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S u m m a r y .  - -  The formalism of classical field theory is generalized by 
replacing the space-time manifold J / b y  the ten-dimensional manifold 
of all the local reference frames. The geometry of the manifold ff is 
determined by ten vector fields corresponding to ten operationally 
defined infinitesimal transformations of the reference frames. The action 
principle is written in terms of a differential 4-form in the space 50 (the 
Lagrangian form). Densities and currents are represented by differential 
3-forms in 5z. The field equations and the connection between symmetries 
and conservation laws (Noether's theorem) are derived from the action 
principle. Einstein's theory of gravitation and Maxwell's theory of 
electromagnetism are reformulated in this language. The general formalism 
can also be used to formulate theories in which charge, energy and 
momentum cannot be localized in space-time and even theories in which 
a space-time manifold cannot be defined exactly in any useful way. 

1 .  - I n t r o d u c t i o n .  

The primitive concepts on which the usual field theories are based are 

the space-time manifold d t  and a set of observables which depend on a point  

of d / ,  namely the fields. One has to remark,  however, that ,  if an observable 

is described by  a given component  of a tensor field, it is not  completely spec- 

ified by  giving a point  of space-time; one has to give a local reference frame. 

I t  seems, therefore, tha t  the space ~q~ of all the local reference frames has a 

more fundamenta l  physical meaning than  the space-time d/ .  

This idea has been discussed in detail by  LUR~iT (1). His work was too- 

(1) F. LUR~AT: Physica, l,  95 (1964). 
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tiw~tcd by  the need of taking into account the dynamical  role of the spin of 
e lementary  particles, suggested mainly by  the discovery of gegge trajectories.  
I f  we disregaord gravitation,  the space ~ is isomorphic to the manifold of the 
Poincar6 group (without the group structure).  Lurgat 's  progxam was to build 
a quan tum field theory  on this group. 

The concept of local reference frame can be in t roduced in two different 
ways. One can s tar t  f rom the space-time manifold J/[ and define mathemat ica l ly  
a local reference frame as a basis in the vector  space tangent  to ~ at  a given 
point.  Alternatively,  one can give a direct physical definition of a local 
reference frame by  means of a physical  object with respect to which positions, 

directions 9 t ime and velocities are determined. Then one can possibly define 
mathemat ica l ly  the space-time manifold d / i n  terms of the  space 5 P of all the  

local reference frames. When we say tha t  the space 5f is more fundamenta l  
than  the space J///~ we mean tha t  the second way is preferable from the physical  
point  of view. 

In  the present  paper  we want  to develop a field theory  on the space 5 f 
disregarding quan tum effects, bu t  taking gravi ta t ion into account.  In  analogy 
with Einstein 's  general relat ivi ty,  the gravi tat ional  field is described as a 
geometric p roper ty  of the space 3 m. Therefore~ we have to find a geometric 
s t ructure  of the space 5f which plays a role similar to the pseudo-l~iemannian 

me~ric of the space-time J// of general relat ivi ty.  
This geometric s t ructure is suggested by  an operational analysis of the 

physical  space-time concepts (~,3), based on the requirement  (~) t ha t  the primi- 
t ive concepts of a theory  should represent  <~procedures ~>, namely  prescrip- 
tions according to which one performs physical  operations. 

The prescriptions which form a procedure necessarily refer to some pre- 
existent  physical  objects which specify a local reference frame. One can con- 
sider << measurement  procednres >> the aim of which is to obtain a numerical  
result  and << t ransformat ion procedures ~> the aim of which is to build a new 
reference frame star t ing f rom a pre-existent  frame. According to the program 
described in ref. (3), the geometric concepts of physics should be defined in 
terms of t ransformat ion procedures. The measurement  procedures defLne the  

observables. 
Note tha t  a local reference frame cannot  be defined operationally,  namely  

in terms of procedures. A t ransformat ion procedure can only define a relat ion 
between two local r~fcrence fl'ames. Therefore~ if we apply  rigorously the  
operat ional  point  of view, the Ioc~l reference frames should not  appear  as 
terms of the theory.  The same argument  holds with be t te r  re~sou for the  

points of space-time. 

(2) 1~[. TOLLER: Int. Journ. Theor. Phys., 12, 349 (1975). 
(~) M. TOLL]~R: iVuovo Cimento, 40 B, 27 (1977). 
(4) R. GI_~s: Journ. Math. Phys., 11, 2139 (1970). 



CLASSICAL FIELD THEORY IN THE SPACE OF REFERENCE FRAMES ~ 

In  the present  paper ,  nevertheless,  we shall nee the space 60. This is pos- 

sible because we assume that. the objects which fo rm a reference f rame have  

vel'y special propert ies:  they  do not  in terac t  wi th  the other physical  objects, 

apar t  f rom the very weak interact ion necessary to t r ansmi t  some information.  
~Ioreover, the  operat ions used to construct  a local f rame  do not  interfere with 
other  physical  operations.  

I f  we accept  these assumptions~ we m a y  imagine t ha t  all the possible 

reference f rames  have  really been constructed and  labelled by  means of a set 
of real nmnbers  and, therefore,  we m a y  consider the space 5q This point  of 
view, which we call classical space-t ime theory,  has to  be  abandoned if we 

t ake  into account  the  fact  t ha t  the  reference f rames  ~re formed by  real physical  

objects which in terac t  with all the  sm~rounding objects,  for instance the objects 

under  invest igat ion or the objects which fo rm other reference frames. Then 

we should construct  a q u a n t u m  space-t ime theory.  

Given the space 5 ~, a t rans format ion  procedure defines ~ mapp ing  of ~f 

into itself. In  fact ,  if we per fo rm a given t rans format ion  procedure start.ing 

f rom a given local reference f rame,  we obtain a new local reference fl 'ame. 
Note  t ha t  we are neglecting the  unavoidable  statistie~l errors. I t  is impor t an t  
to r e m a r k  t ha t  a t rans format ion  procedure does not  define .q~ mapp ing  of the 
space-t ime manifold  ~k/ into itself, because, in order to p~rform the operat ions 
prescribed by  the  procedure,  i t  is not  sufficient to specify a space-t ime point ;  

one needs a local reference frame.  We see t ha t  the  space 3 ~ is more s tr ict ly 

related to the fund~.menfal concept  of t rans format ion  procedure t han  the 
sp~ce-tilne d / .  

I t  m a y  happen  tha t  two different t ransformat ion  procedures defil~.e the 

same mapp ing  of 3 ~ into itself. Then we say t ha t  the  two t ransformat ion  pro- 

cedures are equivalent .  I t  is convenient  to consider the equivalence classes 
of t rans format ion  p~'ocvdures, which we call (( t ransformat ions  ~>. A transfor-  
ma t ion  is nniquely  individuatcd by  the corresponding mapp ing  of 5 f into 
itself. 

I n  the  following we shall consider only infinitesimal t ransformat ions ,  ~'hich 
correspond to ~n infinitesimal displacement  of every point  of <J and  ca~l be 
represented by  vector  fields on 60. We obtain in this way  a set of vector  fields 

on 5 z which can be defined operat ional ly  in t e rms  of t ransformat ion  procedures.  

These vector  fields define the geomet ry  of the  space 5 f in the same way  as the 

metr ic  tensor  defines the geomet ry  of the space J [ .  Note  t ha t  also the metr ic  

tensor can be defined operat ional ly  in te rms of procedures which have  the a im 
of measur ing lengths and t ime intervals.  

The geomet ry  of the space ~ is developed in sect. 2. In  sect. 3 we s tudy  
the  relat ion between the  formal ism given in the  present  paper  and  the usual  

formal i sm based ca  the space- t ime manifold  Js  The manifold dY can be de- 
fined in a na tm 'a l  way  only if cer ta in conditions are satisfied. We stress t ha t  
the  theory  makes  sense atso if the manifold J//  cannot  be  defined. 
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In  sect. 4 we introduce the action integral, which can be performed on an 
a rb i t ra ry  four-dimensional surface in 5:. I t  follows tha t  the Lagrangian densi ty 
has to be replaced by  a differential 4-form, which we call the ((Lagrangiaa 
form ~>. F r o m  the action principle we derive the  field equations both  for the 
fields which describe ma t t e r  and for the vector  fields which describe the geom- 
e t ry  of 5:. In  sect. 5 we derive from the action principle the connection be- 
tween symm e t r y  properties of 5:  and conservation laws. We derive also the 
more general cont inui ty  equations which hold in the absence of symmet ry  
and contain source terms. 

We get in this way a complete scheme of classical field theory.  An in- 

terest ing feature  of this theory  is tha t  the density and the flow of energy and 
of mome n tum  are represented by  differential 3-forms on 3 ~. As we shall see, 
this formalism permits  to describe situations in which energy and m o m en tu m  
cannot  be localized in space-time. The same remark  holds for the electric 
charge. 

In  sect. 6 we reformulate  Einstein 's  theory  of gravi tat ion as a field theory  
on 4:. This reformulat ion is not  unique and the problem requires fur ther  in- 
vestigation. In  sect. 7 we t rea t  the electromagnetic field f rom a geometric 
point  of view. This can be done by  generalizing the concept of reference frame. 

The examples studied in sect. 6 and 7 show tha t  there  is a large f reedom 
in the choice of the Lagrangian forms and tha t  some new physical  principle 
is needed in order to make the (( right )) choice. Some suggestion about  this 

problem is given in sect. 8. 

2. - T h e  g e o m e t r y  o f  the  space o f  reference frames .  

Following the program sketched in the introduction,  we consider the space 5f 
of all the  local reference frames. In  special relat ivi ty,  if we fix an a rb i t ra ry  
f rame of reference, all the other  frames can be obtained f rom it by  means of 
a uniquely  defined t ransformat ion of the  orthochronous Poiucar6 group. I t  

follows tha t  in this case 5:  has the s t ructure  of a manifold isomorphic to the 
manifold of the orthochronous Poincar4 group (1). As we want  to  take  into 

account  the ideas of general relat ivi ty,  we assume only tha t  5:  is an infinitely 
differentiable ten-dimensional  manifold. 

An infinitesimal t ransformat ion t ransforms every  reference f rame s into 
another  reference frame s' ve ry  near  to  s and, therefore,  it  can be represented 
mathemat ica l ly  by  a vector  field on the  manifold 5 f.  The vector  fields which 
represent  infinitesimal t ransformations generate a subspacc 3-  in the l inear 
space of all the  vector  fields on 5f. In  special relat ivi ty,  "3- is just  the space 

of r ight  invar iant  vector  fields on the  Poincar6 group, which are the  generators 

of the left  t ranslat ions and form the Lie algebra of the group. In  our general  
scheme, we assume only tha t  3-  is a ten-dimensional vector  space. 
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For every point s e ~  we can consider the tangent space T8(5 p) and the 
linear mapping Y-'-> T~(5~), which assigns to a vector field belonging to Y- 
its value at the point s. We assume that  this mapping is an isomorphism of 

vector spaces. We obtain in this way an isomorphism between the tangent 
vector bundle T(Sf) and the trivial vector bundle 5P• 3-. The vector fields 
belonging to 3- are the sections of T(~)  which correspond to the constant 
sections of Y~• J-. We may say that  the geometric properties of the space Y~ 
are, at least partially, described by this trivialization of T(~) .  

I t  is important to remark that  the space 3- and the space ~ play a very 
different role in a physical theory. In fact, the elements of J -  (infinitesimal 
transformations) can be identified completely in terms of physical proeedures~ 
namely they have an operational meaning. On the contrary, the elements of 
(local frames of reference) cannot be identified purely by means of physical 

procedures. In fact, in order to perform the operations prescribed by a pro- 
cedure, one needs a pre-existing frame of reference: only the relation between 
two frames of reference has an operational meaning, while a single frame of 
reference cannot be identified operationally. 

I t  follows that  the physical laws, which are statements about procedures, 
cannot distinguish a priori (namely without performing an experiment) be- 
tween different elements of ~ .  In other words, the physical laws must be 
(( homogeneous ~) in the space ~ .  This is just the relativity principle. A similar 
argument does not hold for the space J." for instance, infinitesimal time transla- 
tions and infinitesimal rotations may appear in a completely different way 
in a physical law. As the elements of J -  identify a direction near every point 
of 5z, we may say that  the physical laws do not need to be (< isotropie ~> in the 
space ~ .  

In  particular, we remark that  not all the elements of Y- can be interpreted 
as infinitesimal transformations. For instanc% only positive time translations 
can be realized physically (3). We indicate by 3 -+ the set of the elements of Y- 
which can be realized as physical transformations. If A and B represent in- 
finitesimal transformations, the composition of these two transformations is 
represented by the vector A + B (disregarding terms of second order). I t  fol- 
lows that  9-+ has the property 

(2.1) 3-+ + ~-'+ c y ' + .  

As 3"+ is also invariant with respect to the multiplication by a positive 
number, it is a convex wedge. 

The detailed structure of the space 3" depends on the particular theory 
and is described by the Lagrangian form, as we shall see in the following sec- 
tions. In this section we consider it just as a linear space and we study the 
geometric properties of the space 5 p which follow just from the trivialization 
of its tangent bundle. We get a structure which can be considered as a 
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generalizat ion of the  s t ruc t~re  of Lie group. The basic concepts necessary 
for this invest igat ion can be found~ for instance,  in ref. (~). In  view of fu ture  

applications,  we assume t h a t  5 p is a C ~ n-dimensional  manifold  and  tha t  3 -  is 

a n-dimensional  vector  space, where n m a y  be different f rom ten.  We as- 

sume also t ha t  all the fields are C ~. 
I f  A is a vector  field on 5 z, we indicate b y  L~ the  corresponding first-order 

differential  opera tor  act ing on scalar fields (Lie derivative).  I f  A is ~ vec tor  
field and  o~ is a differential 1-form, we indicate  b y  i~w their  inner product ,  

which is a scalar field. I f  ] is a scalar field, we have  

(2.2) L d  = i ~ d f .  

We recall  t h a t  the  observables of a theory  are operat ional ly  defined in t e rms  

of measu remen t  procedures.  Given a reference f rame,  following the  prescrip- 
tions of a measu remen t  procedure  one obtains a real  number ,  which d~pends 
on the  s ta te  of the  sys tem and on the  reference f rame.  I f  we fix the s ta te  of 
the  system,  an observable  can be represented ma thema t i ca l ly  b y  a scalar 

field ](s) on the  space 5 f.  :Note tha t ,  in order to represent  observables,  it is 

not  necessary to introduce vector  or tensor  fields on 5~ 
The composi t ion of an observable / and  an infinitesimal t ransformat ion  A 

is a new observable  ] '  which can be measured  b y  measur ing the  observable  ] 

in the  f rame  of reference s '  obta ined f rom s b y  means  of the  infinitesimal t rans-  

fo rmat ion  A. I n  e ther  words, we have  

(2.3) / ' ( s )  = ] ( s ' )  = l ( s )  + L ~ / ( s )  . 

I f  we introduce in the  space 3-  a basis fo rmed  by  the  vector  fields As 
(a ---- 0, 1, ..., n - -  1), we can write every  vector  field on Sf uniquely in the fo rm 

(2.4) A = a~(s)A,, 

where the  coefficients as(s) are scalar fields. The summat ion  over  repea ted  

indices is understood.  Of course, the vector  field A belongs to 3 -  if an  only 

if the  coefficients a s are constant .  I n  the following we shall a lways consider 

the  components  of vectors  and  tensors wi th  respect  to the  basis As ra the r  

t h a n  with  respect  to the  (~ na tu ra l  ~ basis defined b y  a set of co-ordinates on 

the  space 5C For  simplici ty of nota t ion  we indicate b y  L~ the Lie der ivgt ive  
corresponding to the vector  field As. Then we have  

(2.5) L~ = as(s) L~ .  

(5) ~-, CttOQTffET-BRUHAT: G~o~t~t$~e di]]&entielle et syst$mes ext&ieurs'~,.(Paris, 1968). 
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The commuta to r  of two first-order differential operators is ~ first-order 
differential operator  and, therefore,  we have 

(2.6) [L~, L~] = L~Lz-- L~L~-= F~(s)L~ , 

where _Fr~(s) ~re functions on 9 ~ which depend on the choice of the basis in Y- 
s.s the components  of a tensor of rank  three.  Of course, we have 

In  special relat ivi ty,  the quantit ies ~:~ do not  depend on s and they  ~re 
just  the  s t ructure  constants of the Lie algebra of the Poinear6 group. We call 
t hem the s t ructure  coefficients of the sp~ce 5~. I t  is impor tan t  ~o remark  that ,  
af ter  a choice of a basis in the space 3-  and after  ~n operational definition of 
the corresponding infinitesimal transformations,  the s tructure coefficients / ~  

~re measurable quantit ies and every s ta tement  about  these coefficients has 
physical meaning. 

F rom the Jacobi  ident i ty  

(2.s) [L~,, [L~, L~]] + [L~, [Lr, L~]] + [L~, [L~, L~]] = 0 ,  

using the formula 

(o..9) [L4, ]LB] = (LAi)L, § t[L~, L , ] ,  

we get af ter  some cMculation the fundamentM formula 

(2.10) L~.Ft~r ~- ~ L~F~ -~- L~ F~  = F~r -~ _FEpr Fo~ ~- Fn~ ~ �9 

As we shall see in the following, a surprising number  of physically relevant  
relations can be obta ined as special cases of this equation. 

In  order to give another  derivation of these formulae,  we introduce in the 
dual Y-* of the space J -  a dual basis formed by  the differential 1-forms (o~ 

(a = 0, 1, ..., n -  1). If, for simplicity of notat ion,  we indicate by  /a the inner 
product  operator  corresponding to the vector  field A~, wc have 

(2.11) iar ~-- b~, 

where 0~ is the Kronecker  symbol. Then from eq. (2.2) we get 

(2.12) d] ~-- ( L ~ ] ) ~ .  
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Then we can write 

(2.13) 0 = dd] = (L~L~])w~/~w~q - (L~])dw ~ 

and, therefore, using eq. (2.6), 

(2.14) (L~I) d~, = �89 (L~L~I-- L~L~I)~/~ ~ = �89 

As the  quant i t ies  Ly] are a rb i t r a ry  in every  point  of 50, we get the Maurer-  

Car tan  formula  

(2.15) &or = 1 ~ -.,~^~o~ 

As a consequence we have  

(2.16) d(F~,o~Ao~') : 0 ,  

which is equivalent  to eq. (2.10). 
I n  order to get more powerful  notat ions,  we recall  t ha t  the inner p roduc t  

operators  i~ can be extended to a rb i t r a ry  differential forms, in such a w a y  

tha t ,  if a is a k-form, we have  

(2.17) i~(~Afl) = (i~:~)Afl ~- ( - - 1 )~A( i a f i )  �9 

The Lie der ivat ive  LA can be extended to ~rb i t ra ry  tensor fields. In  par t icular ,  

if B is a vector  field, the  formulae 

(2.18) L ~ B  = [A,  B] = -  L , A  = C 

are equivalent  to the formula  

(2.19) [L,~, L ,]  = L c .  

I f  ~ is a differential form, we have  

(2.20) L~a = dia~ -}- i~d~. 

Then we see t h a t  eq. (2.6) can be wr i t ten  in the  fo rm 

(2.21) L~A~---  . F ~ A y  . 

F r o m  eqs. (2.11), (2.15) and  (2.20), we get 

(2.22) L~co~ = i~ do~ = - -  F~yo~v. 
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3. - Theories  w i t h  a space- t ime  mani fo ld .  

I n  order to clarify the  geometr ic  concepts of the  preceding section and  

their  connection with the more famil iar  geometr ic  structures,  now we consider 

the  special case in which it  is possible to introduce a four-dimensional  space- 
t ime  manifold  d/ .  We assume tha t  there is a mapp ing  z of 5 f onto J 4  and, 

if x ---- z(s), we say t ha t  the point  x of J g  is the  origin of the  local reference 
f rame  s. 

We shall define the geometr ic  propert ies  of the space dg in te rms of the  

geometr ic  propert ies  of the space 5 p wi thout  introducing new degrees of freedom. 
We shall only introduce some new structures  in the  vector  space 3-  which ~re 

constant ,  namely  t hey  do not  depend on the point  s E5 p. 

For  every  point  s we consider the  tangent  mapp ing  T~(x) f rom the t angen t  

space T~(5 ~) to the  tangent  space Y~(~)(Jg). I t  can be considered as a l inear 
mapp ing  f rom the space 3-  to T:~f~)(d[). In  accord with our program,  we as- 

sume tha t  the kernel  of this m app i ng  does not  depend on s and  we indicate 
it by  J/~. Note  t h a t  the isomorphism of the  linear space 3-/9F and T , ( ~ )  is 

not  uniquely  defined, as it  depends on the choice of s in ~-~(x). 
An infinitesimal t rans format ion  belonging to ~ f  does not  shift the  origin 

of the local reference f rame  and, therefore,  we call it a (( homogeneous ,> in- 
finitesimal t ransformat ion .  J~  is ( n -  4)-dimensional and  we choose the  basis 
in 3-  in such a way  that 

(3.1) A ~ e ~ f  for a~>4.  

In  the following the Latin indices a, b, c, ..., h t ake  the values 4, . . . ,  n --  1, 

while the  La t in  indices i, j ,  k, l, m, n, ... t ake  the  values 0, . . . ,3 .  The Greek 
indices t ake  the  values 0, ..., n - - 1  as in the  preceding section. These con- 
vent ions have  to be t aken  into account  also when we sum over  the repea ted  
indices. 

The vectors  Ao, ..., A3 define a basis in the space 3-/~vf and,  therefore,  for 
every  s ~ t hey  define a basis of the  tangent  space T.(~)(d//) formed b y  the  

vectors A~o(s), ..., A3(s). Given a vector  field A~ on Jg,  we can consider its com- 
ponents  wi th  respect  to this basis and  write 

(3.2) A(x)  = ? ( s ) A ~ ( s )  , x = x ( s ) .  

:Note t ha t  the components  fi depend on s ra ther  than on x. They mus t  sat isfy 
a <( consistency condition ~>, name ly  a differential equat ion which permits  one 
to compute  t hem on the whole fiber u-~(x) when they  are known on one point  
of this fiber. 
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We say tha t  a vector field A on ~ and a vector field fi~ on J [  are rel,~ted 

and we write A ~ A ,  if for every s ~ : ~  we have 

(3.3) T,(n)A(s) = A(n(s)) . 

l~or instance, the vector field fi~ defined by  eq. (3.2) is related to the field 

(3.4) A ( s )  = I ~ ( s ) A ~ ( , )  , 

where ]~(s) for ~ > 4  is arbitrary.  As we see from this exam])le, m a n y  differeilt 

vector  fields on :7 are related with a vector field on d/ ,  but  at  most one vector 

field on J// can be related to a vector field on :7. The relation A r-~ 0 means 

tha t  A(s)eJg'  for every s e 5  f. Clearly we have 

(3.5) A ~ 0 .  

I f  f is a function on .//[, we can define a funct ioa ] = n*f  on ~c~ given by 

!(,) =](~(,)). (3.6) 

If  A ~ A ,  we have 

(3.7) 

Conversely, if eq. (3.7) holds for any  choice of the scalar field f, we hL~ve 

A,-~A.  I t  follows that ,  if A ~ A  and B~J~ ,  it is 

(3.s)  [A, B ]  ~ [A,  B ] .  

I n  ])articular, we have 

(3.9) [A~, A b ] ~ 0  

and we obtain the impor tant  formula 

(3.1o) F~o = o .  

I f  the vector field A on :7 is related to some vector field A on ~/ll~ we have 

(3.11) [Ao, A] = L a A ~ O .  

I f  A is given by  eq. (3.4), eq. (3.11) takes the form 

(3.12) Lot'  = - ~ g l  ~ . 
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This is the consistency condition satisfied by  the components  of the vector  
field A which appear  in eq. (3.2). 

For  every  point  s e S f  the transpose of the tangent  mapping T~(n) is an 
isomorphism of the cotangent  space T*(~)(J//) onto a subspace of T*(5 f) or, 
if we prefer~ onto a subspace 5~fz of the dual 3-* of 3-. ~%f~ is just the sub- 
sp~,ce of 3-* orthogonal to ~ .  I t  follows tha t  for every  differential form ~ on 
d4 one can define univocally a differential form 

(3.13) U = 7~*~ 

on the space 5 p. 
I f  we adopt  the choice (3.1), the forms ~o ~ ..., eo ~ define a basis in the 

~0 . , ,  ? space ~f .  and for every  s the corresponding forms r (s), ~Sa(s) form ~ b~sis 
in the cotangent  space T*(,)(dt'). I t  follows tha t  every  differential 1-form ~ 
on d /  can be wri t ten as 

(3.14) ~ = / , ( s )  o~(s) . 

Note  tha t  also in this case the components  /~ depend on s ra ther  than  on x 
and they  have to satisfy a consistency condition. The corresponding form on 5 z is 

(3.15) 

The operation ~* has the properties 

(3.16) dzc*~ ~--- ~*d~ , 

(3.17) 4 z * ~  = z * i z ~  if A ~ - ~ J ,  

(3.18) LA~*~ n L2U if A ~ J  

I t  follows tha t  the form U defined by  eq. (3.13) satisfies the conditions 

(3.19) i ~  ~ 0 

(3.~0) Lo~ = O. 

F r om eqs. (3.15) and (3.20) we obtain the following consistency condition 
for the components  ]i of a differential 1-form on J [ :  

(3.21) LoL = P~, i~. 

Generalizing eqs. (3.12) and (3.21), we get the consistency condition for the 
components  of an a rb i t ra ry  tensor field on ~r with respect to the basis J~(s) 
and to the corresponding dual basis ~(s) .  In  a similar way one can also t~eat 
an a rb i t ra ry  spinor fi~ld on J/L 
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I n  par t icular  we see ~hat the  q~untit ies g$ which do not  ~anish only in 

the  cases 

(3.22) 

can be considered as the  components  of a tensor  on d[ .  

57ow we consider a four-dimensional  subspace gC of 3-  in such a way  t h a t  3 -  
is the  direct sum of ~t" and  g/t ~. There is an isomorphism between d and  3 - / ~ f  

and,  therefore,  for every  s e 5  p there  is an isomorphism between :/C and  T (~)(J[). 

Then,  if x = ~(s), for every  infinitesimal displacement  of x we can define 
univoc~lly an infinitesimal displacement  of s along ~ direction belonging to 
the  subspace 2#. This infinitesimal displacement  of s defines a (~p~rallel 

displacement  ~) of the basis vectors  A~(s) and,  therefore,  a paral lel  d isplacement  
of any  vector  on the  space d//. I f  this paral lel  displacement  does not  depend 

on the  choice of the  point  s ~ z - l (x ) ,  we have  defined in this way  a connec- 

t ion on Jd. 
In  order to get  the covar iant  der ivat ives  of the  vector  field (3.2), we r e m a r k  

tha t ,  if we displace the  point  s in a direction belonging to the  space gC, the  

basis vectors  2:~(s) undergo a paral lel  d isplacement  and  we have  just  to per- 

fo rm the  der ivat ive  of the  functions ]~(s) along this direction. I f  we choose 
the  vectors  A~ in the space 5C~ the  covar iant  derivat ives of the field (3.2) are 

gi~en b y  

(3.23) 1~= L~I ' .  

In  a similar way  we get the covar iant  der ivat ives  of an a rb i t r a ry  tensor  field. 
Our definitions are consistent  only  if the  components  (3.23) sat isfy the  

differential equat ion 

( 3 . 2 4 )  

After  some calculation, we see t ha t  this condit ion is satisfied if we have  

( 3 . 2 5 )  = - 

This condit ion ensures the  consistency of the  definition of the eovar iant  deriva- 

t ives of an a rb i t r a ry  tensor  field. 
I f  ] is a scalar field on d4 and  fi are the components  of a vector  field, we have  

(3.26) 

(3.27) (L~Lk L k L ~ ) / ~ :  F ~ L ~ / j  va  ~ ~ - -  - -  ~ :  f k  •  a t !  �9 

I f  we recall the  definition (~) of the  torsion tensor  S and  of the  l~iemann 
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curvature  tensor  R, we find the following expressions for their  components:  

( 3 . 2 s )  = - 

( 3 . 2 0 )  = - 

One can show, using eqs. (2.10), (3.10) and (3.25), t ha t  these quantit ies 
satisfy the consistency conditions required by  their  tensor character.  F ro m  
the same equations one can also derive the well-known formulae (~) 

(3.30) 

(3.31) 

F rom eqs. (2.10) and (3.10) one can also obtain the formula 

(3.32) ~ F ~  k F F k - -  F ~ ~ k  

This equation,  together  with eqs. (3.10), (3.25), (3.28) and (3.29)7 permits  us 
to compute  all the  s t ructure  coefficients F ~  star t ing from S~k , R~ k and ~v~ 

a i  " 

These three quantit ies are not  independent,  bu t  are connected by  eqs. (3.30) 
and (3.31) and by  the consistency conditions for the tensors S and R. 

In  order to introduce a pseudo-Riemannian metr ic  in the space ~[, we have 
just  to consider a quadrat ic  form g~ in the vector  space 3-. We assume tha t  
the operations used to measure lenghts and t ime intervals can be deduced 
from the operations used to construct  new frames of reference. The quanti- 
ties g~ describe the  connection between these operations and, therefore, we 
nssume tha t  they  are constant .  As they  are the components  of a symmetric  
covariant  tensor in rid, they  must  satisfy the equations 

(3.33) g ~ =  g ~ ,  

(3.34) g~ = 0 ,  

(3.35) L~gi~ = 0 J J = ~ a ~ g i J  �9 F~igjk -k 

The last formula can be considered as a condition on the s tructure coefficients F~,. 
I t  is easy to show tha t  also the quantit ies gik defined by  

(3.30) giJgjk=- d~ 

can be considered as the components  of a tensor in J//. We can choose the  
basis in the space3-  in such a way tha t  the nonvanishing components  of g~ and 
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of g~Z arc 

(3.37) gco = gOO ~ 1 7 g~ --~ g~ = g:. = g:" = g ~  = ga~ = - -  1 .  

We consider also the Zevi-Civi ta  symbol  e jk~ complete ly  an t i symmet r i c  

and  normalized by  e01~ ---- ] .  I t  satisfies the  iden t i ty  

(3.3s) e,,~im § e,,,,.~/~ + e,,,,,.L 4- e. . , , /~ 4- e..~,,i, = O . 

F r o m  this iden t i ty  and  f rom the formul~ 

(3.39) Fa~ --~ 0 7 

which is a consequence of eq. (3.35), we have 

(3.4o) Ftaie t i l~z  jr_ t t t _ _  F a t e i j l , . t  - -  F~je~,~ § -[- O 

F r o m  this formula  we see t h a t  the  quant i t ies  e~jkr can be considered as the  

components  of a covar iant  tensor in J/ l  (disregarding reflections). We shall 
also consider the  quanti t ies 

(3.41) 6 i j k ~  ---- - -  e i 3 ~  , 

which are the  components  of a con t rava r i an t  tensor  in Jg.  
In  the  calculations of the  following sections we shall often use the  iden- 

tit ies (3.38) and 

(3.42) 

(3.~3) [o~ A (L}I - -  1 ijlPq r s 

Summ~rizing the results of the present  section 7 we have  seen t ha t  the ve ry  

existence of a space-t ime manifold  J / d e f i n e s  the  (< ver t ical  >> subspace ~ of 3 -  

spanned b y  the  vectors  Ad, ..., A , - I  and requires the va l id i ty  of the condi- 

t ion (3.10). I f  we choose also an (~ horizontal  >> subspace ~ of 3 -  spanned b y  

the  vectors  A0, ..., As, and  we impose the  condition (3.25), we can define a 
connection on ~/~ and,  therefore,  a torsion and  a curva ture  tensor.  

I f  we choose a quadrat ic  fo rm g~r on the  space 3-  and  we impose the  con- 
ditions (3.34) and  (3.35)7 we obtain  a l%iemann metr ic  on the  space J4.  Note  

t h a t  the  choice of this quadrat ic  fo rm determines,  th rough  eq. (3.3~)7 the  ver-  
t ical  subspace ~ bu t  it is compat ib le  wi th  m a n y  different choices of the  hori- 

zontal  subspace g~r namely  with  m a n y  different connections on ~ / .  
Final ly  we r emark  tha t ,  even with all the  conditions imposed in the present  

section, the geometr ic  s t ructure  we are considering has more degrees of free- 
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dom than  the  corresponding R iemann-Car t an  space-t ime (~), due to the  presence 

of the  quant i t ies  F ~ .  F r o m  eq. (3.35) we see t h a t  these quantit ies,  if we fix 

the  subscript  a, fo rm a ma t r ix  which generates  an infinitesimal homogeneous 
Lorentz  t ransformat ion .  This ma t r ix  m a y  depend on the  point  s of ~ if, b y  
per forming  the  same physical  operations in different f rames  of reference due 
to the  presence of a new kind  of field, one obtains different linear t ransforma-  

t ions of the  space t angen t  to J #  a t  the point  z(s). 

4. - The action principle and the field eq~mtions. 

I n  this section we want  to develop a Lagrangian  field theory  in the  

n-dimensional  space 5 z wi th  n > 4 ,  wi thout  assuming the  existence of a space- 

t ime  manifold  oZ. I n  order to find the  general fo rm of the  field equations and  
of the  conservat ion laws, we s ta r t  f rom an action principle of the  kind 

(4.1) 8f~, = 0 ,  
8 

where S is an a rb i t r a ry  four-dimensional  surface in 5 z wi th  bounda ry  8S and A 

is a differential 4-form depending on the fields and  on their  derivatives,  which 

we call the  Lagrangian  form. When  n = 4, ~ becomes a scalar densi ty  and  
the  act ion principle (4.1) takes  the usual  form. I n  expression (4.1) we can 

v a r y  the  fields, keeping t h e m  fixed on ~S, and  we can v a r y  also the surface S 
keeping its bounda ry  8S fixed. 

We consider as dynamica l  variables  the vector  fields A~ which describe the 
geomet ry  of :7 and  other fields which describe mat te r .  We m a y  assume tha t  
the  m a t t e r  fields are scalar in the  space 5 p, otherwise we can replace t h e m  b y  
their  components  in the  f rame  of reference defined b y  the  vector  fields A~. 
We assume for s implici ty  t h a t  there  is only one scalar m a t t e r  field ]. I n s t ead  
of the  vector  fields A~ we can introduce as dynamica l  variables  the  differential 
forms (9% 

When  we t rea t  the action principle in n dimensions, we find new features  

and  new field equations which do not  appear  in the  four-dimensional  case. 

Firs t  of all the  act ion integral  mus t  be s t a t ionary  when we deform the sur- 

face g keeping the bounda ry  fixed and  this gives the  field equat ion 

(4.2) d2. = 0.  

(s) F .W.  HEHL, P. yon DER HEYDE and G. D. KERLICK: Rev. ~fod. Phys., 48, 393 (1976). 
This paper contains a large list of references about the generalizations of Einstein's 
gravitational theory. 

6 - I1 N u o v o  C i m e n t o  B .  
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This equa t ion  is t r iv ia l ly  satisfied if n --~ 4. W e  shal l  show tha t ,  as a defor-  

m a t i o n  of the  in tegra t ion  surface S can  be re in te rp re ted  as a va r i a t ion  of all 

t h e  fields, eq. (4.2) is a consequence  of all t he  o ther  field equat ions .  

Then  we can  v a r y  t he  m a t t e r  field f. W e  assume t h a t  2 depends  on ] a n d  

on its Lie der iva t ives  L~]. I f  we p u t  

(4.3) ~f = e ,  

d i s regard ing  second-order  t e rms  we can wri te  

(4.4) ~Jt = e~7 -[- O(de), 

where  

(4 .5 )  = 

is a differential  4- form a nd  

(4.6) 0(de) = ~ i~de 

is a differential  4 - form which  depends  l ine~rly on t he  differential  1 - form de. 

W e  in t roduce  in a region of t he  man i fo ld  5f  t he  co-ordina tes  x ~ . . . , x  ~-1 
and  we assume t h a t  the  surface S is g iven b y  t he  equa t ions  

(4.7) x~--~ 0 for  ~>~4.  

T h e n  we assume t h a t  e is g iven b y  

(4.8) e = g(x ~ x ~, x 2, x3)x  ~ , 

where  g is a different iable func t ion  wi th  c o m p a c t  suppor t  in R 4. ~qote t h a t  s 

van i shes  on  t h e  surface S. I f  we p u t  

(4.9) 0(~) = ~-~ 0~6(~)  dx~A dx~Adx~A dx , 

t he  ac t ion  pr inciple  t akes  the  f o r m  

fgOoi~3(dx 4) dx ~ dx z dx ~ dx 8 ---- O ( 4 . 1 0 )  

and,  as g is a rb i t ra ry ,  we get  the  field e q u a t i o n  

(4.11) 0o123(dx 4) : O. 
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I n  a s imi l a r  w a y  we see t h a t ,  if  t h e  ind ices  ~, fl, y,  8, s ,~re a l l  d i f fe ren t ,  we  

h a v e  

(4.12) 0~s~(dx ~) = 0 

a n d  one can  see eas i ly  t h a t  a l l  t he se  e q u a t i o n s  a re  e q u i v a l e n t  to  t h e  f o r m u l a  

(4.13) ~AO(~) = 0 

or, m o r e  in gene ra l ,  

(4.14) ccA0(~) + fiA0(zt) = 0 ,  

where  ~ a n d  fl a re  a r b i t r a r y  l - f o r m s .  Also  th i s  f ield e q u a t i o n  is t r i v i a l l y  sar is-  

f led for  n = 4. Us ing  eq. (4.6), we can  w r i t e  i t  in t h e  m o r e  exp l i c i t  f o rm  

F r o m  eq. (4.14) we o b t a i n  

(4 .16)  0 = i.@~AO(~) + ~ A 0 ( ~ , ) )  = 

= nO(~)--~o~Ai~O(~) -~ (i~)O({o~')--~Ai~O(co~)= (n - -4  Jr 1)O(~)--~Ai~O((o~), 

a n d  we see t h a t  we can  w r i t e  

(4 .17)  0(~)  = ~ A o ,  

w h e r e  t h e  d i f f e ren t i a l  3 - fo rm ~ is g iven  b y  

(4.18) ~ = n - - 3  i,~0(~o,) = - -  i,, . 
n - -  3 8Ls  [ 

I f  we t a k e  eq. (4.17) in to  accoun t ,  t h e  a c t i o n  p r inc ip l e  can  be  w r i t t e n  in  

t h e  f o r m  

(4.19) o =f + OsA ) =fs  + fs( - 
s Os s 

and ,  as s is a n  a r b i t r a r y  f u n c t i o n  v a n i s h i n g  on aS, we ge t  t h e  f ield e q u a t i o n  

(4 .20)  v -  de  = O. 

U s i n g  eqs.  (2.20), (4.5) a n d  (4.18), we c a n  w r i t e  th i s  e q u a t i o n  in  t h e  m o r e  ex-  
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plicit form 

(4.21) L ~ S L u f  
82 ~2 ~2 

- -  (n - -  3 ) - ~ - -  iu d ~-~-~ = 0 .  

I f  n = 4, the last term vanishes and we get the usual Euler-Lagrange equation. 
In  conclusion, we have for every field a (( normal ~) field equation of the kind (4.14) 
and a (( tangential  ~) field equation of the kind (4.20). 

i n  order to find the equations for the geometric fields, we split the Lagrangian 
form /l into ~ par~ 2a which contains only the geometric fields o~ ~ a~d their 
derivatives (namely the functions ~ )  and a part  ~ which describes mat te r  
a, nd has the form 

(4.22) 

The geometric fields appear explicity in the lust factors and in the Lie derivatives 
of the mat te r  field f. This is a kind of minimal coupling between mat te r  and 
geometric fields. The forms ~, 0 and ~ arise from the variation of the mut ter  
field / ~nd, therefore, they  do not  depend on the geometric part  of the 
Lagrangian form. 

If  we put  

(1.23) ~o~ = ~ J ,  

(4.24) 3A~ : - -  e~A~ 

and we use eq. (4.3), we obtain 

(4.25) 

(4.26) 

8(L~])  : L u e - - e ~ L , ]  = i u ( d e - - ( L ] )  ~o ' )  , 

~(co~A ~'~A o~A 0)9 = ~co'l\ i,(~o~A o~A o~A o 9  

and, therefore, using eqs. (4.5) and (4.6), 

(4.27) 

If  we use also the field equations (4.17) and (4.20), we obtain 

(4.2s) 8 2 ~ =  d(s~)--(L,])8co~Ar + ~ o " A i , , 2  ~ �9 

For every vector field B we define the differential 3-form 

(4.29) ~:~ = (LB]) ~ - -  iB2 ~ 

and we indicate by T~ the differential 3-form corresponding to the vector field A~. 
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Then eq. (4.28) can be wr i t ten  in the fo rm 

(4.30) 8~ ~ = d(se) - -  8 o z A  ~ .  

I f  the  m a t t e r  field equations are satisfied, we can use this formula  and  
write the act ion principle in the fo rm 

(4.31) 0 .  

B 

We see t ha t  the quanti t ies  v, c~n be considered as the  sources of the geometr ic  
field. 

We assume tha t  2a has the  fo rm 

G where the quanti t ies  ~ depend on the s t ructure  coefficients F ~ We 

(~.33) 8~zr~ G e ~  ~ , 

where the coefficients G e ~  ~ are ~n t i symmetr ic  with respect  to the indices 

a, fl, y, 0 and  with respect  to the indices if, ~. B y  differentiation of eq. (2.15), 
using eq. (4.23), we get a f ter  some calculation 

(~.~) 8 ~ ,  = L , ~ -  ~ + 4 C ~ -  4 ~ ,  + 4 ~ , .  

I f  the quanti t ies  80" and,  therefore,  also the quanti t ies  e~ vanish on the sur- 
face S, we have  on this sm'face 

(4.35) 

namely  

(4.36) 

where 

84 ~ = ~ 0;(d4), 

(4.37) 
1 

0~(~) = - -  ~-~ G ~ , o ~ ( & ~ ) o ~ , ~ A  r,o~A wS"A ~ ~ 

is a differential 4-form which depends l inearly on the  differential / - fo rm ~. 

Proceeding as in the  proof  of eq. (4.14) we get  the normal  field equat ion 

(4.3s) ZA0;(~) + ~A0;(~) = 0.  
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This equation is equivalent to the requirement that the expression 

(4.39) ,'~l'" 

is completely antisymmetric with respect to the indices #, v, ~. 
From the normal field equation we have in particular 

(4.40) i,[(Tg2~o~A~o~A~A~A~o~ 4- O~#~"Ao~A~A~o~A~ ~] = 0 

and, after some calculation, 

(4.41) ( ~ - - 3 ) G ~ A o ~ # A ~ o ~ A o ) ~ - -  4Gg#~o"A~o~A~o~Ao~---- 0 . 

From this equation, using again the antisymmetry of the expression (4.39), 
we obtain 

(4.42) i , [(n~3)G~m,~,A~A~#AtovAr 4- 4 a ~ , A ~ A ~ o ~ A o ) ~ A ~  ~] ---- 0 

and performing the calculations 

(4.43) (n - -  3)(n - -  4) G~#~A~o~A ~vA o~ 4- 

4- 4G; ;~  ~ A  ~ A  oZA ~o~ -- 4(~2~o~A~o#A ~ A  ~ 4 -  ] 2 a ~ r  ~ A ~ 'A ~ = 0 .  

From eqs. (4.41) and (4.43) we obtain finally 

( ~ # ~ A ~ A ~ , A o ~  = Gqv~o,A~o'Aco~Ao~ ~ , (4.44) 

where 

12 
(4.45) GQ~ 

(u - -  2 ) ( n  - -  3)  ~q~#~"  

From eqs. (4.32), (4.33) and (4.44) we have- 

(4.46) 
1 I a 

o~A~= ~ G ~  ~ F ~ # ~ A ~ A ~ A ~ 6 4 -  ~ A ~ # ~ A ~ A ~ A ~  ~ 

and, using eq. (2.15), 

(4.47) ~ a  _ 

1 
4- ~- ~ , ~ ' ~ A ~ , ~ A ~ A ~  ~ , 
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and after  some calculation 

87 

1 

- -  ~o~~ ~ [d(G~ovoo".'A r.oO) 4- (a0,,,,,~F~ - -  2),~,8~)~A o~".'A o o] . 

Subst i tut ing this expression in the action principle (4.31) we get immediately 
the  following equation for the geometric field: 

(4.49) 1 ~ 1 o 

This equat ion can also be wri t ten in the form 

1 

We can write this equat ion in another  way if we assume tha t  the quan- 
G tities 2~r~ are homogeneous functions of degree k of the quantit ies i~ ~ Then /LV" 

we can use the Euler  theorem and write 

(4.51) ~G~ 1 ~-~ Ga~ ~ ~  ~o~A ~o~A o~ ~ �9 

:Note tha t  this is not  the original Lagrangian form, bu t  it  hus been simplified 
by  means of the normal  field equutions. Then eq. (4.50) e~n be wri t ten in 
the form 

o ) ~ A  o) v A  f,o d . 

I f  we assume tha t  the ma t t e r  Lagrangian form )~ is an homogeneous func- 
t ion of degree k of the quantit ies ] and L~], we can also use Euler 's  the- 
orem and we get 

1 (~.53) ,V'= -~ (0(di) + / ~ ) .  

Using the field equat ion (1.17) and (4.20)~ we obtain 

(4.5~t) 2~ 1 ~_ = ~ (aiA~ § ] ~ )  = a()e).  
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We see tha t ,  as a consequence of the  field equations,  we have  

(4.55) d~ ~ = o .  

This formula  holds also in other  interest ing cases and  we shall use it  in the  

nex t  section. 

5.  - C o n s e r v a t i o n  l a w s .  

Many  i m p o r t a n t  observables (for instance the  electric charge) concern a 
region of the  three-dimensionM space or more  general ly a region of a space- 

like three-dimensionM surface in the  fom--dimensionM space-t ime J/f. The 
mos t  na tura l  ma thema t i ca l  representa t ion  of these quant i t ies  is a differential 

3-form in ~ .  Usually,  this 3-form is represented in t e rms  of a vector  densi ty J~ 
b y  means of the  formula  

(5.1) "f = [ J  e~j~ d x ' A d x ' A d x  �9 

I f  the  differential fo rm @ is closed, name ly  if the  cont inui ty  equat ion 

(5.2) 8 J '  
d~ = ~-~ dx~ = 0 

holds, the corresponding quan t i ty  is conserved. I n  fact ,  if the fo rm (5.1) 
vanishes in the  spacelike directions, its integral  over a sufficiently large space- 

like sm'face does not  depend on the choice of the  sm'face. 
As we have  seen in sect. 3, f rom the differential fo rm ~ in #/[ we can get 

immedia te ly  a differential 3-form T in the  space ~ .  The integrM of ~ over  a 

three-dimensional  surface in ~ is equal  to the  integral  of ~ on the  project ion 

of this surface on the  space dr .  ] f  the  quanti~y we are considering is con- 

served, also ~ is closed. 

We m a y  also consider a differential 3-form T in ~ which cannot  be obta ined 
f rom a differential fo rm @ in J/[. This s i tuat ion necessarily appears  if we deal 

wi th  a theory  in which a space-t ime manifold  J / c a n n o t  be defined. I f  a 3-form 
of this general  k ind is closed, namely  if 

(5.3) d r  ---- 0 ,  

and  its suppor t  in St has  suitable properties,  the  integral  of v over  the  three-  

dimensional  surfaces belonging to a certain class does not  depend on the  sur- 

face. I n  this way  we get a conserved quant i ty ,  which, however,  cannot  be 
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localized in space. Fo r  instance,  the  quan t i ty  corresponding to a l imited region 

in a spacelike surface could depend on the veloci ty  of the observer.  

We  recall  t ha t  in Einstein 's  general  r e l a t i ~ t y  the  densi ty  and  the flow of 

energy and  m o m e n t u m  of m a t t e r  are the  source of the  geometr ic  (gravitational)  
field. Therefore,  we assume t h a t  in the  formal ism we are considering these 

quant i t ies  are represented b y  differential 3-forms of the  k ind  ~n defined in 

the  preceding section. 

In  order to find a conservat ion equation,  we r e m a r k  t ha t  f rom eqs. (4.30), 

(4.48) and  (4.49) we have  

( 1  ) 
(5.4) ~,~ = d eq- -~o~,J~A~AoJ o . 

This formula  takes  into account  all the field equations.  

5Tow we consider u special var ia t ion of the fields ] and  ~o~ which is genera ted 
b y  the  infinitesimal t rans format ion  of the space ~ defined b y  the vector  field B. 

I n  this case we have,  using eq. (2.20), 

(5.5) ~2 = LB2 = i~d2 ,~ di~)~ , 

(5.6) ~] ---- e -~ L , /  , 

(5.7) ~ =  LB~o ~ . 

F r o m  eqs. (5.4)-(5.7) we have  

[ 1 ] 
(5.8) i~d~ ~- d ( L . ] ) O - - ~ G o v ~ ( L . ~ o o ) / \ o ) v / \ o ) ~  

where T~ is defined b y  eq. (4.29) a, nd 

1 
(5.9) T~ - -  12 G~v~(LB~ i '2~ " 

I f  the  vector  field B vanishes on the  boundary  8S, f rom eq. (5.8) we have  

(5.10) f i ~ d 2  = 0 ,  

8 

and  f rom the arbi trariness of S and  B we get  eq. (4.2), ~s ant ic ipated in the 
preceding section. I n  conclusion we have  

(5.11) d(~B ~- T~)= 0, 

namely  we have  obta ined a conserved quan t i ty  for every  vector  field B on 
the  space ~ .  
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This formula can also be obtained from the field equation (4.49), which, 

together with eq. (5.9), gives 

(1 ) 
d - -  G o ~ A  co ~ 

I f  we start  f rom eqs. (4.30), (5.6) and (5.7), we have 

(5.~3) iBd~ ~ + diB~ ~ = L ~  ~ = 8,~ M = d[(LB])q] - -  (Ln@)A ~, 

and, using the definition (4.29), 

(5.14) d'c~ ---- (LB@)A ~, + is d;t ~ �9 

In  the following we consider the most  interesting case in which d l  ~ vanishes 

as a consequence of the field equations, as happens when 1~ is an homo- 

geneous function of the mat te r  fields and of their derivatives. Then we can 

write eq. (5.14) in the simplified form 

(5.15) d r y =  (LBo:)A-~,. 

I f  B ~ - A o ,  using eq. (2.22) we can write 

(5.16) dz'o = - -  F ~ ' , J A  z'~,. 

F r o m  eq. (5.15) we see tha t  the quant i ty  za is conserved if we have for all 

the values of v 

(5.17) L~co~ ---- 0 , 

namely  if the infinitesimal t ransformation generated by  the vector field B is 

an isomorphism of the geometric structure of the space 90. This is the usual 

connection between symmet ry  and conservation laws. Conditions (5.17)are 

equivalent to the conditions 

(5.~s) L ~ A ~  = [B, Ao,] = - -  L ~ B  = 0 . 

I f  90 is a Lie group, there are n independent fields with this property,  namely  

the left-invariant vector fields, which are the generators of the infinitesimal 

right translations. I n  this case there are n independent couserved quantities. 

I n  order to get a physical  interpretat ion of the quantities TQ, we disregard 

gravitation. I f  we choose a reference frame s ~ we can identify any other ele- 

ment  s of S: by  means of the element (x, L) of the Poincar6 group which trans- 

forms the reference frame s o into the reference frame s. The infinitesimal left 
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translations generated by  the vector  fields sAc, are 

(5.19) 

(5.20) 

z A  ~ : (x ~, L;) --~ (x ~ - -  s ~  , LD , 

sA~ "(xb L;) --~ (x~ + ~Fo~x~ ~, L,~ + ~Fo~L~)~ ~ 

Note tha t  the s t ructure  constants /~:~ coincide with the generators of the in- 
finitesimal homogeneous Lorentz  t ransformations acting on Your-vectors. We 
can also define ten vector  fields B~ which generate the infinitesimal right transla- 
tions in the following way:  

(5.21) 

(5.22) 

s B ~ : ( x  ~, L:)  - ~  (x 7~ - -  sL~,  L ~ ) ,  

sLtF~,) . e B a ' ( X  ~, L~)  -+  ( x  ~, ~ r  s ~ -  ~. t 

Comparing eqs. (5.19)-(5.22), we obtain the relations 

(5.23) Bi = L~A~ 

(5.24) Bo = R~(A~ + F L x ~ A ~ ) .  

We have int roduced for every  homogeneous Lorentz  t ransformat ion Z: the 
mat r ix  Rb~ defined by  

(5.25) ~ t B~/~ L t - L t ~ a s  ~ a bt s " 

The matrices Rb form the  adjoint  representat ion of the homogeneous Lorentz  
group, which acts on the  Lie algebra of this group. I t  is equivalent  to  the  
representat ion which acts on the  ant isymmetr ie  tensors of second order. 

I f  we indicate by  ~e the differential 3-forms which correspond to the vector  
fields Be, f rom eqs. (5.23) and (5.24) we have 

(5.26) ~, = L~TI~ , 

(5.27) ~ ~-- R~(vb + F~jxJ~). 

The vector  fields B~ generate space-time translations along the axes of the 
fixed frame of reference s o, while the vector  fields B~ generate homogeneous 
Lorentz  t ransformations leaving two of the axes of s o fixed. Therefore, it is 
na tura l  to assume tha t  the differential forms (5.26) and (5.27) define conserved 
quantit ies which are just  the components of the four -momentum and of the 
relativistic angular momen tum with respect to the fixed frame of reference s o . 

Then, f rom eq. (5.26), we see tha t  vT~ represents the density and the flow 
of a component  of four -momentum with respect to the variable frame s. F ro m  
eq. (5.27) we see tha t  the relativistic angular momentum is composed of two 
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parts ,  which we interpret  as spin and orbital  angular momentum.  We see 
tha t  wb describes the density and the flow of a component  of spin anguflar 
m ome n tum  with respect to  the  variable reference f rame s. 

When we take  gravi ta t ion into account,  the Lie-group structure of Sf is 

lost and we cannot  define the vector  fields Be and the differential forms fe 
any  longer. However,  we ussume tha t  the in terpreta t ion of the differential 
forms vo tha t  we have found is still valid. Then eq. (5.11) shows tha t  the  

a can be in terpre ted  as a description of the four -momentum and the forms w e 
spin angular momen tum of the  geometric field. 

Equat ion  (5.16) shows thut  the  source of one of the quantities we is given by  
the product  of ~ geometric field gnd another  quan t i ty  ~s" This is in ggwee- 
ment  with e lementary  field theory :  for instance, the product  of the to ta l  energy 
densi ty by  the  gravi tat ional  field is a source of momentum.  In  order to be t te r  
unders tand  the meaning of eq. (5.16), we assume th a t  the forms we can be 

wri t ten in the following way:  

( 5 . 2 8 )  

After  some calculation, using eq. (3.38), we obtain 

(5.29) 

where 

+ ~ [ ( L o - - F o ) T ~ +  ' ' . . . .  ' 

(5.30) F~ = F L .  

The conservation law (5.16) can be wri t ten in the form 

(5.31) d~e---- F~iT~o)~ x ~, . . . . .  

Comparing eqs. (5.29) and (5.31) we obtain the conservation laws in the fol- 

lowing form: 

(5.82) 

(5.33) (Lo- -Fo)  T~ = F~e " '~' J T~ -- 2 a~ Te �9 

If, moreover,  we assume the val id i ty  of eqs. (3.25) and (3.35) and we pu t  

(5.3a) 

(5.35) 

(5.36) 

T i n  _ _  1 7 7 q z  ~ i  r p i  

7i ~i  _ _  
k j  - -  , 1 j ~ +  O 

T~ ~ gij Tjl, , 
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eq. (5.32) eau be wri t ten  in the form 

(5.37) ( L ~ - - ~ ) : T ~  -~ F~eT~ + ~z~om~ ~ ,  

(5.38) ( L , - - ~ , )  T~ = - -  Tj~ + T,, j .  

These formulae are the correct generalization (~) of the familiar conservation 
equations 

(5.39) L~T~ : 0 

(5.40) Ti~ : T~i , 

which hold in the absence of torsion and of spin angular momentum.  
If  we assume tha t  the q u a n t i t i e s / ~  are constant ,  using eqs. (3.10), (3.25), 

(3.32) and (3.35), eq. (5.33) can be wri t ten as 

( 5 . ~ 1 )  L a T ~  . ~  _ ~  l i T ~  ~ T ~ - - / ~  ~ ,  

These equ'~tions are just  the consistency conditions which ensure tha t  the 

quanti t ies T~ and T~ can be coasidere4 as tensors iu the space dA They are 
not  equivalent  to eq. (5.33) if the quantit ies /~ .~ are variable. 

6.  - A n  e x a m p l e  o f  L a g r a n g i a n  t h e o r y .  

In  this section we consider in detail  a specific Lagrangian form ~ ,  in order 
to show how the formalism developed in sect. 4 works. There is a large arbi- 
trariness in the choice of the Lagrangian form and we shall discuss elsewhere 
the principles which should guide this choice. Here  we s tar t  from the following 
Lagrangian,  which describes a theory  without  torsion and without  spin density, 
str ict ly re la ted to  Einstein 's  theory  of gravi tat ion:  

(6.1) ~ o  : 1 1 J l~ r a b t s 

F r om this equat ion we obtain 

(6.2) 
6 j 

(,~/L2t~:,,~) o)~A coaA coy A CO ~ ---- --  F,,~ g~k er,~s 3F~flo)~A coa A ~aA cos + 

6 ~ - - r  ~ J b 
g 

6 
-- 0 r ~k 
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F r o m  eqs. (4.33) and (4.44), we see tha t ,  if the  normal  equations are satisfied, 

we can write 

(6.3) ( ~ a ) ~ A  o~A ~'~A ~ ---- G~o 8 F [ ~ A  ~ A  o~A ~ �9 

Comparing eqs. (6.2) and (6.3) in the  case in which ~, fl>4~ we see t h a t  

we mus t  have  

3 i ~k (6.4) G ~  ~ - -  G,~ --~ - / ~ g  e~l~ , 

while the  other  components  of this quan t i ty  mus t  vanish.  We see also tha t ,  

as a consequence of the normal  field equations,  the  last  three te rms  in eq. (6.2) 

mus t  vanish.  We get in this way  the  following normal  field equat ions:  

(6.5) 

(6.6) 

(6.7) 

r F s ,  = O , 

~" u ' P q 8  - -  A~fl~qeriTcse - -  0 

r ~ k  - -  r ~ k  - -  ~ r k  r ~L 

Equa t ion  (6.5) is just  eq. (3.10), which is re la ted to the existence of a space- 

t ime  manifold.  Equat ions  (6.6) and (6.7) af ter  some calculation can be wri t ten  

in the  simpler fo rm 

(6.8) F~o = 0 ,  

(6.9) F ~ g  ~k -~ F ~ g  ~" : O. 

Equa t ion  (6.8) means  t h a t  we are dealing with  a torsion-free theory.  Equa-  
t ion (6.9) is equivalent  to condition (3.35) which permits  the definition of 
a metr ic  tensor  in the  space- t ime manifold.  

I f  we subst i tu te  eq. (6.4) into eq. (4.52) and take  the normal  field equa- 

tions into account,  we get the  following tangent ia l  field equations:  

(6.10) 

(6.11) 

~a ~ 0 

1 F~g~e,j1~F~zogrAogs/\o) t -F T ~ z  

Equa t ion  (6.11) has been simplified b y  means  of eq. (2.10). 
Equa t ion  (6.10) means  t ha t  in the  theory  we are considering there is no 

spin angular  m o m e n t u m .  I f  we assume tha t  % has  the fo rm (5.28), f rom eq. (6.11) 

we obtain  condition (3.25), which permits  the definition of the covar iant  deriva- 
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t i res  in the space-time manifold, and the equation 

(6.12) ~Tki  : Rki  -!"2ykiRrsy"~'s , 

where 

Equat ion  (6.12) is just  Einstein 's  equat ion of the gravi tat ional  field. 
In  order to get a complete unders tanding of the connection between the 

theory  described in the present  section and Einstein 's  theory,  we should in- 
vestigate the role p layed by  the new fields F ~ .  This is a delicate problem and 
we sh~ll discuss it elsewhere. F rom eq. (6.11) we see tha t  it  is possible to 
describe also the gravi tat ional  field generated by  energy-momentum distribu- 
tions which have a nonlocal character.  Star t ing from more complicated Lagran- 
gian forms, one can build theories with weaker normal  field equations, which 
can describe fields generated by  sources of a still more general kind. For  in- 
stance, one can build theories with nonvanishing torsion and nonvanishing 
spin angular momentum (s). 

7. - T h e  e l e c t r o m a g n e t i c  f ield.  

The electromagnetic field can be t rea ted  as a ma t t e r  field or, al ternatively,  
as an additional geometric field. Here we want  to develop the second ap- 
proach, because the analogy with Maxwell's equations clarifies the s tructure 
of the geometric field equations. 

In  order to give a geometric meaning to electromagnetism, we have just  
to generalize the concept of f rame of reference, assuming that ,  by  giving a 
f rame of reference~ besides fixing the position of the origin and the directions 
of the axes, one fixes also the electromagnetic gauge at  the origin. Then the 
space 5 f becomes an eleven-dimensional manifold and also the vector  space 3" 
acquires a new dimension, as it contains a new infinitesimal t ransformation,  
namely  a gauge transformati()n of the  first kind. This infinitesimal transfor- 
mat ion  corresponds to the  new element Alo of the basis of the space 3-. For  
the sake of typographic  clari ty we replace the  index 10 by  the simbol .. 
In  the present  section the Greek indices take  the values 0, . . . ,10,  the Lat in  

indices a, b, . . . ,h  t ake  the values 4, . . . ,9  and the Lat in  indices i, j ,  ... take  
the values 0, ..., 3. 

The whole t r ea tmen t  of sect. 2-5 holds in this more general case. One 
could also t rea t  in a similar way a more complicated, possibly noncommuta-  

t i re ,  gauge theory.  Due to the  new dimension of the spaces ~ and ~ ,  we have 
addit ional  s t ructure  coefficients, which describe the e lect roma~let ic  field and 
a new differential 3-form v. which describes the density and the flow of the 
electric charge. 
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A reasonable theory of electromagnetism can be obtained from the Lagran- 
gian form (6.1) by extending the range of the Greek indices and adding the 
new term 

1 
(7.1) 1 E -- 32 F:~g~g~ers~F~Aco~A~o~Awq @ 

3 , 

Proceeding as in sect. 6, we get other nonvanishing components of the 
quantity GQr~, namely 

3 
(7.2) G.~ = 4~ F: ' kg~rgT~e~  " 

Besides eqs. (6.5), (6.8) and (6.9), we find the new normal field equations 

(7.3) F~.~ = 0, 

(7.4) iF L = o ,  

(7.5) F:~ = o .  

Finally, substituting eqs. (6.4) and (7.2) into eq. (4.49) or (4.52), taking 
the normal field equations into account and using also eq. (2.10), we obtain 
the tangential field equations 

(1. 
(7.6) 7 : . =  d F ,~g  g e~,~o~ A m  , 

(7.7) ~ = 0 ,  

1 ] ~k a r s t 1 i ~ c j ~k r s a 

1 ~ .  k �9 �9 r s t 1 ~ . 
- k  ~ ~ ' ~ g ~ g ~  ( % ~ t F ~ , - - % ~ F ~ t ) ~  Ao~ A ~  + -~-'V~zg~'~e~JktE.~a' A~osA o ; .  

From eq. (2.10), using the normal field equations, we obtsin the formulae 

(7.9) L F;~ + L~F;~ -{- Lfl~ 5 = O, 

If we ~ssume that F:~ is proportionM to the electromagnetic field, eq. (7.9) 
is just the homogeneous Maxwell equation and eq. (7.10) is the consistency 
condition which ensures the tensor nature of the electromagnetic field. 

From eq. (7.6), after some calculation, taking eq. (7.10) into account, we 
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see tha t  ~. can be wri t ten in the form (5.28) with 

(7.11) 

This is just  the inhomogeneous Maxwell equat ion if we identify T: with the 
electric-current density and -- F~k with the electromagnetic field. 

In  eq. (7.8), the first two terms on the r ight-hand side arc just  those which 

appear  in eq. (6.11). The third t e rm can be wri t ten in the form 

(7.~2) 

where 

(7.13) 
4 ~  ~q~  ~ i r  ~ 4 

is the energy-momentum tensor of the electromagnetic field. This t e rm must  
appear  because the forms ~ ,  which concern the ma t t e r  fields, do not  contain 
the energy and the momen tum of the electromagnetic field, which is considered 

as a geometric field. 
I f  we assume tha t  ~ has the form (5.28), the last t e rm in eq. (7.8) must  

w~nish and this requirement  gives rise to the equation 

(7.14) F.~ = o .  

We remark  that ,  as a consequence of eqs. (7.3)-(7.5) and (7.14) the only non- 
vanishing s t ructure  coefficients which contMn the index �9 are the electromag- 
netic field - - /~ k  and the coefficients F.~b. F ro m  eq. (2.10) we have 

(7.15) b i ~ L i F.~ Fb~ . F~k 

and we see tha t  the problem of unders tanding the meaning of the quanti t ies F.~ 
is connected with the problems concerning the fields F~k. 

8 .  - F i n a l  r e m a r k s .  

In  sect. 6 and 7 we have shown "chat the general formalism described in 

sect. 2-5 can be used to formulate  the known theories of ~ a v i t a t i o n  and electro- 
magnetism. We have also obtained some indication on the possible modifica- 
tions of these theories due to the presence of nonlocM terms in the sources 

of the fields. 
The nex t  step should be an investigation of all the possible Lagrangian 

forms of the geometric fields, in order to find the most  sat isfactory one. We 
have seen tha t  the geometric fields h~ve to satisfy the normal  field equations 

7 - I1 N u o v o  C i m e n t o  B .  
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w h i c h  do n o t  c o n t a i n  t h e  f ie ld sources ,  a n d  t h e  t a n g e n t i a l  e qua t i ons ,  w h i c h  

d e p e n d  on  t h e  sources  v , .  W e  h a v e  also seen  t h a t  t h e  t a n g e n t i a l  f ie ld e q u a t i o n s  

i m p o s e  some  l i m i t a t i o n s  t o  t h e  f o r m  of t h e  sources ,  n a m e l y  t h e  c o n s e r v a t i o n  

e q u a t i o n  (5.16) a n d  also o t h e r  condit ions~ for  i n s t a n c e  eq. (6.10) in  t h e  t h e o r y  

we h a v e  s t u d i e d  in  sect .  6. 

W e  t h i n k  t h a t  g e o m e t r y  shou ld  be  d e t e r m i n e d  b y  m a t t e r  a n d  n o t  v ice-  

ve r sa .  T h e n ,  in  a s a t i s f a c t o r y  t h e o r y ,  t h e  n o r m a l  f ie ld e qua t i ons ,  w h i c h  l i m i t  

t h e  p r o p e r t i e s  of g e o m e t r y  i n d e p e n d e n t l y  of t h e  p re sence  of m a t t e r ,  s h o u l d  

be  as  w e a k  as  poss ib le .  Also  t h e  cond i t i ons  i m p o s e d  on  t h e  sources  b y  t h e  

t a n g e n t i a l  f ie ld  e q u a t i o n s  shou ld  be  as  w e a k  as  poss ib le .  P e r h a p s ,  t h e s e  sug- 

ges t ions  for  t h e  choice  of a s a t i s f a c t o r y  I~agrang ian  cou ld  be  c o n s i d e r e d  as  a 

g e n e r a l i z e d  f o r m  of M a c h ' s  p r inc ip le .  

�9 R I A S S U N T O  

Si generMizza il formalismo della teoria elassica dei campi sostituendo alla variets 
spazio-temporale ~/ / la  variets 5~ a dieci dimensioni cost i tui ta  da tu t t i  i sistelni di rife- 
r imento locMi. La  geometria della variets 5 ~ ~ determinata  da dieci eampi vettoriMi 
corrispondenti  a dieci trasformazioni infinitesime dei sistemi di riferimento, ehe sono 
definite operat ivamente.  Si scrive fl principio d 'azione in termini  di una forlna diffe- 
renziale del quarto ordine hello spazio 5 ~ (forma lagrangiana). Le densit~ e le correnti 
sono rappresentate  da forlne differenziali del terzo ordine hello spazio 5C Dal  principio 
d 'azione si derivano le equazioni di campo e la relazione t ra  propriet~ di simlnetri~ 
e leggi di conservazione (teorema di Noether). Si riformulano in questo linguaggio la 
teoria di Einstein della gravitazione e la teoria di Maxwell dell 'elet tromagnetismo. 
Nel formalismo generale si possono formulate teorie in cui la Cal'ie~, l 'energi~ e la quan- 
ti t~ di moto non possono essere localizzat6 nello spazio-tempo ed anche teorie in cui 
una variets spazio-temporale non pub essere definita esat tamente  in alcuu modo utile.  

I ~ a c e H ~ e c K a ~  TeopHH HO~H B HpocTpaHCTBe CHeTeM OTeqeTa. 

PeaioMe (*). - -  qbopManH3M Kaaccn~ecKoti TeopHn rIOa.,t o6o6maeTcH IIocpe~CTBOM 
3aMeHbI IIpocTpaHCTBeHHO-BpeMeHHOrO MHOXKeCTBa ~r ~eC~THMepHblM MHO~KeCTBOM ~9 a 
Bcex JIoKaJIbHblX CHCTeM OTCqeTa. FeOMeTpH~ MHOTKeCTBa 2T olIpe)Ie~I~leTCg c rlOMOII~btO 
~eC~ITH BeKTOpHblX IIO$Ie~, COOTBeTCTBylOIILHX ~IeC~TH oIIepaTopRo 3a)!aHHBIX 6eCKO- 
HegHO ManblX Ilpeo6pa3oBaHg~ CHCTeM OTCqeTa. IIpHHILHII )~efflCTBn~t 3anncblBaeTca 

BrI~e ~ndpqbepenJ4HanbHO~ 4-dpopMM B npocTpaHCTBe St (narpaHxI~aHna~I qbOpMa). 
IInOTHOCTH n TOKH npe~cTaBnZmTCa c noMom~m ~IHqbdpepealman~H~Ix 3-dpopM B 6 e. 
I/I3 IIpHHILHIIa ~Ie~CTBHg BblBO)IHTC~t ypaBHeHH~I IIOIIg H CBII3b Me>K~Iy CyMMeTpHHMH 
14 3aKoHaMrI coxpaHeHrla (TeopeMa Ho3Tepa). 3aHOBO qbopMynnpylOTCa Teopna rpa-  
BHTaI~HrI ~fiHmTefiHa rI TeopHg 3nexTpoMaraeTrI3Ma Ma~cBe~a .  0 6 m n ~  ~popMa3IrIaM 
MOXeT 6BITB TaKXe HCIIOfflI~3OBaH )IJIg ~opMyJIHIOOBKI4 TeopBffI, B KOTOpi~IX 3apJt~[, 
3HeprHg H HMIIyJII~C He MOryT 6bITB JIOKaffltI3OBaHbI B npOCTpaHCTBe-BpeMeHH, H TeOpHffI, 
B KOTOpblX IIpOCTpaHCTBeHHO-BpeMeHHoe MHOTKeCTBO He MO~KeT 6I, ITt, onpe~eaeHo TOHHO. 

(*) Hepeee3eno pe3amlue(t. 


