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Summary. — The relation of conformal symmetry to the existence of
zero energy-mowmentum (improved) solutions is investigated in four-
dimensional space for a class of Lagrangian models. It is pointed out
that in Minkowski space such solutions arc either constant (or trivial) or
the theory is eonformally invariant. In Eueclidean space such solutions
may be constructed if solutions to the conforally invariant theories are
known.

1. — Introduction,

Recently, a considerable amount of attention has been given to classical
solutions to various flield theories. Several authors (%) have considered con-
formally invariant field equations. In the approach of Fubini (1), importance
is attached to solutions whieh break conformal invariance, but which still
keep a lower O,, symmetry. A simple example is the theory with one scalar
field obeying the equation

(1.1) 0@+ 4992 =0.

(*) S. FPuBini: Nuovoe Cimento, 34 A, 521 (1976).
(3) A. A. BELAVIN, A. M. Porvaxov, A. 5. Schwartz and Yu. 8. Tyupnin: Phys.
Lett., 39 B, 85 (1975).
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Equation (1.1) allows for the solutions

Here a® is any real number. These solutions have the following properties:

1) localization in @ for fixed ¢ (they are also localized in four-dimensional
space-time),

2) the improved energy-momentum tensor vanishes,

3) they are Lorentz invariant.

On the other hand, BELAVIN ef al. (%) considered an O, non-Abelian Yang-
Mills theory in HEuclidean space, 4.e. another example of a conformally invariant
theory

Oy 1w = Q[F‘Wa A”] 3

(1.3) ]
P = Gndr— AR gl A, 4],

and discussed the solutions

0F Y
1
(1.4) .
Fur — 4_Z, ,alzgu,v .
T g e

Euclidean solutions (1.4) have the following properties:
I) localization in space-« time »,
II) the improved energy-momentum tensor vanishes,

III) invariance on the combined rotation of four-dimensional space and
isospace.

The motivations of the authors of ref. (»:2) are different, but the solutions
they consider have similar properties. With respect to the conformal group,
these solutions are not invariant under a full group (0;,) but only under an
O, subgroup (4).

(®) R. Jackiw and C. ReBB1: Phys. Rev. D, 14, 517 (1976).
() V. DpE ALrarO, S. Furint and G. FUurLaN: A new classical solution of the Yang-
Mills field equations, Ref. TH 2232-CERN.
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A specifie property is the vanishing of the energy-momentum tensor (im-
proved). Of course, the knowledge of a zero-energy elass of solutions to a theory
is interesting in itself. However, several authors (3*) have pointed out another
application; they attempted to construct the ground state for a Yang-Mills
theory. They noted that in the Schrodinger picture the existence of imaginary-
time zero-energy solutions indicates the oceurrence of tunnelling among clas-
sical zero-energy configurations (in real time). Solution (1.4) interpolates
between two different classical vacua for @, = + oo and x, = — oo (when
gauge equivalence is suitably reinterpreted (»¢)). Again, as in the Schrédinger
case, they conclude that tunnelling takes place. In fact, it is possible to form
a nondegenerate set of states, each being a superposition of different classical
vacua. For more details we refer the reader to the original papers (%) or ex-
tensive lectures by JAckIiw (). Here we want to stress that the existence of
solutions with vanishing Euclidean energy-momentum tensor enables one to
conclude on the occurrence of the ahove effect.

Several questions may be posed:

I) To what extent is conformal invariance relevant to the existence
of solutions with vanishing Buelidean energy-momentum tensor? In particular,
are there other theories with broken conformal invariance which allow such
solutions?

IT) Are there other solutions of this type in a given theory?

In this paper we first consider scalar theories with the Lagrangian

(1.5) L=} @) — V()

and then gauge theories

(1.6) L=— 16" G + } (D, ®") (D, %) — V(&)

g

with a compact gauge group ¢ and a unitary representation D(@) for the scalar
fields @r.

We shall find that conformal invariance is essential for the existence of the
above solutions. More precisely, the only theories in Minkowski space that
allow such solutions are the conformal invariant ones with V=0 and V =
= P, P*)%. In the case of scalar theories we are able to answer also the second

(®} R. Jacxiw and C. ReBr1: Phys. Rev. Lett., 37, 172 (1976).

(¢) C. Carran, R. Dasen and D. Gross: Phys. Lett.,, 63 B, 334 (1976).

(") R.Jacriw: Semi-classical analysis of quantum field theory, in Lectures at XVI Escuela
Latino Americana, 1976, Caracas, Venezuela.
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question. The forms of all solutions for the free case are

const
(1.M) @ = const and @ =

p2
4

and solution (1.2), discussed by FUBINI, is unique for V = G®*,
In the Euclidean case the situation is different. It is possible to have such
solutions for a general potential, but they are always of the type

(G;f“’) ¢g) b
where Gy is the solution of a pure Yang-Mills theory and @®_ corresponds to
@ = 0 if V(0) = 0 or to solutions of ®> = &?, D, P = 0 with 4, in D, being
the same as that which generates Gu. Also V(@) = 0. Thus, solutions of
a general theory, if they exist, can be constructed from solutions of pure Yang-

Mills theories which are conformally invariant. In this sense, conformal sym-
mefry again plays a erucial role.

2. - Field theory with one scalar field.

(2.1) L=} (0u®)— V(®),
(2.2) O¢ + Vi(®)=0.

The improved energy-momentum tensor is

(2.3) O = u QP P — gl L(0* D)2 — V(D)) - §[gw — ov07] D2
We are looking for solutions satisfying

(2.4) Ow(P)=0.

A necessary condition is

(2.5) TrO(P) =0,
(2.6) TrO® = 4V(P)— OV (®) = 0.

There are two possibilities:

a) Tr® = 0 for all @ and so (2.6) becomes a condition for the interac-
tion which is satisfied only by

(2.7) V(®)=10 @ free massless theory
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and
(2.8) V(D) = g®*.

b) Tr® = 0 generally, but vanishes for some particular solutions of the
equations of motion. Then, for a general type of interaction, eq. (2.6) becomes
a condition for @. If we assume V to be analytical in @, eq. (2.6) is satisfied
only by @ = const (i.e. no space-time dependence otherwise V would be
identically zero). Consequently,

(2.9) o, =0,, n=1,2,..,
may be solutions of eq. (2.6). By using the equation of motion

(2.10) Vid,)=0 and V(D) =0,

and as a counsequence

(2.11) Ouw(D,) =0 .

In conclusion, field configurations that are different from a constant and
which give the vanishing energy-momentum tensor exist only in a free mass-
less theory with V(@)= 0 and V(D) = g@*. These are also the only confor-
mally invariant theories for the eclass of Lagrangians (2.1).

The next question is to find explicitly all such solutions that have the three
properties mentioned in the introduction. The T.orentz-invariant solutions
are of the form

(2.12) D(r) = P(r?) .

In this case, the energy-momentum is restricted to
(2.18) Ow = (PP — 2" (22 g — duity)
and the wave equation to

(2.13") 2@+ 204 49P3 =0,

where the derivatives are taken over w2
Condition (2.4) is reduced to the nonlinear differential equation

(2.14) PP’ 202 =0,

Dividing eq. (2.14) by @2, one may write

i @\
IR B —_
(.4.1:)) (6)2) — 1
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Thus, all solutions within proper functions (i.c. no d-like terms) are
(2.16) D=4,
B
T a4 at’

where A, B and a? are arbitrary constants. We still have to require compatibility
with wave equations.

2°'1. I'ree massless case. — The constant ¢ has to vanish and therefore

B
(2.18) O, =4, Qﬁzzﬁ.
A linear combination of @, and @, will again be a solution of the equations of
motion, but in general with nonvanishing @». In fact

(2.19) @uv(cb:A—Jr?

and solutions with the same AB have identical Gw,

22, Interaction case (V = g®*%). — Compuatibility with the equations of mo-
tion requires

i) s) —
(2.20) A=0, Bniv&@’
thus
D)
(2.21) @, — =4

which represents a one-parameter family of solutions considered in ref. (1).
In fact, the above procedure shows that these solutions are the only ones within
the class of proper functions with properties 1), 2) and 3).

3. — Gauge teories.
Jonsider a theory in which the Lagrangian has the form

(3-1) L=— 16 G+ J(Du®)(Du D) — V(DY)

uy gy

where

(3.2) D2(P) == 2, D" + ig(AL Ty D"
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and

(3.3) B, = 0, A — 0,47+ O™ AL AL,

uy “

The compact gauge group (¢ and the unitary representation D(G) under which
the scalar fields transform may be left arbitrary. The symmetric energy-mo-
mentum tensor (Belinfante tensor) reads

(3.4)  Om(Bel) = — GG+ Lgrr G 6P -
DD D (D) — § g DH®) D™HD) + g V

and the improved energy-momentum tensor is
(3.5) Gw = O (Bel) — ¢ (Crcv — gw) QrPr
Again, we are looking for solutions to
(3.6) O =0,
for which a necessary condition is
(3.7) Tr® =0.
However, from (3.5)
Tr@ = Tr@(Bel) -+ (2, O, D7) + O LIDr.
If we use the equations of motion, the trace is expressed by
Tr6 = TrO(Bel) 4 (D, D)} D, Dy — 282V,
From eq. (3.4)
{3.8) TrOBel) = — (DO} D, Q") + 4V .

Finally,

(3.9) Tr& = 41V(P2) — 22 V' (P?),

which is a very simple expression where the trace is given completely in terms
of scalar fields, as expected.

Condition (3.7) for the vanishing of the trace now means that

(3.10) 2V (®2) == B2 V(@) .
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There are again two possibilities:

a) 0, =0. Then, V= 0 and therefore V= g(®*)% that is the case of
conformally invariant theories.

b) ©% 5 0 generally, but vanishes for some particular solutions of the
equations of motion. Assuming again V to be analytical in @2, we conclude,
as in sect. 2, that the required solution must be of the form

(3.11) P2 = const =P? .

It is obvious that @; may depend on the co-ordinates. For such solutions, the
difference between the Belinfante tensor and the improved tensor vanishes

(3.12) Ou = 0,,(B) .

Because of the vanishing of Tr ©, Tr @(B) also vanishes; so from (3.8) one ob-
tains

(3.13) (Du®? D, D7) = 4V (D?) = const .

3'1. Localization. — We require localization of ¢, and A4,. More precisely,
we require vanishing of 9,® and A4, for fixed (but arbitrary) and large x.
Then, as the left-hand side of (3.13) vanishes at least somewhere in space-time,
the constant V(@?) must also vanish (7).

Finally, we can state that localized solutions to Tr® = 0 satisfy the fol-
lowing requirement:

&2 = &’ = const,
(3.14) (Dp®?)(Du®?) =0,
V(@) =0, PV(P)=0.
The corresponding G is
(3.15) 0, =—G,6+19,0,6,+ Di@) D;(D).

32, Minkowski space. — If Ow =0, & ig

O — }(G3)° + 1(65,65) + DDy =0,

ij 4

(*) This is the same requirement as that for finite-energy solutions. IFor such solu-
tions, @ tends asymptotically to a null point of the potential. (See, e.g., ref. (!).)

(®) 8. CoLEMAN: COlassical lumps and their quantum descendants, in Lectures al the
1975 Scheol « Ettore Majorana », Erice, Haly.
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and therefore

G:,=0, =0, D'=0.

0

Thus, combining these expressions with (3.14), we find that the vanishing
of @ implies

(3.16) G, =0 and DZ(@) =0.
Equations (3.16) have only trivial solutions:
Qr=(Cé" and A, =0 with @2 = @2,

The only candidates for which nontrivial solutions may exist are the theories
with V=0 and V= i@

Example 1:

Ow = 0 .
Example 2 (*):

V = (D22, D(@) is an adjoint representation.

B0, e g (0) ) — o
o A Viglat+ 2?)

Again, Ow =0,
3'3. Buclidean space. — In the Euclidean space, the situation is slightly

different. Because of the metric, conclusion (3.16) is no longer allowed. How-
ever, condition (3.14)

(D @) (D, P?) = 0
now implies

(3.17) D, ®r =0,

(*) An analogous solution to an Abelian Yang-Mills theory was discussed by Furran
in context with Fubini’s program (%).
(®) G. Furraw: private communication.
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where it was essential that G was compact. For solutions with vanishing trace,
the tensor is

(3.18) 0,, = — G, G% + Lgw 62,6,

Thus any solution to a pure Yang-Mills theory with @ = 0 will also be a solution
to our problem. More precisely, solutions with vanishing energy-momentum
tensor are of the type

(6, o7,
where G, is a solution to a pure Yang-Mills theory (no Higgs fields).

For @, there are at most two classes of solutions. One class are solutions
with @ = 0 if V(0) = 0. The other class are solutions to ®* = &:, D,® =0,
with 4, in D, being a solution to a pure Yang-Mills theory.

Example:

0
G = 80,; A, and Q" are triplets. Choose gauge such that @ ={ 0 ) ®D;
1

@, is, of course, constant due to (3.14). Then

(3.19) Du®, = gD ALC,,,, A%=014(v),
(3.20) G;‘“, == 6;F,,w y \Vhere Fﬂy = a/‘Av"‘ apAﬂ .

Consequently, solutions are

(G5, D),

uv?

where G, are given by (3.20) and F, is a solution of a pure Yang-Mills theory

auF;w — O,
0
O={0]|9D,., O, isa solution of V'(®?) = 0.
1

Another trivial possibility is to choose @ — 0. Then, from any solution &
to the interacting Yang-Mills theory we can construct a solution to the theory
with general V

(Gm', (D)’ ®=0.

We may conclude that solutions with vanishing Euclidean energy-mo-
mentum tensor (improved) in conformally noninvariant theories can be ob-
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tained from the knowledge of solutions of invariant theories. The existence
of the latter was shown in ref. (3). At least the class with @ = 0 is nonempty.

We thank Prof. G. FurLax for his continuing interest in this work and
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tuto Nazionale di Fisica Nucleare, Sezione di Milano, for the kind hospitality
extended to him during his stay in Milano. We also thank Istituto di Fisiea
Teorica dell'Universita di Trieste for the kind hospitality during several short
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® RIASSUNTO

Si discute la connessione fra simmetria confornie ¢ esistenza, per una classe di modelli
Lagrangiani, di soluzioni per cui il tensore «migliorato» encrgia-impulso sia nullo.
Si nota che, nel easo dello spazio di Minkowski a quattro dimensioni, talt soluzioni sono
costanti (o banali) oppure il modello & conformemente invariante. Nello spazio Euclideo
tali soluzioni possono essere costruite una volta note le soluzioni dei modelli confor-
memente invarianti.

TlceBnouacTaubl n KOHGOPMHAR CHMMETPHH,

Pesrome (*). — MHccnemyeTcss cBsaA3b KOHGOPMHOM CHMMETPHM C CYINECTBOBAHHEM
peLIeHKA C HyJEBBIM 3HAYECHHEM OJHEPIrUU-UMILYJIbCa B 4YETHIPEXMEPHOM IIPOCTPAHCTBE
I8 xjnacca mozened ¢ Jlarpamxuanamu. OTmedaercd, 4TO B IpoCTpaHcTBe MHHKO-
BCKOTO TAaKHE PelIeHHs IHOO SBISIOTCS NOCTOAHHBIMM (WIM TPHBHAJIBHBIMHK), Hu0O
TEOpUS SBJIACTCSL KOHPOPMHO HMHBapHAaHTHON. B IBKIHWIOBOM TIPOCTPAHCTBE TaKHe
peuicHust MOT'yT 6I>ITI; CKOHCTPYHPOBAaHbI, €CNY W3BCCTHBIL PCUICHUSA B KOHd)OpMHO
HHBAPUAHTHBIX TEOPUsIX.

(*) IMHepesedeno pedaxyueil.



