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S u m m a r y .  - -  The Lorentz-covariant approximation method for the 
field outside a set ef localized particles has been anMysed. I t  is found 
that  as well as the usuM equations of motion and energy derived by 
Eistein, Infeld and Hoffm~n for the quasi-static approximation, there 
are three further equations, the equations of spin, which must be satisfied 
by the structural parameters of each particle. These equations also appear 
as surface integral conditions in the quasi-static approximation. Further- 
more, it is shown that  it is not necessary to expand the mass, dipole, 
or spin parameters, those introduced into the lowest approximation 
being the physical particle parameters. I t  is only the differentiM equa- 
tions satisfied by these ~hat change in the higher orders. 

1 .  - I n t r o d u c t i o n .  

I n  this pape r  we shall  ana lyse  the  eovar ian t  app rox ima t ion  m e t h o d  for  

ca lcula t ing  the  equa t ions  of m o t i o n  of localized part icles in general  relat ivi ty .  

B y  eovariant, we m e a n  t h a t  the  a p p r o x i m a t i o n  equa t ions  are  Loren ts  covgr ignt ,  

n o t  covari~mt u n d e r  the  full co-ord ina te  t r ans fo rma t ion  group.  Previously ,  

it has  been usual  to consider  the  der ivat ives  wi th  respect  to  the non-eova-  

r i~nt  t ime coord ina te  to be smM1 c o m p a r e d  to the  spat ial  derivat ives,  g iving 

(') Submitted in part  fulfilment of the requirements for the P h . D .  examination 
at Cambridge University, 1958. 
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the usual quasi-static approximat ion.  EINSTEIn, INFELD and HOFFI~IAN (~:~) 

analysed this problem and showed tha t  each particle mus t  satisfy three equa- 

tions of mot ion and an equat ion of mass. Theh • method was based on the dipole 

procedure wherein a dipole field is int roduced into each approximat ion ,  so 

t ha t  the field equations are integrable in the nex t  approximat ion.  However ,  

their  proof assumed the wmishing of the dipole forces and, as has been shown 
by MOFFAT and :KE!%R (4), this is not  so. In  the lowest  approx imat ion  one 

obtains the usual classical dipole forces on a ram-symmetr ic  particle in an 

external  field. 
Fur thermore ,  as I shall show in a subsequent  paper,  the four surface in- 

tegral  conditions of Einstein, Infeld and Hof fman  are not  sufficient for the 

in tegrabi l i ty  of the approx imat ion  equations.  There are also three equa t ions ,  

corresponding to the classical equations of angular  m o m e n t u m ,  which mus t  

be satisfied in every  approximat ion.  I f  a dipole field is int roduced into each 

approx imat ion  so tha t  the E . I . H .  surface integrals are zero, then  the three 
spin equations will be inconsistent.  I t  is also necessary to introduce a spin 

field into each approximat ion ,  before the field equations can be satisfied. 
Physically,  it is found tha t  a dipole particle will s ta r t  to ro ta te  under  an 

applied couple. 
We shall not  consider the quasi-stat ic  approx imat ion  fur ther  in this pape r  

bu t  ins tead shall analyse the corresponding p rob lem in the Lorentz -covar ian t  

approximat ion .  The reason for this is tha t ,  a l though it is much more difficult 

to integrate  the field equ'~tions in a simple closed form, we shall have  a clearer 
p ic ture  of the s t ructure  of the approx imat ion  method .  In  part icular ,  we shall 
see t ha t  the equat ions of energy, motion,  and  spin a.re the only physical  equa-  

tions to be satisfied b y  the part icle  constants .  The form of these equations is 
complete ly  identical to t ha t  in the quasi-stat ic approximat ion ,  except  tha t  
the  t ime der ivat ive  is t rea ted  in the same way  as the spatial  derivatives.  

In  Sections 2 and 3 we shall show t h a t  the field equations m a y  be inte- 
gra ted  in each approximat ion ,  provided t ha t  we expand  the mass, dipole and 
spin pa ramete r s  for each particle. I t  will be shown tha t  each of these parame-  

ters  mus t  satisfy a first or second order differential equation, as in the quasi-static 

approximat ion .  However ,  it can be shown tha t  the to ta l  field is a function 

of the mass, etc., ra ther  than  of the individual  ~t-th approx imat ion  order com- 

ponents.  This being so, we would expect  t ha t  the physical  equations of mass, 

motion,  and  spin would also be functions of these to ta l  ma.ss, dipole and spin 

constants ,  and tha t  the differential equations satisfied by  the n-th order p~/ra- 

(') A. EINSTEIN, L. INFELD and H. HOFFI~IAN: Ann. Math., 39, 66 (1938). 
(z) A. EINSTEIN and L. INFELD: Ann. Math., 4t, 797 (1940). 
(3) A. EINSTEIN and L. INFELD: Can. Journ. Math., 1, 109 (1949). 
(4) j .  MOFFAT and R. KERR: paper. Copies available. 
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meters  do not  affect the physical  field. This was the mot iva t ing  idea behind 

the E . I .H .  dipole procedure.  However ,  they  a t t e m p t e d  to show tha t  only 

the  tot.hi dipole constants  would appear  in the equations of mot ion b y  proving 
t h a t  the  dipole forces were zero in every  ~pproximat ion,  which is not  t rue as 

has been shown in (4). 

As we shall see in Sect. 4, exact ly  the same problem arises in the Lorentz- 

covar ian t  approximat ion .  I t  could be prow,d tha t  it is only the total  particle 
I~aramete~s t ha t  ~ppear  ill the physical  equations bu t  we shall not do so. 

Ins tead ,  we noti(.c t ha t  if the individua.1 "v~-th order pa rame te r s  do not  appear  

in the physieal  field or the equations of motion,  etc., it is pointless to expand  

these parameters .  ()f course, if we do not  expand them then we cannot  

sat isfy the approx imat ion  equations exactly.  However ,  we show tha t  if the 

equations of motion,  energy and spin are satisfied to the ~,~-th approximat ion  

then  the  Einstein field equations are also satisfied to the same approximatio~. 

The original n-th approximat ion  field equations of E . I . H .  ~re not satisfied 

even in an approx imate  sense but ,  if we add totsether the ~-th approximat ion  

fields up to the 2~'-th order to tz'ive the physi(.al tiehl to the 5~-th approxim'/ t ion,  
then the field equations of Einstein will t)e satisfied to the N- th  approximat ion,  

p rovided  tha t  the seven differential equations of energy, mot ion and spin a F e  

s~tisfied to the same apyroxim+~tion, This is all t ha t  can be expected  of any  

approx imat ion  method.  

2.  - L o r e n t z - i n v a r i a n t  X - e x p a n s i o n s .  

In  this Section we shall derive an approx imat ion  me thod  for solving the 
field equations outside a set of weakly  interpreting, fast  moving,  bodies. Ob- 
viously, if we wished to consider fundamenta l  particles we should have  to take 
into account  tile Brems t rah lung  emission which plays a large pa r t  in the theory.  
This is also the c~se with classieM theories, such as quan tum theory  or elet.tro- 
(lynamies, where the spontaneous emission of radiation plays an impor t an t  
role in the mot ion of the e lementa ry  p'~rtieles. 

For  a macroscopic  body,  the ra te  of emission will be governed by  tile equa-  
tions of statistieM mechanics,  and consequently m a y  be considered to be a 

continuous funct ion of ~he t ime for ~ st,~bte body  in a weak gmvi ta t ionM field. 

Thus, it should be possible to derive meanin~.qul equations of motion for such 

bodies. 

In  the following, we shall consider the field around a set of particles, or 

(, singularities ,~, which we shall distinguish by  Lat in  superfixes over the ap- 

propriate  functions.  As it is not  possible to expand the field at  the singula- 

rities, and a.s we do not  wish to introduce an ene rgy -momen tum tensor, we shall 
enclose the pa r tMes  b y  a rb i t ra ry  three dimensional surfaces with the t o p o -  
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logical propert ies  of a t ime-like cylinder. To specify the position of the p- th  

particle,  we shall t~ke a representa t ion world line, $,(~), inside the p- th  sur- 

face, S. Since the actual  shape of the  surfaces is not  impor tan t ,  we shall 

define t hem by  the following conditions. 
Firstly,  we define a one dimensional  pa ramete r ,  ~, along each world line 

b y  me,~ns of the Galilean metr ic  tensor (*). We then  ex tend  the  domain  of 

definition of this p a r a m e t e r  to a four dimensional  region, enclosing the par-  

ticle, by  means of the equations,  

z , ( s )  + y ' ,  (2.1) x" = " ~ 

(2.2) " = v,,7, ' ~ ( x ' - - b ( ~ ) )  = 0 ,  

where throughout  this paper  we shall raise and  lower the  par t ic le  tensors with 

the  Galilean tensor, ra ther  than  the unknown Einstein tensor. These equa- 
tions correspond to taking the  planes of cons tan t  ~' perpendicular  to the  world 
line, and they  will have  a unique solution for ~ as a funct ion of x ~ inside S 

provided tha t  the  deriv,%tive, "&/~x", is not  infinite. I f  we differentiate (2.2) 

with respect  to the p a r a m e t e r  x ~, we have  the  equat ion 

a,' ( a s )  
(2.3) - -  , ~Tx~ ~ , ~x ~ 7 ~ + v ~  ~ - - v  ~- = 0  

and so 

~s G 
(2.4) ~ x ~ - - l _ ( ¢ , ) , ~ ) ,  

so tha t  s will be a single valued funct ion of posit ion provided  t ha t  "~ .y~< 1 

inside the surface. We define the  surface, S, b y  the  condition t h a t  (y -y~) 
is a constant  everywhere  on the  surface; i.e. in the rest  sys tem of the  world 
line the surface has constant  Galilean radius. The condition for single valued- 

hess means  t ha t  the  acceleration of the  world line should be  small  compared  
to the  dimensions of the system. We do not  wan t  to t ake  a world line oscil- 

la t ing rapidly  across the  particle,  as we should then  have  to disentangle the 

violent  mot ion of this fo rm the  slow accelerat ion of the  physical  body.  This 

means  t ha t  we mus t  find some way  of fixing the  posit ion of the  world  line 

inside the particle. We shall leave this to a la ter  section. 

We shall impose the  De Donder  co-ordinate conditions on the  fundamenta -  

tensor  

( 2 . 5 )  g'~.~ = 0 , 

(°) ~l~fl is the Galilean metric tensor, (+  1, - -  1, --  1, - -  1); (ds) 2 = r l~dx~dx ~, and 
v ~ = dx~/ds .  We shM1 denote differentiation with respect to s by a dot, e.g. ~ ~= dv*/ds . 
Where there is no ambiguity, we shall omit the particle index, p. 
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where 

gl-. __ (__g)½.gl,~', 

and g-~ det (g~J. Later ,  we shall consider whether  this introduces any  non- 

physical  equat ions into the theory.  We axe not  concerned here with whether  

these conditions have  any  physical  significance of their  own, since, whether  
this is so or not,  t hey  are the mos t  convenient  to use in any  rei terat ion pro- 

cedure. F r o m  the explicit  expression for the curva ture  tensor  in Appendix A, 

we see t ha t  the  approx imat ion  field equations reduce to D~Alembert equations 

whenever  these co-ordinate conditions are satisfied. 

I t  is fundamen ta l  in the  solution of any  non-linear equat ion by  successive 

approx imat ion  t ha t  the field equations should first be expressed in terms of 
a set of independent  vari~bles. We shall take  

(2.6) ~/-' =_ ~ , , , ÷  h"" ,  

and express the field equations in te rms of the h ';~. FOCK has shown tha t ,  

in a co-ordinate sys tem satisfying (2.5), the field equations reduce to 

(2.7) [] h I'~ = 2A ~''' , 

where A ~ is a non-l inear function of the h ~ and their  derivatives.  The com- 

plete expression for the Einstein tensor, as well as its reduced form using (2.5), 

is given in Appendix  A. I t  m a y  be shown tha t  the A ~''' are absolutely con- 

vergent  power series in the h ~z, provided t ha t  the moduli  of the characterist ic  
roots of Zl~h ~ are all tess than  uni ty .  A simpler, though not  so sensitive, 
condition is t ha t  

(2.8) rood (h "z) < ~.  

The (~ obvious ~) wuy to solve (2.7) is to use successive  rei teration,  

(2.9) D,~ ,'~ = ~A ( h ) 
(n) ( n - l )  ' 

where l] ~'' consists of all t e rms  in the expansion of the field equations which 
(n) 

do not  contain more  than  n(h'/~). However,  there are two things wrong with 

this intui t ive approach.  The first is th'~t there would be too much  unneces- 

sary  labour  involved if we intended to stop at  the  N- th  rei terat ion,  since it 
would be sufficiently accurate  to use ((h~")-'- in the last  rei terat ion ra ther  than  

((h2~)) ~. The difference is negligible in the N- th  reiteration. This would not  

m a t t e r  if we intended to car ry  the process on to infinity (whatever  tha t  m:~y 
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mean in a logical sense!), bu t  in practise one has to cut the  process off ~t 

some finite reiteration.  
The second thing wrong with this approach  is t h a t  we have  to insure t ha t  

the l imiting field, h~", will sat isfy the co-ordinate conditions. On the surface, 

the  simplest  w~y to do this seems to be to m a k e  each successive approximgt ion  

satisfy it exact ly ,  i.e. 

(2.10) ~,~) .~ , 

but ,  as we shall see in the nex t  section, this is not  so. Nevertheless,  for the 

present  we shall assume tha t  (2.10) is to be satisfied. I f  we take  the diver- 
gence of (2.9) we see tha t  /~'" mus t  be zero, and this will not  be so, in general, 

( n )  ,v 

even if the co-ordinate conditions are satisfied exact ly  in every previous re- 

i teration. 
For tuna te ly ,  the classical solution of the first, problem is also the solution 

to the second. In  the s tandard  work on ram-linear equations by  Bogoliubov, 
we see t ha t  the usual me thod  used to solve such differential eqm~tions is to 

expand the field in powers of an indeterminate parameter, 2, 

(2.11) h (2) = ~ ;7 ! t "" ,  
r 

which corresponds to the expansion m e t hod  int roduced by  EIHSTEIN, INFELD 
~nd HO~F~IAN in 1938 for the quasi-sta.tic approximat ion .  I t  mus t  be stressed 
t ha t  this <~ p a r a m e t e r  ,> has no physical  significance whatsoew~r. The 2-series 
in (2.11) is not  the physical  f i e l d -  t h a t  is obta ined  by  replacing 2 by  unity.  
The significance of 2 is t ha t  it should aet  as a weighting factor  to define the 
order of magni tude  of different t e rms  in the approximat ion  procedure,  the reby  
reducing the labour  involved in the rei terat ion methods.  Some times, when 

there is an obvious eonstant  present  in the differential equations,  it is con- 
venient  to expand  in te rms of this ra ther  t lmn an indeterminate  constant ,  the 

physical  constant  playing the role of a weighting factor. However ,  there is 

no obvious p:tr~meter to chose in the covar iant  ~pproximation.  
I f  we expand the field in powers of this parameter ,  and then  equate  to 

zero the coefficient of 2 '~ in the field equations, we obtain a new set of ap- 

proximat ion  equations, 

( 2 . 1 2 )  L-]h''= 2 N  ~ . 
,n n 

Hence,  the reiteration field mus t  satisfy the equation, 

n 

(2.13) ½ 5 , ~ ' '  = h,-'t t~I~. r <  n) = ~ N " ,  
r 
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where 

(2.14) h ..... ~ h ~'~ 
(n) r 

1 

and N'", , and so <,)N'"' will be a finite polynoufial in the previous approxim,~tions. 
We shall now state an impor tan t  theorem that  was first, proved by  EINSTEIN 

and INFELD: in 1949, for the quasi-static approximation.  

Theorem 1. If  the gravitat ional  field equations of Fock are expanded 
as a power series in an indeterminate parameter ,  and the eoeflieients 
of the successive powers equated to zero, (2.12), then the divergences, 

[11, ~Y'" and A , ,  will both be zero, provided tha t  the field equations ~md the 
~n 1 (n )  

co-ordinate conditions are satisfied in all previous approximations.  

This follows from the Bianchi identities and is proved in a more general 
form in Sect. 4. I t  follows immediately that ,  provided tha t  (2.12) and (2.10) 
are satisfied in every  previous approximation,  any solution of the field equa- 
tions in the n-th approxima.tion must  satisfy 

i 

(m15) [ S h . ,  = o ,  

as m ay  be proved by  taking the divergence of (2.12). This does not  imply 

that the co-ordinate conditions are s~tisfied by  any solution of the field equa- 
tions. In the next  section, however, we shall see tha t  tile ])e Donder con- 
ditions may be s~tisfied exact ly in the n-th approximation by  the addition 
of a solution of the homogeneous wave equation onto any part icular  solution 
of (2.16). This will give the equations of mass, motion, and spin. 

3. - The so lut ion  of the field equat ions .  

Firstly,  we must  find a part icular  solution of the field equations outside 
tile surfaces, ,s. The final results will, however, be independant  of the surface 
chosen, as we can always use analytic continuation to extend the approximation 

field inside the surface. Of course, the solution obtained in this manner  would 
be singular a t  the worhl lines, ~md so physically meaningless there. Even  for 

the Schwarzschild metric, when we take a finite number  of terms in this 
asymptot ic  expansion, the successive approximation fields bear very little 
relationship with the exact  solution at  and near the singularity. 

Let  D(x')  be an invariant  Green's function satisfying tile wave equation 
everywhere except  the origin. We shall not specify it "~t present,  as the choice 
is governed by  the boundary  conditions at i n fn i t y  or by  causal considerations. 



4 7 6  R . P .  KERR 

We shall write our part icular  solution of (2.12) in the form, 

" 

(3.1) h "~ = ( 2 Y l )  - 1 "  # " . D ( r - - r ' ) d d r  ' , 
n 

J 
V 

where V is the 4-votume outside the surfaces. To obtain the general solution 
of the field equations, we must  add an arbi t rary  solution of the wave equation 
onto h~'", 

n 

(3 2) h"" = h"" + U ''~ 
" n n ' 

where, 

(3.3) [] U'" = 0 .  

F rom (3.1) we see tha t  

(3.4) ~u, = r ' ) . d ' r '  
n ' r  ° 

V 

Since the Green's function is a function of ( r -  r ')  2, we have 

(3.5) ~ . D ( r - - r ' )  - -  O x , . D ( r - - r ' )  = D ( r - - r ' )  .~, 

by  definition, and so we may  reduce (3,3), by  integration by  parts,  to 

" 

( 3 . 6 )  h ~ ,  = (27~)-  ' ~ ' - -  ~(r  ) .~xx~ 'D( r - - r  ) 'ddr ' = 

V 
P 

=(2z)-lfAt'~.,(r').D(r--rt).ddr' ~ -  ( 2 z ) - i  ~ f d / ~ v .  D • d S ~ ,  

V 

where the p on tile integral sign denotes the surface S ~, an4 dS '  is an element  
of the surface S ~' at  the point  r ' ,  pointing along the same direction as the 
vector  7r- Therefore, provided tha t  the field equations and co-ordinate con- 

ditions are satisfied in all previous approximations,  

P 

(2~)-1 ~,t A,~(r,). D(r -- r').dR" + (3.7) F v 
t ]  

P 

We shall use (2.1-3) to reduce this surface integral to a line integral along 
the world lines. We can expand D ( r -  r'), at  the point  (s, ~ ) ,  as a Taylor 's  

series, 

(3.8) D ( r  - -  r ')  t~=o t ! ~ " ' 
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where we have used the following notation,  

(3 .9)  F(x'°).{,)," ~'(')~ = / ~ ( x  e) ..... ~ "y~' "7 ~'.--7 ~' • 

Since the surfaces have constant  radius and since each S ~ is orthogonai 

to the planes of constant  ~, we may take as the surface element d2S.du.n,. 
d2S is a two dimensional element on the surface, (y)~= eonst., s(r)= const.; 
du is the distance between neighbouring planes, measured along the direction 
v ~ at  the point  r ' ;  n ~ is a unit  four vector with direction yL This may be 
seen by  considering the surface element in the rest system of the y-th particle. 
F ro m  (2.3), we see tha t  

d.~ %(v ~- du) 

and therefore 

(3.10) 

where we use the notat ion,  

d~ -- ( l -  (~:,, r ) ) d s ,  

(G 7) = ~ ' ) "  • 

Consequently, the surface integral over the p-th singularity will reduce t(~ 

~o 

= ~ ""'n, 'D(r --.r'),,,)~y ('), .(1 - -  (~}, y)) d2S.ds = (3.11) h"~,, (2~) -~ ~ ( )t 
p , t  • 

= ~ f k ' : ( ' " . D ( r - - z ) . , , , . d s ,  

where the k's are defined by  the equations, 

(3.12) ~":~'" = 2~t(-)~, ,"(s, r)"~,, • ¢ - ~ .  (1 - (~, r ) ) . d ~ S ,  
• j 

and are completely symmetr ic  in their indices, (~)t. 
So far we have not  specified the complementary  function, U'". This may 

be ei ther  singular at  the world lines or regular throughout  space. Before we 
can eliminate this regular function from the field, it is necessary to define the 
boundary  conditions at  infinity. The natural  hypothesis to make is tha t  either 
there  is no radiat ion at  infinity, or there is no incoming radiation. Provided 

tha t  one of these assumptions is made we can eliminate the arbi t rary  non 

singular wave function by  choosing the appropriate Green's function. Under 

these circumstances, the complementary  function for the field equations, (2.12), 
may  be reduced to a line integral. To see this, we notice that ,  by  the ap- 
propriate  Green's theorem, the complementary  function may  be written as 
the integral of a function, linear in the D ( r -  r') and its normal derivative, 
over the surfaces, S v. By  the methods of the previous paragraphs, this ma y  
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be reduced to a line integral  along the world lines in the same way  as (3.6) 

was reduced to (3.11). 

I f  the physical  sys tem is such t h a t  there is radiat ion coming in f rom in- 

finity, it can be introduced in the first approx imat ion  by  the addit ion of an 
arbi t rary  non-singular f u n c t i o n -  it will not  affect the following arguments .  

Consequently, we shall only look for a solution of (2.12) such t ha t  the co- 

ordinate conditions are satisfied, there being no point  in looking for the  most  

general solution in every approximat ion .  Any arbitrariness in the n-th ap- 

proximat ion  is Mready present  in the first approximat ion ,  so t ha t  the  physical  

character  of the solution is determined b y  h'-~ . 

Because of these considerations, we shall write the complemen ta ry  function 

as a line integral,  

(3.13) 

where the M's  are complete ly  symmet r ic  in the ~'s, as well as in # and  v. 

I f  we take the divergence of (3.13), we have  

(3.14) 
P 

U " ~  = M D ( r  - -  z ) ,  <~)," d s  , 

so tha t  the co-ordinate conditions m a y  be satisfied, provided tha t  

P P ~o 

J (3.15) ~ (M ''':<'), + k'""<'").D(r--z),,.<m.ds+ ".D(r--z).ds 0 
t , p  n 

where the part icle tensors, M " ,  m a y  be chosen as a rb i t ra ry  functions of the 
world lines parameter ,  s. We shall chose par t icular  solutions for these para-  

mete rs  so tha t  this equat ion is satisfied. When  this is done, we shall have  the 

complete  solution of the field equations and co-ordinate conditions in the n- th  

approx imat ion  if we add any  solution of the wave equat ion which also satisfies 

the  co-ordinate conditions, onto this expression. 

First ,  we observe tha t  

(3.16) 

- -  dss F ( r - -  z ) . l ( s ) . d s  = - -  , 

where F ( r -  z) is any  function t ha t  vanishes sufficiently rap id ly  in u t ime  
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l ike direction.  We  define i ts , ,  b y  t i le equa t ion ,  

P 

(3.17)(*) W s~ - - A ' v e v S ) ' D ( r - - z ) . o . d s .  

f *  

I t  is s y m m e t r i c  in ff a n d  v, a n d  

S v ~ "  (3.18) I V  ,~ = ( A ' v ' v ~ ' ) D ( r  - -  z)  o~" d s  = 

so tha t ,  if we define A."  b y  ti le equa t ion ,  

d ~ 
(3.19) ds ~ (A s) = ks , 

we can e l imina te  the  monopo le  t e r m  in (3.15) b y  add ing  W"" onto  the  original  

solut ion.  The  t e r m  in D ,  will i n t roduce  a f u r t h e r  compl ica t ion  into  the  theory ,  

since, if we equa t e  its coefficient  to zero in (3.15), 

(3.20) M ' "  ÷ k' :" - -  A " . i , '  = 0 ,  

we canno t  sa t i s fy  this equa t i on  wi th  a s y m m e t r i c  M ' " .  Howeve r ,  if we write 

----/ ( F 'e (3.21) (2 s" (FC~-'.v~ '~ - . v  z') . D ( r  - -  z ) , o ' d s  , 

where  F ~' is a n t i s y m m e t r i c  in # and  v, we see t h a t  

d (FtCo) . D ( r _ z )  d s  (3 .22)  ( 2 " , ~  = d.s. , 

This shows t h a t  we can  e l imina te  the  a n t i s y m m e t r i e  p a r t  of (3.20) b y  adding  

Q,,, onto  the  or iginal  solut ion,  p r o v i d e d  t h a t  

, ,~ ( , , )  d 
(3. .3)  ds (Ft~) = - -  k~s:"~ -4- A ts "v"~, 

(*) For the sake of clarity, we shall omit the particle index, p, and the order index, 
n, for the rest of this section. 

(*') We shall use the standard notation, 2.A~."B ,'1 = A s B ~  A~BI  ' ,  and 2 . A ~ ' B  v) = 

= AI ,B  ~' + A ' B .  '~ . 
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and we can eliminate the symmetr ic  pa r t  of (3.20) by  choosing an M #~ such tha t  

(3.2a) M ,  ~ = - -  k(/,:,) + A ( ' .  ~ ) , ) .  

The higher order multipoles in (3.15) offer no problems whatsoever as t hey  

may  be el iminated by  adding to the field 

(3.25) 

which is symmetr ic  in /z and ~, because the k's are symmetr ic  in all their  in- 
dices af ter  the  colon. Finally,  we obta in  a solution of the equations in the 
n ' t h  approximat ion by  adding onto the  original integral expression, (3.1), the 
additional terms, (3.17), (3.21), (3.24), and (3.25). There are, of course, o ther  
singular function tha t  we can add to (3.1) to remove the monopole and dipole 
terms, bu t  we should still have to solve differential equations hke (3.19) and 
(3.23) to satisfy the coordinate conditions. The reason for this is t ha t  we 
cannot  remove the monopole, k s, in general by  adding a monopole te rm to 

the original field, and so we have to add a dipole. When we insert this into 
the co-ordinate conditions we obtain a quadI'upole expression, and the only 
way tha t  this can be reduced to a monopole  is through the application of 
equat ion (3.16) twice. Consequently,  we obtain the second derivatives of the 
dipole constants. The reason tha t  this reduct ion of a quadrupole to a mono- 
pole is possible is tha t  the derivatives of the Green's function are not  l inearly 
independant  under  the integral sign bu t  are related by  (3.16) as well as 

~l~. D ( r  - -  z ) . ~  = O. 

T h e o r e m  2. The field equat ions and co-ordinate conditions may  be 
satisfied in the n ' th  approximat ion,  provided tha t  they  are satisfied 
in every  previous approximat ion.  In  general, however, there will be 
a second order differential equat ion  to satisfy, and so the solution will 

be finite in space like directions only. 

The first par t  of the theorem has been proved,  as we have found a par- 
t icular  solution of the field equations which satisfies the co-ordinate conditions. 
To prove the second par t  we observe tha t  A~' must  satisfy a second order 
differential equat ion and so it will diverge at  infinity on the world line. This 
is the case in the quasi-static approximat ion where the second order dipole 

moment  m a y  be interpreted as the distance between the physical world line 
and the world line obtained by  integrat ing the equations of motion in the 
four th  approximation.  The solution will be finite only if the system is periodic. 

The answer to this is t ha t  tile individual A's and F ' s  are not  physical 
n n 
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tensors, bu t  have  only been in t roduced so tha t  the coordinate conditions 

m a y  be satisfied exactly in each approx imat ion .  This is a ra ther  naive situation 

as the field equations have  only been satisfied approximate ly ,  i.e. to the n ' th  
~pproximat ion.  W h a t  is wanted  is an approx imat ion  me thod  in which the 
coordinate conditions are satisfied to the  same approxim.~tion as the field 
equations,  bu t  no fur ther .  We sh~ll derive a, rei terat ion method  in the next  

chapte r  which does this wi thout  it being necessary to introduce the  non- 

physie~l A's  and F ' s .  I t  must  first be stresse(I, however, t ha t  these diffe- 

rential  equat ion do not arise because we have  chosen the l ie  Donder  coordinate 

conditions. Unless these conditions are satisfied, exactly, the n ' t h  approximat ion  

equat ions of Einstein are not  satisfied since we have  used the coordinate con- 

ditions to reduce Eins te in ' s  equat ions to the simpler Foek equations. IIow- 

ever, if the co-ordim~te conditions are satisfied to the n ' th  approximat ion,  
the solution we derive will sat isfy Einstein 's  gravi ta t ional  equations to the 
& t h  approximat ion  and tha t  is all we should expcct  f rom an approximat ion  

me thod  ! 

4. - The  e q u a t i o n s  of m o t i o n .  

I f  we sum equations (3.19) and (3.23) over  all approximat ion  orders, we 

have  

(4.1) 
d'a ~ P q q p q q 

ds ~ (A ~) k'(A% F~¢; r < n) d~,__ k , (A ~, F~)  , 
n = 1 

(4.2) 
d P ~ )~ q[ P1 P P P 

- -  % '~) kE:':~,I + A~/'~ "~ , as (f:"' + A " ° ' .  
n = l  

where we have  defined 

n-  1 n 1 

W h a t  we should like to say is tha t  the  individual n ' t h  order constants have 

no physical  meaning,  bu t  only the to ta l  ~" and/~# ' ,  defined in (4.3). Provided 

t h a t  the r ight  hand  sides of equat ions (4.1) and  (4.2), as well as the l imiting 

field, M" are functions of the total spin and dipole moments  and not  of the 
(co) ' 

individual n- th order parameters ,  we could in terpret  these equations as the 

physical equations of ,notion and spin. Under  these circumstances,  we should 

not  be interested in the solutions of (3.19) and (3.23) a t  all, bu t  only in tile 

solution of (4.1-2). 
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Now, it (;an be p roved  theft it is only the to ta l  spin and dipole p ' ,aameWrs 
t h a t  appear  in the l imiting field and  the equations of motion.  The reason 

tha t  we have  had  to introduce the A's, etc., is tha t  we have been t rying to 

sat isfy the coordinate conditions exactly in eaeh approximat ion.  W h a t  we 

shall now prove  is tha t ,  if we weaken this eondition so t ha t  the field to the  

n ' t h  approx imat ion  does not  sat isfy these conditions exactly,  bu t  only to the 

n ' t h  approximat ion ,  we shall not  need to expand  out these pa ramete r s  at  all. 

I t  will be found tha t  the co-ordinate  eonditions will be s~tisfied to the n ' t h  

order provided t ha t  three equat ions  of spin and four equations of motion ~md 

mass ;~re satisfied to the same order. 
We shall define the reiter~tion k's by  the, equations, 

01) 

(!i' ( 4 . 4 )  ( ')  i ' =  i',, , = , 
r = l  ~ ' = 1  

where the k's will be defined b y  induet ion.  They correspond to the k's of the  

previous section bu t  they  do not  contain the individual A ' s  or F s .  This does 

not  mean  t h a t  we shall only eoilsider pa r tMes  whose spin and dipole constants  

are zero, since the physical constants  m a y  be introduced into the first ap- 
proximat ion,  and both the rei terat ion field "rod the k's will be functions of 

these first order constants .  W h a t  we shall not do is expand  these physical  

tensors into non-physi(.a.1 components  of different orders. 
We sha.ll now prove,  b y  induct ion,  t.hat it. is possible to solve the a.pprox- 

imat ion equations in such a way theft .q'".,. is a function in which every  t e rm  
( n )  

consists of ~ (k multiplied by  t~ funct ion of the (n - -  r)-th approx imat ion  order. 
When  we equate  the  sum of the  k's to zero, for each particle,  

(4.5) 

we shall have  

(4.6) 

= 0 ,  k . : =  o ( --~" ( co )  ~'~'~ 
n~l n=l 

co 

k = - 
( r )  r 

r + l  

where every t e rm on the r ight  hand  side is ef tile ( r + l ) - t h ,  or higher, order. 
try Consequently,  every t e rm in g ,,. will be zero to the n-th order, and so the co- 

( n )  

Ordinate conditions will be satisfied to t h a t  order, l:Ienee, provided t ha t  the 

kvv = 0  and so there (') In the laler part  of this section, we shall show that ~" 
n /a 

are omy three independent components. 
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so lu t ion  is conve rgen t ,  t h e  c o - o r d i n a t e  eond i t ions  wil l  be sa t i s f ied  b y  the  

l i m i t i n g  field,  w h e n e v e r  equa t i ons  (4.5) a re  sat isf ied.  

FOCK has  shown t h a t  the  E i n s t e i n  t enso r  m a y  be  r e duc e d  to  

(4.7) 

w h e r e  

(4.8) (*) 

' )~ ' " '  - -  - -  D h ' '  ~ 2 A t ' " +  Z."" 

Z ' "  h '/~ - P . ' '  q- h 'i~ O t' ': 
,/1 ~ - -  , r i o '  ~ " " 

T h e  B i a n e h i  i den t i t i e s  m a y  be  w r i t t e n  as 

(4.9) - -  E3h'".,. + 2A""  -~- l',~'j~(-- E3h "j~ + 2 A  'J~) 

" I ' : '  O °''::') - -  h , , / ,  , C,~,.:o = - h" 4 P ' ' ' ' . o  , .,. + r ; ,  po,  , ' ) ,  - 9 ,  Z , .  + 0 . . . . .  ,.0, , 

w h e r e  t h e  i m p o r t a n t  t h i n g  to  no t i ce  is t h a t  t h e  r i g h t  h a n d  side con ta ins  t he  

d i ve rgence  of the  field t e n s o r  as a l i nea r  fa( ' tor  in each t e r m .  I f  we inse r t  the  

2-series,  (2.11), in to  th is  i d e n t i t y ,  a n d  t hen  e q u a t e  t he  coeff icient  of 2 '~ to  zero, 

we  h a v e  

n 1 

. . . . .  " - h . . ~ ( P  . . . .  4-  '" 0,. (4.10) 2 A  ,. + Z ! '2 , , ( - -  []  h '~ + 2 A ~  ~) ~' " 
r > O  r - 1  r 

where  t h e r e  a re  six t e r m s  on the  R .H .S . ,  M1 l inea r  in ff~.~ or i ts  de r i va t i ve s .  

I t  m i g h t  be  w o n d e r e d  w h y  we have  omit te .d  the  f irst  t e r m  in (4.9) f rom (4.10). 

The  reason  is t h a t ,  s ince (4.9) is an  i d e n t i t y ,  i t  m u s t  cance l  w i th  t he  t e r m s  

on the  I L H . S .  which  a r e  l i nea r  in t he  d e r i v a t i v e s  of h 'j~. This  is also t he  reason  

w h y  we h~ve  s t a r t e d  t h e  s u m m a t i o n  in (4.10) f rom r - - :  I r a t h e r  t h a n  f rom 

r = 0 .  

W h e n  we s u m  these  e q u a t i o n s  f rom l to  n, we h a v e  

(4.11) 
r = l  

where  we m u s t  be  ca re fu l  to  d i s t i n g u i s h  b e t w e e n  t h e  r e i t e r a t i o n  a n d  a p p r o x -  

i m a t i o n  indices ,  (t) and  t r e s p e e t i v e l y .  

Now,  l e t  us a s s u m e  t h a t  t h e  f ie ld eqm~tions a re  sa t i s f ied  in a l l  r e i t e r a t i o n  

o rde r s  up  to t he  ( , n - - 1 ) - t h .  Also,  l e t  us a s sume ,  as p a r t  of t he  i n d u c t i o n  
L # v  h y p o t h e s i s ,  t h a t  ,~ .~ is a f u n c t i o n  in  which  e v e r y  t e r m  c o n t a i n s  a k" ,  or  
( r )  

i ts  d e r i v a t i v e  w i th  r e s p e c t  to  s, m u l t i p l i e d  b y  a func t ion  of a p p r o x i m a t i o n  

(') See appendix A where t'~ ~' and Q~e are deiined eomplei, ely. All tha t  we are 
interested in here is tha t  Z/~ should be l inear in ~v h , v " 
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order r - - t .  If  we call such a funct ion an O~-function, then we see, f rom 
(4.1]), tha t  ~ . ,  is also an 0,-funct ion.  F rom the last two sections, we see tha t  

(4.12) (,)h"~ = + (2z)-~fA'~(r ' ) . .  D ( r  - -  r ' ) .  ddr ' + mult ipoles .  

v 

The first te rm on the ]~.H.S. is an 0~-function. In  the last section we saw 

tha t  we could chose the multipoles in such a way tha t  the coefficient of all 
higher order multipoles were zero and this only involved algebraic processes 
through (3.25). Also, we can remove the symmetr ic  par t  of the  dipole field 
f rom (4.12) as in Sect. 3. The coefficients of the monopoles and the antisym- 
metric par t  of the dipole field define the rei terat ion /c'" by  induction. This 

(n )  ' 

shows tha t  the n ' th  order rei terat ion field will satisfy the induction hypothesis,  
i .e .  it will be an O~-function, provided tha t  all previous rei terat ion field do. 
Consequently, we have proved by  induction tha t  the divergence of the reite- 
rat ion field will be an 0n-function. 

I t  might  be thought  tha t  our proof depends on the way t h a t  we have in- 

tegTated the field equations, bu t  this is not  so. Any  solution of the field equa- 
tions, satisfying the appropriate  boundary  conditions, outside the surfaces 
mny  be obtained from any other  by  adding a set of multipoles, since the dif- 
ference satisfies the wave equation. Fur thermore ,  if we use analyt ic  conti- 
nuat ion to extend this solution into the interior of the surfaces, we can obtain 
an arb i t rary  solution of the field equations. 

T h e o r e m  3. Provided tha t  the coordinate conditions are satisfied ap- 
proximately,  in the sense explained ~bove, for all lower order rei terat ion 
fields, wc may  integrate  the field equations arbitrari ly in the n ' t h  ap- 
proximation and then satisfy the coordinate conditions to the n ' th  
upproxinmtion by  the following procedure:  

Firstly,  we add this ~,"~ onto the previously calculated reiteration field to 
n 

give a solution of the n ' th  order rei terat ion equations, and then we calculate 
its divergence, h'".,.. We then  use the equations of motion and spin to the 

( n )  

( n -  1)-th .~pproximation to reduce this to a sum of multipoles. The higher 
order  multipoles are eliminated us in (3.25) and the symmetr ic  par t  of the 

dipole terms as in (3.20-4). This leaves us with a monopole an4 the anti- 
symmetr ic  par t  of the dipole field which define the n ' t h  order rei terat ion k's 

(4.13) 
~ f  P P 

h " ,  =- ( k ~" D ( r  - -  z) + kS~D(r  - -  z).~) . ds  ~- 0n-function . 
(n) " f l  (n) (n) 
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The coordinate  conditions will be satisfied to the  n ' t h  order, provided t h a t  

(4.14) (~)",, (,~)v~'"" = 0 , to the n ' t h  order. 

~.. 
This follows because it implies tha t  (,) is zero to the r ' t h  approximat ion  for 
all r <~ n. 

The in terpre ta t ion  of these equations will depend on the first order solu- 

t ion chosen. Since the source function, A ~'' is zero, the field h "~ mus t  satisfy 

the  wave  equation. We shall now calculate the mos t  general  pole-dipole so- 

lution of the  wave  equat ion,  such t ha t  the coordinate conditions are satisfied 

a .pproximately in the sense above. We shall write the first order solution as 

/ / (4.15) h "~ = M~ ' .D( r  - -  z) .  ds + M,~:o . D ( r  - -  z). o. d s .  
1 

I t  should be noticed t ha t  the dipole and quadrupole  moment s  are related b y  
the  equations,  

f r i ~ . D ( , r  - -  z).,/~-ds = 0 ,  (4.16) 

(4.16') ~ ] ' ] ( s ) ' v ~ " D ( r - - z ~ ' ) = f / . D ( r - - z ) . . . d ~ , .  

Equa t ion  (4.16)' follows f rom (3.16). 

We shall look for the most  general  solution such tha t  

(4.17) h~"'~ f~ ' .D(r--z)d ,  +fk~'.D(r--z),,.ds . . 

Firs t  of all we observe t ha t  we m a y  write M "~':e as 

(4.18) M '  ':~ ( M  ' ' ' : ° -  M" ' :~v ,v  °) @ M " : ~ v  v Q , 

By using (3.16), we m a y  reduce the field corresponding to the second t e r m  

in (4.18) to a monopole field. Consequently,  since the  first t e rm  satisfies 

M~":°.vo = 0, we m a y  assume tha t  

(4.19) 

without loss o2 generality. 

3 2  - I I  N ~ u ) c o  ( ' i m e n l o .  

V : M / ~ v : ~  ~ 0 
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Also, we have 

(4.20) k ~ . v  ~-- O ,  

this equation being t rue for all the  approximat ion and rei terat ion k's of this 
section. To see this, let  us suppose t ha t  we have reduced the divergence of 

the field tensor in the n ' t h  rei terat ion to (4.13). We ma y  write the dipole 

expression as 

(4.2~) 

where 

k ~  = ( k ~ - - k ~ " v  v ~ + k ~ v  v ' ) -  (k"~ v ~ v " +  k ~ v  v ~') + 2 k ~ ' v  v ~, 

~ = k ~ _  k~'~v v~' ~ k W v  v f' , 

(4.22) 
W ~ =_ k ~ v  v " +  k ~ v  v ~ . 

Since W ~" is symmetr ic  in # and v, we can remove it f rom the field by  the  
addition of ~ monopole field to the field tensor, as in (3.20-4). By  the use 
of (3.16), we can reduce the field corresponding to the th i rd  t e rm on the R.H.S. 
of (4.21) to a monopole field. This leaves us with a similar expression to  
(4.13) except  tha t  k ~ is replaced by  k~5", which satisfies (4.20). This shows t h a t  
there are only t h ree  i n d e p e n d e n t  differential  equations corresponding to the  
independent  components  of k ~. 

We shall now proced with the calculation of the most general pole-dipole 

field. F ro m  (4.15) we see tha t  

(4.23) ~u~ f 7 "" = ( M l ~ " D ( r - - z ) , ~  + M ~ : ° ~ ' D ( r - - z ) . q ~ )  " d s .  

Equat ion  (4.17) and (4.23) do not  imply tha t  ~/F ''''q is zero, since the multi- 

poles are connected by  (4.16) and (4.16)'. Instead,  we must  have 

(4.24) M~':~ =_ Bt~. ~,v + C t,,'. v o + D,,~ o . v"  + E;~:'3 , 

where F u:~ is ant isymmetr ic  in v and ~, and the parameters  on the right hand 
side have to be determined. Since the L.H.S. is symmetr ic  in/~ and v, we have 

(4.25) F ~:~'2 - -  E ~:'~ =- - -  B I~ "~f~'q ÷ B" '~]  I ' q -  C:'~'"~v ~ + D~ev  ~ ' -  D " ~ v  ~' • 

Therefore, by  interchanging the coefficients, we have 

(4,26) /7 ~:5~ : ½ (F v:Lq - - F  ':(q) + { (F  e:~' - - F  *:v) + (F  e:v - - F  u:ff) = 

__ B,,~l,q _ Be~]I *, + Ct"OJv ," _ Crl,~,~vo + CEt~qlv ~ + D(t~")v ° + D:"o~v , ' ' -  D~l,o)~, , 
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Consequen t l y ,  we have  t h a t  

(4.27) M ~: '~= (B~'~l ' '~ -  B°~"" + B ~  ~'~) + CE'e¥" + C~'~v" + CU'")v q + 

+ Dt'o¥ ~' + DE"~v"+ D(,,~v ~ " 

The  first  t e r m  on t h e  R .H .S .  co r r e sponds  to  t h e  usua l  a l l owab le  c o o r d i n a t e  

t r a n s f o r m a t i o n s  so we shal l  t a k e  B " =  0. I f  we s u b s t i t u t e  

(4.28) E ¢  ~ ( ~i,,,I + D[,n G I'~ = ( (t,,'~ + D' ~ 

which  are  obv ious ly  a n t i s y m m e t r i e  a n d  s y m m e t r i c ,  r e spec t i ve ly ,  we m a y  

wr i t e  (4,27) as 

(4.29) M ~:q = vn E V  -? v" El~ + vO G ~ . 

I f  we m u l t i p l y  th is  e q u a t i o n  b y  % a n d  use (4.19), we have  

(4.30) ~ ' ~"~ ~ 

and  so we m a y  r e w r i t e  t h e  d ipo le  t en so r  as 

(4.31) M ~:e = v~'EV + v~E ~f f -  (v E~v~ + %E-v'~ ")v ° , 

- -  4v/'S~ + 4v~S ~ + 4D%~v ~ , 

where  

4SF~ = E I 2 _  EUv'v vv + E V v  v ~' , 

4 D  = - -  2E~5~v. 

F r o m  t h e i r  def in i t ions ,  we see t h a t  

S F'~ ~ D ~ (4.32) v v = v = 0 .  

I f  we use (4.31) in (4.15), we h a v e  

(4.33) h ~ = ( ( M ~  ~ + 4 d ( D ~ r ~ ) + 4 S F ~ ) D ( r - - z ) ~ d s  

Since th i s  m u s t  be  equa l  to  t he  R .H .S .  of (4.17), 

d (4D~v,) + 4~% ~ = k 5  ~. + H a y " ,  (4.34) M~ + 



4 8 8  R . P .  KERR 

where H # is an arbi t rary p~rameter.  Taking the ant isymmetr ic  par t  of this 
equation, 

d 
(4.35) 2 ~ (D~v ~ - -  D " v  ~) + 4 S  ~ ~.- ½ (H~v ~ - -  H ~ v )  = k~", 

and multiplying by  %, 

(4.36) ½ . H ' - -  ½.H~'v v" = 4 S ~ v ¢ , - -  2 D " ,  

k l ~ v  " p y  = 4 8 ~  - -  4 ( S ~ ) v v  ~ -  S U v v  ") + 2(D~¢ ' -  D ~  ~) 

Consequently, 

(4.37) 

and so 

:y/LOt 
H" = my" + 8~ ~ v~, - -  4 D " ,  

(4.38) M E  = 4mv~*v~ q_ 4(Sv  v* q_ c~,~ . t~. ~ v  v I - -  4(D%~ + D'v ' )  - -  2(D~"~'q - D~iY ') 

where m is an arbi t rnry p~rameter :  4 m = H ~ v  . 

This shows tha t  we can characterise the most general pole-dipole solution 
in the first approximation,  by  a mass parameter ,  a spin tensor, and the dipole 
moment  of the rest mass, sutisfying (4.32). This corresponds to the results 
of PAPAPETROU for ,% test  body,  though his results are slightly different in form 
because he defined the particle moments  differently. 

We have for the first order field, 

(4.39) ~ @4mv, " - 4 (D,v  + b v,) - + _ 

- -  4S~"~,v~ - -  4S'~i~,v~) D( r  - -  z) ds + 4 f ( S ~ v  ~ q- S ~ v  ~' + DQv'v~)D(r - -  z ).o 4 s  , 

We have introduce4 the factor  of 4 so tha t  the gravitat ional  constant is unity.  

The particle tensors must  satisfy (4.32). 
I t  we take the divergence of (4.39), we ver i fy  tha t  {4.17) holds with the 

first order rei terat ion k's as follows: 

d (m# ' )  - -  4b~' - -  8 4 (S~4~,) , (4 .40)  k .  = 4 
1 

(4 .41)  k5  ~ = 4 d (S~ )  + 4 ( S S e ~ v  ~ - -  S ~ q v " )  + 2(D~) ' --D~'~ ~) . 
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where it will be observed tha t  k~ satisfies (4.20), and so has only three inde- 
pendent  components .  In  the  previous section we were only interested i~ 
showing tha t  the field equations and coordinate conditions could be satisfied 
in each approximat ion  so we did not  reduce the k ~':''~ to functions satisfying 

(4.20). I n  this section we are interested in the physical  in terpre ta t ion of the 

results. The reason tha t  we have  been able to satisfy (4.20) is tha t  the multi-  

poles are not  independent ,  bu t  are re la ted b y  (4.16) and  (4.16)'. This leaves 

only three independent  spin differential  equations. 

Le t  us now suppose tha t  we have  found the  re ia terat ion k's to the n ' t h  

order. 

(4.42~ 

(4.43) 

w ] l e r e  

(4.44) 

When we equate  t hem to zero, and use (4.40) and (4.41), 

d d 
4 ~ (m',") - 4 i ) ,  - s ~  ( s ~ , i ~ )  = - y .  k, 

r = 2  

r = 2  

S ~ v  = D"v = O. 

I f  we mul t ip ly  (4.42) b y  v and use the differential of (4.44) and also the 

equation, i ~ r ' =  0, we have 

(4.45) d ~ .-~ d .,~ 
('~ G ) =  4~h -'~'~" " - -  - -  8~ ~ Vt~V~, ~ 4,% 4] )"G~ 8~,~(~,s. 4D G+8(Tg(,~G%)-- 

and therefore 

(4.45) 

r = 2  

n 

4m = 4 / ) ' v  - -  ~ k ~ ,  . 
r = 2  

which is the equat ion of mass or energy. The remaining three equations of 
(4.42) give the equat ions of motion,  while (4.43) correspond to the classical 
equations of angular  m o m e n t u m .  

These equations are equivalent  to those obtained by  PAPAPETROU(G) for 
spinning test  part icles in general relat ivi ty.  They  are also equivalent  to those 

derived by  MATHISSON (7), LUBANSKI (s), and H6N~ and PAPAPETROI; (9,1o) for 

(5) A. PAPAPETROU: Proc. Roy. Soc., 209, 248 (1951). 
(~) M. MATIIISSON: ,Iota Phys. Polon., 6, 167 (1937). 
(7) I~. LUBANSKI: Aeta Phys. Polou., 6, 356 (1937). 
(8) H. I{0NL and A. PAPAPETROU: Zeits. Phys., 112, 512 (1939). 
(') H. tI6~;L and A. PAPAPETR()U: Zeits. Phys., 114, 478 (1939). 

0 °) H. I[6NL ~nd A. PAPAPETI¢OU: Zeits. Phys., 116, 153 (1940). 
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spinning test  particles in special relativity.  Wh a t  is interesting is tha t  they  

should ~rise f rom the s tructure of the field equations outside the particles, 
ra ther  than the precise form of the assumed energy momentum tensor. In  a 
la ter  paper, we shall calculate the equations of motion and spin for a particle 
in an externM field ~rising from a set of partieels. 

Also, we shall show tha t  essentially the same equations arise in the quasi- 
static approximation.  The analysis is slightly different in tha t  it  is impos- 
sible to satisfy the coordinate conditions exactly in the n ' th  approximation 
unless certain differential equations are sa.tisfied by  the particle parameters  to the 
previous approximations. As we have seen, the differential equations arising 
in the n ' th  covariant  approximation involve the particle parameters  of the same 

order. The reason for this is tha t  derivatives with respect to the non-cow~riant 
t ime coordinate in the qua~si-static approximation are considered to raise the 
approximat ion order of the function differentiated. 

I t  will be noticed tha t  (4.42-3) are inconsistent if we equate the spin tensor 
to zero. This is also true of the quasi-static approximation.  As is to be 
expected, a dipole particle in an external  field will s tar t  to spin under  the 
applied couple. I t  is not  possible, in general, to satisfy the coordinate con- 
ditions exact ly  in each approximation by  introdueting a dipole moment ,  unless 
a corresponding spin tensor is also introduced. In  the quasi-static approx_ 
imation there  are three extra  surface integral conditions to be satisfied as wel 1 
as those found by  EINSTEIN and INFELD. These correspond to the equations 

of spin. 

A P P E N D I X  

F o c k  IlLS show that,  if we introduce the fol lowing functions,  

y .  - -  ( log  ( - - g ) %  , Y~ = W ' ~  , 

g.~,~ ) (g~,o, .~ + g~, .t, + F '  

F~ ~ = g ~  g ~ F ~  , 
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t he  E i n s t e i n  t e n s o r - d e n s i t y  m a y  be r educed  to the  following, 

(s~, _ ~ (--  g ) - ~ g ~  4- w " ~ z ~ (  - g)-~- + ¼.q~y~y~ - -  ½ (-- g)½y~'y~ - -  

- -  ~ ( - -g)-+.g,"~o- .q~o--(- -g)+F~) ' - -  ½ (--g)~.(D'y~ + F"y,)  + ½ g,"(g~I'.~ + F~y~) . 

F o r  our  purposes ,  i t  is sui I ie ient  ~ha.t i t  s imuld be  possibIe to wr i te  this  as 

where  

Z," = h~a,aP~" + h~a30Q2 ":°" 

Z ~' consists  of the  las t  th ree  t e rms  in the  express ion  of (,9"~. This is so because  
t he  las t  three  t e rms  are M1 l inear  in 1'% or its de r iva t ive .  

R I A S S U N T ( )  (*) 

Si i; analizzato il metodo d'approssimazione cow~riante di ],orentz per il ealnpo 
esterno a un sistema (li pa.rtieelle loealizzate, g i g  trovato the oltre le solite e(tuazioni 
del mot.o e dell'ener~'ia ottenute da Eins(ein. hffeld e IIoffman per I'approssimazione 
quasi statiea, ne esistono altre tre, le equazioni dello spin, ehe debbono essere soddi- 
sfatte dalle costanti strutturMi di ogni partieell~L Tali e(tuazioni apt)aiono anche nella 
approssimazione quasi statica (..ome condizioni deg'li integrali di superfieie. Si dimostra 
inoltre ehe non b ne(.essario svilupl)are in serie le costanti di massa, dipoh) o spin, 
essendo le eostanti introdotte nelb~ t)rim~ apl)rossimazione quelle delle partieelle fisiehe. 
Solo le e(tuazioni differenziali soddisfatte da queste cost~mti eambiano nelle ai)i)rossi- 
mazioni degli ordini sui)eriori. 

( ' )  T r a d a : i o n c  a t a r a  d e l l a  R e d a : i o n c ,  


