
IL NU()VO CIMENTO VoL. 41A,  N. 2 21 S(~ttembre 1977 

Pseudoparticles and Conformal Symmetry. 

L. GIRA~DELL0 

I s t i t u t o  di  Fi.~ica d e l l ' U n i v e r s i t 5  - M i l a n o ,  I t a l i a  

I s t i t u t o  di  F i s i c a  dell'  Uni~:ersith - P a r m a ,  I t a l i a  

I s t i t u t o  N a z i o ~ a t e  d i  F i s i c a  N u c l e a t e  - Se z i one  d i  M i l a n o ,  I t a l i a  

S. 1)ALLUA 

I n s t i t u t e  <~ R a d j e r  Bogkovi5  )) - Zagreb,  Y u g o s l a v i a  

(rieevuto il 31 Marzo 1977) 

Summary.  The relat ion of conformal symmet ry  to the existence of 
zero energy-momeJltum (improved) solutions is invest igated in four- 
dimensional space for a class of Lagrangian models. I t  is pointed out 
tha t  iu MiJlkowski space such solutions are either constant  (or tr ivial)  or 
the t lwory is conformally invariant .  In  Euclidean space such solutions 
may be eo,,struetcd if solutions to the  conform~lly invar iant  theories are 
known. 

1. - Introduct ion .  

I{ecen t ly ,  a cons ide r ab l e  a m o u n t  of a t t e l t t i o u  h~s bee~  g iven  to  c lass ica l  

so lu t ions  to  v a r i o u s  f ield theor ies .  Seve ra l  a u t h o r s  (~,2) h a v e  cons ide red  con- 

f o r m a l l y  i t t v a r i a n t  f ield equa t ions .  I n  t h e  a p p r o a c h  of F u b i n i  (~), i m p o r t a n c e  

is a t t a c h e d  to  so lu t ions  wh ich  b r e a k  c o n f o r m a l  i n v a r i a n c e ,  b u t  wh ich  s t i l l  

k e e p  a lower  03,~ s y m m e t r y .  A s imp le  e x a m p l e  is t h e  t h e o r y  w i t h  one sca la r  

f ield o b e y i n g  t h e  e q u a t i o n  

(1.1) F] ~b -~ 4g¢3 _~ O. 

(1) S. FUBII~I: ~ u o v o  C i m e n t o ,  34 A, 521 (1976). 
(2) A . A .  BELAVI~, A. M. POLYAKOV, A. S. SC~W~I~TZ and Yu. S. T~uPnI~:  P h y s .  
.Lett., 59 B, 85 (1975). 
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Equat ion  (1.1) allows for the solutions 

(1 .'2) 4~ [ 2a 
~/'.:~(x~ + ~ )  

}Iere a ~ is any reM number.  These solutions have the following propert ies:  

1) locMization in x for fixed t (they are also locMized in four-dimensional 
space-time), 

2) the improved energy-momentum tensor vanishes, 

3) they  are Lorentz  invariant .  

On the other hand,  BELAVIN et a l .  (2) considered :m 04 non-Abelian ¥ang-  
Mills theory in Euclidean space, i . e .  another  example of ~ eonformully i~tvariant 
theory  

(1.3) 
l 1,~,~ _~ ~ , A  ~ - -  ~ , A t ,  -~  g [ A %  A ~] , 

and discussed the solutions 

( 1.4) 

2 i  ~ " x '~ ~ 1 2 a  
A # 

g x 2 -~  a 2 , 

4 i  a 2 Z ~  ~ 

Euclideuu solutions (1.4) h~ve the  following properties:  

I) locMiz~tion in space-(( t ime ~), 

H) the improved energy-momentum tensor vanishes, 

I I I )  i nwr ianee  on the combined rota t ion of four-dimensionM space and 
isospaee. 

The motivat ions of the authors  of ref. (1,2) are different, bu t  the solutions 

they  consider have similar properties. With respect to the eonformM group, 
these solutions are not  invariant  under  a full group (0~,,) bu t  only under  an 
O~ subgroup (3,,). 

(3) I{. JACKIW and C. REBnI: .Phys .  R ev .  D ,  14, 517 (1976). 
(') V. I)~ ALI~AI~O, S. FUBINI and G. FUI~LAN: A n c w  classical  so lu t ion  o] the Y a n g -  

M i l l s  ] ield equa t ions ,  R(;f. TIt 2232-CERN. 
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A specific p rope r ty  is the wmishing of the  e n e r g y - m o m e n t u m  tensor (im- 

proved).  Of course, the knowledge of a zero-energy class of solutions to a theory  

is interest ing iI~ itself. I towever ,  several  ~uthors (5,6) have  pointed  out  another  

applicat ion;  they  a t t e m p t e d  to construct  the ground state  for a Yaug-Mills 
theory.  They noted t ha t  in the Schr6dinger picture the existence of imagim~ry- 

t ime zero-energy solutions indicates the occurrence of tunnell ing among clas- 
sic~d zero-energy configurations (in real time). Solution (1.4) interpolates  

between two different ch~ssical vacua  for x4 ~ ~ - c o  and x4 ~ -  ~ (when 
gauge equivalence is sui tably re interpreted (5,6)). Again, ~s in the  Schr6dinger 

case, they  conclude t ha t  tunnell ing t:~kes ])lace. In  fact ,  it is possible to form 

a noudegenerate  set of sta.tes, e~ch being :~ superposit ion of different classical 
v~wua,. For  more deta.ils we refer the reader to the original papers  (5,6) or ex- 

tensive lectures by JACK[W (7). Here we ~vant to stress t ha t  the existence of 

solutions with vanishing Euclidean ene rgy -momen tum tensor enables one to 

conclude on the occurrence of the above effect. 

Several questions m a y  be posed: 

I) To what  ex ten t  is conformal  invariunce re levant  to +~he existence 
of solutions with vanishing Euclidean ene rg y -momen tum tensor? In  part icular ,  

are there other theories with broke~l conformal  invariance which allow such 
solutions ? 

I I )  Are there other solutions of this t ype  in a given theory?  

In  this pape r  we first consider scalar theories with the Lagrangian  

(1.5) 

and then  gauge theories 

(1.6) L = -- ~V:,~G a. + ~ ( D ~ ¢ ~ ) ( D , , ¢ ~ ) -  V(¢'¢~) 

with a compac t  gauge group G and a un i ta ry  representa t ion  D(G) for the scalar 
fields ~b~,. 

We shall find tha t  conformal  iuvariance is essential for the existence of the  

above solutions. More precisely, the only theories in Minkowski space t ha t  

allow such solutions are the conformal  invar ian t  ones with V = 0 and V = 

G(O~bv)~. In  the  case of scalier theories we are able to answer also the second 

(~) R.  J i c x ~ w  a n d  C. REBBI:  Phys. Rev. Lett., 37,  172 (1976). 
(6) C. (~ALLAN, R. DAStIEN ~ n d  D.  G a o s s :  Phys. Lett., 63 B,  334 (1976). 
(7) R .  JACKIW: Semi-classical analysis o] quantum ]ield theory, in Lectures at X V I  Escuela 
Latino Americana, 1976, Caracas, Venezuela. 
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question. The forms of all solutions for the free case are 

(~()llSt 
(1.7) q) = eonst a, nd q) 

X2 

and solution (1.2), discussed by  FUmNI, is unique for V = Gq34. 

In  the Eucl idean case the  s i tuat ion is different. I t  is possible to have  such 
solutions for a general potent ial ,  bu t  they  are always of the type  

(G,,, 050), 

where G~ is the solution of a pure  Yang-Mills theory  and q)  corresponds to 

q) =- 0 if V(0) = 0 or to solutions of ~ = ~2,  D~O = 0 with An in Dr  being 

the same as t ha t  which generates G,~. Also V'((ib2o)= 0. Thus,  solutions of 

a generM theory ,  if they  exist, can be constructed f rom solutions of pure  Yang-  
Mills theories which are conformally invariant .  In  this sense, conformnl sym- 
me t ry  again p lays  ,~ crucial role. 

2. - Fie ld  theory wi th  one  sca lar  field. 

(2.1) L = ½ ( G ~ )  ~ -  v ( ¢ ) ,  

(2.2) [] (ib @ V'(¢)  : 0 .  

The improved  ene rgy -m om en t um  tensor  is 

(2.3) O,~ = ~,q)~)~b-- g , ,{~_(~b)2_ V(q))} -]- -~-[g,'-- ~,~]~b2. 

We are looking for solutions sat isfying 

(2.4) O,~(q}) = 0 .  

A necessary condit ion is 

(2.5) Tr  O(~b) = 0 ,  

(2.6) T r O  = 4 V ( ¢ ) - -  ~bV'(q)) = 0 .  

There are two possibilities: 

a) Tr@ : 0 for all q) and so (2.6) becomes a condition for tile interac- 

t ion which is satisfied only by  

(2.7) V(¢)----0  a free massless theory  
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and 

(2.8) V(~b) = g ~ ' .  

3 8 1  

b) Tr  0 ¢ 0 generally, bu t  vanishes for some par t icular  solutions of the  

equations of motion.  Then, for a general type  of interaction,  eq. (2.6) becomes 

a condition for q). I f  we assume V to be an 'dyt ica l  in g), eq. (2.6) is satisfied 

only by  ~ = const (i.e. no space-t ime dependence otherwise V would be 

identically zero). Consequently,  

( 2 . 9 )  q),, = C ,  , n - -  1 ,  2 ,  . . .  , 

m a y  be solutions of eq. (2.6). By using the equat ion of mot ion 

(2.1o) V'((b,,) = 0 and V(¢~) = 0,  

a n d  a s  a c o n s e q n e n c e  

(2.11) 0,,,'(¢,~) = o .  

In  conclusion, field configurations t h a t  ~rre different f rom a constant  and 

which give the vanishing" e n e r g y - m o m e n t u m  tensor  exist only in a free mass- 
less theory  with V((/))= 0 and V(g}) = g~b4. These are also the only c o n f o f  

really invar iant  theories for the class of Lagrangians  (2.1). 

The next  question is to find explicitly :ill such solutions tha t  have  the  three 

propert ies  ment ioned in the introduction.  The Lorentz- invar iant  solutions 

are of the form 

(2.12) (/)(x) = ¢(x~).  

In  this case, the e n e r g y - m o m e n t u m  is restr icted to 

(2.13) O.,  --~ I ( ( / } ( 1 ) .  2 ( / ) ,2 ) (x2gt tv_  4x~x,) 

and the wave equat ion to 

(2.13') x~-q) " q- 2(/)'-}- 4g¢  a = 0 ,  

where the  deriw~tivcs are l aken  over x ~. 

Condition (2.4) is reduced to the nonlinear differential equat ion 

( 2 . 1 4 )  ¢ O " -  2 ~  '-° = o .  

Dividing eq. (2.14) by q)'~, one m a y  write 

/ \ 
( 2 . 1 5 )  ~t , | ~ ) 2  | : - - 1  . 
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Thus, all solutions within proper  functions (i .e.  no &like terms)  are 

(e.l  6) q) = A ,  

B 
(2.17) q~ x , ~ +  a, ~ , 

where A, B and a '2 are a rb i t ra ry  constants.  We still have  to require eoml)atibil i ty 

with wave equations.  

2"1. F r e e  m a s s l e s s  case .  - The coustant  a has to  v~,nish and therefore  

]3 
~ ) 2  - - -  m • (2.18) ( P , =  A , x = 

A linear combinat ion  of ~)1 and (P2 ~:ill aguin be a solution of the equat ions of 
motion,  bu t  in general with nonvanishing O, ~. In  fact  

(2.19) O~ ~ ~ : A q - ~  - - 3  (x2) :~' 

and solutions with the  samc A B  have identical  0 ~'~. 

2"2. I n t e r a c t i o n  ease  ( V ~  gdp~). - Compatibi l i ty  with tile equat ions of mo- 

t ion requires 

2a A=O, 1~=±~/~,  (~.e0) 

thus  

(3.21) 
2a 

which represents  a one-parameter  family  of solutions considered in ref. (1). 
In  fact ,  the  above procedure  shows tha t  these solutions are the  only ones within 

the  class of proper  functions with propert ies  1), 2) and 3). 

3. - Gauge teories.  

Consi(ter a theory  in which the La/zr;~,ngi~n ]ins tile form 

(3.1) 

where 

(3.2) D~( ) -~ c3~,qp,'-q- ~g(A~, . ) 
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and 

~ = gC AaA,, . (3.3) ( ~  ~ A~--  ~A~  + (,b~ b 

The compact  gauge gTOUp G and the  uni ta ry  representa t ion  D(G) under  which 

the scalar fields t rans form may  be left a rbi t rary .  The symmet r i c  energy-mo- 

m e n t u m  tensor  (Belinfante tensor) reads 

r 1 M ~ v l  m f f * t , a f i  ! (3.4) O, ' " (Be l )  = - -  (~°"G"'i + ~, j  , * ~  -~- 

+ D~,(qb)D~' (d) ) -  lg~'~D~((I))D~"v(¢) + g ~ V  

and the  improved ene rgy -momen tum tensor is 

(3.5) O, ~ = O / ' ( B e l ) -  1 ( ? : ~ , _  g,~)q~p q~,. 

AgMn, we are looking for solutions to 

(3.6) 0 .v = O, 

for which a necessary condition is 

(3.7) T r O  = 0.  

However ,  f rom (3.5) 

T r O  = Tr  O(Bel) + (c~/,@')(?:,q)') -[- (/)"~@'. 

I f  we use the equations of nlotion, the t race is expressed by  

Tr O - -  Tr O(Bet) + (D.q~)(D~q)p) --  2 ~  2 V ' .  

Tr O(Bel) = --  ( D~,q>,)( D,  dP,) + 4 V . 

T r O  = 4V(O 2) --  2~°- V ' (O: ) ,  

F rom eq. (3.4) 

(3.s)  

FinMly, 

(3.9) 

which is a very simple expression where tile t race is given completely ill t e rms  

of scalar fields, as expected.  
Conditiou (3.7) for t.hc vanishi~tg of tile trance now m e , u s  t h a t  

(3.1 o) 2 V(q, -°) = ,I, -~ v ' ( q , : ) .  
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There are again  two possibilities: 

a) O ~ 0 .  Then, V =  0 and therefore V =  g(~2)2, tha t  is the case of 

conformMly invar ian t  theories. 

b) O~ :/: 0 generally, bu t  vanishes for some particult~r solutions of the  
equat ions of motion.  Assuming ag,~in V to be analyt ical  in ~b", we conclude, 

as in sect. 2, t h a t  the required solution mus t  be of the  form 

__ 2 (3.11) ~2  = eonst = Oo.  

I t  is obvious t h a t  ~b~ m a y  depend on the  co-ordinates.  ]?or such solutions, the  

difference between the  Bel infante  tensor  and  the  improved  tensor  vanishes 

(3.12) Our = O~(B) .  

Because of the  vanishing of Tr  O, Tr  G(B) also vanishes;  so f rom (3.8) one ob- 

tains 

(3.13) (Duqb, Duqb ~) = 4V(~b~) = cons t .  

3"1. Localization.  - We require localization of ~, and  Az. More precisely, 

we require vanishing of ~u¢ and Au for fixed (but arbi t rary)  amt large x. 

Then,  as the  lef t -hand side of (3.13) v~nishes a t  least somewhere iit space-t ime,  
the  constant  V(eP~) mus t  also vanish (*). 

Finally,  we can s tate  t ha t  locMized solutions to Tr  O I 0 satisfy the fol- 

lowing requi rement  : 

O 2 = O~ = cons t ,  

(3.14) (DuqS~)(Duqb ~) = O, 

v ( ~ )  = 0,  0~ v ' (~o)  = o. 

The corresponding O~ is 

~ a  G a  A_  ~ . ( 3 . 1 5 )  0 ~ , ~  = - -  ~ . ~  ~x - -  1 gu~ G:~G:~ + D~(q))P~(~) 

3"2. M i n k o w s k i  space. - I f  O~ ~ = O, 0 o° is 

Ooo = ½(Go,) ~ + l(Gajoa,) + n o D  2 = O, 

(*) This is the same requirement tls that for finite-energy solutions. For such s,)lu- 
tions, ~P tends asymptoticMly to a null point of the potential. (See, e.g., ref. (5).) 
(s) S. COLEMAN: Classical lumps and their quantum descendants, in Lectures at the 
1975 School (( Ettore Majorana ,>, Erice, Italy. 
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and  therefore  

G~oi = 0 ,  G ~ j = 0 ,  

385 

D o =  0 .  

Thus,  combin ing  these  expressiol~s with (3.14), we find t h a t  the  van ish ing  

of 0 implies 

(3.16) G ~ ~-- 0 and  D~(~b) ~ 0 .  

E q u a t i o n s  (3.16) have  only t r ivial  solut ions:  

a q~ ~ C~ .... and  A~ = 0 wi th  ~ ~ ~ .  

The oifly candida tes  for which nont r iv ia l  solutions m a y  exist  are the  theor ies  

wi th  V---- 0 and V =  ~q)4. 

E x a m p l e  1 : 

V = 0 ,  

A solut ion is 

A~ = o = ~ho= ~(x  ~-) 

O,~ ~ 0 .  

E x a m p l e  2 (*): 

v = ~ ( ~ ) 2 ,  

D(G) is an ad jo in t  representa t ion .  

~v(x ~-) = cons t ,  

D(G) is an  ad jo in t  representa t ion .  

(7) A ~ = 0 ,  ~ q)~ ---- ~(x 2) , ~(x 2) = ~: ~/~g(a 2 ~- x z) . 

Again,  O~ ~ -~ 0. 

3"3. Eucl idean space. - I n  the  Euc l idean  space, t he  s i tua t ion  is sl ightly 

different.  Because  of the  metr ic ,  conclusion (3.16) is no longer  allowed. How-  

ever, condi t ion  (3.14) 

now implies 

(3.17) 

( D ,  q~')( D~, (P ~) = O 

D ~ v  = 0 , 

(*) An analogous solution to an Abclian Yang-Mills theory was discussed by :FURLAN 
in context with Fubini's program (o). 
(9) G. FURLAN: private coulmunication. 
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where it  was essential t ha t  G was compact .  For  solutions with vanishing trace,  
the tensor is 

(3.18) 0 ~  : - G ~  Gav2-~ ~g È~G~ G ~  • 

Thus any  solution to a pure  ¥ang-Mil ls  theory  with O ---- 0 will also be a solution 
to our problem. More precisely, solutions with vanishing ene rgy -momen tum 
tensor  are of the  type  

(¢~,, ¢~), 

where G~ is :~ solution to a pure  Yang-Mills theory  (no Higgs fields). 

For  ~b there are a t  mos t  two classes of solutions. One class are solutions 

with ~b = 0 if V(0) ~ 0. The other class are solutions to ¢ :  = ¢~,  D~q~ = 0, 

with A~ in Dit being a solution to a pure  Yang-Mills theory.  
Example :  

G ~ S03;  A ~ and q~ are tr iplets.  Choose gauge such t ha t  ¢ = q)~; 

~b is, of course, constant  due to (3.14). Then 

(3.19) 

(3.20) 

D~,q), = g(I-)¢A alt C~a 3 , Aita : .  (~a3Ai ~ (x,) , 

G~ = 5~F~,, where Fit~ = ~itA~-- ~ A , .  

Consequeutly,  solutions are 

where G~ are given b y  (3.20) and/~it~ is a solution of a pure  Yang-Mills theory  

0¢ is a solution of V ' ( ¢ ~ ) =  O. 

Another  t r ivial  possibili ty is to choose ¢ ~- 0. Then, f rom any  solution G 

to the  in teract ing Yang-Mills theory  we can construct  a solution to the  theory  
with general V 

( a ~ ,  ¢ ) ,  q) = O. 

We m a y  conclude t h a t  solutions with vanishing Euclidean energy-mo-  

m e n t u m  tensor  (improved) in conformally  noninvar ian t  theories can be ob- 
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r a ined  f rom the  knowledge  of solut ions  of i n v a r i a n t  theories.  The exis tence  

of the  l a t t e r  was shown in  ref. C). At, least  the  class with (ib = 0 is n o n e m p t y .  

We t h a n k  Prof.  G. FURLay for his c o n t i n u i n g  in te res t  in th is  work a n d  

and  for en l i gh t en ing  discussions.  One of us (S.P.) would  like to t h a n k  Is t i -  
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• R I A S S U N T ( )  

Si discutc h~ cmmessione fnt simmetria conformc e l'csistenza, per una classc di modelli 
La~grangiani, di soluzioni per cui il tensore <(miglion~to ~> ene, rgia-impulso sin mfllo. 
Si not~ chc, nel c~so dello spazio di Minkowski ~ quattro dimcnsioni, ta.li sotuzioni sono 
costa.nti (o ba.nali) oppurc il modcllo 6 conformemente invari~ntc. Nello spazio Euclidco 
tall soluzioni possono esscrc costruite una volt~ note le soluzioni dei modclli confor- 
mcmente inwtrianti. 

]qeeBjIO'4aCTHHb! H gOHqbOpMHaa CHMMeTpH9. 

Pe3mMe(*). - -  l/lccne~iyeTc~t CBII3b KOHdpOpMHO~ CHMMeTpHI4 C cymecTBOBaHneM 
petueHg~ c HyneBbIM 3HaqettkIeM 3HepFHH-HMIIyJIBCa B qeTbIpexMepHOM IIpocTpaHCTBe 
~nfl K~acca Mollefle~ c JlarpaHmnaHaMn. OTMeqaeTcfl, qTO B npocTpaHcTBe MHHKO- 
BcKoro TaKne petueHn~ a~n6o ~[BJ'IlttOTC/t rIOCTOt/ItHBIMII (~JIIt TpHBganbhq, IMH), nH60 
Teopug nBnaeTc~ KOH~OpMHO 14HBapHaHTHO~I. B 3BKJIHjIOBOM 1]pocTpaHcTBe TaKrle 
pemeH~z MOFyT 6b[Tb CKOHCTpyMpoBaHbI, ecJIH H3BeCTHI~I petuenHa B KOH~OpMHO 
rlHBapgaHTHbtX TeopH~X. 

(*) llepeeeOeno peOanquefi. 


