IL

NUOVO CIMENTO

ORGANO DELLA SOCIETA ITALIANA DI FISICA
SOTTO GLI AUSPICI DEL CONSIGLIO NAZIONALE DELLE RICERCHE

Vor. XIII, N. 3 Serie decima 1o Agosto 1959

The Lorentz-Covariant Approximation Method
in General Relativity. - I.

R. P. KERR ()
Trinity College - Cambridge

(ricevuto il 4 Settembre 1958)

Summary. — The Lorentz-covariant approximation method for the
field outside a set of localized particles has been analysed. It is found
that as well as the usual equations of motion and energy derived by
Eistein, Infeld and Hoffman for the quasi-static approximation, there
are three further equations, the equations of spin, which must be satisfied
by the structural parameters of each particle. These equations also appear
as surface integral conditions in the quasi-static approximation. Further-
more, it is shown that it is not necessary to expand the mass, dipole,
or spin parameters. those introduced into the lowest approximation
being the physical particle parameters. It is only the differential equa-
tions satisfied by these that change in the higher orders.

1. — Introduection.

In this paper we shall analyse the covariant approximation method for
caleulating the equations of motion of localized particles in general relativity.
By covariant we mean that the approximation equations are Lorents covariant,
not covariant under the full co-ordinate transformation group. Previously,
it has been usual to consider the derivatives with respect to the non-cova-
riant time coordinate to be small compared to the spatial derivatives, giving

(*) Submitted in part fulfilment of the requirements for the Ph. D. examination
at Cambridge University, 1958.
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the usual quasi-static approximation. EINSTEIN, INFELD and HorrMman (%)
analysed this problem and showed that each particle must satisfy three equa-
tions of motion and an equation of mass. Their method was based on the dipole
procedure wherein a dipole field is introduced into each approximation, so
that the field equations are integrable in the next approximation. However,
their proof assumed the vanishing of the dipole forces and, as has been shown
by MorraT and KERRr (%), this is not so. In the lowest approximation one
obtains the usual classical dipole forces on a non-symmetric particle in an
external field.

Furthermore, as I shall show in a subsequent paper, the four surface in-
tegral conditions of Einstein, Infeld and Hoffman are not sufficient for the
integrability of the approximation equations. There are also three equations,
corresponding to the classical equations of angular momentum, which must
be satisfied in every approximation. If a dipole field is introduced into ecach
approximation so that the E.I.LH. surface integrals are zero, then the three
spin equations will be inconsistent. It is also necessary to introduce a spin
field into each approximation, before the field equations can be satisfied.
Physically, it is found that a dipole particle will start to rotate under an
applied couple.

We shall not consider the quasi-static approximation further in this paper
but instead shall analyse the corresponding problem in the Lorentz-covariant
approximation. The reason for this is that, although it is much more difficult
to integrate the field equations in a simple closed form, we shall have a cleaver
picture of the structure of the approximation method. In particular, we shall
gee that the equations of energy, motion, and spin are the only physical equa-
tions to be satisfied by the particle constants. The form of these equations is
completely identical to that in the quasi-static approximation, except that
the time derivative is treated in the same way 4s the spatial derivatives.

In Sections 2 and 8 we shall show that the field equations may be inte-
grated in each approximation, provided that we expand the mass, dipole and
spin parameters for each particle. It will be shown that each of these parame-
ters must satisfy a first or second order differential equation, as in the quasi-static
approximation. However, it can be shown that the total field is a function
of the mass, ete., rather than of the individual #-th approximation order com-
ponents. This being so, we would expect that the physical equations of mass,
motion, and spin would also be functions of these total mass, dipole and spin
congtants, and that the differential equations satisfied by the n-th order pari-

1y A. EInstEIN, L. INvELD and H. Horrman: Ann. HMath., 39, 66 (1938).

*)

(z) A. EixsreiN and L. INFELD: Ann. Math., 41, 797 (1940).

(3) A. EinsteIN and L. INFELD: Can. Journ. Math., 1, 109 (1949).
(4 J. Morrar and R. KErr: paper. Copies available.
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meters do not affect the physical field. This was the motivating idea behind
the E.I.H. dipole procedure. However, they attempted to show that only
the total dipole constants would appear in the equations of motion by proving
that the dipole forces were zero in every approximation, which is not true as
has been shown in ().

As we shall see in Sect. 4, exactly the same problem arises in the Lorentz-
covariant approximation. It could be proved that it is only the total particle
parameters that appear in the physical equations but we shall not do so.
Instead, we notice that if the individual n-th order parameters do not appear
in the physical field or the equations of motion, ete., it is pointless to expand
these parameters. Of course, if we do not expand them then we cuannot
satisfy the approximation equations exactly. However, we show that if the
equations of motion, energy and spin are satistied to the »-th approximation
then the Einstein field equations are also satisfied to the same approximation.
The original n-th approximation field equations of E.I.H. are not satisfied
even in an approximate sense but, if we add together the n-th approximation
fields up to the N-th order to give the physical field to the N-th approximation,
then the field equations of Kingtein will be satistied to the N-th approximation,
provided that the seven differential equations of energy, motion and spin are
satisfied to the same approrimation. This is all that can be expected of any
approximation method.

2. — Lorentz-invariant -expansions.

In this Section we shall derive an approximation method for solving the
field equations outside a set of weakly interacting, fast moving, bodies. Ob-
viously, if we wished to consider fundamental particles we should have to take
into account the Bremstrahlung emission which plays a large part in the theory.
This is also the cage with classieal theories, such as quantum theory or electro-
dynamics, where the spontancous emission of radiation plays an important
role in the motion of the elementary particles.

For a macroscopic body, the rate of emission will be governed by the equa-
tions of statistical mechanics, and consequently may be considered to be a
continuous function of the time for a stable body in a weak gravitational field.
Thus, it should be possible to derive meaningful equations of motion for such
bodies.

In the following, we shall consider the field around a set of particles, or
« singularities », which we shall distinguish by Latin superfixes over the ap-
propriate functions. As it is not possible to expand the field at the singula-
rities, and as we do not wish to introduce an energy-momentum tensor, we shall
encloge the particles by arbitrary three dimensional surfaces with the topo-
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logical properties of a time-like cylinder. To specify the position of the p-th
particle, we shall take a representation world line, (%), inside the p-th sur-
face, S. Since the actual shape of the surfaces is not important, we shall
define them by the following conditions.

Firstly, we define a one dimensional parameter, §, along each world line
by means of the Galilean metric tensor (*). We then extend the domain of
definition of this parameter to a four dimensional region, enclosing the par-
ticle, by means of the equations,

2.1 ' = Bu(d) + 9",
(2.2) by, =8 (2" — &(3)) = 0,

where throughout this paper we shall raise and lower the particle tensors with
the Galilean tensor, rather than the unknown Einstein tensor. These equa-
tions correspond to taking the planes of constant § perpendicular to the world
line, and they will have a unique solution for § as a function of #* inside S
provided that the derivative, 2s/dxz“ is not infinite. If we differentiate (2.2)
with respect to the parameter x*, we have the equation

o8 08
(2.3) ppe vﬁyﬂ + g (65 — o Ew/‘) =0,
and so
os v,
. w1

so that s will be a single valued function of position provided that o, -y"<<1
inside the surface. We define the surface, §, by the condition that (y_ -v*)
is a constant everywhere on the surface; i.e. in the rest system of the world
line the surface has constant Galilean radius. The condition for single valued-
ness means that the acceleration of the world line should be small compared
to the dimensions of the system. We do not want to take a world line oscil-
lating rapidly across the particle, as we should then have to disentangle the
violent motion of thigs form the slow acceleration of the physical body. This
means that we must find some way of fixing the position of the world line
inside the particle. We shall leave this to a later section.

We shall impose the De Donder co-ordinate conditions on the fundamenta-
tensor

(2.5) g, =0,
() 5 is the Galilean metric tensor, (+ 1, — 1, —1, —1); (ds)® = 7,pdx>dz’, and

v« = dx*/ds . We shall denote differentiation with respect to s by a dot, e.g. ¢ = dv*/ds .
Where there is no ambiguity, we shall omit the particle index, p.
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where

0" = (—g)*g",

and g = det (g,,). Later, we shall consider whether this introduces any non-
physical equations into the theory. We are not concerned here with whether
these conditions have any physical significance of their own, since, whether
this is so or not, they are the most convenient to use in any reiteration pro-
cedure. From the explicit expression for the curvature tensor in Appendix A,
we see that the approximation field equations reduce to D’Alembert equations
whenever these co-ordinate conditions are satisfied.

It is fundamental in the solution of any non-linear equation by successive
approximation that the field equations should first be expressed in terms of
a set of independent variables. We shall take

(26) g/“' — /’7/“' _I__ h/lv ,

and express the field equations in terms of the h*. Fock has shown that,
in a co-ordinate system satisfying (2.5), the field equations reduce to

(2.7) DI — 2A",

where A" is a non-linear funetion of the " and their derivatives. The com-
plete expression for the Einstein tensor, as well as its reduced form using (2.5),
is given in Appendix A. It may be shown that the A"’ are absolutely con-
vergent power series in the h*%, provided that the moduli of the characteristic
roots of % A" are all less than unity. A simpler, though not so semsitive,
condition is that

(2.8) mod (B*#) < L.
The «obvious » way to solve (2.7) is to use successive reiteration,

(2.9) L = 2(6}((7;,”:;1) ’

where {:})’”' congists of all terms in the expansion of the field equations which
do not contain more than n(h*”). However, there are two things wrong with
this intuitive approach. The first is that there would be too much unneces-
sary labour involved if we intended to stop at the N-th reiteration, since it
would be sufficiently aceurate to use (h")" in the last reiteration rather than
(J:)". The difference is negligible in the N-th reiteration. This would not

(N—-1)
matter if we intended to carry the process on to infinity (whatever that may
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mean in a logical sense!), but in practise one has to cut the process off at
some finite reiteration.

The second thing wrong with this approach is that we have to insure that
the limiting field, R/, will satisfy the co-ordinate conditions. On the surface,
the simplest way to do this seems to be to make each successive approximation
satisfy it exactly, d.c.

(2.10) (1}3’“”” =0,

but, as we shall see in the next section, this is not so. Nevertheless, for the
present we shall assume that (2.10) is to be satisfied. If we take the diver-
gence of (2.9) we see that (/:})’”’!V must be zero, and, this will not be so, in general,
even if the co-ordinate conditions are satisfied exactly in every previous re-
iteration.

Fortunately, the classical solution of the first problem is also the solution
to the second. In the standard work on non-linear equations by Bogoliubov,
we see that the usual method used to solve such differential equations is to
expand the field in powers of an indeterminate parameter, A,

(2.11) h(d) = 2 A0,

which corresponds to the expansion method introduced by EIHSTEIN, INFELD
and HorFMAN in 1938 for the quasi-static approximation. It must be stressed
that this «parameter » has no physical significance whatsoever. The A-series
in (2.11) is not the physical field — that is obtained by replacing 4 by unity.
The significance of A is that it should act as a weighting factor to define the
order of magnitude of different terms in the approximation procedure, thereby
reducing the labour involved in the reiteration methods. Some times, when
there is an obvious constant present in the differential equations, it is con-
venient to expand in terms of this rather than an indeterminate constant, the
physical constant playing the role of a weighting factor. However, there i3
no obvious parameter to chose in the covariant approximation.

Tf we expand the field in powers of this parameter, and then equate to
zero the coefficient of A* in the field equations, we obtain a new set of ap-
proximation equations,

(2.12) Clhe = 207

Hence, the reiteration field must satisfy the equation,

(2.13) 10

{n) {n) MM

h/w — A,u'( h,\/i; r<< n) — 21}/11/,
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where

(2.14) T T
1

(n)

and A", and so (/7};”", will be a finite polynomial in the previous approximations.
We shall now state an important theorem that was first proved by EINSTEIN
and INFELD, in 1949, for the quasi-static approximation.

Theorem 1. If the gravitational field equations of Fock are expanded
as a power geries in an indeterminate parameter, and the coefficients
of the successive powers equated to zero, (2.12), then the divergences,
A and A, will both be zero, provided that the field equations and the
co-ordinate conditions are satisfied in all previous approximations.

This follows from the Bianchi identities and is proved in a more general
form in Sect. 4. It follows immediately that, provided that (2.12) and (2.10)
are satisfied in every previous approximation, any solution of the field equa-
tions in the wn-th approximation must satisfy

(2.15) Ok, = 0,

a8 may be proved by taking the divergence of (2.12). This does not imply
that the co-ordinate conditions are satistied by any solution of the field equa-
tions. In the next section, however, we shall see that the De Donder con-
ditions may be satisfied exactly in the n-th approximation by the addition
of a solution of the homogeneous wave equation onto any particular solution
of (2.16). This will give the equations of mass, motion, and spin.

3. — The solution of the field equations.

Firstly, we must find a particular solution of the fleld equations outside
the surfaces, 8. The final results will, however, be independant of the surface
chosen, as we can always use analytic continuation to extend the approximation
field inside the surface. Of course, the solution obtained in this manner would
be singular at the world lines, and so physically meaningless there. Even for
the Schwarzschild metric, when we take a finite number of terms in this
asymptotic expansion, the successive approximation fields bear very little
relationship with the exact solution at and near the singularity.

Let D(z*) be an invariant Green’s function satisfying the wave equation
everywhere except the origin. We shall not specify it at present, as the choice
i8 governed by the boundary conditions at infinity or by causal considerations.
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We shall write our particular solution of (2.12) in the form,
(3.1) I:y" = (27[)—1--/‘{1"”-1)(1" — ') dsr
v

where V is the 4-volume outgide the surfaces. To obtain the general solution
of the field equations, we must add an arbitrary solution of the wave equation
onto iz‘“’,

(3.2) Z‘L’/;w — zl'//w__‘}_ ZZ/IV,
where,
(3.3) Dg’“’ =0.
From (3.1) we see that
* 0
(3.4) B, = (20)7 f Ae(r) o D — ')A

vV
Since the Green’s function is a function of (r — #')?, we have

Dl — 1) = — 2 Dl — 1) = Dlr—7) .,

@5 o o

by definition, and so we may reduce (3,3), by integration by parts, to

* o
(3.6) "= — (2m) j AP) e D — 1) =
v

r

— (2m) f A () - Dir —r')-dsr' + (2m) Y f A D-as;,
\4 ?

where the p on the integral sign denotes the surface 87, and dS, is an element

of the surface S* at the point +', pointing along the same direction as the

vector y,. Therefore, provided that the field equations and co-ordinate con-

ditions are satisfied in all previous approximations,

(3.7) W, = (2m)1 Y f Am () Dir —r')-d8, + U™,

We shall use (2.1-3) to reduce this surface integral to a line integral along
the world lines, We can expand D(r —#'), at the point (s, y*), as a Taylor’s
series,

(3-8) Dir—r) = z "'"'D(’r—z(s)).mn.y(‘)' ’
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where we have used the following notation,

(39) F(wQ)‘(\)t.y(‘)t = F(wg).\‘«z...n.y\l.y\""y” *

Since the surfaces have constant radius and since each S” is orthogonal
to the planes of constant §, we may take as the surface element dS-du-n,.
d28 is a two dimensional element on the surface, (y)? = const., s(r) = const.;
du is the distance between neighbouring planes, measured along the direction
v~ at the point 7'; n* is a unit four vector with direction »* This may be
seen by considering the surface element in the rest system of the p-th particle.
From (2.3), we see that

gy lrdn)
1 —u9,-9
and therefore
(3.10) du = (1 — (%, y))ds,

where we use the notation,
(73, ')/) == @Y'}’\ .

Consequently, the surface integral over the p-th singularity will reduce to

b
* —_— t . -
Gy W, = @30 f{l’“-m-ﬂ(r~vr/>.<wy<‘“-(1—<w, P) BN ds =
.t .
P )
=3 [EDe —2) s,

it

where the &’s are defined by the equations,

Vg
D __\
3.12) o= [ e — 6 ) s
and are completely symmetric in their indices, (a);.

So far we have not specified the complementary function, U". This may
be either singular at the world lines or regular throughout space. Before we
can eliminate this regular function from the field, it is necessary to define the
boundary conditions at infinity. The natural hypothesis to make is that either
there is no radiation at infinity, or there is no incoming radiation. Provided
that one of these assumptions is made we can eliminate the arbitrary non
singular wave function by choosing the appropriate Green’s function. Under
these circumstances, the complementary funetion for the field equations, (2.12),
may be reduced to a line integral. To see this, we notice that, by the ap-
propriate Green’s theorem, the complementary function may be written as
the integral of a function, linear in the D(r —+') and its normal derivative,
over the surfaces, S?. By the methods of the previous paragraphs, this may
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be reduced to a line integral along the world lines in the same way as (3.6)
was reduced to (3.11).

If the physical system is such that there is radiation coming in from in-
finity, it can be introduced in the first approximation by the addition of an
arbitrary non-singular function — it will not affect the following arguments.
Consequently, we shall only look for a solution of (2.12) such that the co-
ordinate conditions are satisfied, there being no point in looking for the most
general solution in every approximation. Any arbitrariness in the n-th ap-
proximation is already present in the first approximation, so that the physical
character of the solution is determined by A"

Because of these considerations, we shall write the complementary function
as a line integral,

b4
B
(3.13) gm = zfly”““"-l)(r~ ), ds,
tp

where the M’s are completely symmetric in the «’s, as well as in g and ».
If we take the divergence of (3.13), we have

P
ul

»
(3.14) U, = ZJ M D —2) -8
t.p

so that the co-ordinate conditions may be satisfied, provided that

»

(3.15) (M 4 BV D — 2)y000, ds+ Zf k-D(r —z)-ds =0,
P

t.n

where the particle tensors, M, may be chosen as arbitrary functions of the
world lines parameter, s. We shall chose particular solutions for these para-
meters so that this equation is satisfied. When this is done, we shall have the
complete solution of the field equations and co-ordinate conditions in the n-th
approximation if we add any solution of the wave equation which also satisfies
the co-ordinate conditions, onto this expression.

First, we observe that

(3.16) /f(s)-v"-F(;‘wz),g-ds = —ff(s)-v"-gi—g~F(r—z)-ds =
d . vds — 14 F(r — 2)-
_—faglf(rwz) f(s) ds_jf Fr —z)-ds,

where F{r —2) is any function that vanishes sufficiently rapidly in a time
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like direction. We define ﬁf“” by the equation,
b

(3.17)(" wer :f(AQU’”v” — Arp?e" — A7 0%H) - D(r —2),-ds .
It is symmetric in  and », and

3.18) W#, = ~j(A”'v”'u")D(r — 2) g ds =

— —fA'”'D(r—z)-ds—— Ay Dir —z),-ds

80 that, if we define 4" by the equation,

d2

(3.19) i

(Aﬂ) = k* ’
we can eliminate the monopole term in (3.15) by adding W*" onto the original
solution. The term in D  will introduce a further complication into the theory,

since, if we equate its coefficient to zero in (3.15),
(3.20) MY+ B — A% =0,

we cannot satisfy this equation with a symmetric M*". However, if we write
(3.21) O :f(F’i’-’-vv cFe-v*)-D(r —z),-ds,
where F¥ is antisymmetric in u and v, we see that
fd
(3.22) 0=, :} 3 FE) Dl —2) - ds

This shows that we can eliminate the antisymmetric part of (3.20) by adding
¢, onto the original solution, provided that

d

(3.23)(") o

(F¥) = — K 4 Alegn

(") For the sake of clarity, we shall omit the particle index, p, and the order index,
n, for the rest of this section.

(*") We shall use the standard notation, 2.4wB" = A«B» — A*B#, and 2. A“ B =
= AvB* + A*Br.
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and we can eliminate the symmetrie part of (3.20) by choosing an M** such that
(3.24) M = — B 4 AW

The higher order multipoles in (3.15) offer no problems whatsoever as they
may be eliminated by adding to the field

(3.25) z/(ke:pv(x)t — Jprevxdy, kv:gy(a)t)l)(r _ Z),g Gy, ds ,
t

which is symmetric in x4 and », because the k’s are symmetric in all their in-
dices after the colon. Finally, we obtain a solution of the equations in the
n’th approximation by adding onto the original integral expression, (3.1), the
additional terms, (3.17), (3.21), (3.24), and (3.25). There are, of course, other
singular function that we can add to (3.1) to remove the monopole and dipole
terms, but we should still have to solve differential equations like (3.19) and
(3.23) to satisfy the coordinate conditions. The reason for this is that we
cannot remove the monopole, k“, in general by adding a monopole term to
the original field, and so we have to add a dipole. When we insert this into
the co-ordinate conditions we obtain a quadrupole expression, and the only
way that this can be reduced to a monopole is through the application of
equation (3.16) twice. Consequently, we obtain the second derivatives of the
dipole constants. The reason that this reduction of a quadrupole to a mono-
pole is possible is that the derivatives of the Green’s function are not linearly
independant under the integral sign but are related by (3.16) as well as
" Dir—=z) ,=0.

Theorem 2. The field equations and co-ordinate conditions may be
satisfied in the w»’th approximation, provided that they are satisfied
in every previous approximation. In general, however, there will be
a second order differential equation to satisfy, and so the solution will
be finite in space like directions only.

The first part of the theorem has been proved, as we have found a par-
ticular solution of the field equations which satisfies the co-ordinate conditions.
To prove the second part we observe that A* must satisfy a second order
differential equation and so it will diverge at infinity on the world line. This
is the case in the quasi-static approximation where the second order dipole
moment may be interpreted as the distance between the physical world line
and the world line obtained by integrating the equations of motion in the
fourth approximation. The solution will be finite only if the system is periodic.

The answer to this is that the individual 4’s and F’s are not physical
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tensors, but have only been introduced so that the coordinate conditions
may be satisfied exactly in each approximation. This is a rather naive situation
as the field equations have only been satisfied approximately, i.e. to the n'th
approximation. What is wanted is an approximation method in which the
coordinate conditions are satisfied to the same approximation as the field
equations, but no further. We shall derive a reiteration method in the next
chapter which does this without it being necessary to introduce the non-
physical A’s and F’s. It must first be stressed, however, that these diffe-
rential equation do not arise because we have chosen the e Donder coordinate
conditions. Unless these conditions are satistied, exactly, the n’th approximation
equations of Einstein are not satisfied since we have used the coordinate con-
ditions to reduce Einstein’s equations to the simpler Fock equations. How-
ever, if the co-ordinate conditions are satisfied to the n’th approximation,
the solution we derive will satisfy Einstein’s gravitational equations to the
#’th approximation and that is all we should expect from an approximation

method!

4. — The equations of motion.

If we sum equations (3.19) and (3.23) over all approximation orders, we

have

d2 @ P q Q P q /]
(1) 3o (A9 = S B P r <) 2 (A0, BY)
= n=1
d ’ Y < p[l" 1] 'll” ’31’] lef, ],["' 1] I'[ I?vl
(4.2) TP = 3 (R0 4 A 4 A
n=1
where we have defined
(4.3) A=A, Fe=3 P

z- 1 -1

What we should like to say is that the individual »’th order constants have
no physical meaning, but only the total A and F 2, defined in (4.3). Provided
that the right hand sides of equations (4.1) and (4.2), as well as the limiting
field, A", are functions of the fotal spin and dipole moments and not of the
individual x-th order parameters, we could interpret these equations as the
physical equations of motion and spin. Under these circumstances, we should
not be interested in the solutions of (3.19) and (3.23) at all, but only in the
golution of (4.1-2).
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Now, it can be proved that it is only the total spin and dipole parameters
that appear in the limiting field and the equations of motion. The reason
that we have had to introduce the 4’s, ete., is that we have been trying to
satisfy the coordinate conditions exactly in cach approximation. What we
shall now prove is that, if we weaken this condition so that the field to the
»n’th approximation does not satisfy these conditions exactly, but only to the
n’th approximation, we shall not need to expand out these parameters at all.
It will be found that the co-ordinate conditions will be satisfied to the n’th
order provided that three equations of spin and four equations of motion and
mass are satisfied to the same order.

We shall define the reiteration k's by the equations,

; tow Dy "o ”
(44) (*) ic_té _ zl-&;q , gl}i _ z i‘;[fb ]’

)
r=1

where the k’s will be defined by induction. They correspond to the k’s of the
previous section but they do not contain the individual A’s or F’s. This does
not mean that we shall only consider particles whose spin and dipole constants
are zero, since the physical constants may be introduced into the first ap-
proximation, and both the reiteration field and the £’s will be functions of
these first order constants. What we shall not do is expand these physical
tensors into non-physical components of different orders.

We shall now prove, by induction, that it is possible to solve the approx-
imation equations in such a way that g” » is a function in which every term
consists of a k multiplied by a Iun(tlon of the (» — r)-th approximation order.
When we equat(\ the sum of the k’s to zero, for each particle,

iy

(4.5) (oo) z b= 0, (lgﬁ)y: g

(I

3=¢‘e

we shall have

(4.6) i

r+

ﬁal,s

[

where every term on the right hand side is of the (r4-1)-th, or higher, order.
Consequently, every term in g, will be zero fo the n-th order, and so the co-
(n)

Ordinate conditions will be satisfied to that order. Hence, provided that the

(*) In the later part of this section, we shall show that k‘"v =0 and so there
are onty three independent components.
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solution is convergent, the co-ordinate conditions will be satistied by the
limiting field, whenever equations (4.5) are satisfied.
Fock has shown that the Einstein tensor may be reduced to

(4.7) 2@;11* - Dhrw J\” 2/1/“' #‘ Zul' ,
where
(4.8) (%) 2= B P A R QU

The Bianchi identities may be written as

(4.9) o Dh/“'_,—i' 2/1]11'.'_\_ ]7;4 (_ th/} + 2/1 \/5)
' ¥ a3
I — h\}f'ﬂ(P,;w.r + FQI;PQ\I) _ h\/{ (P'\' + (L)‘.\ur:;"" + jvgu(l)r‘:r:;r) . h\,‘f./”m(‘),\w:g’

s
where the important thing to notice is that the right hand side contains the
divergence of the field tensor as a linecar factor in cach term. If we insert the
J-series, (2.11), into this identity, and then equate the coefficient of A» to zero,
we have

no 1
(4.10) 24"+ X T (— O BF 2427 = — 3 n@i%(;axn AP — .
r>0 r=1 r

where there are six terms on the R.H.S., all linear in ﬁ“ﬁ B or its derivatives.
It might be wondered why we have omitted the first term in (4.9) from (4.10).
The reason is that, since (4.9) is an identity, it must cancel with the terms
on the R.H.S. which are linear in the derivatives of (73;-". This is also the reason
why we have started the summation in (4.10) from r-= 1 rather than from
r=0.

When we sum these equations from 1 to », we have

(4.11) 244 3 D(— TR 4+ 24 - — 3 JEEs P

r=1
where we must be careful to distinguish between the reiteration and approx-
imation indices, (¢) and ¢ respectively.

Now, let us assume that the field equations are satisfied in all reiteration
orders up to the (n — 1)-th. Also, let us assume, as part of the induction
hypothesis, that (}T&)’“fv is a function in which every term contains a £, or
its derivative with respect to s, multiplied by a function of approximation

{*) See appendix A where P* and % are defined completely. All that we are
interested in here is that Z*" should be linear in h* .
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order r —t. If we call such a function an O,-function, then we see, from
(4.11), that él)” *»is also an O,-function. From the last two sections, we gee that

(4.12) = 4 (271:)—1];/1’“’,,,(7’) ‘D(r —r')-d%" + multipoles .
(n) 7)
14

The first term on the R.H.S. is an O,-function. In the lagt section we saw
that we could chose the multipoles in such a way that the coefficient of all
higher order multipoles were zero and this only involved algebraic processes
through (3.25). Also, we can remove the symmetric part of the dipole field
from (4.12) as in Sect. 3. The coefficients of the monopoles and the antisym-
metric part of the dipole field define the reiteration hl:é)", by induction. This
shows that the »’th order reiteration field will satisfy the induction hypothesis,
.e. it will be an O,-function, provided that all previous reiteration field do.
Consequently, we have proved by induction that the divergence of the reite-
ration field will be an O, ,-function.

It might be thought that our proof depends on the way that we have in-
tegrated the field equations, but this is not so. Any solution of the field equa-
tions, satisfying the appropriate boundary conditions, outside the surfaces
may be obtained from any other by adding a set of multipoles, since the dif-
ference satisfies the wave equation. Furthermore, if we use analytic conti-
nuation to extend this solution into the interior of the surfaces, we can obtain
an arbitrary solution of the field equations.

Theorem 3. Provided that the coordinate conditions are satisfied ap-
proximately, in the sense explained above, for all lower order reiteration
fields, we may integrate the field equations arbitrarily in the n’th ap-
proximation and then satisfy the coordinate conditions to the n»’th
approximation by the following procedure:

Firstly, we add this iz”” onto the previously calculated reiteration field to
give a solution of the »’th order reiteration equations, and then we calculate
its divergence, (ib)”, We then use the equations of motion and spin to the
{n — 1)-th approximation to reduce this to a sum of multipoles. The higher
order multipoles are eliminated as in (3.25) and the symmetric part of the
dipole terms as in (3.20-4). This leaves us with a monopole and the anti-
symmetric part of the dipole field which define the n’th order reiteration k’s

(n

(4.13) h"“,v = zf(j%"-l)(r —?) —l—{ll]f“”l)(r —2),)+ds + O,-function .
P
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The coordinate conditions will be satisfied to the n’th order, provided that
(4.14) k', kU =0, to the »’th order.

This follows because it implies that (Zg" is zero to the #’th approximation for
all r<n.

The interpretation of these equations will depend on the first order solu-
tion chosen. Since the source function, 4/, is zero, the field A*” must satisfy
the wave equation. We shall now calculate the most general pole-dipole so-
lution of the wave equation, such that the coordinate conditions are satisfied
approximately in the sense above. We shall write the first order solution as

(4.15) Ilz”” :] Mo D(r —z)-ds +/‘AMIWIQ.D(7' —2)pds.

It should be noticed that the dipole and quadrupole moments are related by
the equations,

(4.16) [n“ﬁ-l)(r —2)pds =0,

(4.16") /'f(s) %D — 2., :ff'-m» —2),ds.

Equation (4.16)" follows from (3.16).
We shall look for the most general solution such that

(4.17) e :jkﬂ-l}(w-z)ds + [k D(r —2),,-ds .

First of all we observe that we may write M*"¢ as
(4.18) M = (M1 — M %p v°) 4 My °,
== M/lvig + M”v:‘X@“vQ .

By using (3.16), we may reduce the field corresponding to the second term
in (4.18) to a monopole field. Consequently, since the first term satisfies
Mrrep .= 0, we may assume that

(4.19) v M =0,
without loss of generality.

32 - I Nuovo (imento.
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Also, we have
(4.20) Koy =0,
this equation being true for all the approximation and reiteration %’s of this
section. To see this, let us suppose that we have rednced the divergence of
the field tenmsor in the n’th reiteration to (4.13). We may write the dipole
expression as
4.21)  E¥= (B — ¥ 0" + k%0 0") — (B 0,0 + k¥ v 0") 4 280 07,
ke — W4 2k v,

I

where

* ,
w o B o Cp ot
o ke =k k~v v+ kYo o,
.22
( ) 2 B ot kT iz
= k~o 0"+ k¥o v,

Since W is symmetric in g and », we can remove it from the field by the
addition of a monopole field to the field tensor, as in (3.20-4). By the use
of (3.16), we can reduce the field corresponding to the third term on the R.H.S.
of (4.21) to a monopole field. This leaves us with a similar expression to
(4.13) except that k¥ is replaced by ”‘J’, which satisfies (4.20). This shows that
there are only three independent differential equations corresponding to the
independent components of k.

We shall now proced with the calculation of the most general pole-dipole
field. From (4.15) we see that

(4.23) W :f(Mfc'.D(r —2), + M D(r —2),, ) ds.

Equation (4.17) and (4.23) do not imply that M/ is zero, since the multi-
poles are connected by (4.16) and (4.16)'. Instead, we must have

4.24 MEC = Byt Ot 4 DUy 4 P2
( }

where F*? iy antisymmetric in » and g, and the parameters on the right hand
gide have to be determined. Since the L.H.S. is symmetric in u and », we have

(4.25) Fﬂ:@ o FV:ILQ P B/t _7]/:9 + Bt'_/',],ug — C[‘u 1‘],09 + Dvg,v,u L Dugvl' .
Therefore, by interchanging the coefticients, we have

(4,26) T — J(B'E— P £ J(PTY— ) 4 (P — FY) —
— an,ug_ B@n/w_i_ C[rg]v,u . O(/w]vg _j[_ C[,ugl,uv + D(/u')?)e + D[rg]v/z_ Df/lngv ,
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Consequently, we have that

(4-27) M@:Q — (If'”‘l]pg— ]{98!“,_*‘ ]gvn//g) _i_ O[?‘Q]v/l+ O[/:Q]vv_*_ Ol,u*),vg_*_
+ D[I'g]vll+ D[,lg]v1v+ D(/uv),vg .

The first term on the R.H.S. corresponds to the usual allowable coordinate
transformations so we shall take B = 0. If we substitute

(4.28) BY = (W Dt G = (v D

which are obviously antisymmetric and symmetric, respectively, we may
write (4,27) as

(4.29) M = B+ 0B+ 6%

If we multiply this equation by », and use (4.19), we have
(4.30) G¥ = — o BE¥0 — o EC",

and so we may rewrite the dipole tensor as

(4.31) MY = "B+ " E¥ — (0 EC0" + 0 E¥0")00,
= 4" S% L 49" 8¢ - 4D,
where
v v X v 147
48% = EY — E%v o'+ E¥» o,
4D, = — 2B~ .
From their definitions, we see that

(4.32) v 8% =0 D" =0.

If we use (4.31) in (4.15), we have
v v d St
(4.33) W = [(M% L4 F (D v#) + 4S"v> D(r—z),ds.
| B b

Since this must be equal to the R.H.S. of (4.17),

d .
(4.34) MK P (4D ety + 48 = K2 - Heo?
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where H* is an arbifrary parameter. Taking the antisymmetric part of this
equation,

d - .
(4.35) 24 (Dot — Dre) + 48" L L (H v — HYv) = Y,
and multiplying by v,
(4.36) -H — 3 H o = 48%y, —2D",

kY = 48Y — 4(8%0 0" — 8¥0 ") + 2DV — D).

Consequently,
(4.37) H" = mv" + 88y, — 4 D",
and so

(4.38)  M¥ = 4mv"v’ + 4(Sv v+ 8¥v o) — 4DV + D) — 2D + D o),

where m is an arbitrary parameter: 4m—=H"v .

This shows that we can characterise the most general pole-dipole solution
in the first approximation, by a mass parameter, a spin tensor, and the dipole
moment of the rest mass, satisfying (4.32). This corresponds to the results
of PAPAPETROU for a test body, though his results are slightly different in form
because he defined the particle moments differently.

We have for the first order field,

(4.39) = f (dmotv* — 4 (D*¥ + Do) — 2(DFG + D7ry —
1
— 488 ¥ — 487D, v,) D(r — 2)ds + 4[(;5”5’17” + 8%p# 1 Devke*) D(r — 2)5ds

We have introduced the factor of 4 so that the gravitational constant is unity.
The particle tensors must satisfy (4.32).

Ii we take the divergence of (4.39), we verify that (4.17) holds with the
first order reiteration k's as follows:

d .« d .
o "y v R (S *pe
(4.40) Il‘ =4 & (mv#*) — 4D 8 & (S,

(4.41) R = 4% (8%) - 4846, 0" — 8¢5, 0%) + 2(D’r — DI3Y)
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where it will be observed that Ilc’f/v satisfies (4.20), and so has only three inde-
pendent components. In the previous section we were only interested iu
showing that the field equations and coordinate conditions could be satisfied
in each approximation so we did not reduce the k"' to functions satisfying
(4.20). In this section we are interested in the physical interpretation of the
results. The reason that we have been able to satisfy (4.20) is that the multi-
poles are not independent, but are related by (4.16) and (4.16)'. This leaves
only three independent spin differential equations.

Let us now suppose that we have found the reiateration £’s to the n’th
order. When we cquate them to zero, and use (4.40) and (4.41),

. d ‘. d ot
(4.42 4 I (me#) — 4D* — 8 T (8%2,) = —nglf ,
d 4 P UAPT D W & v
(4.43) 4 e (NE) + 48D 0" — ST 0¢) 4 2(D"# — DY) = — Ircv ,
b re2
where
(4.44) S = D'w,=0.

If we multiply (4.42) by v, and use the differential of (4.44) and also the
equation, 9 »*= 0, we have

42

. . d . . - d . s
(4.45) 4m — 4D*p,+ 8o, i (8%%%,) = 4m — 4D*p, L 8 & (S¥v,0,) — 887 0,

and therefore

(4.45) dm =4Dwv — Sk .

=2

which is the equation of mass or energy. The remaining three equations of
(4.42) give the equations of motion, while (4.43) correspond to the classical
equations of angular momentum.

These equations are equivalent to those obtained by PAPAPETROU (°) for
spinning test particles in general relativity. They are also equivalent to those
derived by MATHISSON (%), LUBANSKI (8), and HONT, and PAPAPETROU (1) for

(®) A. ParareTROU: Proe. Roy. Soc., 209, 248 (1951).

(®) M. MaruissoN: .leta Phys. Polon., 8, 167 (1937).

() H. LuBaxskI: ete Phys. Polon., 6, 356 (1937).

(®) H. HoNL and A. PAPAPETROU: Zeits. Phys., 112, 512 (1939).
) H. HONL and A. PAPAPETROU: Zeils. Phys., 114, 478 (1939).
) H.

(9
1 HonL and A. PAPAPETROU: Zeits. Phys., 116, 153 (1940).

( 0
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spinning test particles in special relativity. What is interesting is that they
should arise from the structure of the field equations outside the particles,
rather than the precise form of the assumed energy momentum fensor. In a
later paper, we shall calculate the equations of motion and spin for a particle
in an external field arising from a set of particels.

Also, we shall show that essentially the same equations arise in the quasi-
static approximation, The analysis is slightly different in that it is impos-
gible to satisfy the coordinate conditions exactly in the »’th approximation
unless certain differential equations are satisfied by the particle parameters to the
previous approximations. As we have seen, the differential cquations arising
in the n’th covariant approximation involve the particle parameters of the same
order. The reason for this is that derivatives with respect to the non-covariant
time coordinate in the quasi-static approximation are considered to raise the
approximation order of the function differentiated.

It will be noticed that (4.42-3) are inconsistent if we equate the spin tensor
to zero. This is also true of the quasi-static approximation. As is to be
expected, a dipole particle in an external field will start to spin under the
applied couple. It is not possible, in general, to satisfy the coordinate con-
ditions exaetly in each approximation by introducting a dipole moment, unless
a corresponding spin tensor is also introduced. In the quasi-static approx.
imation there are three extra surface integral conditions to be satistied as wel;
as those found by EINsTEIN and INFELD. These correspond to the equations
of spin.

APPENDIX

Fock has show that, if we introduce the following functions,
waf 1 av y 1B By qux ur q g%
2 Z%(Q g*f, + g7 gr, — gt ,

A = T

Yo = (og (=), Y =9""a,
e = —(—g)ig,,

Iy =30l + ud™y + 9u.d™)

Tw = gegily,
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the Einstein tensor-density may be reduced to the following,

W = — 3 (— ) Mg s+ at P (— g)- + 19yt — § (— g)yry —
— (=g, 2 9% (g — F (— Iy + Tyr) 4 § (9Pl s+ 1y,) .

For our purposes, it is sufficient that it should be possible to write this as

2B = — R 24 - 2
where

Zm = WF P o B g 5

Z" consists of the last three terms in the expression of &#. This is so because
the last three terms are all linear in I'*, or its derivative.

RIASSUNTO (%)

Si ¢ analizzato il metodo d’approssimazione covariante di l.orentz per il campo
esterno a un sistema di particelle localizzate. Si & trovato che oltre le solite equazioni
del moto e dell’energia otfenute da Einstein. Infeld e Hoffman per Uapprossimazione
quasi statica ne esistono altre tre, le equazioni dello spin, che debhono essere soddi-
sfatte dalle costanti strutturali di ogni particella. Tali equazioni appaiono anche nella
approssimazione quasi statica come condizioni degli integrali di superficie. 31 dimostra
inoltre che non & necessario sviluppare in serie le costanti di massa, dipolo o spin,
essendo le costanti introdotte nella prima approssimazione quelle delle particelle fisiche.
Solo le equazioni differenziali soddisfatte da queste costanti cambiano nelle approssi-
mazioni degli ordini superiori.

(") Treduzione « cura delle Redazionre.



