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Summary. — The formalism of classical field theory is generalized by
replacing the space-time manifold .# by the ten-dimensional manifold &
of all the local reference frames. The geometry of the manifold & is
determined by ten vector fields corresponding to ten operationally
defined infinitesimal transformations of the reference frames. The action
principle is written in terms of a differential 4-form in the space & (the
Lagrangian form). Densities and currents are represented by differential
3-forms in &. The field equations and the connection between symmetries
and conservation laws (Noether’s theorem) are derived from the action
principle. Einstein’s theory of gravitation and Maxwell’s theory of
electromagnetism are reformulated in this language. The general formalism
can also be used to formulate theories in which charge, energy and
momentum cannot be localized in space-time and even theories in which
a space-time manifold cannot be defined exactly in any useful way.

1. — Introduction.

The primitive concepts on which the usual field theories are based are
the space-time manifold .# and a set of observables which depend on a point
of 4, namely the fields. One has to remark, however, that, if an observable
is described by a given component of a tensor field, it is not completely spec-
ified by giving a point of space-time; one has to give a local reference frame.
Tt seems, therefore, that the space # of all the local reference frames has a
more fundamental physical meaning than the space-time .#.

This idea has been discussed in detail by LURGAT (!). His work was mo-

(") F. Lurgat: Physica, 1, 95 (1964).

67



68 M. TOLLER

tivated by the need of taking into account the dynamieal role of the spin of
elementary particles, suggested mainly by the discovery of Regge trajectories.
If we disregard gravitation, the spaece & is isomorphic to the manifold of the
Poincaré group (without the group structure). Lurgat’s program was to build
5 quantum field theory on this group.

The concept of local reference frame can be introduced in two different
ways. One can start from the space-time manifold .# and define mathematically
a local reference frame as a basis in the vector space tangent to # at a given
point. Alternatively, one can give a direet physical definition of a local
reference frame by means of a physical object with respect to which positions,
directions, time and velocities are determined. Then one can possibly define
mathematically the space-time manifold .# in terms of the space & of all the
local reference frames. When we say that the space & is more fundamental
than the space .#, we mean that the second way is preferable from the physical
point of view.

In the present paper we want to develop a field theory on the space &
disregarding quantum effects, but taking gravitation into account. In analogy
with Einstein’s general relativity, the gravitational field is deseribed as a
geometric property of the space . Therefore, we have to find a geometric
structure of the space & which plays a role similar to the psendo-Riemannian
metric of the space-time .4 of general relativity.

This geometric structure is suggested by an operational analysis of the
physieal space-time concepts (>3), based on the requirement (4) that the primi-
tive concepts of a theory should represent « procedures», namely preserip-
tions according to which one performs physical operations.

The prescriptions which form a procedure necessarily refer to some pre-
existent physical objects which specify a local reference frame. One can con-
sider « measurement procedures » the aim of which is to obtain a numerical
result and «transformation procedures » the aim of which is to build a new
reference frame starting from a pre-existent frame. According to the program
described in ref. (), the geometric concepts of physics should be defined in
terms of transformation procedures. The measurement procedures define the
observables.

Note that a local reference frame cannot be defined operationally, namely
in terms of procedures. A transformation procedure can only define a relation
between two local reference frames. Therefore, if we apply rigorously the
operational point of view, the local reference frames should not appear asg
terms of the theory. The same argument holds with befter reason for the
points of space-time.

(2) M. TorrEr: Inf. Journ. Theor. Phys., 12, 349 (1975).
(®) M. TorrEr: Nuove Cimento, 40 B, 27 (1977).
(4 R. GmEs: Journ. Math. Phys., 11, 2139 (1970).
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In the present paper, nevertheless, we shall use the space &. This is pos-
sible because we assume that the objects which form a reference frame have
very special properties: they do not interact with the other physical objects,
apart from the very weak interaction necessary to transmit some information.
Moreover, the operations used to construct s local frame do not interfere with
other physical operations.

If we accept these assumptions, we may imagine that all the possible
reference frames have really been constructed and labelled by means of a seb
of real numbers and, therefore, we may consider the space %. This point of
view, which we call classical space-time theory, has to be abandoned if we
take into account the fact that the reference frames are formed by real physical
objects which interact with all the surrounding objects, for instance the objects
under investigation or the objects which form other reference frames. Then
we should construet a quantum space-time theory.

Given the space &, a transformation procedure defines a mapping of &
into itself. In fact, if we perform a given transformation procedure starting
from a given local reference frame, we obtain a new loeal reference frame.
Note that we are neglecting the unavoidable statistical errors. It is important
to remark that a transformation procedure does not define o mapping of the
space-time manifold .# into itself, because, in order to perform the operations
prescribed by the procedure, it is not sufficient to specify a space-time point;
one necds a loeal reference frame. We see that the space & is more sirictly
related to the fundamental concept of transformation procedurve than the
space-time .

It may happen that two different transformation proceduves define the
same mapping of & into itself. Then we say that the two transformation pro-
cedures are equivalent. It is convenient to consider the equivalence classes
of fransformation proecdures, which we call « transformations ». A transfor-
mation is uniquely individuated by the corresponding mapping of & into
itself.

In the following we shall consider only infinitesimal transformations, which
correspond to an infinitesimal displacement of every point of & and can be
represented by vector fields on &, We obtain in this way a set of vector fields
on & which can be defined operationally in terms of transformation procedures.
These veetor fields define the geometry of the space & in the same way as the
metyic tensor defines the geometry of the space .#. Note that also the metric
tensor can be defined operationally in terms of procedures which have the aim
of measuring lengths and time intervals.

The geometry of the space & is developed in sect. 2. Ir sect. 3 we study
the relation between the formalism given in the present paper and the usual
formalism based on the space-tinie manifold .#. The manifold .# can be de-
fined in & natural way only if certain conditions are satisfied. We stress that
the theory makes sense also if the manifold .# cannot be defined.
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In sect. 4 we introduce the action integral, which can be performed on an
arbitrary four-dimensional surface in &. It follows that the Lagrangian density
has to be replaced by a differential 4-form, which we call the « Lagrangian
form ». From the action principle we derive the field equations both for the
fields which describe matter and for the vector fields which describe the geom-
etry of &. In sect. 5 we derive from the action principle the connection be-
tween symmetry properties of & and conservation laws. We derive also the
more general continuity equations which hold in the absenee of symmetry
and contain source terms.

We get in this way a complete scheme of classical field theory. An in-
teresting feature of this theory is that the density and the flow of energy and
of momentum are represented by differential 3-forms on . As we shall see,
this formalism permits to deseribe situations in which energy and momentum
cannot be localized in space-time. The same remark holds for the electric
charge.

In sect. 6 we reformulate Einstein’s theory of gravitation as a field theory
on . This reformulation is not unique and the problem requires further in-
vestigation. In sect. 7 we treat the electromagnetic field from a geometric
point of view. This can be done by generalizing the concept of reference frame.

The examples studied in seet. 6 and 7 show that there is a large freedom
in the choice of the Lagrangian forms and that some new physical pringiple
is needed in order to make the «right » choice. Some suggestion about this
problem is given in seect. 8.

2. — The geometry of the space of reference frames.

Following the program sketched in the introduction, we consider the space &
of all the local reference frames. In special relativity, if we fix an arbitrary
frame of reference, all the other frames can be obtained from it by means of
a uniquely defined transformation of the orthochronous Poincaré group. It
follows that in this case & has the structure of a manifold isomorphic to the
manifold of the orthochronous Poincaré group (*). As we want to take into
account the ideas of general relativity, we assume only that % is an infinitely
differentiable ten-dimensional manifold.

An infinitesimal transformation transforms every reference frame s into
another reference frame s’ very near to s and, therefore, it can be represented
mathematically by a vector field on the manifold &*. The vector fields which
represent infinitesimal transformations generate a subspace J in the linear
space of all the vector fields on &. In special relativity, 7 is just the space
of right invariant vector fields on the Poincaré group, which are the generators
of the left translations and form the Lie algebra of the group. In our general
scheme, we assume only that J is a ten-dimensional vector space.
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For every point s€% we can consider the tangent space T,(%) and the
linear mapping J — T(%), which assigns to a veetor field belonging to I~
its value at the point s. We assume that this mapping is an isomorphism of
vector spaces. We obtain in this way an isomorphism between the tangent
vector bundle T(%) and the trivial vector bundle ¥x.7. The vector fields
belonging to 7 are the sections of 7(S) which correspond to the constant
sections of #xX.7. We may say that the geometric properties of the space &
are, at least partially, described by this trivialization of T(%).

It is important to remark that the space J and the space & play a very
different role in a physical theory. In fact, the elements of J (infinitesimal
transformations) can be identified completely in terms of physical procedures,
namely they have an operational meaning. On the contrary, the elements of &
(local frames of reference) cannot be identified purely by means of physical
procedures. In fact, in order to perform the operations prescribed by a pro-
cedure, one needs a pre-existing frame of reference: only the relation between
two frames of reference has an operational meaning, while a single frame of
reference cannot be identified operationally.

It follows that the physical laws, which are statements about procedures,
cannot distinguish a priori (namely without performing an experiment) be-
tween different elements of .. In other words, the physical laws must be
« homogeneous » in the space &. This is just the relativity principle. A similar
argument does not hold for the space .7 for instance, infinitesimal time transla-
tions and infinitesimal rotations may appear in a completely different way
in a physical law. As the elements of 7 identify a direction near every point
of &, we may say that the physical laws do not need to be «isotropic » in the
space &,

In particular, we remark that not all the elements of .7 ean be interpreted
as infinitesimal transformations. For instance, only positive time translations
can be realized physically (3). We indicate by 7+ the set of the elements of 7
which can be realized as physical transformations. If A and B represent in-
finitesimal transformations, the composition of these two transformations is
represented by the vector A + B (disregarding terms of second order). It fol-
lows that 9+ has the property

(2.1) T+ L T+cT+,

As 7t is also invariant with respect to the multiplication by a positive
number, it is a convex wedge.

The detailed structure of the space 9~ depends on the particular theory
and is described by the Lagrangian form, as we shall see in the following sec-
tions. In this section we consider it just as a linear space and we study the
geometric properties of the space & which follow just from the trivialization
of its tangent bundle. We get a structure which ean be considered as a
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generalization of the structure of Lie group. The basic coneepfs necessary
for this investigation can be found, for instance, in ref. (°). In view of future
applications, we assume that & is a 0 n-dimensional manifold and that J is
a n-dimensional veetor space, where n may be different from ten. We as-
sume also that all the fields are C.

If A is a vector field on &, we indicate by L, the corresponding first-order
differential operator acting on scalar fields (Lie derivative). If A is a vector
field and o is a differential 1-form, we indicate by i,w their inner product,
which is a scalar field. If f is a scalar field, we have

2.2) L.f=i.df.

We recall that the observables of a theory are operationally defined in terms
of measurement procedures. Given a reference frame, following the preserip-
tions of a measurement procedure one obtains a real number, which depends
on the state of the system and on the reference frame. If we fix the state of
the system, an observable can be represented mathematically by a sealar
field f(s) on the space . Note that, in order to represent observables, it is
not necegsary to introduce vector or tensor fields on .

The composition of an observable f and an infinitesimal transformation A
is a new observable ' which can be measured by measuring the observable f
in the frame of reference s’ obtained from s by means of the infinitesimal trans-
formation A. In other words, we have

(2.3) f'(s) = J(s') = f(s) + Luf(s) .

If we introduce in the space J a basis formed by the vector fields As
(x=0,1,...,n— 1), we can write every vector field on & uniquely in the form

(2.4) A =a%s)Aq,

where the coefficients a*(s) are scalar fields. The snmmation over repeated
indices is understood. Of course, the vector field A belongs to J if an only
if the coefficients a* are constant. In the following we shall always consider
the components of vectors and tensors with respect to the basis A, rather
than with respect to the «natural » basis defined by a set of co-ordinates on
the space . For simplicity of notation we indicate by L. the Lie derivative
corresponding to the veector field Ay. Then we have

(2.5) L,=a%(s)L,.

(®) Y. CuoQuET-BRUHAT: Géoméirie différentielle el systémes ewtém’ewsi(Pa,ris, 1968).
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The commutator of two first-order differential operators is a first-order
differential operator and, therefore, we have

(2.6) [Lay Lgl = LoLg— LsLs= Fijg(s) Ly,

Wwhere Fzﬁ(s) are funetions on & which depend on the choice of the basis in I~
as the components of a tensor of rank three. Of course, we have

2.7) Fro=—F, .

In special relativity, the quantities F’; do not depend on s and they are
just the struecture constants of the Lie algebra of the Poinecaré group. We call
them the structure coefficients of the space &. It is important to remark thatb,
after a choice of a basis in the space J and after an operational definition of
the corresponding infinitesimal transformations, the structure coefficients Fr,
are measurable quantities and every statement about these coefficients has a
physical meaning.

From the Jacobi identity

(2'8) [Laa [Lﬁa LV}] -+ [Lﬁy [LW va]:l + [Lw [LM Lﬁ]] =0 s
using the formula
(2.9) [LA’ fLB] = (LAf)LB“}‘ f[LAy LB] ’

we get after some calenlation the fundamental formula

(2.10) L ¥} + L,FS, + Lngﬁ = Fl, 77 + ¥l P + .
As we shall see in the following, a surprising number of physically relevant
relations can be obtained as special cases of this equation.

In order to give another derivation of these formulae, we introduce in the
dual J* of the space J a dual basis formed by the differential 1-forms
(¢ =0,1,...,n—1). If, for simplicity of notation, we indicate by i, the inner
product operator corresponding to the vector field 4, we have

(2.11) il = 88,
where 0° is the Kronecker symbol. Then from eq. (2.2) we get

(2.12) df = (Lof)ow .
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Then we can write

(2.13) 0 = ddf = (LgLsf)wPAw*+ (Laf)dw*

and, therefore, using eq. (2.6),

(2.14) (Lyf) do? = § (LaLgf — LgLaf)af Aw* = $ Fg(Ly )b Ao .

As the quantities L,f are arbitrary in every point of &, we get the Maurer-
Cartan formula

(2.15) do? = — 3 Fly0*Awh .
As a congsequence we have
(2.16) d(Fs0*\wf) =0,
which is equivalent to eq. (2.10).
In order to get more powerful notations, we recall that the inner product

operators i, can be extended to arbitrary differential forms, in such a way
that, if o is a k-form, we have

(2.17) ixAB) = @a) AP + (—1)PaA(@p) .

The Lie derivative L, can be extended to arbitrary tensor fields. In particular,
if B is a vector field, the formulae

(2.18) LB=[A4,B]=—IL;A=C
are equivalent to the formula

(2.19) [Ly, Lg] = Le¢ .

If « is a differential form, we have

(2.20) Lo = dijox +ijdx.

Then we see that eq. (2.6) can be written in the form
(2.21) LoAs= Fld,.

From eqgs. (2.11), {2.15) and (2.20), we get

(2.22) Lot = igdwf = — F& o7,
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3. — Theories with a space-time manifold.

In order to clarify the geometric concepts of the preceding section and
their connection with the more familiar geometric structures, now we consider
the special case in whiech it is possible to introduce a four-dimensional space-
time manifold .. We assume that there is a mapping = of & onto .# and,
if ¥ = 7(s), we say that the point x of .# is the origin of the local reference
frame s.

We shall define the geometric properties of the space .# in terms of the
geometric properties of the space & without introducing new degrees of freedom.
We shall only introduce some new structures in the veetor space J which are
constant, namely they do not depend on the point s €.%.

For every point s we consider the tangent mapping T ,(w) from the tangent
space T'(S) to the tangent space T, (#). It can be considered as a linear
mapping from the space J to T, (#). In accord with our program, we as-
sume that the kernel of this mapping does not depend on s and we indicate
it by #. Note that the isomorphism of the linear space 7 | and T, (A4) is
not uniquely defined, as it depends on the choice of s in n—2(x).

An infinitesimal transformation belonging to s does not shift the origin
of the local reference frame and, therefore, we call it a « homogeneous » in-
finitesimal transformation. & is (n — 4)-dimensional and we choose the bagis
in 9 in such a way that

(3.1) A,eH for a>4.

In the following the Latin indices a, b, ¢, ..., h take the values 4,...,n—1,
while the Latin indices 4, j, &, I, m, n, ... take the values 0, ..., 3. The Greek
indices take the values 0,..., »— 1 as in the preceding section. These con-
ventions have to be taken into account also when we sum over the repeated
indices.

The vectors A, ..., A; define a basis in the space 7 /4 and, therefore, for
every se& they deﬁne a basis of the tangent space T,,(-#) formed by the
vectors Ay(s), ..., A5(s). Given a vector field 4 on .#, we can consider its com-
ponents with respect to this basis and write

(3.2) Az) = f(s)4.(5) @ = 70(s) .

Note that the components f* depend on s rather than on x. They must satisfy
a « consisteney condition », namely a differential equation which permits one
to compute them on the whole fiber z—*(z) when they are known on one point
of this fiber.
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We say that a vector field 4 on % and a veetor field A on .# are related
and we write 4 ~ A, if for every s€% we have

(3.3) Ty(7) A(s) = A(n(s)) .

For instance, the vector fiell A defined by eq. (3.2) is related to the field
(3.4) A(s) = J(s) Aa(s)

where fo(s) for >4 ig arbitrary. As we see from this example, many different
vector fields on & are related with a vector field on .4, but at most one veetor
field on .# ean be related to a vector field on &. The relation A ~ 0 means

that A(s) e for every se%. Clearly we have
(3.5) A,~0.
It fis a function on .#, we can define a function f = z*f on & given by
(3.6) f(s) = fla(s) .
If A~ A, we have
(3.7) Lya*f=a*L,f.

Conversely, if eq. (3.7) holds for any choice of the scalar field f, we have
A~A. 1t follows that, if A ~A and B~ B, it is

(3.8) [4, Bl~[4,B].
In particular, we have
(3.9) [4,, 4,]~0
and we obtain the important formula
(3.10) Fo=0.
If the vector field A on . is related to some vector field A on .#, we have
(3.11) [A,, A] = L,A~0 .
If A is given by eq. (3.4), eq. (3.11) takes the form

(3.12) L.f* = — Ty f*.
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This is the consistency condition satisfied by the components of the veetor
field A which appear in eq. (3.2).

For every point se& the transpose of the tangent mapping T (=) is an
isomorphism of the cotangent space T5 (.#) onto a subspace of T7 (&) or,
if we prefer, onto a subspace £, of the dual J* of J. £, is just the sub-
space of J7* orthogonal to 3#. It follows that for every differential form # on
A one can define univocally a differential form

(3.13) n = )

on the space .

If we adopt the choice (3.1), the forms «°, ..., w* define a basis in the
space | and for every s the corresponding forms &%(s), ..., #%(s) form a basis
in the cotangent space T. (.#). It follows that every differential 1-form 7
on 4 can be written as

(3.14) 1l = 1.(8) &'(s) .

Note that also in this case the components f, depend on s rather than on
and they have to satisfy a consistency condition. The corresponding form on & is

(3.15) 7 =7t = [,(s)o* .

The operation =* has the properties

(3.16) dn*) = z¥dq,
(3.17) it = atizh if A~4,
{3.18) L,n*# = 7n* L3 it A~ 4.

It follows that the form # defined by eq. (3.13) satisfies the conditions

(3.19) i =0,
(3.20) Ly =0.

From eqs. (3.15) and (3.20) we obtain the following consistency condition
for the components f, of a differential 1-form on 4:

(3.21) L,fi=Fgfy.

Generalizing eqs. (3.12) and (3.21), we get the consistency condition for the
components of an arbitrary tensor field on .# with respect to the basis A,(s)
and to the corresponding dual basis @&'(s). In a similar way one can also treat
an arbitrary spinor ficld on /.
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In particular we see that the quantities g7 which do not vanish only in
the cases

(3.22) =0 =0=06=1

can be considered as the components of a tensor on .#.

Now we consider a four-dimensional subspace %" of 7 in such a way that s
is the direct sum of " and 5#. There is an isomorphism between " and 7 [#
and, therefore, for every s €. there is an isomorphism between " and T ,(.#).
Then, if x = n(s), for every infinitesimal displacement of & we can define
univocally an infinitesimal displacement of s along a direction belonging to
the subspaee . This infinitesimal displacement of s defines a «parallel
displacement » of the basis vectors A,(s) and, therefore, a parallel displacement
of any vector on the space .#. If this parallel displacement does not depend
on the choice of the point s € #~Y(x), we have defined in this way a connec-
tion on .

In order to get the covariant derivatives of the vector field (3.2), we remark
that, it we displace the point s in a direction belonging to the space ¢, the
basis vectors 4,(s) undergo a parallel displacement and we have just to per-
form the derivative of the functions f(s) along this direction. If we choose
the vectors A, in the space ", the covariant derivatives of the field (3.2) are
given by

(3.23) li=L,f.

In a similar way we get the covariant derivatives of an arbitrary tensor field.
Our definitions are consistent only if the components (3.23) satisfy the
differential equation

(3.24) Lfi=— Fift 4 F&fi.
After some calculation, we see that this condition is satisfied if we have

(3.25) L F = — F°F, .

F A1

This condition ensures the consistency of the definition of the covariant deriva-
tives of an arbitrary tensor field.
Tf  is a scalar field on .4 and f’ are the components of a vector field, we have

(3.26) (L;L,— L, L) = Fi L.,
(3.27) (LiLy,— L L) = Fi, Liff — F4.FLf" .

If we recall the definition (°} of the torsion tensor § and of the Riemann
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curvature tensor B, we find the following expressions for their components:

T 1
(3.28) Sz‘k - Fik’

(3.29) R:ik = F;ngk .

One can show, using egs. (2.10), (3.10) and (3.25), that these quantities
satisfy the consistency conditions required by their tensor character. From
the same equations one can also derive the well-known formulae (°)

(3.30) LiR;jk + LJ‘R:Ici + LkR:U = F, R, + ngR:n inRr

i3 Vst st5 9
(3.31) LiF;k + La'Fllci + LkFil‘j = R;cij_ R;jk—- R;m' -+
+ F Fr 4 F B+ FL T,

From eqs. (2.10) and (3.10) one can also obtain the formula

(3.32) F:bF]:i: LGFI’;._. LthlIci_,_F;iFtlzcr—F;iFl])cr‘

This equation, together with eqgs. (3.10), (3.25), (3.28) and (3.29), permits us
to compute all the structure coefficients K7, starting from S, Rj, and Fy,.
These three quantities are not independent, but are connected by eqs. (3.30)
and (3.31) and by the consistency conditions for the tensors 8 and R.

In order to introduce a pseudo-Riemannian metric in the space .#, we have
just to consider a quadratic form 9,5 I0 the vector space 7. We assume that
the operations used to measure lenghts and time intervals can be deduced
from the operations used to construct new frames of reference. The quanti-
ties 9,s describe the connection between these operations and, therefore, we
assume that they are constant. As they are the components of a symmetric
covariant tensor in .#, they must satisfy the equations

(3.33) Juxs= Yo
(8.34) Jus =0,
(3.35) L.gu=0= Fjg;+ Firg:, -

The last formula can be considered as a condition on the structure coefficients ¥, .
It is easy to show that also the quantities g* defined by

(3.36) g9 = 0;

can be considered as the components of a tensor in .#. We can choose the
basis in the space.Z in such a way that the nonvanishing components of 9,5 and
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of ¢g*% are
(3.37) Joo=90 =1, gu=gl=gn=g"=gp=¢*=—1.

We congider also the Levi-Civita symbol e¢,,, completely antisymmetric
and normalized by ey = 1. It satisfles the identity

(3.38) Comifn+ Cimfo+ Crimifi+ €imi e+ €minfr=0.
From this identity and from the formula

(3.39) By =0,

which is a consequence of eq. (3.35), we have

(3.40) P+ Flie, + Fien -+ Fle=0.

From this formula we see that the guantities ¢, can be considered as the

components of a covariant tensor in .# (disregarding reflections). We shall
also congider the quantities

(3.41) e = — ;1 ,

which are the components of a contravariant tensor in ..
In the caleulations of the following sections we shall often use the iden-
tities (3.38) and

(3.42) W NI AWF = —§677 6, 0" NP At

(3.43) W A\w? = —Zeiinte " Aw®.

Summarizing the results of the present gection, we have ssen that the very
existence of a space-time manifold .# defines the « vertical » subspace # of I
spanned by the vectors 4,, ..., 4,., and requires the validity of the condi-
tion (3.10). If we choose also an « horizontal » subspace & of J spanned by
the vectors 4,,..., 4;, and we impose the condition (3.25), we can define a
conncetion on 4 and, therefore, a torsion and & curvature tensor.

If we choose & quadratic form g,, on the space J and we impose the con-
ditions (3.34) and (3.35), we obtain a Riemann metric on the space .#. Note
that the choice of this quadratic form determines, through eq. (3.34), the ver-
tical subspace #, but it is compatible with many different choices of the hori-
zontal subspace %", namely with many different connections on ./#.

Finally we remark that, even with all the conditions imposed in the present
section, the geometric structure we are considering has more degrees of free-
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dom than the corresponding Riemann-Cartan space-time (¢), due to the presence
of the quantities F*,. From eq. (3.35) we see that these quantities, if we fix
the subseript @, form a matrix which generates an infinitesimal homogeneous
Lorentz transformation. This matrix may depend on the point s of & if, by
performing the same physical operations in different frames of reference due
to the presence of a new kind of field, one obtains different linear transforma-
tions of the space tangent to .# at the point (s).

4. — The action principle and the field equations.

In this section we want to develop a Lagrangian field theory in the
n-dimensional space & with n>4, without assuming the existence of a space-
time manifold .#. In order to find the general form of the field equations and
of the conservation laws, we start from an action principle of the kind

(4.1) #A:m

where § is an arbifrary four-dimensional surface in . with boundary o8 and A
is a differential 4-form depending on the fields and on their derivatives, which
we call the Lagrangian form. When n = 4, 1 becomes a scalar density and
the action principle (4.1) takes the usual form. In expression (4.1) we can
vary the fields, keeping them fixed on 08, and we can vary also the surface §
keeping its boundary oS fixed.

We consider as dynamical variables the vector fields A, which deseribe the
geometry of & and other fields which describe matter. We may assume that
the matter fields are scalar in the space &, otherwise we can replace them by
their components in the frame of reference defined by the vector fields A,.
We agssume for simplicity that there is only one gcalar matter field f. Instead
of the vector fields 4, we can introduce as dynamical variables the differential
forms we.

When we treat the action principle in » dimensions, we find new features
and new field equations which do not appear in the four-dimensional case.
First of all the action integral must be stationary when we deform the sur-
face 8 keeping the boundary fixed and this gives the field equation

(4.2) d1=0.

(®) F¥.W.HEHL, P. vox DER HEYDE and G. D. KErLICK: Rev. Mod. Phys., 48, 393 (1976).
This paper contains a large list of references about the generalizations of Einstein’s
gravitational theory.

6 — Il Nuovo Cimento B,
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This equation is trivially satisfied if n = 4. We shall show that, as a defor-
mation of the integration surface S can be reinterpreted as a variation of ail
the fields, eq. (4.2) is a consequence of all the other field equations.

Then we can vary the matter field f. We assume that 1 depends on f and
on its Lie derivatives L,f. If we put

(4.3) 3 =c¢,

disregarding second-order terms we can write

(4.4) 3 = en + 0(de)
where
(4.5) n= %

is 'a differential 4-form and

(4.6) O(de) = %iads

is a differential 4-form which depends linearly on the differential 1-form ds.

We introduce in a region of the manifold % the co-ordinates °, ..., " *
and we assume that the surface S is given by the equations

(4.7) %= 0 for a>4.
Then we assume that ¢ is given by
(4.8) & = g(&*, o', 4* 2°)2*,

where ¢ is a differentiable funetion with compact support in E* Note that ¢
vanighes on the surface 8. If we put

(4.9) 6(“) = 21_4 e(xﬁyd(a) da}“/\ dwﬁ/\dw'l’/\ dmd 3

the action principle takes the form
(4.10) f POonss(rt) Ao Aot ds2 s = 0

and, as g is arbitrary, we get the field equation

(4.11) Oores(d?t) = 0.
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In a similar way we see that, if the indiees o, f, v, 6, ¢ are all different, we
have

(4.12) Oupyo(das) = 0

and one can see eagily that all these equations are equivalent to the formula
(4.13) aAB(x) =

or, more in general,

(4.14) aAB(B) + fAO() =

where o and f are arbitrary 1-forms. Also this field equation is trivially satis-
fied for » = 4. Using eq. (4.6), we can write it in the more explicit form

oA

(4.15) W + N

aLf

From eq. (4.14) we obtain

(4.16) 0 = iu{wrN0(e) + aN\B(wH)) =
= nh(x) —wtAiub(o) 4 (fue) () — aN\ib(w?) = (n—4 + 1)0(x) — aAixB(w4),

and we see that we can write
(4.17) Ox) = aNp,
where the differential 3-form ¢ is given by

1 L 0(cn) — 1 , o4

(118) ¢=5 s W3 AL,

If we take eq. (4.17) into account, the action principle can be written in
the form

(419) ~fen+dsA@ =e0 +f (n— do)

o8

and, as e iy an arbitrary function vanishing on 08, we get the field equation
(4.20) n—do=0.

Using eqs. (2.20), (4.5) and (4.18), we can write this equation in the more ex-



84 M. TOLLER

plicit form

oA oA sy
4.9 —_— —_ - —1 —_—
(4.21) L”aLMf (n—3)%; "‘daLMf

6.

If n = 4, the last term vanishes and we get the usual Euler-Lagrange equation.
In conclusion, we have for every field a « normal » field equation of the kind (4.14)
and a «tangential » field equation of the kind (4.20).

In order to find the equations for the geometrie fields, we split the Lagrangian
form 7 into a part A% which contains only the geometric fields o and their
derivatives (namely the functions F7;) and a part A which describes matter
and has the form

1

(4.22) W= o7 Ry Luf)o* Aol Ao Aoo? .

The geometric fields appear explicity in the last factors and in the Lie derivatives
of the matter field f. This is a kind of minimal coupling between matter and
geometric fields. The forms , 0 and o arise from the variation of the matter
field f and, therefore, they do not depend on the geometric part of the
Lagrangian form.

If we put
{£.23) dw* = efe’ ,
(4.24) SAy=—el 45

and we use eq. (4.3), we obtain

(4.25) S(Luf) = Lue—e, Ly f = iu(de — (Lyf) S0’} ,
(4.26) Sw* ANwPAWY AwO) = Sw? A y(w* A\ wf A w? Aw?)

and, therefore, using eqs. (4.5) and (4.6),

(4.27) SAM = en + 0(de — (Lyf) 30*) + S AT, AT .

If we use also the field equations (4.17) and (4.20), we obtain

(4.28) SAM = d(ep) — (Lyf) Sw? Ao + S’ N, AN .
For every vector field B we define the differential 3-form

(4.29) 5= (Lpf)o —iaA™

and we indicate by 7, the differential 3-form corresponding to the vector field A, .
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Then eq. (4.28) ean be written in the form
(4.30) M = d(e0) — S’ A 1» .

If the matter field equations are satisfied, we can use this formula and
write the action prineciple in the form

(4.31) SJAG—J&O»/\TF 0.

We see that the quantities 7, can be considered as the sources of the geometric
field.
We assume that 2% has the form

1
(4.32) A= 21 Zfﬂyaw“AOJﬁ/\wV/\m" ,
where the quantities 15, depend on the structure coefficients F¢,. We
(4.33) Dizprs = Gy 800y

where the coefficients G4, are antisymmetric with respect to the indices
o, B, v, 0 and with respect to the indices u, ». By differentiation of eq. (2.15),
using eq. (4.23), we get after some calculation

(4.34) OF¢, == L& — L, 4 SSsz — engv -4 ng},’M .

If the guantities dw” and, therefore, also the quantities ¢, vanish on the sur-
face §, we have on this surface

(4.35) 8485 = — 26, L, ¢2,
namely
(4.36) 31% = 3 6r(de?),
oy
where
1 .
4.37) Oy(e) = T G houpys(Euc) % A\ B \w? \w?

Is a differential 4-form which depends linearly on the differential 1-form e.
Proceeding as in the proof of eq. (4.14) we get the normal field equation

(4.38) BABL) + xAB2(B) = 0.
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This equation is equivalent to the requirement that the expression
(4.39) Ghorpys 0" ANO* AP \w? Aw?

is completely antisymmetric with respect to the indices y, v, #.
From the normal field equation we have in particular

(4.40) L[l s0? NP AP A WY \wd 4+ Golg st \w* Ao A\w? \wd] = 0
aoBy eapy

and, after some ecalculation,

(4.41) (n—3) Ghlgs* NP A ¥ \Aw® — 4G5 s0F NP A WY Nw® = 0 .

From this equation, using again the antisymmetry of the expression (4.39),
we obtain

(4.42) in[ (1 — 3) Qhaprs @I NW* A WBA\wY Aw? + 4G 05 500" A \NwB A\ w? Awd] = 0
and performing the calculations

(4.43) (0 —3)(n—4) g NP NO? N0 -

+ 4G 5rgs WE A WP N\ ¥ A0 — 4G 3he, 00" NP A Y \Nd 126050 s’ Aot AwY Aewd = 0 .
By By eofyd

From eqgs. (4.41) and (4.43) we obtain finally

(4.44:) Gggﬁw;w“/\wﬁ/\wv/\w" = Ggyoa)”/\a)”/\w“’/\w" y
‘where
12
= 7 @
(4.45) Goys 2y —3) Goapys «

From eqs. (4.32), (4.33) and (4.44) we have-
e 1 0 1.,
(4.46) A= 2—4va6 SFep* AP Aw? Awd-+- —élaMSw"‘/\wﬁ/\w?’/\w"
and, using eq. (2.15),

(44T)  3if = 11—2 Gapo (5 d® 4 T2y S0\ ) \oo? \eod +-

1
-+ Elgm,ﬁw“/\wﬁ/\wv/\w" y
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and after some calculation

(4.48) = — %2— d(Goyo S0 N\ 0¥ \ ) —

—3we A 115 [d(Geyseo? Aw?) 4 (Ga‘degﬁ — 2/'@;,,,5) Ao’ A\wd] .

Substituting this expression in the action principle (4.31) we get immediately
the following equation for the geometric field:

1 1
(4.49) — 1—2d(Gmm/\w«f)~-1—é (Gops Fog— 2235,8) 0P A Nw® = 7, .
This equation can also be written in the form
1
(4.50) Te= 5[~ LsGoys+ GonsFg,— GoyoFlg+ 2A%,5] 0P A ¥ Aewd .

We can write this equation in another way if we assume that the quan-
tities A3, ; are homogeneous functions of degree k of the quantities F2,. Then
we can use the Euler theorem and write

(4.51) A= 2410 GawF“ﬂw AwBAWYAw? .

Note that this is not the original Lagrangian form, but it has been simplified
by means of the normal field equations. Then eq. (4.50) can be written in
the form

1

4.52
( ) Te = 12

1 1
[ LﬁGgyd + Ggaafﬁy -+ (z;-— 1) GayaFglg+ -I; Gogang] WP \w? A\ we.

If we agsume that the matter Lagrangian form A¥ is an homogeneous func-
tion of degree k& of the quantities f and L.f, we can also use Euler’s the-
orem and we get

(4.53) M= 716 6df) + ) -

Using the field equation (4.17) and (4.20), we obtain

(4.5 = @A + fdo) =7 d(fo) .
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We see that, as a consequence of the field equations, we have
(4.55) d¥=0.

This formula holds also in other interesting cases and we shall nse it in the
next section.

5. — Conservation laws.

Many important observables (for instance the electric charge) concern a
region of the three-dimensional space or more generally a region of a space-
like three-dimensional surface in the four-dimensional space-time .#. The
most natural mathematical representation of these quantities is a differential
3-form in .#. Usually, this 3-form is represented in terms of a vector density J°
by means of the formula

I 04y d Adb Adat .

=

(5.1) t=

If the differential form % is closed, namely if the continuity equation

(5.2) d? = %—Jw—idw“/\dxl/\dmﬁ/\d;ca =0

holds, the corresponding quantity is conserved. In fact, if the formn (5.1)
vanishes in the spacelike directions, its integral over a sufficiently large space-
like snrface does not depend on the choice of the surface.

As we have seen in sect. 3, from the differential form £ in .# we can get
immediately a differential 3-form 7 in the space &. The integral of 7 over a
three-dimensional surface in & is equal to the integral of ¥ on the projection
of this surface on the spaee .#. 1f the quantily we are considering is con-
served, also 7 is closed.

We may also consider a differential 3-form 7 in % which cannot be obtained
from a differential form % in . This situation necessarily appears if we deal
with a theory in which a space-time manifold .4 cannot be defined. If a 3-form
of this general kind is closed, namely if

(5.3) dr =0,
and its support in & has suitable properties, the integral of ¢ over the three-

dimensional surfaces belonging to a certain class does not depend on the sur-
face. In this way we get a comserved quantity, which, however, cannot be
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localized in space. For instance, the quantity corresponding to a limited region
in a spacelike surface could depend on the velocity of the observer.

We recall that in Einstein’s general relativity the density and the flow of
energy and momentum of matter are the source of the geometric (gravitational)
field. Therefore, we assume that in the formalism we are considering these
quantities are represented by differential 3-forms of the kind 7, defined in
the preceding section.

In order to find a conservation equation, we remark that from eqs. (4.30),
(4.48) and (4.49) we have

(5.4) 34 = d(eg——il‘—)vao'Sw@/\wV/\wf’) .

This formula takes into account all the field equations.

Now we consider a special variation of the fields f and o* which is generated
by the infinitesimal transformation of the space & defined by the vector field B.
In this case we have, using eq. (2.20),

(5.5) 34 = Lgi = izdi + digi,
(5.6) 3f = e = Lgf,
(5.7 dw* = Lzw*.

From eqs. (5.4)-(5.7) we have

, 1 .
(5.8) le,Z. - dI:(LB;f)Q'—'ﬁGQ’P"(LBCOQ)/\U)V/\O)(’_IBA] = d(TB+ Tg) I}
where 7, is defined by eq. (4.29) and

1
(5.9) 7% = —13 Gops (L) ANow? fd —ig A% .

If the vector field B vanishes on the boundary o8, from eq. (5.8) we have

(5.10) ipdl =0,

8

and from the arbitrariness of § and B we get eq. (4.2), as anticipated in the
preceding section. In conclusion we have

(5.11) d(7z+ 15) =0,

namely we have obtained a conserved quantity for every vector field B on
the space <.
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This formula can also be obtained from the field equation (4.49), which,
together with eq. (5.9), gives

(5.12) To + Tgr = d(—‘f—z GQ;/OC()V/\COO) .

If we start from eqs. (4.30), (5.6) and (5.7), we have
(5.13) ipdA™ + diz 2™ = L A" = 32" = d[(Lzf) 0] — (L) AT
and, using the definition (4.29),
(5.14) dry= (Lpo?’)\1v+ ip dA™.

In the following we consider the most interesting ease in which d2™ vanishes
as a consequence of the field equations, as happens when 2* is an homo-
geneous function of the matter fields and of their derivatives. Then we can
write eq. (5.14) in the simplified form

(5.15) dTB: (LBCOV)/\TV .
If B= A4, using eq. (2.22) we can write
(5.16) dvy=—F0’Atu.

From. eq. (5.158) we see that the quantity 7, is conserved if we have for all
the values of »

(5.17) Lyor =0,

namely if the infinitesimal trangformation generated by the vector field B is
an isomorphism of the geometrie structure of the space <. This is the usual
connection between symmetry and conservation laws. Conditions (5.17) are
equivalent to the conditions

(518) LBAop: [B, Agx] = ‘—"szB = O .

If & is a Lie group, there are n independent fields with this property, namely
the left-invariant vector fields, which are the generators of the infinitesimal
right translations. In this case there are n independent conserved quantities.

In order to get a physical interpretation of the quantities 7,, we disregard
gravitation. If we choose a reference frame $°, we can identify any other ele-
ment s of & by means of the element (z, L) of the Poincaré group which trans-
forms the reference frame s° into the reference frame s. The infinitesimal left
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translations generated by the vector fields 4, are

(5.19) ed 1 (xk, LT) — (2% — ed%, L),
(5.20) ed, (o, L) — (% + eFlo’, Ly 4 eFj, LY) .

Note that the strueture constants F, coinecide with the generators of the in-
finitesimal homogeneous Lorentz transformations acting on four-vectors. We
can also define ten vector fields B, which generate the infinitesimal right transla-
tions in the following way:

(5.21) eB;:(a*, L}) — (#* — e Li, L) ,
(5.22) eB,: (a%, L7) — (%, L + eLiFL,) .

Comparing eqs. (5.19)-(5.22), we obtain the relations

(5.23) B;= LA,
(5.24) B,= Ri(4,+ Fy,a’ 4,) .

We have introduced for every homogeneous Lorentz transformation L7 the
matrix R) defined by

(5.25) LF: = B.F;, L} .

The matrices R form the adjoint representation of the homogeneous Lorentz
group, which acts on the Lie algebra of this group. It is equivalent to the
representation whieh acts on the antisymmetric tensors of second order.

If we indicate by %, the differential 3-forms which correspond to the vector
fields B,, from eqs. (5.23) and (5.24) we have

(5.26) fz, - L]z?'rlc ’
(5.27) To= Ri(7y + F}; 7).

The vector fields B, generate space-time translations along the axes of the
fixed frame of reference s°, while the vector fields B, generate homogeneous
Lorentz transformations leaving two of the axes of s° fixed. Therefore, it is
natural to assume that the differential forms (5.26) and (5.27) define conserved
quantities which are just the components of the four-momentum and of the
relativistic angular momentum with respect to the fixed frame of reference s°.

Then, from eq. (5.26), we see that 7, represents the density and the flow
of a component of four-momentum with respect to the variable frame s. From
eq. (5.27) we see that the relativistic angular momentum is composed of two
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parts, which we interpret as spin and orbital angular momentum. We see
that t, describes the density and the flow of a component of spin angular
momentum with respect to the variable reference frame s.

When we take gravitation into account, the Lie-group structure of & is
lost and we cannot define the vector fields B, and the differential forms 7,
any longer. However, we assume that the interpretation of the differential
forms v, that we have found is still valid. Then eq. (5.11) shows that the
forms rg can be interpreted as a description of the four-momentum and the
spin angular momentum of the geometric field.

Equation (5.16) shows that the source of one of the quantities 7, is given by
the product of a geometric field and another quantity v,. This is in agree-
ment with elementary field theory: for instance, the product of the total energy
density by the gravitational field is a source of momentum. In order to better
understand the meaning of eq. (5.16), we assume that the forms 7, ¢an be
written in the following way:

(5.28) To = %Téei,stw’/\cos/\o)t .
After some calculation, using eq. (3.38), we obtain

(5.29) dvo= (L, —F,) T{e’ Ao N\w* Aw?® 4
+ %[(La'_Fu) Té _{_ Fisz;]ezrstwa/\w‘r/\ws/\(")t ]

(5.30) Fy=Fi;.
The conservation law (5.16) can be written in the form
(5.31) dry = — Fi, Tio Ao AP Ao® — 5B The, 0" N A Aot

Comparing eqs. (5.29) and (5.31) we obtain the conservation laws in the fol-
lowing form:

(3.32) (Li—F) T =—TFy1,,

(5.33) (Ly—F) T} = FiTi — FL,Th .

If, moreover, we assume the validity of eqs. (3.25) and (3.35) and we put

(5.34) Vi = $Fhg" T,
(5.35) Th+ Th=0,
(5.36) T =g Ty,
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eq. (5.32) can be written in the form

(5.37) (Li—F)T; = ¥ T - $ Ryag™ T
(5.38) (Li—F)Th=—"Ty+ Ty .

These formulae are the correct generalization (¢) of the familiar conservation
equations

(5.39) LT:=0,
(5.40) To =T ;

which hold in the absence of torsion and of spin angular momentum.
If we assume that the quantities 7, are constant, using egs. (3.10), (3.25),
(3.32) and (3.35), eq. (5.33) can be written as

(5.41) LT, =F,T,— F,T;,
{(5.42) LT, =F. T, +F, T,—FT,.

i
These equations are just the consistency conditions which ensure that the
quantities T; and T% can be considered as tensors in the space .#. They are
not equivalent to eq. (5.33) if the quantities I, are variable.

6. — An example of Lagrangian theory.

In this section we consider in detail a specific Lagrangian form A%, in order
to show how the formalism developed in sect. 4 works. There is a large arbi-
trariness in the choice of the Lagrangian form and we shall discuss elsewhere
the principles which should guide this choice. Here we start from the following
Lagrangian, which describes a theory without torsion and without spin density,
strictly related to Einstein’s theory of gravitation:

1
4%

1
(6.1) ZG:EFézglke,zﬁsFiﬂw“AwﬁAw“/\ws+ Foug™ . s Fryo* N Aot \ow® .

From this equation we obtain
6 _ .
(6.2)  (3AGgs) WA WPA WY\ = > Fag¥e, 1. SF g% \Nwf A\ A+
6 T alk P @ 6 T ik i
_1[' ;Fbcg ergks SF“(U /\wc/\w Aws+ ;Fpag erns &F’alwp/\aﬂ/\ww/\ws_{_

6 ,
+ P (2P g% ey — szrg”"'ems + Frsg" €] SFo 000\ Aot Aw* .
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From eqs. (4.33) and (4.44), we see that, if the normal equations are satisfied,
we can write

{6.3) (SAsaye) NP A WY A @O = Goys ST g0 NP Aw? New? .

Comparing eqs. (6.2) and (6.3) in the case in which a«, f>4, we see that
we must have

3 .
(6'4) Gras - G!‘rsa = ;‘ Félgwemks 3
while the other components of this quantity must vanish. We see also that,

as a consequence of the normal field equations, the last three terms in eq. (6.2)
must vanish. We get in this way the following normal field equations:

(6.5) FL=0,
(66) F;qerjlcseums: 0 ’
(6'7) F;tglkenks—ngglkerjkt——Flirgrkeﬂcts + F;]‘guerkts _ O .

Equation (6.5) is just eq. (3.10), which is related to the existence of a space-
time manifold. Equationg (6.6) and (6.7) after some caleculation can bhe written
in the simpler form

(6.8) F, =0,

(6.9) Fr g%+ Frig"=0.

Equation (6.8) means that we are dealing with a torsion-free theory. Equa-
tion (6.9) is equivalent to condition (3.35) which permits the definition of
a metfric tensor in the space-time manifold.

If we substitute eq. (6.4) into eq. (4.52) and take the normal field equa-
tions into account, we get the following tangential field equations:

(6.10) T,== 0,
1w @ iy
(6.11) T,= EF,,,g i Frs " Nos A\ wt +

1 . )
+ o= (L Fo 4 Fo, B o) gt e, .o No Ao .
2%

Equation (6.11) has been simplified by means of eq. {2.10).

Equation (6.10) means that in the theory we are considering there is no
spin angular momentum. If we assume that 7, has the form (5.28), from eq. (6.11)
we obtain condition (3.25), which permits the definition of the covariant deriva-
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tives in the space-time manifold, and the equation

(6.12) #Thi= Ry — 30 B9
where
(6.13) Rm‘ = Rlisi - F:kFZZ .

Equation (6.12) is just Einstein’s equation of the gravitational field.

In order to get a complete understanding of the connection between the
theory described in the present section and Einstein’s theory, we should in-
vestigate the role played by the new fields ¥, . This is a delicate problem and
we shall discuss it elsewhere. From eq. (6.11) we see that it is possible to
describe also the gravitational field generated by energy-momentum distribu-
tions which have a nonlocal character. Starting from more complicated Lagran-
gian forms, one can build theories with weaker normal field equations, which
can describe fields generated by sources of a still more general kind. For in-
stance, one can build theories with nonvanishing torsion and nonvanishing
spin angular momentum ().

7. — The electromagnetic field.

The electromagnetic field can be treated as a matter field or, alternatively,
as an additional geometric field. Here we want to develop the second ap-
proach, because the analogy with Maxwell’s equations clarifies the strueture
of the geometric field equations.

In order to give a geometric meaning to electromagnetism, we have just
to generalize the concept of frame of reference, assuming that, by giving a
frame of reference, besides fixing the position of the origin and the directions
of the axes, one fixes also the electromagnetic gauge at the origin. Then the
space % becomes an eleven-dimensional manifold and also the vector space 7~
acquires a new dimengion, as it containg a new infinitesimal transformation,
namely a gauge transformation of the first kind. This infinitesimal transfor-
mation corresponds to the new element A4,, of the basis of the space 7. For
the sake of typographic clarity we replace the index 10 by the simbol -.
In the present section the Greek indices take the values 0, ..., 10, the Latin
indices @, b, ..., b take the values 4,...,9 and the Latin indices i, j,... take
the values 0, ..., 3.

The whole treatment of sect. 2-5 holds in this more general case. One
could also treat in a similar way a more complicated, possibly nonecommuta-
tive, gauge theory. Due to the new dimension of the spaces & and ., we have
additional structure coefficients, which describe the electromagnetic field and
a new differential 3-form 7, which describes the density and the flow of the
electric charge.
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A reasonable theory of electromagnetism can be obtained from the Lagran-

gian form (6.1) by extending the range of the Greek indices and adding the
new term

1
(11) A= _'%Fi.lcghgkserquF;ﬁw“/\wﬁ/\wp/\wq+

3
+ o Lwgrgt Lot A Aot Aw?

Proceeding as in sect. 6, we get other nonvanishing components of the
quantity @,;, namely

3 L.
(72) G.pq = —E-Fikg”ghsersmq .

Besides egs. (6.5), (6.8) and. (6.9), we find the new norial field equations

(7.3) F,=0,
(7.4) =0,
(7.5) F, =0.

Finally, substituting eqs. (6.4) and (7.2) into eq. (4.49) or (4.52), taking
the normal field equations into account and using alse eq. (2.10), we obtain
the tangential field equations

(1.6) 7.= d( Fgg* serquw”AwQ)

(7.7) 1,=0,

1 .. X
(7.8) 1;,= i 0% € I 6(’T/\(f(?s/\C()t‘§“ (L Fj 4 Fo, ) g e, 0" Ao Aw® +

i,
+ %qugp]gq ( chsthr——'eﬂcw st) r/\w /\a)t+ FulglkeuktF w./\ws/\wt .

From eq. (2.10), using the normal field equations, we obtain the formulae

(7.9) L, + LF,+ LF,—0,
(7.10) LF: = F F: + F T

ar™ Jk
If we assume that F, is proportional to the electromagnetic field, eq. (7.9)
is just the homogeneous Maxwell equation and eq. (7.10) is the consistency
condition which ensures the tensor nature of the electromagnetic field.
From eq. (7.6), after some calculation, taking eq. (7.10) into account, we
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see that 7, ecan be written in the form (5.28) with
(7.11) T L L gogn.
. 475 ik

This is just the inhomogeneous Maxwell equation if we identify T? with the
electric-current density and — F;, with the electromagnetic field.

In eq. (7.8), the first two terms on the right-hand side are just those which
appear in eq. (6.11). The third term can be written in the form

(7.12) _%T;cemstwr/\ws/\wt ’
where
. 1
(1.19) Dt = o (= Bragrge it 0L 1)

is the energy-momentum tensor of the electromagnetic field. This term must
appear because the forms 7,;, which concern the matter fields, do not contain
the energy and the momentum of the eleetromagnetic field, which is considered
as a geometric field.

If we assume that 7, has the form (5.28), the last term in eq. (7.8) must
vanish and this requirement gives rise to the equation

(7.14) e =0.

We remark that, as a consequence of eqs. (7.3)-(7.5) and (7.14) the only non-
vanishing structure coefficients which contain the index « are the electromag-
netic field — F7, and the coefficients F77,. From eq. (2.10) we have

(7.15) F, F., =L, F,

and we see that the problem of understanding the meaning of the quantities F7,
is connected with the problems concerning the fields F7, .

8. — Final remarks.

In sect. 6 and 7 we have shown that the general formalism deseribed in
sect. 2-5 can be used to formulate the known theories of gravitation and electro-
magnetism. We have also obtained some indication on the possible modifica-
tions of these theories due to the presence of nonlocal terms in the sources
of the fields.

The next step should be an investigation of all the possible Lagrangian
forms of the geometric fields, in order to find the most satisfactory one. We
have seen that the geometric flelds have to satisfy the normal fleld equations

7 — Il Nuovo Cimenio B.
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which do not contain the field sources, and the tangential equations, which
depend on the sources 7,. We have also seen that the tangential field equations
impose some limitations to the form of the sources, namely the conservation
equation (5.16) and also other conditions, for instance eq. (6.10) in the theory
we have studied in sect. 6.

We think that geometry should be determined by matter and not vice-
versa. Then, in a satisfactory theory, the normal field equations, which limit
the properties of geometry independently of the presence of matter, should
be as weak as possible. Also the conditions imposed on the sources by the
tangential field equations should be as weak as possible. Perhaps, these sug-
gestions for the choice of a satisfactory Lagrangian could be considered as a
generalized form of Mach’s prineiple.

® RIASSUNTO

8i generalizza il formalismo della teoria classica dei campi sostituendo alla varieta
spazio-temporale .# la varietd & a dieci dimensioni costituita da tutti i sistemi di rife-
rimento locali. La geometria della varietd & & determinata da dieci campi vettoriali
corrispondenti a dieci trasformazioni infinitesime dei sistemi di riferimento, che sono
definite operativamente. 8i scrive il prineipio d’azione in termini di una forma diffe-
renziale del quarto ordine nello spazio % (forma lagrangiana). Le densitd e le correnti
sono rappresentate da forme differenziali del terzo ordine nello spazio &. Dal principio
d’azione si derivano le equazioni di campo e la relazione tra proprietd di simmetria
e leggi di conservazione (teorema di Noether). Si riformulano in questo linguaggio la
teoria di Einstein della gravitazione e la teoria di Maxwell dell’elettromagnetismo.
Nel formalismo generale si possono formulare teorie in cui la cariea, I'energia e la quan-
titd di moto non possono essere localizzate nello spazio-tempo ed anche teorie in cui
una varieta spazio-temporale non pud essere definita esattamente in alcun modo utile.

Knaccuueckan TEOPHA NMOJIA B NPOCTPAHCTBE CHCTEM OTCHETA.

Pesrome (*). — DopManu3M KIacCH4YeCKOH Teopuu HONs 0606IAeTCA MOCPEOCTBOM
3aMEHBl NPOCTPAHCTBEHHO-BPEMEHHOTO MHOXECTBA .4 NECATHMEPHBIM MHOXECTBOM
BCEX JIOKAJILHBIX CUCTEM OTCYeTa. I'€OMEeTpHs MHOXeCTBA & OIPEeACIseTCs C HOMOILLIO
IeCATH BEKTOPHBIX MONEH, COOTBETCTBYIOWINX NECATH ONEPATOPHO 3aMaHHBIX OeCKO-
HEYHO MalblX npeobpazoBanmii cucTeM OTcyeTa. IIpWHIMNI AeHCTBHS 32MUCHIBACTCS
B Buie mubdepennumancuoit 4-bopMEl B mpocTpancTBe & (arpaHxmaHHas Gopma).
TIIOTHOCTH M TOKH HpPEACTABIAIOTCA ¢ HMoMombio auddepennuanbrbix 3-dopMm B &.
W3 mpuHuopna [elcTBHs BBIBOASTCS YPABHCHHS IIONA B CBA3D MEXIY CYMMETpPHSMH
H 3aKOHaMu coxpavenws (TeopeMa Hoatepa). 3anoBo GoOpMyIHPYIOTCS TEOpHsA I'pa-
BUTAIMM DRHINTEHHA ¥ TeOpHs JJeKTpoMarneTmsma Makcsenrna. OO6muit dopmamiam
MOXeT OBITh TaKXe HWCIOIL30BaH A (GOpMYIMpOBKH Teopwmii, B KOTOPBIX 3apsi,
YHEPTHA ¥ MMILYJILC HE MOTYT OBITH JIOKaNM30BaHBL B IPOCTPAHCTBE-BPEMEHH, H TCOPHII,
B KOTOPBIX IPOCTPAHCTBEHHO-BPEMEHHOE MHOXKECTBO HE MOXKeET OBITH ONpeNeIeHO TOYHO.

() IHepesedero pedaxyueii.



