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Summary. - This work covers the calculation of the con'elation function 
and power spectrum of a train of pulses of exponential shape and random 
amplitude, distributed according to a law of probability experimentally 
found by H. SAWADA in a resea.rch on the ~ime interval distribution in 
the Barkhausen effect. All the features of the experimental power spectra 
of the Barkhausen noise, found by many authors to be contradictory 
with the interpretation of statistical independence of pulses, can thus 
be completely explained. The renmrkable physicaI significance of the 
introduced distribution gives the results a more general interest. 

1.  - I n t r o d u c t i o n .  

I t  is known that  inany random processes of physical interest can be re- 

duced to trains of overlapping random pulses. The problem can be defined 

from a statistical standpoint,  by  giving the distribution of time intervals 

which describes the shape of the single pulse. This function is generally as- 

sumed to be the same for any pulse, except, at  the very most, for an ampli tude 

factor, which depends upon the pulse considered. Of com'se, both  the distri- 

bution function and the shape of the single pulse depend upon the part icular  

problem under consideration. Studies of trains of overlapping pulses were 

made by many  authors (1-3), but, as a mat te r  of fact, except some results of 

(1) S. O. RwE: Bell.  Sys .  Tech. Journ . ,  23, 282 (1944). 
(2) D. MrDDL~TON: A n  Introduct ion  to Statist ical  Communicatiol~ Theory 

York, 1960). 
(3) T. W. LEE: Statistical Theory o] Communica t ion  (New York, 1960). 

(New 
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t~ general na ture  obtained by S. (). IILCF~ (~) (m the mean square value of noise, 
other works ~'encrally assmne tha t  pulses are stat ist ically independent ,  and 
eonsequently t ha t  t ime interwds a.re distribute(t aeeording to Poisson's law 
of probabi l i ty ,  qs follows: 

(1.1) P(.r)  = ~, e x p  [ - -  ~,.r]. 

In  the al)ove formula,  t)(.r) is the probabil i ty (lensit 3 of t ime interval  x 

bet~veen subsequent  pulses, and v is the avera~'e number  of pulses per unit  
t ime. 

This is justified by ttLe great  impor tance  which this case assmnes f rom a 

physical  s tandpoint ,  as m a n y  random phenomena,  such as shot noise, thermal  
noise and other, a r e - - o r  can be considered so as a rough app rox ima t ion - - con -  
s t i tuted by  independent  element~ry processes. Nevertheless in some eases the 
statistical independence of pulses calmot  be ~tssumed. 

A quite different type  of distribution f rom Poisson's was found by  H. 
SAWADA (4) in :~ research on tile t ime interval  distribution in the Barkhausen  
effect (noise in ferromagnet ic  materials).  

Assuming the symbols  as having the same meaning as in e( 1. (1.1), this 
distr ibution can 1)e writ ten as follows: 

(l .") P ( x )  = 4~,x: e x p  [ - -  2~,~]. 

This law of t)robability, p lot ted ill Fig'. 1, has an impor t ,mr  physicM signif- 
icance, deduced ill the paper  by  H.  SAW:*I):k ment ioned before, and derives 
f rom the fact  tha t  the probabi l i ty  of an ocenrren(.e, in this case, becomes a 
l inearly increasillo' fnnction of t ime, when pulse repeti t ion frequency tends 
to zero, instead of becoming eoustant ,  as in Poisson's ease. 

I t  (:an be used, at  least as an approximat ion ,  in practic~lly all the cases 
in which the correlation between the e lementary  processes, which enter  into 
the noise forlnation, is such theft each occurrence has an inhibit ing effect on 
the subsequent  one which decreases in time. 

Of course, for this kind of correlation, other types of distributions can be 
found, which bet ter  fit each part icular  e'tse. They ~re, however, more com- 

plicated functions of x than  eq. (1.2). Tha t  makes  it a lmost  impossible to 

calculate the most  impor tan t  statist ical  functions of noise, as the correlation 
function and power spectrum. 

This paper  will calculate the correlat.ion function and power spec t rum of 

a t rain of overlapping pulses of exponential  sh:~pe, a rb i t ra ry  t ime constant  
and r andom ampli tude,  dis t r ibuted according to eq. (1.2). 

(~) t1. S.~WAD:~: Jo~o'tt. Phys. Soc. Japa~t, 7, 575 (1952). 
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This is chiefly in order to prove  t ha t  this distr ibution can complete ly  ex- 
plain all the features of the exper imenta l  power spectra  of the Barkhausen  
effect, which m a n y  authors (5.6) found to be inconsistent  with the s tat is t ical  

0.~ 

0'61i 
0.4l 

02 

P(x) 

V , I I _ [  i _ L _  i I , I 
0 0.5 1.0 1.5 2.0 2.5 x~  

Fig. l. - Curve 1: shape of the distribution function given by eq. (1.2), plotted on 
dimensionless co-ordinates; curve 2: shape of Poisson's distribution given by eq. (l.1), 

plotted on the same co-ordinates. 

independence of pulses. The s tudy of this noise is thus based upon new foun- 

dations. 
The assumed shape of pulses is quite sat isfactory in this ease (5.7). Yet,  

for the reasons given above,  the conclusions of this s tudy  have  more  general 

interest  and  can also be extended to trains of pulses hav ing  other  t han  an 

exponent ia l  shape. 

2. - Calculation of the correlation function and power spectrum. 

I n  order to calculate the correlation funct ion and the power  spec t rum of 

a t ra in  of overlapping pulses of exponent ia l  shape and r a n d o m  ampli tude,  

dis t r ibuted according to eq. (1.2), a very  general expression of the  correlation 

(s) G. BIoReI and D. PESCI~TTI: Journ. Appl. Phys., 28, 777 (1957). 
(6) K. G. WARRE~: Electronic Technol., 38, No. 3, 89 (1961). 
(~) R. S. TEBBLE, I. C. SKIDMOR~ and W. D. CORNER: Proe. Phys. Soc. London, 

A 63, 739 (1950). 
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function shall be used, drawn from a work by G. Blol~c~ and P. MAZZETTI (s). 
This proves tha t  for a t rain of overlapping pulses, singly described by  a func- 
tion aiF(t), and distr ibuted according to an arbi t rary  but  normalized func- 
tion P(x), representing the probabil i ty density of the event  tha t  two subsequent 
pulses of the sequence are separated by a t ime interval  x, the correlation 

function (by definition given by  

+1 '  
f *  

(2.1) F(v) = lim~ ~T j t I ( t ) I ( t  + ~)d t ,  

- -T 

where I(t) represents the summing function of ~ll the pulses for any value 
of time) can be expressed as follows: 

(2.2) ~f(T) = yea ~ ¢(3) + a~(S~ + S,~)]. 

I n  the above equation, v is the average number  of pulses per unit  time, a s 
__3 

and a are respectively the mean square value and the square of the mean 
value of the random ampli tude factors a~, q~(~)is the autocorrelat ion function 

of F(t), defined by  

(2.3) 

+co  

q}(~) = r E ( t )  ]~'(t - -  ~) d t ,  
--co 

and calculated for ~ = 3. 

Finally, Sz and $2 are the following two series of integrals: 

co co co 

( 2 . 4 )  S1 =fP(x)q~(x + 3)dx +fdXlf~)(Xl)P(x2)~(Xl + x2-- ?~)dx2- 7 

0 0 0 

(2.5) 

co co co 

0 0 0 

¢o co oo 

0 0 0 

oo co co 

+ x x (xl)P(x~)P(xz)q~(x 1 + x~ + x3-- 3)dx3 + ... , 

0 0 0 

(s) G. BIORCI and P. MAZZETTI: L'Elettrotecnica, 48, 469 (1961), (in English). 

84 - I Z  N u o v o  ~ i m e n t o .  
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where P(x) is the distribution function previously defined, and q~ represents  
the function defined by  eq. (2.3). 

Equat ion  (2.2) holds whatever  funct ion Y(t) is assumed to describe the 

shape of pulses. 
In  this specific instance 

(1.2) P(x) = k*x exp [-- kx] (k = 2v), 

F(t) = 1(0 exp [--  ~ ] ,  (2.6) 

where 1/a is the t ime constant  assumed for the single pulse. 
By  substi tut ing this expression of F(t) in e q .  (2.3), the following is easily 

obtained: 

qs(~) -- exp [ - -~[~]]  
2a 

The calculation of the sum of the two series of integrals $1 and S~ is given in 

the  Appendix, with the following results: 

k s exp [-- e~] 
(2.7) $1--  2~2( ~ + 2k) ' 

k 1 k "~ k 
(2.8) S~ -- 8k 2 __ 2~ 2 exp [--  2k~] 2~ 2 k e - -  ~ exp [-- ~T] -~- 2~ ~ . 

F rom eq. (2.2), on the basis of eq. (2.7) and (2.8), the following is obtained:  

k[l( ( 2 . 9 )  ~p(z)=~ ~ a ~ + - -  2a~k2 t 

+ O~ 2 8 k ~  2~z 2 

This is the correlation funct ion of the pulse t rain considered herein. 
As an indication Fig. 2 shows the development  of this funct ion when 

- -  _ _ 2  a 2 = a  

for a part icular  value of ~z/k (curve 1). 
I t  can be seen tha t  this funct ion is not  a monotonic  decreasing funct ion 

of 3, as in the  case where pulses are statistically independent  (curve 2). 
The power spectrum of the same pulse t ra in  can be easily obta ined from 

the correlation function of eq. (2.9), by  means of Wiener 's  t ransformat ion:  

(2.10) 

c o  

q~(~o) = .7~ .] y(T) exp [jtoz] d z ,  
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where,  b y  conven t ion ,  ~o(r) is (.onsi(tered as ~,xt~,n(led by s y m m e t r y  to the 

nega t ive  semi-a.xis ()f tile T's. 

3.0I~(~:) 

i i _!  :_ i L ~ i . . . . . .  1 L i _ _ _ ' ~  
0 1.0 2.0 3.0 4 C 5.0 a~ 

Fig. 2. - Curve l:  correlation t'nne~ion of a train of pulses distributed ac(.ording 1o 
eq. (1.2) and calculated ihrough eq. (2.9) (~/l,: 10 and ~ g 2  1); curve 2: corre- 
lation fune~ion of the same pulse train, the pulses being distributed a('('m'din~' t~b 

l)oi~sm£s law, given by eq. (I.I). 

Afte r  m a k i n g  the  in t eg ra t ion  a t  the  second m e m b e r  of eq. (2.10), and  
bear ing  i n  m i n d  t h a t  

co 

f exp [ jo , t ]  d t  = 27r ~(o , )  . 

- -co  

where  8(o)) is D i rae ' s  impu l s ive  un i t  f lmet ion ,  the  following' is easi ly ob t a ined :  

a--ra~ 1 4a~v :~ 1 (~ave 
(2.11) ~,(r,)) -= 2n sd I- o~ ~ ~ (s(' {- (,~"~)(16v e *- o~ e) ~'-' " 

The  las t  t e r m  of the  second m e m b e r  of this express ion  represen t s  a l ine ill the  

origin of the  o/s ,  the  a rea  of whieh is equal  to the  square  of the  averaa 'e  va lue  

of func t ion  I(i,), as def ined a t  tile beg inn ing  of this Imragr '@h.  

E v i d e n t l y  this l ine m u s t  be found  in the  power  spec t rum of a n y  pulse t ra in ,  
w h a t e v e r  the  d is t r ibut ion  the  pulses are eomply in - '  with. 
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Equa t ion  (2.11) can be verified by integrat ing i t  with regard to co f rom 
- - ~  to + co: the result  is the expression of the mean square value of I ( t )  

as given by  0.  RICE (9), provided calculations are made according to the 

distribution assumed herein (eq. (1.2)). 

3.  - D i scuss ion  of the  results .  

Equat ion  (2.11) gives raise to several interesting observations. 
Abstract ing from the impulsive t e rm in the origin of the co's, which is not  

peculiar to the pulse t rain being studied here, as said before, it  can be seen 
tha t  the first t e rm of the second member  of eq. (2.11) represents the spectrum 
of a t ra in  of pulses identical to the pulses of the train to which eq. (2.11) re- 
lates, bu t  statistically independent ,  i .e.  distr ibuted according to Poisson's law 

of probabil i ty : 

(] .1) P ( x )  = ~ exp [--  ~x]. 

This can be easily seen by  Campbell 's theorem, which is one of the most  
impor tan t  consequences of Poisson's distribution. For  a t ra in  of pulses of 
a rb i t rary  shape it  can be wri t ten as follows: 

(3.1) q~,(co) : ~a ~ IS(co)I s , 

S(co) being the Fourier  spectrum of the single pulse, which in the present case 

is given by  

¢o  

1 f 1 1 
S(w) -- ~ / ~  l l ( t )  exp [--  at] exp [--  jcot] d t  - -  V ~  ~ + ico 

- - c o  

However,  the second te rm of the second member  of the same expression is 
peculiar to the int roduced distribution of probabilities (1.2), and appears to 
be a corrective term, taking into account  the correlation between the pulses 

implicit ly in t roduced by  eq. (1.2). 
I t  is always negative, and this involves that ,  in regard to a case of stati- 

stically independent  pulses, said correlation causes a reduct ion to the power 

associated with the noise. 
This is obviously a consequence of the fact  tha t  the assumed distr ibution 

involves a reduction of probabil i ty  of an almost complete overlapping of sub- 

sequent pulses (see Fig. 1). 

(g) S. 0. RICE: Bell  Sys .  Tech. Journ . ,  23, 305 (1944) eqs. (1.5)-(9). 
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I t  can also be noted tha t  this te rm assumes its highest value (one half of 
the value of the first term, when a ~ = ~ ) ,  for co = 0, and tends to become 
negligible in respect to the latter,  either with (o tending to infinity or with v 
tending to zero. This means tha t  power reduct ion mostly takes place in the 
low-frequency area of the spectrum, and increases when the pulse repeti t ion 
frequency increases. 

- -  _ 2  
When a ~ - ~  a ,  i . e .  when the pulses have all the same ampli tude a, eq. (2.11), 

disregarding the impulsive term, can be wri t ten as follows: 

1 ] (3.2) (/)v(o~)---v a l 
2 z  ~ + ~ 2 + (1/-S)(~)/v)~ ' 

whereby it  appears th tt the deviations from the case of statistical independ- 
ence of pulses become higher than  ~ 5 % for values of analysis frequency 
less than  twice the prose repeti t ion frequency v, with a t rend towards 500/o 
for very  tow values in regard to v. 

Thus, f requency ]o =: 2v can be taken to divide two areas of the spectrum. 
In  the area of frequencies higher than  ]o, Campbell 's theorem, given by eq. (3.1), 
can be considered as being ra ther  effective, while in the other area, it cannot 
be applied, and the spectrum must  be calculated only on the basis of eq. (2.11). 

I t  could also be useful to note  tha t  in ease ~ ¢ ~ ,  the influence of the 
t e rm tha t  takes into account  the fact  tha t  pulses are not  statistically inde- 
pendent ,  is reduced in any case. 

4. - The  case  of  the  B a r k h a u s e n  noise .  

All the characteristics of the theoretical power spectra outlined in the dis- 
cussion of eq. (2.11) fully aga'ee with the power spectra of the Barkhausen 
noise exper imental ly  derived. 

This is evident  in making a comparison between the theoretical curves of 
Fig. 3 and Fig. 4, derived directly from eq. (2.11), and the experimentM curves 
of Fig. 5 drawn from a research presently being carried out on the power spectra 
of the Barkhausen noise. 

I t  can be seen tha t  also the experimental  curves agree in the high frequency 

area with Campbell's theorem--eq .  (3.1)--which is a consequence of Poisson's 
distribution, while in the low-frequency area the power density increases less 

than  linearly with ]~ (which is proport ional  to the average number  of pulses 
per unit  time). 

The amount  of reduction in respect to Campbell's theorem is remarkable 
in this ease, being of the order of 50 %. 
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Such an  effect had  a l r eady  been  observed in  the e x p e r i m e n t a l  power  spectr~ 

by  G. BIoRcI and  I). PESCETTI (5)~ ~md la te ly ,  b y  K.  G. W A ~ E ~  (6), r e l a t ive  

1 0 ~ ' ~  

I 

!I0 2 6 
i \ \ \v 

frequency (Hz)  

Fig. 3.  • Theoretical power spectra calculated 
through eq. (2.11), corresponding to a train of 
pulses having a time constant 1/~ 10-4s, 
distributed according to eq. (1.2). The dotted 
lines represent the spectra of the same pulse 
train, when the pulses are distributed accord- 
ing to Poisson's law, given by eq. (1.1). 
1% is assumed that  ~ : =  ~2_ 1. The parame- 
eer ~, represents the average nttnl[)er of pulses 
per unit  time: curve 1: J, - 12.5s 1: (.urve 2: 
v--  25 s - ' ;  curve 3: , ,--  50 s-l;  curve 4: 
,- :-  100 s-t;  curve 5: , .... 200 s-l ;  curve 6: 

..... 400 s -t. 

to the  to ta l  power  of the  noise. 

I t  is i m p o r t a n t  to observe t h a t  

this  fea ture  of the  e x p e r i m e n t a l  

spect ra  is i n c o n s i s t e n t  wi th  Pois-  

son 's  d i s t r i b u t i o n  for ga y  shape  

as sumed  for the  single B a r k h a u s e n  

10 s' _____..--..<.. 

,~ 10' 

% 

Io'~- 

.I! 10 2 lO 3 

frequency (Hz) 

Fig. 4. - The same as Fig. 3, the 
time constant of the pulses being 
I/~ :~ 10-a s: curve I: v =  6.25 s-4; 
( ; u r v e  2 :  .p = 12..~ S - I ;  c u r v e  3: 
,-= 25 s-l ;  curve 4: v 50 s-~; 
curve 5: v==: 100s- t ;  curve 6: 

v = 200 s -~. 

i0 ' 

pulse, a n d  Mso if a d ispers ion in  the  t ime  cons tan t s  of pulses exists.  

A q u a n t i t a t i v e  discussion a n d  a phys ica l  i n t e r p r e t a t i o n  of the  i n t r o d u c e d  



STUDY OF NONINDEPENDENT RANDOM PULSE TRAINS, ETC. ]331 

d i s t r i b u t i o n  of pulses i n  the  B u r k h a u s e n  noise will be g iven  in  ~no ther  work~ 

to be pub l i shed  i n  the  nea r  fu ture .  

10 '~ 

'N 10 3 
T 

% 

"6 

10 2 

10 ~ 

_.t0-~ 

0' 10 2 10 3 10 4 
frequency IHz~ 

Fig. 5. - Power spectra of the Barkhausen noise detected on a .5 mm diam. and 20 mm 
long pure iron cylindrical specimen, with a single pickup coil of 1750 turns. ]~ is the 
frequency of the polarizing field, which is proportional to the average number  of 
pulses per uni t  time: curve 1 : /m- -0 .0125  Hz; curve 2: ],,~= 0.025Hz; curve 3: 
/m= 0.05 t tz;  curve 4 : ] ~ = 0 . 1  t tz;  curve 5: ]~,~= 0.2 Hz; curve 6: ] ~ =  0.4 Hz. Inte- 

gration time on each analysis point is about 15 min. 

Here  we will r e m a r k  t h a t  in  the  case of t im e x p e r i m e n t a l  spect ra  of the  

B a r k h a u s e n  noise the  average  n u m b e r  of pulses per u n i t  t i m e  v is no t  con- 

s t an t ,  b u t  depends  u p o n  the  i n s t a n t a n e o u s  va lue  of macroscopic  magne t i za t i on ,  

i.e. on t ime  (*). 

However  this  does n o t  change  the  shape  of the  power  spect ra  when  the  

(') Averaging must  be intended as being made at  a certain instant  of time in 
the statistical ensemble, by the ergodic theorem. 
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f requency of the polarizing field is much  smaller than  the lowest f requency 
of analysis, as in the case of the spectra  repor ted  in Fig. 5 (*). 

5. - Conc lus ions .  

In  this paper  we have  calculated the correlation funct ion and power spec- 

t r u m  of a t ra in  of nonindependent  pulses of exponent ia l  shape and r andom 
ampli tude,  dis t r ibuted according to eq. (1.2). 

The impor t an t  physical  significance of this distr ibution allows appl icat ion 
of the results to a large class of r andom  processes, in par t icular  to the  Bark-  
hausen effect, for which the distr ibution of eq. (1.2) was exper imenta l ly  found 

by  H.  SAWADA. 
In  this case the agreement  with exper imenta l  results is quite sat isfactory.  

This allows a simple explanat ion of m a n y  contradictions which arise assuming 

Poisson's  distr ibution for the pulses. 

Many results drawn f rom the discussion of eq. (2.11) (as for instance the 

fact  t ha t  deviat ions f rom Campbel l ' s  theorem occur only in the low frequency 

area of the spec t rum and a lways cause a reduct ion to the  power  associated 

with the noise) are characterist ic  of the in t roduced type  of distr ibution and 
do not  depend, within large limits, upon the par t icular  shape assumed for the 
single pulse. Consequently they  have  more general interest.  

The author  wishes to t hank  Professors G. BIORCI, G. ~¢[ONTALENTI, and 

R. SA•TORI for helpful discussions. 

A P P E N D I X  

1. - Calculat ion of the  s u m  of the  series $1 of eq. (2 .2 ) .  

Let  us evaluate  the general t e rm of this series: 

c o  c o  c o  

0 0 0 

(*) This can be proved on the basis of an expression given by 0. RIcE (lO). For 
the modifications of the power spectra in the region of the analysis frequencies near 
the polarizing frequency, due to the periodic fluctuation of v, see (11). 

(lO) S. 0. RICE: Bell Sys. Tech. Journ., 23, 324 eq. (2.6-11), (1944). 
(11) F. V. BUNKIN: G. T. F., 26, 1782 (SSSR, 1956). 
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where 

(1.2) P(x)  ---- lc"-x exp [-- kx] ,  

(2.3) cp(~) _-= e~p [ -  ~l~l]  
2~ 

Because x l , x~ ,  ,,. x~ and ~ are variables always positive, the a rgument  of the 
function ~b, in the above wri t ten expression of J . ,  is always positive, and 
eq. (2.3) holds wi thout  the signs of absolute value. 

F r o m  this easily follows 

co 

Jn =- ~ q~(~) x)q~(x) dx  , 

o 

where it  is assumed 

(A.1) F(~) = exp [--~]. 

Thus the series 81 becomes a geometr ic  series and can be easily summed up. 
By put t ing  

ca 
/ .  

q = t P ( x ) c y ( x )  d x ,  
,J 
0 

it results  (*) 
~ 1 q 

The value of q can be calculated through eqs. (1.2) and (A.1), and the above 
wri t ten expression of $1 becomes 

(A.2) $1 -- 
k~ exp [--  sT] 

2. - Calculation of the sum of the series $2 of. eq. (2.2).  

Let  us evaluate  the general t e rm I~ of this series: 

a:~ co co 

. . .  + + . . .  + . 

o 0 0 

(*) Obviously it is 

being 

for an 3- value of x. 

ca 

o o 

~(x) < 1 
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Let  D1 be the region of the domain of the integrat ion in each point  of which 
the condition 

x~ ~- x~ + ... + x , - -  ~ ~< 0 

is satisfied, and D~ the remaining par t  of it, in each point  of which: 

x l ÷  x ~ -  ... + x~--  ~ >  0 .  

F rom eqs. (2.3) and (AA) one obtains 

. . .  I , =  dx,  + 
, )  

D 1  

- ~ a ~ ) f P ( X l ) P ( x 2 ) . . . P ( x , ~ ) c p ( x ~ - x 2 - ~ . . . 4 - x , , ) d x l d x 2 . . . d x n .  

. D s  

In  the n-dimensional orthogonal  cartesian reference system (xi,  x2, ... x , } ,  
D~ and D~ are the two regions in which the plane 

(h.3) x~ + x~ + ... + x ,~= ~ 

divides the positive generalized quadran t  of the reference system itself. 
I t  is convenient  to perform the following linear t ransformat ion:  

x~ + x~ + ... + x,, = y~ , 

X l  : Yl 

• ° • , • • • • * 

xn-~ : Yn-~ • 

In  the new reference system (y~, y~, ... y~} the plane of eq. (A.3) is represented 
by  the equation 

and becomes parallel to the co-ordinated plane 

y,---- 0 .  

The whole domain of integrat ion is now the positive region of the n-dimensional 
pyramid l imited by  the planes: 

y~_~ : 0., 

y , _ , =  0 , 

• * • ° ° • • ° • 

Yl : 0 ,  

y~--  y~-- y~-- ... - -  y~_~ : 0 .  
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The v~lue of the  Jacot)i~m of this t r ans fo rma t ion  is 1, and the  general  
t e rm of the series S~ becomes  

(a.4) Z~, W(~) (P(?/~)P(.~)... PC~,~--y~--.~J~--...--yo ~)~(--.w)dy~ ... dy~+ 
Dz 

'U)/ 4- qJ P(Y~)P(?h)  ... P ( Y ~ - -  Y~- -  Y , a - - . . . - -  y~_~)cf (y , )dyz  ... d y ,  . 

D~ 

The expression of the  p robab i l i ty  d i s t r ibu t ion  P(x)  given b y  eq. (1.2) becomes  

P ( Y , , - -  Yl - -  Y,~ - -  ... - -  Y,,-I) -~ 

__/,;2(y, __ y ~ _  Y2-- . . . -  Y~ ~)exp [ - -  k ( y , - -  yz - -  y~--  . . . -  yn_~) = 

= k~y,  exp [ - -  ky , ]  exp [ky , j  exp [ky~] ... exp [ k y ~ _ i ]  - -  

- -  k-y~ exp [ - -  l,:y,] exp [ky~] exp [ky2] ... exp [ k y ~ - d - -  

--k~y~_l exp [ - -  ky~] exp [ky~] exp [ky2  ] ... exp [ky~-i] . 

Then  eq. (A.4) can be wr i t t en  <as follows: 

T ~n Yn - -Y l  Yn--Yl  - -Y2-- . . . - -Yn  -~ . 

0 0 0 0 

T Y n Y n - - Y l  Yn--Yl--Y2-- '"  "--I]n--fl 

@(-:,,.)o~ E,,.~d,i,:a@o,.... fy._,a,._,- 
0 0 0 0 

Yn Yn--Yz  I#ll-- Yl ~l#i~--...--Yn-2 

0 0 0 0 

T Yn Y n ~ Y l  ~#n--Yl--Ya-- . . . - -Yn-2 

- -  - - y = )  exp [ - - k y , ] d y  , d y  ~dy~ . . . .  - zdy , - z  4- 

0 0 0 0 

co Yrl i#n--Yl i#n~Yl - -Y2- - . . . - -Yn-~  

@ q)(~2gT) k2" [ (q~(Yn)ynexp  [ - - k Y n ] d y n f y l d y l f y 2 d y 2  "" 

r 0 O 0 

u9 Yn Yn '~Yt  Yn- -Y l - -Y2" - . . .~Y l i -2  

-j~,<,,,,) <...,. ~-,,..j a.gT~ d.,j,,: a,,..../..,_, ~.. ._ 
v 0 O 0 

- -  o . . . . . . .  o . . . . . . .  o . . . . .  - -  

- -  y~) exp [ - -  ky , ]  d y  i d y  2 dy2 ... . - z  dY, -1  • 

v 0 0 0 
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B y  p u t t i n g :  

7In Yn--Yl Yn--Yl~YZ ?Jn~f/X--Y2 --...--t/n-1 

0 0 0 0 

Yn lln--Yl Yn--Yl--YZ ~]n--Yl--1]l--...~Yn-1 

..<,.)-f,,,,.f,.,,. f ,.,,.... .( "": 
0 0 0 0 

=f,.,,.f,:,,. f ,.,,.... f ,.,,.: 
0 0 o 0 

# . . . . . . . . .  O • • 

Yn Y~--Yl Yn--Yl--Y~ Yn--YI--~I--° ..--~/n--1 

0 0 0 0 

(*) The fact that  these integrals are equal can be proved by an inversion of the 
order of integration. In  fact 

Ya Yn--Yi- - . . . - -~--2  Yn--Yt--,,.--Y~.-1 Yn--Yt-------Yn-x 

..=f,.d,. . . . .  f ,o_.,,._.f ,:,,. . . . .  f ,.,,°: 
0 0 o 0 

where 

tin X X--llq.-1 

=f,.d,.. ...f,o_.,,o_.f,:,o 
0 0 0 

X = y ~  - -  Y l - -  "" - -  Y e - 2  , 

Yn--Yl--.,.--YQ'bl lln--l]l--...~l]n-1 

](~) = f yq+x dy,+l f Y,+2dy,+2 .... jf yn dyn . 
0 0 0 

q- Yo-: ~- X) dy e , 

Final ly by inverting the order of integration in the two last in~egruls one obtains 

Y~ X X--Yq..-1 

0 0 0 

Yn Yn--Vl--. • .~?J~--2 Yn--Yl---. ,--Y~--I ~n--Yl--. . ,--~--1 

0 0 0 0 

by changing ~ in e - - 1  and ~ - - 1  in Q. 



S T U D Y  O F  N O N I N D ] g P ] g N D l g N T  R A N D O M  P U L S E  T R A I N S ,  E T C ,  1337 

the expression of I .  can be writ ten 

I .  - -  q~(~) k ~'' cp(-- y,~)y, exp [-- ky.] T._~(y.) dy,, - -  
2a 

o 
7: 

0 

T )  
F ~ 

t ~  
"c 

co 

- -  (n - -  1)/q~(y~) exp [-- ky~]R._i(y~)dyn.  

lgow the integrals T.  and R .  can be evaluated, and it turns out (see the note 
at  the end of this Appendix) 

~ 2n 
,~n 

T , ,  = ( 2 ~ i  ' 

~12n+l  

(2n + 1 ) ! 

Introducing' these expressions of T~ and R,, in the last expression of I~ and 
remembering eq. (A.1), one gets 

[--  aT] lexp [(c~ - -  • y~.-.2 
2~ ~ k)y,~]y. (2n--  o.2)! 

L =  k '~" [exp 

0 z 

"Y" (2n 2)! dy .  - -  2(n --  1)k ~" [exp [-- c¢~] xp [(c~-- k)y.] 

0 
co 

...... ;o t + exp [e~] xp [-- (~ + k)y~].(2 n -  1) 1 d y . .  

Hence, by  carrying out  the elementary integrations, 

I . - -  

co 

d:~,,-i- ~-~[= ~] [exp[--(~+k)y~]. 
zot j 

y 2 n - 1  

dy,~ ~- 
(2n - -  1) ! 

k~n exp [-- ~ ]  exp [(~--  k)~] [~--k (a-- k)2 + 
2~(2n - -  1) ! 

+ (2~-1)(2n-2)~--~ (2n-1)! (2n-~} 
(a- -  k)~ - -  "'" + (a - -  })~-~ (~- -  k)~ + 

+ (~_ k)~ ] + ex~ [ -  k~] [~+-k ~ (~ + })~ + 

(2n-- 1)(2n-- 2)T 2"-3 (2n-- 1!~] 
+ (~ + k). + "'" + (a + k). l] " 
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This expression can ~lso be wri t ten  in the following form: 

exp [--  kz] 
Xn - -  2~ 3-"" ÷ ~1 3. 

exp [-- ~z] k ~" exp E-- kv] k ~n 
+ ~ ( ~ - k y , ,  3. ~ - - ( ~  ~)~,~" 

• ( 2 n A i i !  + (~n--2)!  - 3-''" + ] " 

By ~dding ~nd subtract ing the terms 

exp [-- k~] k ~ k ~'~ ~ ( ~ _  ~)2,, exp [(~-- ~)~] exp [-- ~ ]  

exp [-- kz] 
2~ 

•2n (~ + k)~, ~ exp [(k + ~)~] exp [~v] k ~" 

this expression of I~ becomes 

exp [-- k~] k ~'~ [ 
2g (~- -  k)~, exp [(k - -  a)z] - -  

(k -- ~)~,~-I ~.-~ 
(2n -- 1) ! 

(k -- a) ~'-~ z ~''-~ 1 exp [-- kz] k ~ I -~ . . . . . . . . . . . . . . .  
( 2n - -  2) ] "'" 2~ (c( 3. k) ~'~ 

• [--exp [(k + a)v] + (k 3- ~)~"-~ z ~n-~ (k ÷ ~)~-~ ~ - ~  1 
(2n - -  1) ! 3- (2n- -  2) ! + ... 3. I + 

+ e x p - [ ~ q  k "  

2a (~ 3. k)~" " 

]~ence, by  expmnsion of exp E ( k -  a)v] ~nd exp [(k+~)~] in power series of T 

I .  = exp [-- k~] k ~" ~ (k - -  ~)'~"+~v~"+~ 

exp [-- kz] lc ~" ~ (k + ~)2,+~2.+~ exp [~z] k -~'~ 
2~ (~ 3- k) 2"~ ~=o (2n 3- m)!  3- 2~ (~ 3- k) "-~'" 

Now summing over all values of n from I to 0% one gets 

r.~ k2vt  

n=l  ~ g  n=l  

(k - -  OC)~'~+m ~ 2~+m 

(2n + m) ! 

2~ .=1 ~=o (~ + k) "~'~ = (2n + m)! + ~ ~'~1 (~ + k) ~'~" 
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The double series in this relationship are, as we shall show, absolutely convergent 
(the second series has always positive terms), so tha t  it is possible to change 
the order of the terms. 

I t  is easy to verify tha t  the expression above writ ten can be rearranged 
in the form 

(A.6) 

where 

m=l n=l  2 ~  n = l  

k 

k 
b - -  

~ d - k '  

( k - - ~ ) , - ~ s  

C s ~  8 !  

d s s! 

This way of writing eq. (A.5) corresponds to sum diagonally the terms in the 
table which represents each double series, by taking the terms two by two 
in each row. 

By noting that  

m a 2 m + 2  _ _  6~2 
~a 2 n ~ 

n - 1  a 2 - - -  1 

• b ~" (absolute convergence),  
b ~ 

~-1 1 - -  b 2 

e q .  (A.6) can be writ ten 

(A.7) ~ I~ exp [--kT:]f ~ a'2m+2--a2 
~-1 - -  2 a  ~=1 a 2 - 1  ( c ~  4-  c~m+l) - -  

~ b 2~+2-b 2 ] exp [a~] b 2 
--,~-1 b 2 - 1  (d~d-d~,~+l) d- 2a 1 - - b  2 

= exp [--  k~] 

2 ~  a 2 - 1  . , . ~  

exp [--  k~] 

2 ~  

~' exp [ ~ ]  b ~ 
1 r  2m+ (d m + d 2  + - .  

b 2 - -  1 ~f~--I "(-~ j 2~ 1 - -  b ~ " 
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F r o m  the  defini t ion of a, b, c,, d~, follows 

ksT~ s 

a % =  (--1)~ s! ' 

k s T  s 

b~d~ = s! 

B y  these re la t ionships  we get  

~ i  _ e x p [ - - k ~ ] I  a2 21k2~  ~'* a ~ k2m+lT~'*+l 

~1 2~ J ~  : ~mm! a -~-_1 ~ (-2m +~i ) !  - 

¢ o  52 co ~2.~ v ~  b ~o k~+l  .~ .~+I 

a 2 - -  1 ~=1 = • = 

b ~ ¢o ] exp [aT] b 2 

+ b ~ _ ~ d , ~ +  2~ 1 - - b  2" 

÷ 

The  series which  appear  in this  expression are absolu te ly  convergent .  
B y  r emember i ng  the  expansions  in power  series of cosh x, sinh x and  e ~, 

one easily deduces  

co 
(A.8) ~ I ~ = -  exp [ - - k ~ ]  a s .=1 2~ a ~ -  1 (cosh kr- -  1) exp 2~ [ -  kv] a 2-a I (sinh k~ - -  k~) - -  

exp [ - -  kv] 
2~ 

exp [ - -  kz] 

2c¢ 

+ exp [ -  k~] 
2~ 

_ exp [ - -  kz] [ ( 2 ~  a °-~ a'~ 

exp [ - -  ~v] a 2 

2a a ~ - -  1 

a 2 

a s -  1 ( e x p  [ ( k  - -  ~ )~3  - -  1 - -  ( k - -  ~ )T )  - 

b 2 exp [ - -  k~] b 
b 2 - -  1 (cosh k ~ - -  1) 2~ b 2 - -  1 (sinh k v - -  kv) ÷ 

b2 (exp [(]c + a ) ~ ] - - l - -  (k ÷ ~)~) + exp [~v] 55 _ 
b 2 - - 1  2~ 1 - - b  2 

1 b 2 - 1  c o s h k ~ J r  ~ + ~  s i n h k v  -- 

k 2 e x p [ - - ~ v ]  ~ k 
k exp [ - -  2kv] - 2 k ~ - -  ~2 2~ - - - "  8 k 2 _  2a2 ~ 2~2 

This express ion gives the  sum of the  series S~. 

Note: 

a) E v a l u a t i o n  of the  in tegra l :  

T~ 

0 0 0 0 
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Le t  us define the  auxi l ia ry  func t ion  

A , , ( x ) =  ( x - - Y ) " d y - - 1  ( _ 1 )  k n x ._k  _ 
n nk~(, lc k + 2 

o 

~-- n ~-o(-- 1)k k -~ 2 - -  n . ( n  + 1)(n ~- 2)" 

I n  fac t  i t  is possible to  ver i fy  t h a t  

Hence  

1 

2 ( n +  1).0~ + 2)"  

f ld.l=7, 
0 

T T--y 1 T 

f. f =.[, T~ ---- l dy l  y2dy2 l 2 

o 0 0 

"g T ~ y  I T - - y l ~ y  2 

0 0 0 

d y l  : A 2 ( z )  , 

T 

0 0 

1. 

dyl = ~U~ A ( ~ ) .  

I n  a like w a y  one gets  

c o n s e q u e n t l y  

T _  _ _  
1 1 

2"3"4"5  1 6 " ~.~ As(z) 
o 

1 3 2" 
T .  --  (2n - -  3~! A2n-~(T) --  (2n)! " 

b) E v a l u a t i o n  of the  in tegra l :  

T T--Yt l'--~Jl--~/2--. - - - ~ n - 1  T ~--Yl T--Yt--...--Yn--1 

R . : ~ : d y l f y ~ d y 2  . o . . ;  y n d y "  : f y l d y l f y ~ d y 2  . . . f y n d y .  : 

0 0 0 0 0 0 

T ~--Yl ~--YI--...--Y~-I 

= l d Y  y~dy~ . . .  Yn Y~ .  

0 0 0 

I t  is convenien t  to  s ta r t  b y  the  last  expression of R~. P roceed ing  in the  w a y  
shown above,  one easi ly ob ta ins  

1 T 2 n ~ - I  

R .  : 2 ( 2 n _  2) i A~._l(~)  = 2 +( ) " . 

,Q5 - I I  N u o v o  C i m e n t o .  
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R I A S S U N T O  (*) 

Questo lavoro r iguarda il calcolo della funzione di correlazione e dello spettro di 
potenza di un treno di impulsi di forma esponenziale e di ampiezza easuale, distr ibuit i  
seeondo una legge di probabilitY, t rova ta  sperimentalmente da H. SAWADA durante  
la rieerca della distribuzione degli intervall i  di tempo nell 'effetto Barkhausen.  Si pos- 
sono cosi spiegare completamente tu t t e  le carat ter is t iche degli spet t r i  di potenza speri- 
mental i  del rumore di Barkhausen, che molti  autori  t rovavano in contraddizione con 
l ' interpretazione dell ' indipendenza stat ist ica degli impulsi. Il  notevole significato fisico 
della distribuzione che si introduce attr ibuisce ai r isultat i  un interesse pifi generale. 

( ' )  T r a d u z l o n e  a cura  della Redaz tone .  


