the periodic fluctuation of », see ().

(1) 8. O. Rice: Bell Sys. Tech. Journ., 23, 324 eq. (2.6-11), (1944).

(1) ¥. V. Bunkin: G. T. F., 26, 1782 (SSSR, 1956).
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where

(1.2) Px) = k*x exp [— kz],
o _ exP [~ a[4]]
(2.3) D) =

Because z;, #,, ... #, and 7 are variables always positive, the argument of the
function @, in the above written expression of J,, is always positive, and
eq. (2.3) holds without the signs of absolute value.

From this easily follows

@

J, = 21& (1) (JP(W)(p(x) dw)n,

[1]
where it is assumed

(A1) (&) = exp [—af] .

Thus the series §; becomes a geometric series and can be easily summed up.
By putting

it results (*)

The value of ¢ can be caleulated through eqs. (1.2) and (A.l), and the above
written expression of S, becomes

_ K exp [—aT]

(4.2) 5 Qoi(cc -+ 2k)

2. — Caleulation of the sum of the series S, of. eq. (2.2).

Let us evaluate the general term I, of this series:

I, :fdwlfdxz ...fP(xl)P(a:z) v Pla,) D2, + 0+ oo + @y — 1) Ay,
0 0 0

(") Obviously it is

being

for any value of z.
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Let D, be the region of the domain of the integration in each point of which
the condition

T+ L+ oy —T<0

is satisfied, and D, the remaining part of it, in each point of which:
-+ X+ 2—T>0.

From eqgs. (2.3) and (A.l) one obtains

I,= %ng(wl)P(xZ) e P(@s) o(— 2y — 25 ... — ) Aoy A, ... dw, +-
1 p{—1)

+2<:c

fP(wl)P(wz) o Ply)ole, + 2+ . + @) day do, ... dew,

Dy

In the #n-dimensional orthogonal cartesian reference system {wl, Doy er Tf
D, and D, are the two regions in which the plane

(A.3) R 7 U L M 1

divides the positive generalized quadrant of the reference system itself.
It is convenient to perform the following linear transformation:

Tyt By + von - By =Y,

="M,

Xo=— Y2

Ly = Yn1 -

In the new reference system {y,, ., ... ¥} the plane of eq. (A.3) is represented
by the equation

Ya=1,
and becomes parallel to the co-ordinated plane
Yn=20.

The whole domain of integration is now the positive region of the n-dimensional
pyramid limited by the planes:

Yn1=0,
Yoz =0,
¥ = 0 1
Yn—Yr—Ya— v0o— Y1 = 0.
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The value of the Jacobian of this transformation is 1, and the general
term of the series S, becomes

. () |
Ad) 1= DD [P P o POt e e g ) sy

Dy

—T
e (’/ JP YOPW) o PUn—Y1—Yo— oo — Y1) @(¥0) Ay oo Ay,

The expression of the probability distribution P(x) given by eq. (1.2) becomes

Plyu—h—t— e —Yur) =
=k (Y=Y . = Yu)EXD [ (Y — Y1 — Yo oo Yur) =
=K%Y, exp[—ky.]exp [ky,] exp [ky,] ... exp [ky,y] —
—ky,  exp [—ky.] exp [ky] exp [ky,] ... exp [kyn-]—

— k*Y s €Xp [— kyu] exp [ky,] exp [ky.] ... exp [kyn].
Then eq. (A.4) can be written as follows:

i Yn—v; Yn—Yy~Uy—...~Up_»

(1) .
ln:g—ak-”U@( Y €xp Ry, |dy j?fldylfJ»d?f» /y“d?fn-I—
0 0 0
Yn —Y Yn— U~V —VUn—2
«[ (—ya) exp [ky.]dy Jyldylszdyz f?/n-ldyn—l—
0 (1] 0

Y1 Yn—V1—Ve—...~¥Vp—2

- / yn {e‘{p [_ ‘1‘ l)(‘n] dyn[ 1 dylf% d?f& b fyn-~ldyn'1 -
0

Y1 Yn—Y1— Vs e. " ¥Un—3
— f n) €Xp [— kyn]dunfjldylf 24y, ... fyn_ldym] +
0

©

( ) Yn—%1 Yn— Vi~ ¥~ .—VUn-2
— T
+? G -k [ [w(un )yn exp [— ky.]dy f%dylj 2 dYs . /yn- dyn——
M 0
":) Yn 'Vﬂ:/l Y~ Y1~ Y2~ VUn~2
- J P(Wa) exp [— ky,|dy., f i dy, j Yo dyy ... f Y1 sy
T 0 0 [+]

@« Yu Ya ¥y Ya—V1—Ve=...~¥Vp—3

— f P(Yn) exp [— kyn]dyn[yld%[yzdyz fy?.qdyn_l .
é 5

T
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By putting:

Yn Yn 11 Yn—¥1~Vs Yn=Y1—V2—...~¥Yn-1

To(ya) = /yldylfyzdyz / YsYs oo | Yndya, -
0 0 0

0

Yn—¥1 Yn—¥1— Yp—V1—Vag~...~VUp-1
n(Yn) fyldylfyzdyz j Y2 dYs ... f Yndy, =
VYa~V1 Yn—¥1—¥2 Ya— Vi1~V —¥n-1
—f 1dy1f?/2d3/2 f ysdys ... f YndY, =
0 0 0
Yy Yn—V1 Yn=¥1~¥2 Va1V . "¥Yn-1
fyldylfyzdyz f Ys Y5 ... [@/idyn OF
0 0 0 0

(*) The fact that these integrals are equal can be proved by an inversion of the
order of integration. In fact

Yp—¥1—...~¥p—2 Yp—Vi—ere=Ug=1 Yn=¥r=ee~Vp-1

Rn=fy1dyu f Yo—14Yo f Y34y, - Yo 4y, =
0 0 (1] o

X—Yp-1

f 4y, - f Yo—13Yp f Yol Wo + Yo + X)dy, ,
0

where
X=Yn—Y1— o — Y2
& Yn—Vi—...—Yg+1 Yn—Yy—.imVpor
f(§) = f Yor1WWors | Yor2Wores o | %0 dYn .
)] 0 0

Finally by inverting the order of integration in the two last integrals one obtains

Un X X—1g—-1

R, =jy1dy1, --fyﬁ 4o [Yo-11Yo + Yom1 + X) AYpy =

[} o
Yn Yn—Vi—...=Vp—2 Up=V1—=0.~Vp=1  VYn=V1~.r.~¥n-1

:fyldylﬁ j ?7‘2—1 dyg—l f ygdyg’ yfz dyn >
0 0 0 0

by changing ¢ in p—1 and p—1 in .
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the expression of I, can be written

T

AS2pn f P )y €XD [— k] T (y) Ay —

1,=%
2a

—(n—1) j P(— Y) €Xp [— kt/a) Bna () Ay| +

©

+ %—7;) ke U‘P(yn)yn exp [~ kYn] Tos(Ya) dYn—

T
@©

—(n— 1)f¢(yn) exp [— kyn] Bry(yn) Ao -

T

Now the integrals T, and R, can be evaluated, and it turns out (see the note
at the end of this Appendix)

Y
" em)l”
« Y
R,=2 )
(2n 1 1)!

Introducing these expressions of 7, and R, in the last expression of I, and
remembering eq. (A.1), one gets

o |€XD [— 7] a exp [at
ln:kz - %‘ jehp[ o — I" ?/n]yn l: ?T)i' dyn‘%’ 7—%(& ] exp[ “+k)y’ﬂ].
T [exp [—aa) _ "
0
exp [ot yr
A L P KWl Gy gy Wl -
2a )! |

Hence, by carrying out the elementary integrations,

kzn 2n—1 2 __1 2n—2
= 2a@n—1)! [eXp [~ {eXp [lx—= k)] ;——k—( n(a—ict)z +
L en—DEn—2)rr @n—1)! @n—1)!
by B
( 1) 12’”——1 (27)/ — 1).[2" -2
%
T }+exp[ ’]{ R R

N (2n —1)(2n — 2)g2"—3 + 2n—1) 1}}

(@ + k)? N
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This expression can also be written in the following form:

et T (e A L ikt
==y, (oc—k)”l (@n—1)! * (2n—2)! +"'+1}+
Lespl—er] R expl—kt] bt
20 (OC— 76)2" Qo (OC + k)zn
kN L) i
[ (2n —1)! (2n—2)! EEE +1l'

By adding and subtracting the terms

exp [— k] B . oxpl—ar] ke
7 (a iy OP LT =
exp[—kz] & exp [ar] k"
(% o
Dot (OC + )2n exp [ + OC ] Qe (OC + k)zn ’
this expression of I, becomes
exp [_ IvT] an —_ 06)2"_1 Ten— -1
,,,,,,, L — Y —
Tn="5, e |SP L= 2n 1)1

(k . 06)2"_2 1271 2

=1

exp [— kr] ko
20 (0( + k:)z”

[~ exp [(k + )] + (k o)t ezt (kA apripn

+

@n—1)! (2n—2)1

1

exp [ar] k"
200 (At k)

Hence, by expansion of exp [(k — «)7] and exp[(k+ax)r] in power series of 7

exp [— k7] k2 & (k— o)primgznim

L= 20 (e—kpm S (20 +m)!

_exp[—kt] i (k + q)zrtmyreim exp [ar] B
2x (o + k)2 = (2n -+ m)! 20 (o + k)T

Now summing over all values of » from 1 to oo, one gets

© exp [ kT] © © fo2n (k o OC)2"+m g2,
A5 exp [— k] n (k)i
- ’Zl 20 n=1 m2=0 (“— k)~ (2n + m)!
__exp [-— kt]

i ® en (k - g)2ntm gandm exp [OC‘U] z 102"
o o oc+k T o@2n+m)! = ( k)"
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The double series in this relationship are, as we shall show, absolutely convergent
(the second series has always positive terms), so that it is possible to change
the order of the terms.

It is easy to verify that the expression above written can be rearranged
in the form

D A

n=1 ‘)OC

n=1
— z (dzm - °m+1 2 b2 ”J + CXp [OC'L'] z b)m
m=1
where
-k
R—

k
b=
= gk_—_oc)a_-[_s 7

s!
a,— FrerT
s!

This way of writing eq. (A.5) corresponds to sum diagonally the terms in the
table which represents each double series, by taking the terms two by two
in each row.

By noting that

ﬁ qimt a
a?ﬂ f— _ T
n=1 - 1

b2
z b = 1 b {(absolute convergence),
m=1 -

eq. (A.6) can be written

@ a2m+2 - az
= (Cam + Cam1) —

A7) %I,,:QXP [— k7]

n=1 2“ m=1 a*— 1
®, prmte— pe exp [az] b°
mz-l p2—1 ( am “f‘ d2m+1)} 2OC 1—p -
expi{—Fkr] 1
= g“ 1. pr [,gl B Oy, + Camts) — O Z On] —
exp [— kr] 1 exp [at] b2
— b2 (dyy + dymyy) — 02 Y dy e
20 [,,Z o+ ania) ,Zz ]+ 2¢ 1—b
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From the definition of a, b, ¢, d,, follows

ascs _ (_ l) Zﬁsts
pd, = 27
st
By these relationships we get
J exp [—kr][ a* Jkroim a  Q ke
ZI" 2 z T a—1 5
o] 2 a 1.5 2m ! a 1.4 (2m —i— 1)
b2 © kZm-L-Sm b @ k2m+l T’m+1
B D P L
br & exp [azr] b2
+b2—1 mz,:zdm 20 1—0b%°

The series which appear in this expression are absolutely convergent.
By remembering the expansions in power series of cosh @, sinh 2 and e?,
one easily deduces

(A.8) 21 ?ﬁ%ﬂ] o - (cosh kr—1)— exli%’ﬂ % (s kr— k) —
—elgg—:k—ﬂ Ez—a_z_l (expl(k—a)r]—1— (k—a)7) —
"513%4@ i ’i . (cosh kr—1) — il 4 i[);—kl] bgb_l (sinh k7 — k7) +
n expga kt) bzb’ (exp[k—}—cx d—1—(k+a) ) +ex1;£on]1z2b2 _
2P 5[3; k] (a — b2li1) cosh k1 + (1—1»2 ~+ 1%1)2) sinh kr] —
R T R X

This expression gives the sum of the series S,.

Note:
a) Evaluation of the integral:

T—71 T2 T=1—Vg™ " ¥n-1

—fyld%fzdyzfyadya ...fyndyn.
0



STUDY OF NON INDEPENDENT RANDOM PULSE TRAINS, ETC. 1341

Let us define the auxiliary function

2
pnte n n 1 qgnt2
- <k>k+2 T+ )+ 2)
In fact it is possible to verify that

i o (T 1 . 1
,Z,(—]) (k>k+2_(n+1)-(n+2)'

Hence

T

T2
T :fyld?h =5

=1

h?/l)2 _
= 1(1% Ay, = ?/1 9 7 dy, = A,(7),

=% T—u1—¥s

T 1 T r— ) ]
3=fy1dylfy2dyzfysdya=f 1Ay (r—yl)d%——fyl(y‘d% — A(7) .
0 0 /] [

In a like way one gets

consequently

T,= (2—n:§)—, Agns(T) = 2n)! .

b) Evaluation of the integral:

T=Yy T=th— Yn— T— = Y1

fyxdylf%d% [%dyn f%dylf%duz-- /undun—
0
T T—yy T—fh—..=¥p-1
:ﬁ/ldy Y24y oo | Yaldyn.
0 0 0

It is convenient to start by the last expression of R,. Proceeding in the way
shown above, one easily obtains

1 9 Tntl
(2n—2)! T Een 1)t

5 - Il Nuovo Cimenlo.
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RIASSUNTO (%

Questo lavoro riguarda il calcolo della funzione di correlazione e dello spettro di
potenza di un treno di impulsi di forma esponenziale e di ampiezza casuale, distribuiti
gecondo una legge di probabilitd, trovata sperimentalmente da H. Sawapa durante
la ricerca della distribuzione degli intervalli di tempo nell’effetto Barkhausen. Si pos-
sono cosi spiegare completamente tutte le caratteristiche degli spettri di potenza speri-
mentali del rumore di Barkhausen, che molti autori trovavano in contraddizione con
l'interpretazione dell’indipendenza statistica degli impulsi. Il notevole significato fisico
della distribuzione che si introduce attribuisce ai risultati un interesse pilt generale.

(*) Traduzione a cura della Redazione.



