IL NUOVO CIMENTO Vor. 21 A, N. 3 1 Giugno 1974

Does the Lifetime of an Unstable System Depend
on the Measuring Apparatus? ()

A. DEGASPERIS () and L. FoNDa

International Centre for Theoretical Physics - Trieste

G. C. GHIRARDI

Istituto di Fisica Teovico dell’ Universitd - Trieste

(ricevuto il 21 Gennaio 1974)

Summary. — Within the deseription of the experimental determina-
tion of the decay law recently proposed we investigate the possibility
that the experimentally determined lifetime v be different from the
theoretical lifetime 1/y for undisturbed evolution of the unstable quantum
system. It is shown that in some specific examples the deviation of =
from 1/y is competitive with the accuracy of the experiment. It is made
plausible that such a difference, together with a variation of v with the
different experimental set-ups, could be revealed by properly choosing
some specific unstable systems and properly devised measuring apparatuses.

1. — Introduction.

In a recent paper (1) it has been shown that a critical analysis of the actual
experimental situation leads to the conclusion that, in the determination of
the decay law of an unstable system, one cannot consider the system as evolv-
ing undisturbed but that on the contrary it is unavoidably subjected to measure-
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ment processes, occurring at random during the decay time. These processes
ascertain whether the system has decayed or not. The recognition of this fact
has, for the theoretical description of decay processes, far-reaching consequences.
In particular it implies that, even though the nondecay probability P(f) when
the system evolves without measurements

(1'1) P(t) = l(wunstable’ exp [— 'th]llUunatabls)}Z

is not purely exponential for all times, the actual law P, (¢) which takes into
account the random measurements turns out to be a pure exponential

(1.2) P,(t)=exp[—t/t].

The lifetime t of (1.2) is determined by the functional equation
(1.3) Afexp — (A— 10t POdl=1,
o

where A is the mean frequency of the measurements, so that Ad¢ gives the
probability that the system suffers a measurement in the time interval di,
and P(t) is given by (1.1).

From conventional guantum mechanics, P(f) turns out to be exponential
for a large time interval (%)

(1.4) P(t) ~exp[—yt].

These considerations naturally lead to the following problems which we want
to discuss and solve in this paper.

1) What is, in practical cases, the difference between the « experimental »
lifetime 7 and the «theoretical » lifetime for undisturbed evolution 1/y?

ii) If = turns out to be different from 1/y, since this difference is related
to the measurement processes whose frequency can vary from experiment to
experiment, should one expect to get experimentally a different lifetime ac-
cording to the different experimental apparatus that one uses?

Let us remark that the mean frequency of the measurements is quite high,
$0 that the values of P(#) which are relevant belong to small times. As is well
known, at small times P(t) exhibits deviations from the exponential behav-

(*y y would be the width of the resonance accompanying the unstable system and
appearing in the scattering of the decay products. In practical cases, when the unstable
system lives long enough y is too small to be detected experimentally. For example,
if 7~ 107108, »~ 10-5¢V,
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iour (1.4). In particular it can be shown completely in general that (2)

ap(t),

1.5 =N
(1.5) il

0,

so that at least in a neighbourhood of t= 0, P(t) > exp[—yt]. Actually,
FLEMING (®) has shown that for any wave packet

1
(1.6) costw << P(t)<<1 for t<<;0,

w being the energy spread of the wave packet. Moreover, some explicit cal-
culations in the framework of specific models performed by WINTER and by
NEWTON (4) show that relevant deviations from the purely exponential law
can be present even up to tenths of 1/y. If this were the case the obtained
decay law would have a lifetime 7 completely different from 1/y. In fact it is
easily seen that the time interval where 989, of the measurements occurs is

(1.7) 102 /A<i<b/A

and, as we shall see in Sect. 4, drastic lower and upper bounds on A give
from (1.7) 107 s<t< 1021, Therefore, for all practical cases there is a
very large number of measurements in a lifetime. Moreover, by changing 4
one would correspondingly obtain different values of 7. Incidentally, we remark
that this variation of the lifetime with the experimental set-ups would con-
stitute the simplest way of revealing the deviations from the pure expo-
nential shape, which P(f) exhibits for small times. In faet it is not possible,
in the framework of a given experiment, to detect experimentally these devia-
tions by studying the experimental decay law at small times. According to
the discussion of ref. (1), the experimental decay law is in fact given by eq. (1.2)
and is exponential at all times.

2. — Dependence of the lifetime on the experimental apparatus.

To study how 7 is influenced by the presence of the measurements with
mean frequency 1 and by the existing deviations of P(¢) from the pure expo-
nential exp[— yt] at small times, let us introduce the function A(y¢) and the

2

y See, for example, J. Lukierski: ICTD, Trieste preprint IC/72/128.
(] G. N. FLEMING: Nuovo Cimento (in press).
(9 R. G. Newrox: Scattering Theory of Waves and Particles, Chap. 19 (New York,
N. Y., 1965); R. G. WiNTER: Phys. Rev., 123, 1503 (1961).
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quantity 3y/y according to

(2.1) P(t)= oxp [—yHl[1+ A(y1)],
2.2) Yoy %
4 4

where in the definition (2.1) we have taken into account that the time scale
which is relevant to our problem is given by the « theoretical » lifetime 1/y.
The function A(x) gives the percent deviation of P(¢) from the pure exponential.
Since P(0) =1, we have that 4(0)=0. On the other hand, from (1.5) we
get dA(z)/dx|,,= 1. The parameter 8yp/y is the percent deviation of the decay
rate 1/ (when measurements occur) from the decay rate y (with no measure-
ments). Note that for dy/y = — i the experimental lifetime 7 is twice the
« theoretical » 1/y, while for 3y/y =1 it is one-half of 1/y. When 8y/y ——1,
7 — oo and the gystem becomes stable.

In eq. (1.3) a crucial role is played by the parameter 4, ¢.e. the mean fre-
quency of the measurements. In order that the statistical averaging effect
leading to a pure exponential decay law take place, as discussed in ref. (1}, a
large number of reductions has to take place in a « theoretical » lifetime 1/y,
80 that 1> y. Let us introduce the adimensional parameter

(2.3) n—1s1 ,
¥

which represents the mean number of measurements suffered by the system
in a « theoretical » lifetime 1/y. Since, for experimental reasons, 1/7 < 1, we
get from (2.2)

(2.4) n—~1.
¥

If we use the definitions (2.1), (2.2) and (2.3), eq. (1.3) becomes

©

(2.5) fexp[—(n—%)m]mm)dm: —#%'

]

Equation {2.5) has a clear physical meaning. Suppose A(z)>0 for all #. The
Lh.s. of (2.5) is then positive; since n— Sy/y >0 from (2.4) we get dy/y < 0.
Consequently, the « experimental » lifetime 7 resulting from the presence of
measurement processes is greater that the « theoretical » 1/y characterizing the
evolution without measurements.

Let ns try to understand how the deviations A(x) from the exponential
law influence dy/y. Let us define the mean deviation (4,)> weighted with
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exp [— At] giving the distribution of the measurements:

Cfdt exp [— 4] A(yt) @
(2.6) Awp="———— — =n|dvexp[—nz]A(@).
{dt exp [— A1) 0

Equation (2.6) defines a statistical average of the deviation A(yf) which is par-
ticularly suitable to characterize the relevant deviations ocecurring at early
times of the decay process, since the weight function exp [— At] strongly cuts
the contributions coming from times greater than about 5/A.

~

We can rewrite (2.5) as

(2'7) <An—8y/y> - _§‘};/‘/y ’
or as

— dyly
2.8 e
(2.8) A n+ Syly

Equation (2.8) yields the functional dependence of 3y/y on the mean number
n of measurements in a « theoretical » lifetime 1/y and on the mean deviation
{4, from the purely exponential decay law exp [ ypt]. Note that in (2.8) all
quantities are known once one has a theory giving P(#) and knows the explicit
structure of the apparatus, i.e. the mean frequency of the reductions. On can
therefore evaluate 3y/y and learn which will be the difference between the
measured lifetime v and the theoretical one 1/y. Equation (2.8) will then con-
stitute the basis of our discussion.
From the definition (2.6) we immediately get

(2.9) <Ay =[ay exp [— yld(/n) -

For fixed y, and therefore taking into consideration a particular unstable par-
ticle, let us see the limit of {(A,> for # — co, 4.6. A —>oco. Since from (1.5)

(2.10) A(w)
from (2.9) we get

(2.11) ) e
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Equation (2.11), through (2.8), implies

(2.12) lim & — 1 ,  de. lim 7= oo,

A—>c0 'y A—>®

which means that our unstable particle has become stable. Therefore we con-
clude that for any given unstable particle its lifetime 7 can be made to increase
abnormally by increasing the frequency A of the measurements. This consid-
eration gives rise to the possibility that for a given unstable particle its meas-
ured lifetime depends on the experimental apparatus.

3. — Approximate expression for {1,>.

As discussed in ref. (1), the measurements which ascertain whether the system
has decayed or not essentially establish whether the decay products are well
separated in space or not, let us say whether they are within or outside the
range of the forces which brought about the formation of the unstable system.
Practically this means that the mean time 1/1 between two measurements
cannot be so small that the decay products have not travelled outside the
localization distance R:

1_R

d Bl
(3.1) 7o

where v, is the velocity of the fastest of the decay produets.

Let us consider in greater detail the measurement process. For simplicity
we shall use the framework of two-body potential scattering, but one can easily
convince oneself that analogous considerations hold in general. As shown in
ref. (1) if one writes the unstable state as

) k
5.2) Poniae = 3 |01 "4 gyl
i

where w}f’ is the outgoing wave scattering state of the total Hamiltonian H
and k is the relative momentum, then the identification of the measurement
with a localization procedure tells us that

Jo(k, k)
fulk)

(3.3) u,(k) = 0y,

where [, and k, are the relative angular and linear momenta at the resonance,
f(k) is the Jost function and J(k, k,) is a function of k having a slow energy
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dependence in the resonance region. Using (3.3) and (3.2) in (1.1) we get

©

(3.4) Pt) = 5(213 + 1)fdk

0

| 1x(k, kz)|* exp [—@lEkt]lz .
If(k)[* |’

we see that P(?) is related to the Fourier transform of a function which is a
Breit-Wigner resonance formula, due to the zero of the Jost function, times
the factor |/, (k, k,)|> whose role is that of cutting the integral for energies
too far away from the resonance region. As discussed in rvef. (°), J, (, kg) is
practically constant over a region centred at k, and of width

(3.5) Ak

Byl

1

R being the radius of the localization region. We can then use for P(¢) the ap-
proximate expression

Egtw/2 [ E]
exp [— ikt 2
3.6 Pit)y~N dE- .. == — |,
@0 0= ‘f (B — Egp)* + y*/4
Er—w/2

where N is a normalization factor and w the energy spread of J, (k, k;). w is
related to R by

(3.7) w2 Ak~

where v = |v, — v,| is the relative velocity of the two decay products which
in this example constitute the structure of the unstable system. Using (3.1)
together with the fact that 1<wv/v <2, we get

1
(3.8) Y2 e -2-'<1.
w n w

In the Appendix we have evaluated explicitly <4,> using the form (3.6) for
P(t). It turns out that

Y AT 4 . S S R Y A Y b
(3-9) <A">_n(w)+n2(w) +E(n2_6+6_§)(%) +0(w4)'

(®) L. Foxpa and G. C. GHIRARDI: Nuovo (imento, 6 A, 553 (1971).
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Equation (3.9) allows us to draw the following conclusions:

a) If ny/w= Ajw <1, then
(3.10) A :—;—:,
which, through (2.8), implies

(3.11) Sy _my_ 2
w

and therefore v ~1/y within the experimental errors.

b) When ypfw is comparable to n, i.e. 2w ~1, then dyfy is appreciably
different from zero and therefore we have 7 %1/y. Moreover, we are in a
region where by varying A we correspondingly get different values for 7.

¢) When ny/w ~ Ajw>> 1, then from the considerations leading to (2.12)
we get 3y/y ~—1 and we have an abnormal stability.

This last case ¢), being incongistent with the basic equation (3.1), would
however make ambiguous the interpretation of the experimental data and
would require a reconsideration of our description of the experimental deter-
mination of the decay law.

Although the above conclusions are based on the simple model (3.6), they
give good estimates of the orders of magnitude of the quantities which are
relevant for our problem. We shall see in Sect. 4 that specific calculations made
for some physical cases show that we are close to situation a) above. This
could seem rather surprising since, as we have already stated, authors like
NEWTON (4) give relevant deviations from the exponential law, extending up
to times of the order of tenths of 1/, while we know that the measurements
take place in a very small fraction of a lifetime. However, in ref. (*) such de-
viations are obtained by multiplying the Breit-Wigner resonance times a Gaus-
sian funection whose width is of the order of » or even smaller. For the choice
made for the parameters, this means that the background wave packet has
an energy spread of the order of 10-7 eV which is completely unrealistic.

Before concluding this Section we want to single out the relevant para-
meters which govern the main results, so that we can identify the changes in
the experimental set-ups which should be made in order to obtain variations
of 7. The relation (3.11) tells us that when

A
— K1
W
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the deviation of ¢ from 1/y is practically undetectable. To violate this rela-
tion we can then either:

a) increase drastically the number of reductions within one lifetime, i.e.
increase A, which, for example, in bubble chamber experiments means to increase
the density within the chamber, a thing which does not seem practically feasible;

b) decrease w, which through (3.7) means to increase R, i.e. to work with
an apparatus yielding a worse localization of the decay products causing there-
fore a smaller energy spread of the wave packet, or to decrease v, i.e. to consider
resonances close to threshold.

We point out that the lifetime 1/y is not a relevant parameter for our problem.
We stress again that if (3.1) is violated all the above considerations are no longer
applicable, so that the only possibility to detect a difference between v and 1/y
is to make (3.8) almost hold with the equality sign. Actually it is sufficient
that yj/w ~1071--10-2 to obtain a 3y/y of the same order of magnitude and
therefore experimentally defectable. Such values of 1 and w can occur in some
decay processes as we shall see now.

4. — Estimates for some practical cases.

In this Section we shall list a certain number of specific examples of un-
stable systems, to see whether the condition y/w <« 1 is satisfied for them or
not. In order to do this one has first of all to get an idea of the possible values
of 1. Let us first consider bubble-chamber—type experiments. If one remembers
that 1/4 is related to the mean free path of the unstable system within the
chamber and one assumes that whenever the system interacts electromagnetically
with the environment one has a measurement, one can relate A to the cross-
section o as follows:

(4.1) A= gou,

where g is the density of scatterers within the chamber and « the velocity of
of the unstable system. In the case, for instance, of a relativistic particle a
rough estimate of the order of magnitude of A from (4.1) gives

(4.2) el

We point out however that the assumption that each electromagnetic in-
teraction corresponds to a measurement is rather strong. In general we can
consider (4.1) and (4.2) as giving an upper bound for 4. The opposite attitude
would be to assume that only the interactions producing bubbles correspond
to measurements, Taking into account that only a very small fraction of the
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ionization processes give rise to the formation of bubbles, while in (4.1) we have
used a cross-section ¢ which takes into account all electromagnetic interactions,
we get a 4 of the order of

(4.3) A ~101 g1,

Since, when a bubble is seen, a measurement has taken place for sure, (4.3)
is for sure a lower bound for A. It seems then reasonable to assume that the
relevant range of values for A for bubble-chamber-type experiments is

(4.4) 101 g1 < A <2108 g1 in the bubble chamber.

Let us now consider the second type of decay processes, i.e. those peculiar
to radioactive materials. Also in this case the estimate of A is approximate.
Speaking semi-clagsically, one would say that A should be related to the fre-
quency of revolution of the electrons of the internal shells of the considered
atom whose nucleus is performing radioactive decay. This gives for 1 a range
of values of the following order of magnitude:

(4.5) 10% §71 << A <0107 g for radioactive materials .

From our point of view, a completely ionized atom would present a shorter
lifetime than the neutral atom.

The other quantity which plays an important role in our analysis is the
parameter w, which is related to the reduction distance E, via (3.7). To have
an idea of the values of w we have then to guess the value of R. Speaking of
nuclear-type particles, and bubble chamber experiments, one must assume
that R is greater than the range of the nuclear forces in order that the meas-
urement not disturb the inner structure of the unstable system. On the other
hand, since atomic phenomena are involved in the measurement, R cannot ex-
ceed the atomic dimensions. It seems therefore reasonable to assume that

(4.6} 10~12em << B <1078 ¢m in the bubble chamber .

For radioactive materials, if one assumes as already done above that the
inner electrons are responsible for the measurements, one must correspondingly
assume that the localization radius is the radius of these orbits, <.e.

(4.7) 1071 em < R <2 10-% cm for radioactive materials .

With these assumptions, we can now consider some specific cases, which are
summarized in Table I. We see that for radioactive materials we get into aregion
of values of A/w which are rather large, of the order of 102--1. We suspect
therefore that for some of these types of decay processes the experimental life-
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TapiE I (%).

Decay process v w, eq. (3.7) Alw (?)

nE =ty C ~ 1018 for R=10-% A~ 10712 for A=101, B=10-12
K+ 2% ~10-% for A=10Y", R=10-%
A >ptrw A~ 1022 for R=10"1* ~10-7 for A=10% K=10-1*
E- > A+mn- ~10-% for A=10%, R=10"%

22Pg 5 28Ph Lo (10-1210-2)¢  as10%7 for R=10-8 ~10-* for A=1015, R—10-1
~10-2 for A=101, R=10-%
AN > M9(e o ~109 for R—10-10 a10-2 for A=10'7, R=10-10
~1  for A=10Y, R=10-8

(a) ¢ = velocity of light, w and % given in s-*, R given in cm.
(b) When Afw « 1, it coincides with dp/y.

time 7 is likely to deviate from the theoretical 1/y. We see from Table I that
for bubble chamber experiments we get at most values A/w ~ dy/y ~ 10-2 for
A=101, R=10"8 ("). The difference between the two types of decay experi-
ments is due both to the fact that probably A is greater for radioactive materials
and to the fact that v (and therefore w) is greater for elementary particles.
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APPENDIX

Evaluation of (A, >.

In the simple model described in Sect. 3, eq. (3.6) for P(t) can be written as

(A.1) P(t) = lo(yt)]?,

(*) We note that the tests of CPT for n* and K= decays yield values 0.05% and 0.19,
respectively.

32 — Il Nuovo Cimenio A.
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where, in terms of the parameter «= w/2y
&

2 cos &y
A2 = .
(4.2) P(@) arctg rofdy 14 4y2
Q

We notice that the probability function P(t) does not depend on the energy
of the resonance but only on the parameter «, while its dependence on time
enters only through the variable w= yf. Of course, in the limit y-—>0 one
gets P(t)=1 corresponding to the evolution of a bound state and in the
unphysical limit w — co the pure exponential law P(t) = exp [—y?] is recov-
ered.

In order to discuss the large-o behaviour P(?) it is useful to introduce the
following function:

in terms of which eq. (A.2) i3 rewritten as

7 exp [— /2]

A.4 prm—
( ) L) 2 arctg 2o

11— Aa, )]

Substituting now the expressions (A.4) and (A.1) into the definition (2.1),
we obtain

1
(1 —(2[m) arctg (1/2a))?

(AB)  Aw) = {% arctg (1 —% arctg 2—1“)—
—2A (o, @) + [A(ety 90)]2}

Averaging then this last expression according to the definition (2.6), we have
for the mean deviation the following integral representation:

2 12 |4 1 1 1
(A.6) (Lo = (1 T arctg 2—“) : {7} aretg—&'(l — arctg %) -

2
2 2% —1 1 1 2n—1
Cmwon—1 [&mtgg&—2n—l arctg *27:' +
nin—1 Foor 1\/ — 1\
27!2054 d?h dy, {( r)kyi + 4“2)[ Yit U) +( ) ]} +

(=] «©

nin—1) 1y ., 1 . (P11
T omiat dylfdi’/z{(?/ +4Tx2)(y2+47¢2)[(y1_y2) +( % )]} }
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Without entering into the details of the evaluation of the double integrals
appearing in this expression, we summarize our results on the large-x behav-
iour of (4,> by giving the power series expansion

(A.T) A = 3 dm) ot -+ In o S dufn) et ,

where the logarithmic dependence on « originates only from the last double
integral appearing in eq. (A.6). However, since the series multiplying the
logarithmic terms starts from the power «® it can be disregarded when
o<1 as it must be in order that our approach be sensible. The first power
series in eq. (A.7) has a radius of convergence equal to 1/(n —%) while the
radius of convergence of the second one is 1/(n —1). However, since we are
interested in values of #» which are much greater than one, the expression (A.7)
can be used for practical evaluations of the mean deviation {A,> only when
1/x<<1/n. The first three coefficients of the first power series are found to be

2 1 1/1 1 n w®
T

A8) ==, &=, d?,(n)—‘(%—a—é—l—é—iz).

T

Note that the quadratic dependence on # of the third coefficient dy(n) implies
that the third term of the expansion is of the same order of magnitude as the
first one when n ~2«?%, as was to be expected from the previous considera-
tions on the radius of convergence of the series. In conclusion, when w/y> n
we can take only the first term in (A.7), getting

(A.9) Ay =271 0(%)

T w

Under these conditions, from (2.8) we then have

(A.10) dy__Amyy 0(7’:).

Y T W w?

® RIASSUNTO

Seguendo lo schema teorico recentemente proposto per la deserizione della deter-
minazione sperimentale della legge di decadimento, si investiga la possibilita che la
vita media 7 determinata sperimentalmente risulti diversa da quella teorica 1/y otte-
nuta supponendo che il sistema instabile evolva indisturbato. Si mostra che in alecuni
casi specifici la deviazione di 7 da 1/p & dello stesso ordine della precisione sperimentale.
Diventa pertanto plausibile che una siffatta deviazione, come pure una variazione di z
al mutare degli apparati sperimentali, possa esscre rivelata scegliendo opportuni sistemi
instabili e utilizzando apparati di misura adatti.
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3aBuCHT JIN BPEMS KI3HH HECTACHIILHOM CHCTEMbI OT M3MEPHTEJbHON annapatypbi?

Pestome (*). — B paMkax HETaBHO NPEIITOKEHHOTO OIMCAHUS JKCIEPUMEHTAILHOIO Olpe-
OeNeHNs 3aKOHA DPAClafad MbI MCCIIEAYEM BO3MOMKHOCTB, 4TO JKCIEPUMEHTANBHO OIpe-
IETCHHOE BpeMs KU3HH 7 OTJIMYAETCH OT TEOPETHIECKOTO BPpeMeHH KHU3HA 1/y 1O HpU4nHe
HEBO3MYIIEGHHOM 3BOIIOLMH HecTaOWILHOM KBAHTOBOM cHUCTeMBI. llokasblBaeTcs, 4TO B
HEKOTOPBIX CHCNMANBHBIX CIyvasx OTKJIOHEHHE 7 OT 1/y KOHKYPHPYET C TOYHOCTBIO
sxcnepuMenTa. OKka3bBaeTCs MpaBIONOZOOHBIM, YTO Takas pasHMIAa BMECTE C H3MEHE-
HHEM 7 B 3@BHCHMOCTH OT Da3iM4HON SKCIEPHMEHTANLHOM amnapaTypsl MOXeT OBITH
OOHapyXCHA ¢ IIOMOIIBIO COOTBETCTBYIOUIEIO BBIOOpA HEKOTOPHIX CIELUANbHBIX HECTa-
OMNBHBIX CHCTEM M COOTBETCIBYIOWIEH W3MEPUTENBLHOIN ammapartypbl.

(*) Iepesedeno pedaryuei.



