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S u m m a r y .  - -  Within the description of the experimental  determina- 
t ion of the decay law recent ly proposed we investigate the  possibil i ty 
tha t  the experimental ly  determined lifetime T be different from the 
theoretieM lifetime 1/y for undisturbed evolution of the unstable quantum 
system. I t  is shown tha t  in some specific examples the deviation of v 
from 1/y is eotnpetitive with the accuracy of the experiment.  I t  is made 
plausible tha t  such a difference, together with a variat ion of v with the 
different experimentM set-ups, could be revealed by  proper ly  choosing 
some specific unstable systems and proper ly  devised measuring apparatuses.  

1 .  - I n t r o d u c t i o n .  

I n  a r e c e n t  p a p e r  (1) i t  ha s  been  shown t h a t  a c r i t i ca l  anMysis  of t h e  a c t u a l  

e x p e r i m e n t M  s i t u a t i o n  l eads  to  t h e  conc lus ion  t h a t ,  in t h e  d e t e r m i n a t i o n  of 

t h e  d e c a y  l a w  of an  u n s t a b l e  s y s t e m ,  one c a n n o t  cons ide r  t h e  s y s t e m  as evolv-  

ing  u n d i s t u r b e d  b u t  t h a t  on t h e  c o n t r a r y  i t  is u n a v o i d a b l y  s u b j e c t e d  to  m e a s u r e -  

(*) Work  suppor ted  in par t  by the C.N.R. and Is t i tuto NazionMe di Fisica Nucleare, 
Sezione di Trieste. 
(**) Permanent  address: Is t i tu to  di Fisiea dell 'Universitg, Leeee. 
(1) L. FONDA, G. C. ~HIRARDI, A. t~IMINI and T. WnB~R: 5"uovo Cimento, 15 A, 689 
(1973). 
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ment  processes, occurring a t  r andom  during the decay time. These processes 

ascertain whether  the  sys tem has decayed or not. The recognition of this fact  

has, for the theoret ical  description of decay processes, far-reaching consequences. 

I n  par t icular  it  implies tha t ,  even though the nondeeay probabi l i ty  P(t) when 
the sys tem evolves wi thout  measurements  

(1.1) P(t) = l(%..,~b,., exp [-- iHt]%.~b~.)] 2 

is not  purely exponent ia l  for all t imes, the actual  law P~(t) which takes into 
account  the  r a ndom  measurements  turns out to be a pure  exponent ia l  

( 1 . 2 )  • % ( t )  = exp [ -  t/r]. 

The lifetime r of (1.2) is determined by  the funct ional  equat ion 

(1.a) 2fexp  [-- (2 --  1/r)t]P(t)dt = 1,  
i) 

where ~ is the mean  f requeney of the mea.surements, so t ha t  ,~dt gives the 
probabi l i ty  tha t  the sys tem suffers a measu remen t  in the t ime in terval  dt, 
and P(t) is given by  (1.1). 

~ ' rom convent ional  quan t um  mechanics,  P(t) turns  out to be exponent ia l  
for a large t ime in te rva l  (*) 

(1.1) P(t) ~_ exp [-- y t ] .  

These considerations na tura l ly  lead to the following problems which we want  
to discuss and solve in this paper.  

i) W h a t  is, in pract ical  cases, the difference between the ~ exper imenta l  ~ 
l ifetime r and the  ~ theoretical  ~> lifetime for undis turbed  evolution l /y?  

ii) I f  T turns out to be different f rom l /y ,  since this difference is re lated 
to the measuremen t  processes whose f requency can va ry  f rom exper iment  to 
experiment ,  should one expect  to get exper imenta i ly  a different lifetime ac- 
cording to the different exper imenta l  appara tus  tha t  one uses? 

Let  us r emark  t ha t  the mean  f requency of the measurements  is quite high, 
so tha t  the values of P(t) which are re levant  belong to small times. As is well 
known, at  small t imes P(t) exhibits deviations f rom the exponential  behav-  

(*) y would be the ~ddt.h of the resonance accompanying the unstable system and 
appearing in the scattering of the decay products. In practical cases, when the unstable 
System lives long enough y is too small to be detected experimentally. For example, 
if z__ l0 -1° s, y ~  10 -5 eV. 
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iour (1.4). In  par t icular  it can be shown complete ly  in general t ha t  (~) 

(1.5) dP(t)i ~-- 0 
dt i~o 

so t ha t  a t  least in a neighbourhood of t =  0, P ( t ) >  exp [--7t]. Actually,  

FLEMING (a) has shown tha t  for any  wave packet  

1 
(1.6) cos tw < _P(t) < 1 for t << ~o ' 

w being the energy spread of the wave packet .  Moreover,  some explicit  cal- 

culations in the f ramework  of specific models per formed b y  WIZ~TEn and b y  
NEWTON (~) show tha t  re levant  deviations f rom the purely  exponent ia l  law 

can be present  even up to tenths  of 1/7. I f  this were the ease the  obtained 
decay law would have  a l ifetime ~ completely different f rom 1/7. I n  fact  it is 
easily seen tha t  the t ime intervM where 98% of the measurements  occurs is 

(1.7) 10-2/~<t<5/~ 

and, as we shall see in Sect. 4, drastic lower and upper  bounds on 2 give 
f rom ( 1 . 7 ) 1 0 - 1 9 s < t < 1 0 - n s .  Therefore, for all pract ical  eases there is a 

very  large number  of measurements  in a lifetime. Moreover, b y  changing )~ 
one would correspondingly obtain different values of 3. Incidental ly ,  we r e m a r k  
t ha t  this var ia t ion of the lifetime with the exper imenta l  set-ups would con- 
s t i tute  the simplest way of revealing the deviations f rom the pure  expo- 
nentiM shape, which P(t) exhibits for small times. In  fact  it is not  possible, 
in the f ramework  of a given experiment ,  to detect  exper imenta l ly  these devia- 
tions b y  s tudying the exper imenta l  decay l~w at  small times. According to 
the discussion of ref. (1), the exper imenta l  decay law is in fact  given b y  eq. (1.2) 

and is exponential at all times. 

2. - Dependence of  the lifetime on the experimental apparatus. 

To s tudy  how T is influenced by  the presence of the measurements  with 
mean  f requency 2 and by  the existing deviations of P(t) f rom the pure  expo- 
nential  exp [--7t]  at  small times, let us introduce the  funct ion A(Tt ) and the  

(2) See, for exa,mple, J. LUKIERSKI: ICTP, Trieste preprint IC/72/128. 
(a) G. N. FLEmNG: Nuovo Cimento (in press). 
(a) R. G. NEWTON: Scattering Theory o/ Waves and Particles, Chap. 19 (New York, 
N.Y.,  1965); R. G. WIN~'En: Phys. Rev., 123, 1503 (1961). 
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q u a n t i t y  8y/y accord ing  to  

(2.1) P(t) = exp [ - -  y t ] [ l d -  A (yt)] ,  

(s.2) ~/-5~ = 1 -~ By, 
)' y 

where  in the  definit ion (2.1) we have  t aken  into accoun t  t h a t  the  t ime scale 

which  is r e l evan t  to our  p rob lem is given b y  the  <, theore t ica l  ~> l ifetime 1/y. 
The  func t ion  A (2) gives the  pe rcen t  devia t ion  of P(t) f rom the  pure  exponent ia l .  

Since P(0)  1, we have  t h a t  A ( 0 ) =  0. On  the  o ther  hand ,  f rom (1.5) we 

get  dA(x) /dx]~  o = 1. The  p a r a m e t e r  8y/y is the  percen t  devia t ion  of the  decay  

ra te  1/r (when measu remen t s  occur) f rom the  decay  ra te  y (with no measure-  

ments) .  N o t e  t h a t  for  8y/y = -  ½ the  exper imenta l  l ifet ime r is twice the  

<~ theoret ieM ~> 1/y, while for 8y/y = 1 it  is one-half  of 1/y. W h e n  8y/y --> -- t ,  
r - ~  co and  the  sys t em becomes  stable. 

I n  eq. (1.3) a crucial  role is p layed  b y  the  p a r a m e t e r  ,~, i.e. the  m e a n  fre- 

quency  of the  measurements .  I n  order  t h a t  the  s ta t is t ical  ave rag ing  effect 

leading to a pure  exponen t i a l  decay  law take  plaee, as discussed in ref. (t), a 

large n u m b e r  of r educ t ions  has to  t a k e  place in a <~ theoretical)> l ifet ime I /y ,  

so t h a t  2 >> y. Le t  us in t roduce  the  ad imens iona l  p a r a m e t e r  

(2.3) n = - - > >  1 , 
Y 

which represents  the  m e a n  n u m b e r  of measu remen t s  suffered b y  the  sys t em 

in a <~ theore t ica l  ~> l ifetime 1/y. Since,  for exper imenta l  reasons, 1/r < 2, we 

get  f rom (2.2) 

(2.~) . - ~ '  > 1 .  
Y 

I f  we use the  definitions (2.1), (2.2) and  (2.3), eq. (1.3) becomes  

(2.5) exp - -  n - -  x A (x)dx = - -  n ( n - -  By~y) " 
o 

E q u a t i o n  (2.5) has  a clear phys ica l  meaning .  Suppose  A ( x ) > 0  for all x. The  

1.h.s. of (2.5) is t hen  pos i t ive ;  since n - -  87/y > 0 f rom (2.4) we get  Sy/y < O. 
Consequent ly ,  the  <( exper imenta l  )> lifetime r resul t ing f rom the  presence of 

m e a s u r e m e n t  processes is grea ter  t h a t  the  <( theore t ica l  )> 1/y charac ter iz ing  the  
evolu t ion  w i thou t  measurements .  

Le t  us t r y  to u n d e r s t a n d  how the  devia t ions  zl(x) f rom the  exponent ia l  

law influence 8y/y. Let  us define the  m e a n  devia t ion  {Am) weigh ted  wi th  
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exp [--, i t]  giving the  distr ibution of the measurements :  

(2.6)  

co 

!at e x p  [ - -  ,it] ~ (~t) f 
( A . }  = ~ = n d x  e x p  [ - -  nx] A(x). 

~dt exp [ - -  ,it] o 
0 

Equa t ion  (2.6) defines a stat ist ical  average of the deviat ion A(yt) which is par- 
t icularly suitable to characterize the  re levant  deviations occurring at  ear ly 

t imes of the decay process, since the weight funct ion exp [-- ,it] s trongly cuts 
the  contr ibutions coming f rom times greater  t han  about  5/,i. 

We can rewri te  (2.5) as 

(2.7) ( A , _ ~ , / , }  - a~ , / z ,  

or as 

(2 . s )  < & >  _ - a~,/~, n -]- 8yly 

Equat ion  (2.8) yields the funct ional  dependence of 8y/y on the mean  number  
n of measurements  in a <( theoret ical  ~) lifetime 1/y and on the mean  deviat ion 

(A.}  f rom the pure ly  exponent ia l  decay law exp [-- yt]. Note  t h a t  in (2.8) all 
quant i t ies  are known once one has a theory  giving P(t) and knows the explicit 
s t ructure  of the appara tus ,  i.e. the mean  f requency of the reductions. On can 
therefore evaluate  3y/y and learn which will be the difference between the 
measured  lifetime ~ and the theoretical  one l /y .  Equa t ion  (2.8) will then con- 

s t i tu te  the  basis of our discussion. 
F r o m  the definition (2.6) we immedia te ly  get 

(2.9) 

co 

( A , }  = f dy exp [-- yJ A(y/n) . 
o 

For  fixed y, and therefore taking into consideration a par t icular  unstable  par-  
ticle, let us see the  l imit  of (A.}  for ~,--> 0% i.e. 2--> oo. Since f rom (1.5) 

(2.10) 

f rom (2.9) we get 

(2.11) 

d ( x )  ~ o X ,  

1 
<A } ,-~ - n n--+¢o • 

n 
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Equat ion  (2.11), through (2.8), implies 

(2.12) l im ---=~7 - - 1 ,  i .e .  l im v = o<9, 

which means  t ha t  our unstable  particle has become stable. Therefore we con- 

clude t ha t  for any  given unstable  part icle its lifetime 7 can be made  to increase 
abnormal ly  by  increasing the f requency ~ of the measurements .  This consid- 

erat ion gives rise to the  possibil i ty tha t  for a given unstable  particle its meas- 

urcd lifetime depends on the exper imenta l  appara tus .  

3. - Approximate  expression for <~1.}. 

As discussed in ref. (1), the measurements  which ascertain whether  the sys tem 

has decayed or not  essentially establish whether  the decay products  are well 
separa ted  in space or not, let us say whe ther  they  are within or outside the 
range of the  forces which brought  abou t  the format ion  of the  unstable  system. 
Pract ical ly  this means tha t  the mean  t ime 1/,~ between two measurements  

cannot  be so small t ha t  the decay products  have  not  t ravel led outside the 
localization distance R:  

(3.1) 1 R ~ >  

where v+ is the veloci ty of the fastest  of the decay products .  
Le t  us consider in greater  detail  the  measu remen t  process. For  simplicity 

we shall use the f ramework  of two-body  potent ia l  scattering, but  one can easily 
convince oneself tha t  analogous considerations hold in general. As shown in 
ref. (~) if one writes the  unstable  s ta te  as 

(3.2) .~  1"13_ u~(k) ,~ ,  (+) 
V~b~o = 2.t,,J ct tc --k, Y t " ? c ) V k  ' 

where ~0~ t) is the  outgoing wave scat ter ing s ta te  of the to ta l  Hami l ton ian  H 

and k is the relat ive m o m e n t u m ,  then  the identification of the measurement  
with a localization procedure tells us t ha t  

(3.3) u~(k) = ~ J~(k ,  ks)  
, 

where 1 s and k s are the relat ive angular  and linear m o m e n t a  at  the resonance, 

/z(k) is the  Jos t  funct ion and J~(k ,  ks )  is a funct ion of k having a slow energy 
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dependence in the resonance region. Using' (3.3) and (3.2) in (1.1) we get 

co 

i ) f  ]Jz~(k, k~)I2exp[--iE~t]12 ; 
(3.4) P(t) = (2/~-[- 1 dk ]f~(k)[2 ] 

0 

we see tha t  P(t) is related to the Fourier  t ransform of a function which is a 
Breit-Wigner resonance formula,  due to the zero of the Jos t  function, times 
the factor  [J~(k, kR)12 whose role is tha t  of cut t ing the integral for energies 
too far away from the resonance region. As discussed in ref. (~), Jz~(k, kn) is 
practical ly constant  over a region centred at k~ and of width 

(3.5) Ak ~ -~, 

R being the radius of the localization region. We can then use for P(t) the ap- 
proximate  expression 

~R+w/2 

N ~ exp [ - - iEt ]  2 
(3.6) P(t) ~ , d E ( E _  ER) 2 ~- y2/4 ' 

ER--W/2 

where N is a normalization factor and w the energy spread of J~(k,  k~). w is 
related to R by  

(3.7) w ~ v A!~ ~ ~? , 

where v = lv~--v21 is the relative velocity of the two decay products  which 
in this example const i tute the s tructure of the unstable system. Using (3.1) 
together  with the fact tha t  l<~v/v+<~2, we get 

(3.s) / < 1  

In  the Appendix we have evaluated explicitly <2,,> using the form (3.6) for 
P(t). I t  turns out thut  

(3.9) <A.}_~ h ~-7~2\w] - ~  - ~ - - g + g - - ~ ]  -]-0 . 

(5) L. FONDA and G. C. GHIRARDI: NUOVO Cimento, 6A, 553 (1971). 



478 A. DEGASF:EXRIS, L.  F O N D A  a l l d  (~. C. G H I R A R D I  

Equation (3.9) allows us to draw the following conclusions: 

a) If ny /w-  ;L/w << i, then 

(3.1o) < A , , )  ~ y 
W 

which, through (2.8), implies 

(3.11) --~Y _~-- ny _ k 
7 w w '  

and therefore ~ ~_ 1/7 within the experimental errors. 

b) When 7/w is comparable to n, i.e. 2/w ~_ 1, then 87/7 is appreciably 

different from zero and therefore we have r =/= 1/7. Moreover, we are in a 

region where by varying 2 we correspondingly get different values for T. 

c) When  ny/w ~ 2/~o >> 1, then from the considerations leading to (2.12) 

we get SY/V -~ - - 1  and we have an abnormal stability. 

This last case c), being inconsistent with the basic equation (3.1), would 

however make ambiguous the interpretation of the experimental data and 

would require a reconsideration of our description of the experimental deter- 
mination of the decay law. 

Although the above conclusions are based on the simple model (3.6), they 
give good estimates of the orders of magnitude of the quantities which are 

relevant for our problem. We shall see in Sect. 4 tha t  specific calculations made 

for some physical cases show that  we are close to situation a) above. This 

could seem rather surprising since, as we have Mready stated, authors like 

NEWTO~ (4) give relevant deviations from the exponential law, extending up 

to times of the order of tenths of 1/7, while we know that  the measurements 

take place in a very small fraction of a lifetime. However, in ref. (4) such de- 

viations are obtained by  multiplying the Breit-Wigner resonance times a Gaus- 
sian function whose width is of the order of 7 or even smaller. For  the choice 

made for the parameters,  this means that  the background wave packet  has 

an energy spread of the order of 10 -7 eV which is completely unrealistic. 

Before concluding this Section we want  to single out the relevant para- 

meters which govern the main results, so tha t  we can identify the changes in 

the experimental set-ups which should be made in order to obtain v~ria.tions 

of T. The relation (3.11) tells us tha t  when 

2 
- < < 1  
W 
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the deviation of r from 1/7 is practically undeteetable. To violate this rela- 

tion we can then either: 

a) increase drastically the number  of reductions within one lifetime, i.e. 
increase 4, which, for example, in bubble chamber experiments means to increase 

the density within the chamber, a thing which does not seem practically feasible; 

b) decrease w, which through (3.7) means to increase/?,  i.e. to work with 

an appara tus  yielding a worse localization of the decay products causing there- 

fore a smaller energy spread of the wave packet, or to decrease v, i.e. to consider 

resonances close to threshold. 

We  point out tha t  the lifetime 1/7 is not  a relevant, parameter  for our problem. 

We stress again tha t  if (3.1) is violated all the above considerations are no longer 

app]ieable, so tha t  the only possibility to detect a difference between r and 1/y 
is to make  (3.8) almost hold with the equality sign. Actually it is sufficient 

t ha t  7/w ~ 10-1--10 -2 to obtain a 3y/7 of the same order of magnitude and 

therefore experimentally detectable. Such values of 2 and w can occur in some 

decay processes as we shall see now. 

4 .  - E s t i m a t e s  f o r  s o m e  p r a c t i c a l  c a s e s .  

In  this Section we shall list a certain nmnber  of specific examples of un- 

stable systems, to see whether the condition y/w << 1 is satisfied for them or 

not. I n  order to do this one has first of all to get an idea of the possible values 

of 4. Let  us first consider bubble-chamber- type  experiments. I f  one remembers 

tha t  1/4 is related to the mean free path  of the unstable system within the 

eha.mber and one assumes that whenever the system interacts eleetromagnetieally 

with the environment one has a measurement,  one can relate 2 to the cross- 
section ¢ as follows: 

(4.1) 2 : ¢~u , 

where ~ is the density of scatterers within the chamber and u the velocity of 

of the unstable system. In  the case, for instance, of a relativistic particle a 

rough estimate of the order of magni tude of 2 from (4.1) gives 

( 4 . 2 )  2 r--~ 1018 S-1 . 

We point  out however tha t  tile assumption tha t  each electromagnetic in- 

teraction corresponds to a measurement is rather strong. In  general we can 

consider (4.1) and (4.2) as giving an upper bound for 4. The opposite at t i tude 

would be to assume that  only the interactions producing bubbles correspond 

to measurements.  Taking into account  tha t  only a very small fraction of the 
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ionization processes give rise to the formation of bubbles, while in (4.1) we have 

used a cross-section a which takes into account all electromagnetic interactions, 

we get a ,~ of the order of 

(4.3) 2. ~ ;10 u S-1 . 

Since, when a bubble is seen, a measurement has taken place for sure, (4.3) 

is for sure a lower bound for 2. I t  seems then reasonable to assume tha t  the 

relevant range of values for 2 for bubble-chamber- type  experiments is 

(4.4) 1011 S - 1 Q  2 <,  10 is S -1 in the bubble chamber. 

Let  us now consider the second type  of decay processes, i.e. those peculiar 

to radioactive materials. Also in this case the estimate of 2 is approximate.  

Speaking semi-classically, one would say tha t  2 should be related to the fre- 

quency of revolution of the electrons of the internal shells of the considered 

a tom whose nucleus is performing radioactive decay. This gives for 2 a range 

of values of the following order of magni tude:  

(4.5) 1015 8 -1 ~ ~ <2 1017 S -1  for radioactive mater ia ls .  

F rom our point of view, a completely ionized atom would present a shorter 
lifetime than  the neutral  atom. 

The other quant i ty  which plays an impor tant  role in our analysis is the 

parameter  w, which is related to the reduction distance R, via (3.7). To have 

an idea of the values of w we have then to guess the value of R. Speaking of 

nuclear-type particles, and bubble chamber experiments, one must  assume 

that  R is greater than  the range of the nuclear forces in order tha t  the meas- 

urement  not disturb the inner structure of the unstable system. On the other 

hand,  since atomic phenomena are involved in the measurement,  R cannot ex- 

ceed the atomic dimensions. I t  seems therefore reasonable to assume that  

(4.6) 10 -~2 cm < R < 10 -s cm in the bubble chamber .  

For  radioactive materials, if one assumes as already done above tha t  the 

inner electrons are responsible for the measurements, one must  correspondingly 

assume that  the localization radius is the radius of these orbits, i.e. 

(4.7) 10 -1° e m <  R < 10 -s cm for radioactive mater ia ls .  

With these assumptions, we can now consider some specific cases, which are 

summarized in Table I. We see tha t  for radioactive materials we get into a region 
of values of ~/w which are rather  large, of the order of 10-2--1. We suspect 

therefore tha t  for some of these types of decay processes the experimental life- 
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T A B L E  I (a).  

4 8 1  

Decay process v w, eq. (3.7) )./w (b) 

n ± - + ~ ± + v  ~ c  ~1() is for /g=10  s ~ i 0  12 for ) . = I 0  n, R = 1 0  -12 

10 s for 2 = i 0  lI, /~=10 -s K ± ~ 2 ~  

A ~ p + =  

E ---~ A + ~ -  

~ 1 0 2 2  :for  /-{ 10  - t a  ~ 1 t )  7 fo:c ) t = l O  1~, / ~ = 1 0  - l z  

10 -3 f o r  2 = 1 0 1 6 ,  / ~ l O  s 

212po ~ 2ospb + 

144Nd _>. 14oCe @ 

( 1 0 - 1  + 1 0 - e )  c 1017 f o r  R - 10 s ~ 10  4 f o r  2 =  1015, R =  10 -10 

10 2 f o x '  % = 1 0 1 5 ,  R = 1 0  s 

1019 f o r  / ~ =  10 -10 ~ l 0  2 f o r  ~ . =  1017, R =  10  lO 

1 f o r  2 = 1 ( )  17, R = 1 0  s 

(a) c = v e l o c i t y  of l igh t ,  w a n 4  .~. g i v e n  in  s -~, R g i v e n  in  era.  
(b) W h e n  2/w << 1, i t  co inc ides  w i t h  ~y/y. 

t i m e  z is l i ke ly  to  d e v i a t e  f rom t h e  t h e o r e t i c a l  1/y. W e  see f rom T a b l e  I t h a t  

for  b u b b l e  c h a m b e r  e x p e r i m e n t s  we ge t  a.t m o s t  va lues  2/w ~ 3y/y  ~ 10 3 for  

= 10 z6, R = 10 s (*). The  d i f ference  b e t w e e n  the  two  t y p e s  of dee~y  exper i -  

m e n t s  is due  b o t h  to  t he  fac t  t h a t  p r o b a b l y  2 is g r e a t e r  for  r a d i o a c t i v e  m a t e r i a l s  

a n d  to  t h e  fac t  t h a t  v (and  the re fo re  w) is g r e a t e r  for  e l e m e n t a r y  pa r t i c l e s .  

W e  t h a n k  A. RI~[I~'I, W .  E.  F R A H N ,  M. ~OKAJ[CEK a n d  E.  NADJAKOV 

for d iscuss ions .  Seve ra l  f ru i t fu l  conve r sa t i ons  w i t h  t h e  e x p e r i m e n t a l i s t s  

~ .  B I Z Z A R I ~  E.  CASTELLI~ '~i. GIORGI a n d  D.  ZANELLO are  Mso g r a t e f u l l y  

a c k n o w l e d g e d .  

One of us (A.D.)  w o u l d  l ike  to  t h a n k  Prof .  A. SAL.~g the  I A E A  a n d  

U N E S C O  for h o s p i t a l i t y  a t  t he  I n t e r n a t i o n a l  Cen t re  for  T h e o r e t i c a l  P h y s i c s  

in Tr ies te .  

APPENDIX 

E v a l u a t i o n  o f  < A s > .  

I n  t h e  s imp le  m o d e l  d e s c r i b e d  in  Sect .  3, eq.  (3.6) for  P(t) can be  w r i t t e n  as 

(A.1) P(t)  = [~(#)]~ ,  

o/ (*) We note that  the tests of CPT for =± and K ± decays yield values 0.05% and 0.1/o, 
respectively. 
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where,  in te rms  of the p a r a m e t e r  e = w/2y 

(A.2) 2 /" cos xy 
~(x) -  arctg2~Jdy i + 4y~ "  

0 

We notice t ha t  the probabi l i ty  funct ion P(t) does not  depend on the energy 
of the  resonance but  only on the  pa rame te r  ~, while its dependence on t ime  
enters  only through the  var iable  x =  yr. Of course, in the l imit  y - ~  0 one 
gets P( t )= 1 corresponding to the evolution of a bound state  and  in the  
unphysicM l imit  w -+ co the pure  exponentia~l law P(t) ----- exp [--  yt] is recov- 
ered. 

In  order to discuss the large-~ behaviour  P(t) it is useful to introduce the  
following function:  

(A.3) A(~, x) - -  

co 

f cos (o~xy) exp Ix/2] dy - 

1 

in t e rms  of which eq. (A.2) i8 rewri t ten  as 

(A.4) 
= exp [-- x/2] 

Nx) - - 2 h r c t g 2 ~  [1--A(~, x)]. 

Subst i tu t ing now the expressions (A.4) and  (A.1) into the  definition (2.1), 
we obtain  

(A.5) ~(x) - -  
1 {~ ( 1  1) 

(i -- (2/=) arctg (1/2~)) ~ = arctg 1 --- = arctg ~ -- 

- -2A(~ ,  x) + [A(~, x)]2[ . 
J 

Averaging then  this last  expression according to the definition (2.6), we have  
for the  mean  deviat ion the following integral  representa t ion:  

(A.6) (~n)  = 1 - - ~ a r c t g ~  • a r c t g ~ "  1 - - ~ a r c t g ~  - -  

2n - -  ] ] 2 2n -- 1F 1 1 arctg -~ 
n~l [arctg2~ 2 n - - 1  2~--J 

_ _  

÷ 

co co 

n(n--l) /'4 /'d [ /  2 1 j ~,j ~ ~,  ÷ 2~)(~ ÷ ~)[,~, + - +  (~ :~)I} -~÷ 
1 1 

co co 

~//~4~{(~:÷~)(~+ ~ . (~)1111 
1 1 
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Without  entering into the details of the evaluation of the double integrals 
appearing in this expression, we summarize our results on the large-e behav- 
iour of (A.} by  giving the power series expansion 

(A.7) 
eo 

where the logarithmic dependence on e originates only from the last double 
integral appearing in eq. (A.6). However,  since the series multiplying the  
logarithmic terms starts from the power ~ ~, it can be disregarded when 

<< 1 as it must  be in order tha t  our approach be sensible. The first power 
series in eq. (A.7) has a radius of convergence equal to 1/(n--½-) while the 
radius of convergence of the second one is 1 / (n - -1 ) .  However,  since we are 
interested in values of n which are nmch greater than  one, the expression (A.7) 
can be used for practical evaluations of the mean deviation ( Jn}  only when 
1/o:< 1/n. The first three coefficients of the first power series are found to be 

2 1 
(A.8) d~(n) = - - ,  d2(n) = - -  

5"g 2 ' 
( 1 1 i n 

4(n) = f~ ~- g + g - ~- • 

Note tha t  the quadratic dependence on n of the third coefficient d3(n) implies 
tha t  the third term of the expansion is of the same order of magni tude as the 
first one when n ~ 2 e  2, as was to be expected from the previous considera- 
tions on the radius of convergence of the series. In  conclusion, when w/y>> n 
we can take only the first te rm in (A.7), gett ing 

(A.9) 4Z+o 

Under these conditions, from (2.8) we then have 

(A.10) ~y__ 4 @ 0 

• R I A S S U N T O  

Seguendo lo schema teorieo reeentemente proposto per la deserizione delia deter- 
minazione sperimentMe delia legge di deeadimento, si investiga la possibilitg che la 
vita media • determinata sperimen~almente risulti diversa da quella ~eoriea 1/y otte- 
nuta supponendo ehe il sistema instabile evolva indisturbato. Si mostra ehe in aleuni 
easi speeifiei la deviazione di T da 1/y g dello stesso ordine della preeisione sperimentale. 
Diventa pertanto plausibile ehe una siffatta deviazione, come pure una variazione di 
al mutate degli apparati sperimentali, possa essere rivdata seegliendo opportuni sistemi 
instabiii e utitizzando apparati di misura adatti. 
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~aBHCMT JIH BDeM~I ~H3HH H~T~,~HYlbHOH CHCTeMbl OT H3M~pHTeAbHOH annapaTypbl? 

Pe3mMe (*). - -  B paMKaX ue~IaBHO npe~IJ~o~eHHoro OHHCaHH~[ 3KCr[epHMeHTaJ]bHOFO oHpe- 

A e a e ~ z  3aKo~a pacnaAa  MbI rxcc~eAyeM BO3MO)KHOCTb, HTO 3KCI]epI4MeItTaYIbHO o n p e -  

AeJ]eaHoe BpeMtt 7KI43HI4 T OTJ~HqaeTctt OT reopeTHqecKoro BpeMeHH 7KII3HI4 1/~ IIO lapUunHe 

HeBO3MyIIIeHHO~ 3BOJItOIltl!/I HecTa6!JYlbHO~ KBaHTOBO~ CI4CTeMbl. I]oKa3bIBaeTC~t, HTO B 

HeKOTODblX ClIe~IIaJIbffblX cayqa~x  OTKnOlteHlle r OT l /y  KOHKypllpyeT C TOqHOCTbtO 

3KCI]ep~4MeHTa. OKa3b~BaeTc~ 1]I0aBJIO1]O~O6Ht,IM , qTO TaKa~ pa3HI4lla BMecTe C I43MeHe- 

HlleM ~ B 3aB~ICldMOCTII OT pa3J]aqno-~ 3KCIIepIIMeHTaJlbHOfI anHapaTypb[  Mo)KeT ~131Tb 

o6napy~KeHa C llOMOllIbtO COOTBeTCTBytOILIeFo BbI6opa HeKOTOpblX cIIel/I4aJIbHblX iaecTa- 

614JIbHblX CHCTeM I4 COOTBeTCTBytOIIIe~ I43MepllTeJIbHO~ annapaTypbI .  

(*) HepeaeOetto pe,gamtue& 


