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Summary. — A detailed study of the function 7 which characterizes
entropy jump across shock waves is carried out for relativistic hydro-
dynamics at thermal equilibrium. It is shown that the funection % is
defined only if the normal velocity of the shock waves does not exceed
the speed of light in vacuo, consistently with the elaims of relativity;
moreover, the entropy jump goes to infinity as soon as the shock speed
approaches the speed of light and y is lower than 2, while, for y = 2,
the lightlike shock vanishes.

PACS. 47.75. — Relativistic fluid dynamies.
PACS. 47.35. — Hydrodynamic waves.
PACS. 05.70. — Thermodynamies.

1. — The function 7 in relativistic hydrodynamies.

A theory of shock wave behaviour, weak solutions to generalized conserva-
tive systems of covariant quasi-linear hyperbolic partial differential equations
of type

(1.1) V.F*U) = f(U)
consistent with a secalar supplementary conservation law

(1.2} Vab*(U) = g(U)
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is developed in ref. (). Thus we shall relate to (1) as a starting point which will
be presupposed in the following; also the notations employed in the present
paper will be the same as in ().

The relativistic Rankine-Hugoniot matehing conditions governing shocks,
arising as weak solutions to (1.1), are given by (?)

(1.3) @a[F*] =0,

while the shock-generating funetion % (sometimes named also generalized
entropy) will be (1)

(1.4) n = ga[h*],

which is generally nonvanishing, unless the shock becomes characteristic.

Previous studies of the shock-gencrating function have been developed in
the literature, concerning nonrelativistic polytropic fluid (3) and nonrelativistic
gas mixtures (4).

Here we shall develop an investigation concerning the function # of a poly-
tropie relativistic fluid.

We recall that the equations of relativistic hydrodynamics assume the form
(1.1) as soon a3 we choose

Ta6
(1.5) F“E( ), f=0,

U
where the energy-momentum tensor is

(1.6) T = rfue’ — pg*’

7 being proper matter density, f the fluid index, p the specific pressure and
u the four-velocity of the fluid particle; as usual, the speed of light is taken
equal to unity.

We suppose, according to ref. (1), the contribution of the fluid mass to the
global gravitational field to be irrelevant, so that the metric g can be considered

() T. Ruccer: and A. STRUMIA: Awn. Inst. Henri Poincaré A, 34, 65 (1981); A. STRU-
MIA: Ann. Inst. Henri Poincaré A, 38, 113 (1983). The first results obtained in non-
covariant formalism were given by G. Bowrrat: C.R. Acad. Sci, Ser. 4, 278, 909
(1974); G. BoinraT and T. RuaeEri: C. B. Acad. Seci., Ser. A, 289, 257 (1979). On
shocks in relativistic astrophysics see, e.g., E. P. T. Liang: Astrophys. J., 211, 361
(1977).

(3} A. H. Taus: Phys. Bev., 74, 328 (1948).

(®)) D. Fusco: Rend. Semin. Mat. Modena, 28, 223 (1979).

(f) N. Virgoria and F. FERrATOLI: Il Nuovo Cimento B, 81, 197 (1984).
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as assigned and we do not need to include Einstein equations into our system.
Then it results

(1.7) b =—rSu*, g=20,

8 being the entropy per mass unit. It follows that

(1.8) palrfuuf — pg*f] =0,

(1.9) @alru*] = 0

and

(1.10) n = @a[—r8u],

where

(1.11) [w] = 1 — 0y Yo

denotes the jump across the shock.
Taking account of (1.9) and introducing

(1.12) Oy = — U@, ,
it results

(1.13) N = oy 58— 8y) .

The dependence of the state function § on the two independent variables
p and V is easily obtained from Gibbs relation

(1.14) 9d8 = de + paV,

where 0 is the absolute thermodynamic themperature, ¢ the specific internal
energy and

(1.15) V=1jr

the volume of the mass unit, thanks to the state equation

(1.16) pV = K6
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and the constitutive relation
(1.17) e=C,0=pV/y—1)
characterizing the polytropic fluid (the symbols are well known).
Even if a more realistic relativistic approach would involve the more com-
plicated state equation (°)
(1.18) ¢ = 3K0 + mK,[rK,,
as a first approximation, usual in the literature (%), we shall work with the
simpler equation (1.17).

The present approach, in any case, includes also the ultrarelativistic limit
which is governed by the state equation

(1.19) ¢ = 3pV

and results form (1.16) and (1.17), as is well known, when one chooses
(1.20) y = 4/3 (photonic gas).
After integration it follows

(1.21) 8 — 8 = C,log {(p/p£)(V [V 4)7}

and, by substituting into (1.13),

(1.22) n = Oy(04/Vy) log {(p/p*)(V/V*)V} .

In order to analyse the behaviour of 5, we need to solve the relativistic
hydrodynamiec shocks, i.e. we must express p, V in terms of py, Vi, 0.

In the present paper, we examine quite general k-shocks () in the rest
frame of the unperturbed fluid, developing a complete qualitative analysis
of the funetion . In () the anthors examine the one-space dimensional problem
with special emphasis on numerical tests.

(®) See, e.g., R. SYNGE: The Relativistic Gas (North Holland, Amsterdam, 1957).
(¢) A. LicHNEROWICZ: Ondes des choc, ondes infinitesimales et rayons en hydrodynamique
et magnetohydrodynamique relativistes, in Relativistic Fluid Dynamics, Corso C.L.M.E.
1970 (ed. Cremonese, Roma, 1971), p. 87.

(") N. Virgoria and F. Ferraiorl: Il Nuovo Cimento D, 7, 151 (1986).
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2. — Relativistic hydrodynamic shecks.

Following LICHNEROWICZ (%8) we solve the Rankine-Hugoniot equations by
introducing one scalar and one vector invariants across the shock:

(2.1) Jy= ruea.,

(2.2) j8 = T*ps = J,fus— pes .
Then the Rankine-Hugoniot equations (1.8), (1.9) become simply

(2.3) J,=J*¥,

(2.4) i’ =jg.

Now the decomposition of (2.4) along the normal to the shock surface and,
respectively, onto the platform tangent to the shock manifold enables us to
introduce two further sealar invariants:

(2.5) Jo = jPps,

the invariance of which comes out from contraction of (2.4) with ¢g.
The last invariant introduced is

(2.6) J, = Gjpjb|Je
with

(2.7) i =3 — J.¢f|G
and

(2.8) G = (pﬂ(pﬂ .

We point out that & 5% 0 for the fluid, since lightlike shock manifolds do
not occur. Moreover, since we are interested only in noncharacteristic shocks
when studying # (5 vanishes for characteristic shocks), also J, will be non-
vanishing.

In fact, J, = 0 corresponds to the contact shock which is characteristic.

Now, on introducing the space-time decomposition

(2.9) @, = — o ur + nk,

(8) A. LicuneErowicz: J. Math. Phys. (N. Y.), 17, 213 (1976).
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where it is not restrictive to assume

(2.10) n;‘,‘nﬁ =-—1,
it results
(2.11) G=90;—1.

Then o, is the shock speed relative to the rest fluid frame.
Taking account of the constitutive relation

(2.12) f=1+apV, a=yp/y—1),

holding for a polytropic fluid, we can express the invariance conditions of
Js, J5 in terms of the variables f, V, fi, Vi, 04

(218) G fV/Vi+ A= ol)(f — D)oV = 63 f4/ Ve + (1— 0i)(fe — 1)]aV
(2.14) fPA— 0% 4 o VAV = fi .

Summarizing, the invariance of J,, J; allows us to solve the jump of the
two thermodynamic variables f, V, while (2.3), (2.4) yield the jump of the
four-velocity

(2.15) W = ulfylf — A= VIV){(1— ei) f} .

The study of % does not involve the velocity as follows from (1.22).
From (2.14) one is able to reach

I -
f: T == :
(2.16) VI= V14 ((0xV1— 62)) (VVy))?

Before introducing (2.16) into (2.13), it is convenient to define the auxiliary
variable y as
o 14
t = “—_,ﬂ**—_ —
(2.17) 8y = = 27,
where, thanks to periodicity, the angle ¢ can be chosen in the first quadrant
(v > 0) and, respectively, in the fourth one (y < 0).
It follows

(2.18) f= {;lmi_o—s%,

which greatly simplifies calculations.
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Substitution into (2.13) yields, through the usual trigonometric relations,

(2.19) afs 8in®p - f4 cos*y — Bsiny —V1— ol cosy = 0,
where
(2.20) B = o, Vyfos

has been introduced in the r.h.s. of (2.13). Solving eq. (2.19) gives all infor-
mation concerning the shock waves. Equation (2.19) can be reduced to al-
gebraic form by setting

(2.21) y =siny.
Then
(2.22) V1—y2=cosy

sinee y is in the first or the fourth quadrant.
Substituting (2.21) and (2.22) into (2.19) and squaring we arrive at a fourth-
degree equation

(2.23) Ayt + Ay + Apy + Ay +4,= 0,

the coefficients of which are

(2.24) Ay = fi(a—1)2,

(2.25) Ay =—2(a—1)fef,

(2.26) Ay =P+ 20—1)f2 +1— o2,
(2.27) A= — 2/,

(2.28) Ai=f—1+a.

We must point out that one of the four solutions to (2.23) is easily deter-
mined, since the Rankine-Hugoniot equations must be fulfilled by the trivial
solution (vanishing shock). That occurs when [U] = 0, for any field variable.
Then in (2.17) it follows that

(2.29) V="V, (vanishing shock),
(2.30) tgy = \7&“—
1—o0;
from which
(2.31) y=siny =gy, ocosy=V1—ol.

7 — Il Nuovo Cimenio B.
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We may remove the trivial shock solution from (2.23) to reach the cubic
equation

(2.32) @Y+ a,y*+ ay + a; =0,

with the coefficients

(2.33) @ = (x—1)°f},

(2.34) oy = (e— 1) fu{le— 1) fr04 — 28},
(2.35) @ = 040, + f*+ 2(a—1)f; +1— o,
(2.36) o= — oy + (1— fi)loy .

Equation (2.32) can be solved exactly by employing the resolution formulae
of the cubic equation (see e.g. (%)).
Finally from (1.22), (2.12) and (2.18) one is able to evaluate

(2.37) 5 = 0, "—*mg{

feV1—gr—V1—d (VIi—aly\ "
7 Govicy) |

(fs —1)V1i—0i \oxVi—y

Before starting the study of the function # defined through the parametric
equation (2.32), we must make some further comments on the shock problem.
It must be emphasized that from a physical standpoint an unique nonvanishing
solution to (2.32) is expected (physically meaningful shock). Therefore, we need
to determine how many real solutions to (2.32) exist.

A geometrical approach will be eonvenient.

On introducing a second variable

{2.38) w::\/l—yz:cosw>0,

eq. (2.32) will result equivalent to the system of equations

(2.39) fa0® F oyt —VI— o —fy =0,
(2.40) »4yri=1, >0,

the solutions of which provide the intersections of an ellipse with the unitary
circumference centred into the origin of axes. Since >0, only nonnegative
z-valued solutions will be acceptable.

The ellipse crosses the origin and has principal axes parallel to the co-
ordinate ones.

(*) G. CimMmINO: Hlementi di analist algebrica (ed. Patron, Bologna, 1953).
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The centre co-ordinates are given by

V1— o0y

(2.41) z= —5r

>0? :’/o:ﬁ/2“f*'

i) —1<o,<<1: physical speed values. The physical values of the shock
speed in relativistic fluid dynamies are bounded by the speed of light. Inside
this range, one real solution (intersection) always exists representing the vanish-
ing shock. But another real solution must occur, since the system (2.39), (2.40)
is of fourth degree. The remaining two solutions can be either real or complex
conjugate.

In any case, since the ratio of the principal axes of the ellipse is

(2.42) afb=+a>1,
o being always greater than unity because of the thermodynamic condition

y > 1, only two real intersections fall in the half-plain #> 0 (see fig. 1: a) y = 5/3,
monoatomic gas; b) y = 4/3, photonic gas).

KO | ko X
Q) b)

Fig. 1. — Plots of y vs. #: f= 1.5, C,/V, = 1000, o, = 0.80: @) y = 1.66, monoatomic
gas; b) y = 1.33, photonic gas.

In any case the real solution to the cubic equation (2.32), which determines
the intersection of physical interest, can be picked up as (°)

P
(2.43) y= %_372_6"1/‘1’07

where it is intended that the cubic root which must be taken is the real-valued
one among the three roots that can be evaluated in the complex field.
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The quantity z is given by

(2.44) &= —Q[2 + V@t + P27
and

(2.45) P = ay/a,— a%/3a; ,

(2.46) Q = asja,— a,0,/3a% + 2a3/27a} .

ii) o4 — -+ 1: limiting cases. When o, approaches to the speed of light
(£ 1), the jumps of the field variables are not defined unless the shock is
vanishing; see, e.g., (2.18).

Therefore, those speed values must be analysed as limiting cases.

In order to study the limiting shocks, we can introduce the speed values
4 1 into eq. (2.19) which is continuous, for such values, with respect to the
parameter oy.

The substitution yields

(2.47) (1—ea)sin?y Lasiny—1=20
from which
+(yp—1
(2.48) siny = { N (17 ) (vanishing shocks) .

Of course, since for the vanishing shock (2.31) hold, it follows that the
physical limiting shock is characterized by

(2.49) siny =+ (y—1),
which is defined only if

(2.50) <2,

For y = 2 all the real solutions identify with the vanishing shock. The
multiplicity of the intersection, or, respectively, of the vanishing shock solution
to (2.23) is four, and consequently it is three for the solution to the eubic equa-
tion (2.32).

For y > 2 physical shock cannot occur since no real angle exists the sine
of which is greater than unity.

A physical explanation of such a mathematical constraint is related to the
relativistic bound of sound speed across perturbed fluid. In fact, the sound
speed is given, for a polytropic gas, by

(2.51) o =yplrf = (y—1(F—1)f-
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Taking account of (2.18), we have

(2.52) a=(y—1) (f*cosw>—\/1¥di)/(f*cosw),
from which

(2.53) {e — (y — 1)}fgco8y = (y — 1) V1—di.

Since y belongs to the first or to the fourth quadrant so that cos >0
and ¢ > 1 according to thermodynamies, eq. (2.53) is consistent only if it results

(2.54) c>y—1.

Now, on requiring the relativistic bound

(2.55) a<1,
it follows
(2.56) y<2.

From an energetic point of view the present result is reasonable: in fact, y
inereases with the number of the degrees of freedom of the gas molecule. Since
relativistic velocities mean high kinetic energies which break complex molecules
into simpler ones, the number of degrees of freedom cannot become too large
and then y is forbidden to reach high values. It is easily shown that condition
(2.56) implies that also the sound speed across unperturbed fluid is always
bounded by the speed of light.

3. — Behaviour of the function 7.

Let us analyse the qualitative behaviour of the function % (see fig. 2).

i) Range. The function is defined only if — 1 < oy <1, since, for o, =41,
the rational argument is not defined and ¢} >1 makes the function complex.

ii) Zeroes. The function vanishes in correspondence to the characteristic
shocks which are given by

Ox =0 (contact shock)

and
Ox=Fcf (sonic shocks),

o =V(y—1){fe—Vffs

being the sound speed.
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—1 —c, 0 C,

Fig. 2. — Plot of  ws. o,: f= 1.5, 0, /V,= 1000, y = 1.66, monoatomic gas.

iii) Asymptotes. Two cases are possible:

a) y — -1 (thermodynamic asymptotes) from which it follows in (2.19)

(y =1){fx —1)
(8.1) Op = y—1+f«
+1 (vanishing shocks) .

(asymptotes) ,

Such asymptotes arise also in nonrelativistic fluid dynamics of shoeks and
are of thermodynamic nature.

b) o4,— 141 (relativistic asymptotes). In order to evaluate the limit
values of the function # when the shock speed approaches to the speed of light,
we introduce the following factorization:

(3.2) F(oy) = Glow) H(oy) ,
where

feV1—gyrt—V1—ol Y y-1
3.3 G == -
(3:3) (%) fa—1 (o'* Vi— yi)

(3.4) H(oy) = (1— o3,
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Now, taking account that

(3.5) lim y= 4 (y—1)

s>kl

and that y << 2 because of the relativistic bound of the shock speed, it follows

(3.6) lim1 Goy) = Gy <+ o0.

s>

Moreover, since 2 — y > 0, it results

8.7) ali_ﬁl H(oy) = + oo.
Then

(3.8) Jim, Floy) = + oo

and finally

(3.9) o{iir:ltln =k oo.

For y = 2 all lightlike shocks vanish and 5 = 0.

4. — Lax conditions and conclusion.

Lax conditions (), when written in covariant form (), are

W< <IP<o <M< .. <P, k=12,..,N,
(4.1)

A< A< < IEm g, < AW < L < AT
where m is the multiplicity of the k-th characteristic velocity.
In relativistic hydrodynamics the characteristic velocities with respect to
the fluid rest frame in a four-dimensional space-time are given by
M=—¢, m=1,
(4.2) =0, m=3,

M=c, m=1.

(1) P. D. Lax: Shock waves and entropy, in Coniributions to Nonlinear Functional
Analysis, edited by E. H. ZARANTONELLO (Academic Press, New York, N.Y., 1971),
p. 603.

(') A. StrUMIA: Rend. Circolo Mat. Palermo, ser. II, 31, 68 (1982).
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It follows that Lax conditions are fulfilled for

i) k=1 if
(4.3) — f<ox<—o¢,,

4.6. when the shock is supersonic across unperturbed fluid and subsonic with
respect to the perturbed one;

ii) k=2,3,4 for

(4.4) gy =0 (contact shock);
iii) & =5 if

(4.5) F<ou<e,,

result which is symmetric to case i).

When the strict inequalities in (4.3) or (4.5) hold, entropy increases across
the shock (noncharacteristic shocks are thermodynamically irreversible), while,
when o, assumes one of the characteristic values, entropy jump vanishes
(reversible shocks).

We conclude pointing out the remarkable result that the function # related
to the behaviour of thermodynamic entropy jump across k-shocks in relativistic
fluid dynamics is characterized by the oceurrence of two new asymptotes in
correspondence to the lightlike shock manifolds. Those asymptotes do not
appear in nonrelativistic hydrodynamics and are manifestly a relativistic
effect. It is remarkable that such a relativistic breakdown of the function 7%
for superluminal shock speeds arise naturally from the theory and must not
be imposed as an ad hoe condition. The result provides a further proof of
consistency of shock wave theory with the claims of relativity.

® RIASSUNTO

E sviluppato uno studio dettagliato della funzione 7, che caratterizza il salto dell’en-
tropia attraverso le onde d’urto, in fluidodinamica relativistica, all’equilibrio termico.
Si mostra che la funzione 7 & definita solo quando la velocitd normale delle onde d’urto
non supera la velocitd della luce nel vuoto, compatibilmente con la teoria della rela-
tivitd; inoltre si fa vedere che il salto dell’entropia tende all’infinito al tendere della
velocitd dell’urto a quella della luce, quando y ¢ minore di 2, mentre, per y =2, I'urto
sul cono-luce si annulla.
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TlogpoGHoe MCCIIEJOBAHHE CKAYKA JHTPONHH NONEPEK YAAPHLIX BOJM B PeSTHBHCTCKOH
ra3oadyHaMHKe.

Pesrome (*). — TIpoBoguTcsa moapoSHOe uccnenoBanue GyHKIMH 7, KOTOPas XapakTepu3yeT
CKa4YO0K HTPONUM TIOTIEPEK YAAPHEIX BONH B PENITHBUCTCKOM IMAPOANHAMUKE B COCTOAHAU
TEIUTOBOI'O PaBHOBecHA. IToKassBaeTCs, 4T0 HYHKYUSA 1 OIpeeIIseTCs TOMBKO IPH YCIIOBHH,
€CIIM HOpMAallbHast CKOPOCTh YAapHBIX BOJH HE IPEBBINAET CKOPOCTH CBETA B BaKyyMe,
B COOTBEICTBHUH C TpeOOBAHMAME TEOPHH OTHOCHTENBHOCTH. bojiee TOro, Ckadok SHTpPO-
MHA CTPEMHUTCA K OGECKOHEYHOCTH, KOTAa CKOPOCTh BOIHBI UPHOIMXKAETCI K CKOPOCTH
CBeTa M y MCHBIE NOBYX, TOTOa KaK mius y = 2 ceeTOmOmoOHAasi yHapHas BomHa oOpa-
IaeTcs B HYMb.

(") Ilepesedero pedaryueil.



