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Summary. --  From the poir.t of view of quar.tum ~echanics, the problem of two 
coupled oscillators with two different coupling parameters is considered. By using 
the accurate definition of Dirac operators the wave function in both coherent state 
and number state (SchrSdinger picture) are obtained. The Green's function and the 
expectation value of the energy are calculated; the transition amplitude between the 
coherent states when the coupling parameters are different and equal, as well as the 
eigenstates, are given. The constants of the motion for such a system have been also 
considered. 

PACS 03.65.Ge - Solutions of wave equations: bound states. 
PACS 42.50 - Quantum optics. 

1. - Introduction. 

In the last few decades the most relevant problem to the field of quantum optics, 
is the problem of frequency converter and parametric amplifier, where two 
electromagnetic fields are coupled [1-11]. In fact, this problem has played a central 
role in several physical phenomena of interest, such as coherent Raman and Brillouin 
scattering, spontaneous and stimulated emission of radiation, super-radiance, etc. In 
the mean time some authors [12-14] have taken the problem further by considering 
three coupled electromagnetic fields, which leads to more complicated non-linear 
parametric interactions. The frequency converter, parametric amplifier and the 
photon-photon process of Raman or Brillouin scattering have been treated 
extensively by direct use of the coupled equations of motion. The treatment has been 
extended to include the statistical properties such as the expectation values and 
fluctuations, as well as the density matrix and the quasi-probability distribution 
functions (P-representation, W-Wigner, and Q-function). Obviously, the analysis is 
drastically simplified if we first diagonalize the Hamiltonian at exact resonance and 
only one coupling parameter is used. In the present paper we shall deal quantum- 
mechanically with two more general coupled oscillators, where the Hamiltonian 
with two different coupling parameters will be diagonalized at off resonance. 
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The Hamiltonian we shall consider is given by 

(1.1a) H = H1 + / / 2 ,  

(1.1b) H1 = h ~ a t a  + h~2b*b, 

(1.1c) H 2 = h ) ~ l ( a t b  + ab t) + h)~2(atb t + ab), 

where ~ and ~2 are the fields frequencies, while )~1 is the coupling constant that 
incorporates the non-linear susceptibility of the crystal and the driving field 
amplitude, and 22 is the coupling constant measuring the strength of the mixing of 
the two modes. It would be interesting to point out that the Hamiltonian (1.1) can be 
obtained from the quantization of the cavity modes, by taking the magnetic 
permeability and the electric permittivity to vary at the same time, see for example 
ref. [2]. Here we may say that the Hamiltonian given by eq. (1.1c) has been used by 
the authors of ref. [15] to describe the simultaneous non-degenerate parametric 
amplification and mixing of two modes via a rotation of their polarization, where the 
SchrSdinger-cat wave function is calculated. Also in ref. [16] the evolution operator of 
this Hamiltonian is used as a squeeze operator to calculate the Glauber second-order 
correlation function, and to discuss some other statistical properties, which is of 
interest to the field of quantum optics. In the following section of the present paper 
we shall introduce the accurate definition for the Dirac operator to diagonalize the 
Hamiltonian (1.i) and then to calculate the wave function in the coherent state as well 
as in the number state. Section 3 is devoted to give the exact expression for the 
Green's function, and to calculate the partition function. In sect. 4 we shall 
concentrate with the calculation of the transition amplitude in both coherent and 
number states. Finally, in sect. 5 we have constructed a linear and a quadratic 
invariant for the Hamiltonian (1.1). In sect. 6 we give our conclusion. 

2. - The coherent  and the number  states wave funct ions .  

In this section we shall calculate the wave function in both coherent and number 
states, by using the accurate definition for the Dirac operators, that is to diagonalize 
the Hamiltonian given by eq. (1.1). To reach this goal, let us define the following 
operators: 

(2.1a) 

(2.1b) 

a = ( 2 ~ O l h ) - l / 2 ( o ) 1 q l  + ipl), 

b = (2~o2h)-l/2(co2q2 + ip.~). 

Therefore, if we substitute eqs. (2.1a), (2.1b) into eq. (1.1), we have 

(2.2) 

where 

(2.3a) 

1 2 1 
H =  ~ ( p l  + p~) + ~(o~21q21 + co~q~) +,ulqiq2 + ~'zP~P2 , 
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(2.35) t~2 = (21 - ) @ / ~ .  

To diagonalize the above Hamiltonian, we shall use the following operators:  

(2.4a) A(t) = [2D + h Vr~-~ ,/2]-1/2 [k~ (V~2 cos Oql (t) + ~ sin Oq2 (t)) + 

(2.4b) 

4 4 5  

(2.5g) 

and 

(2.6a) 

(2.6b) 

where 

(2.6c) 

+ / J~  (V~I  cos opl (t) + ~ sin op2 (t))] ,  

B(t) = [2f2 _ h y~zy-~ y2] -1/2 [ky (V~l cos Oq2 (t) - ~ sin Oql (t)) + 

+/ Jy  (V~2 cos 0p2 (t) - V~I  sin 0pl (t))].  

The following abbreviations have been used in the above equations: 

(2.5a) J~ = (~'1 ~'2) -1/4 [?'2 cos20 + Y1 s in20 + ,a2 V~-~y~ sin 20] 1/2 , 

(2.5b) Jy : ('~'1 Y2) -I /4 [Y1 c0S2 0 + ~2 sin 20 - /z2  ~ sin 20]  1/2 , 

(2.5c) k~ = (y1"/2)-1/4['r10)2 COS20 -1- y20)  2 sin20 + / Z l V ~  y2 sin20] 1/2 , 

(2.5d) ky = (~,1,[2)-1/4[y20)~cos20 + ),10)~ sin20 - ,u1~,f~,1y2 sin20] 1/2 , 

(2.5e) )'1 = ~ ~/~--2 [;t1(0)1 + 0)2) + )~2(0)1 - 0)2)], 
Y 0)1 

(2.5f) Y2 = 0 ) 1  [A1 (0)1 ~- 0)2) --  ) '2 (O) 1 -- 0 )2) ] ,  
~ 0 ) 2  

O= - -  t g  ' ~  . . . .  
2 0)21 - 0)~ 

~2+ = kf cos20 + k~ sin20 + y~f~-~,2sin20, 

~2_ = k 2 cos20 + kl e sin20 _ YV~-Iy2 s in20,  

2 k/2 = 0)i + (~2  § ~,22), 

Now, if we use eqs. (2.4a), (2.4b) together  with eq. (2.2) we find 

(2.7) H = h ~ + ( A ' A  + I ) + ht~_(B'B + I ) ,  

where A and B satisfy the commutat ion relation 

(2.8) [A, A t] = [B, B*] = 1. 

i = 1 , 2 .  
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In order to calculate the wave function in the coherent states, let us define the state 
Is, fl} as follows: 

[ 1 1 2 z  l ~ n  =9~n~m (2.9) ]~,fl)=exp --~(1~ + ]fl]e) in, m). 
m~ 0 

From eqs. (2.4) and (2.9) we have 

(2.10a) A(t)[a, fl) = ~(t) la , fl), 

(2.10b) B(t){a, fl} = fl(t)I~, fl}. 

Therefore, if we use eqs. (2.4) together with eqs. (2.10) we get 

[~1 ~ ~] (2.11a) J~ cos0 ~1 + V~-22sm0 r = 

(2.11b) JY[ V~-~2c~ 

[ /2~+ 4 ] 
: [o t ( t l~T  ~1Y2-  kx(~2cosOql + ~1 sin 0q2)j q',a, 

~io0�88 
= 8(t) -:-i:- ~ r 2  oq2 

where N is the normalizing constant, given by 

(2.13/ N = [~u/xJy]-l/2(t~ + t) _)1/4 exp - ~ [a2(t) 

- - cosO- f l ( t )~2 ( -~ ) l / 2kY~  Jy sin 0] ql]" 

--cosO+a(t)~2($2]"A~) 1/2 kx/Jxh sin 0] q2], 

+~2(t) + I~1~+ I~1=1] 

From eqs. (2.11a), (2.11b) we obtain the wave function in the following form: 

[ 1 (~,~ ] 
(2.12) ~ (ql, q2, t) = N exp - ~-~ ~1 / [(kx/Jx) cos2 0 + (ky/J~) sin 20] q~ �9 

ex~[l/~)~'~ ~ s~0~] 2h ~ )'2 [(ky/Jy) cos 2 0 (kx ~,Ix) 

ex~[~ ~(~,~) (~,~)~ ~in~o~l~] 
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and 

(2.14) ~(t) = 2(0) exp [ - / O  + t], ,8(t) = fi(0) exp [ - i ~ .  t]. 

To calculate the wave function in the number state (SchrSdinger wave function), we 
have to use eqs. (2.9) and (2.12) and we find that 

[ ,0. L)_ ]~/4 
(2.15) Cn,,(q,, qe, t) = [ ~ ]  (J, Jy2n+mn!m!]-'/2. 

Hm k~ 
�9 ((-M-~-)1/2[( Yl/~/47-~2 / c~ (~-~/Y2/1/4sinOql])" 

] �9 exp - ~ [(k~/J~) cos '~ 0 + (ky/Jy) sin 2 O] q~ �9 

�9 exp - ~ [(ky/Jy) cos 2 0 + (k~/J~) sin ~ O] q~ �9 

1 q2]exp[ - i [ t~ (n  -~)t+t~_ + 1 ) t ] ] .  �9 exp[-~-~[(kx/J.O-(ky/Jy)]sin2Oql + 1  (m 

In the following we shall employ the result obtained in this section to calculate the 
Bloch density matrix, and then to calculate the expectation value of the energy. 

3. - T h e  B l o c h  d e n s i t y  m a t r i x  and  t h e  e x p e c t a t i o n  v a l u e  o f  t h e  e n e r g y .  

In the present section we shall make use of the coherent-state wave function given 
by eq. (2.12) to calculate the Bloch density matrix. However, we shall first start by 
calculating the Green's function. The Green's function is connected with the 
coherent-states wave function by the equation 

cc  

/ 

G(ql, q2, q;, q~, t) = -~ | r q.~, t)r q~, 0)d2~d2fi. (3.1) 
J 

- - ~ o  

Therefore, by inserting eq. (2.12) and the corresponding complex conjugate at t = 0 
into eq. (3.1) and by evaluating the integral one finds 

(3.2) G(ql, q,., ql', q~, t) = (2h=JxJy) -1 [t2 + t2 /sinO ~ t sint~ _ t] 1/2. 

[(, ) ] "r-s ~/2 ctgt2 tcos20+ __c tg t~_ ts in20  (q~ +q~2) . �9 exp ~-~ Y~/ ~ J~ 
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�9 exp ~-~ Y-~2!  c t g t 2 - t c ~  J-~ 

) ] �9 exp c t g ~  + t - ~-~y c t g ~ _  t sin2O(qlq2+q~q~). 

' ~ ) l ~ [ ~ c o ~ o c ~ o ~ 0 §  ~in~0 ~ql' �9 �9 exp - ~ /  \ J x  Jy - 

�9 exp - ~  Y-22! / J y  Jx 

[ ( ) ] i k~ eosecf ,~+t -  - - c o s e c ~ _ t  sin20(qlq~ +q2q~) �9 �9 exp -~--~ ~ -  Jy 

Since the Hamiltonian (1.1) is a constant  of the motion, therefore the system is in 
equilibrium, and then the analytic continuation t ~ - i'c'h in the Green's function (3.2) 
leads immediately to the Bloch density matrix. In this case we have the following 
expression: 

(3.3) C(ql, q2, q{, q~, 7) = (2fir~J~Jy)-l[G2+~-/sinD+ t sinG2- t] ~/2" 

�9 exp 2h ~ Y1 ] [ J~ [(q~ + q(2) ctgh (yh~ +) - 2ql q~ cosech (~,h~ § cos20 + 

§ ~ [(ql + q,2) ctgh (?,h~_) - 2qlq~ cosech (yh~_) ]  sin20 �9 

�9 exp 2h ~ 7e 

+k~__j~ [(q~ + q~2)ctgh (,ht~ + ) - 2 q 2 q ~  cosech (yht~ ,)] sin201] �9 

�9 exp - ~-~ ~ {(q~q2 + q~q~) ctgh(~,h~2 § - (q~q,~ + q2q~) eoseeh(yh~,~+)} - 

jy {(qlq2 + q~ q~) c t g h ( y h ~ _ )  - (q~q~ + q~cl~ ) eosech (~ ,~_ )}  sin20 . 

As a special case if we take the coupling parameter  )~ ~ 0 ,  we obtain eq. (4.1) of 
ref. [ 101. 

To calculate the expectation value of the energy, we have to calculate the partition 
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function which is given by 

(3.4) Q(y) = C(ql, qz, Y) dql dq2, 

where C is the density matrix. From eqs. (3.3) and (3.4) one7 finds 

(3.5) Q(~,)= lcosech(1yhO+) cosech(17hO_ ) . 
4 \ 2  

The expectation value of the energy can be obtained by using the equation 

(3.6) (E> - In [Q(y)]. 

Thus 

(3.7) < h }  : 1 [ 0  + ctgh ( ~ - )  + O -  ctgh ( - ~ ) ]  �9 

449 

4. - T h e  t r a n s i t i o n  a m p l i t u d e .  

Suppose we take the coupling parameters  ~1 and ),2 to be equal in eq. (2.2), 
therefore we shall find the parameter  ~2-o  0, and hence the energy for the system 
when 21 = ~ 2 will be different from the energy when ),1 ~ ~ 2. In this case we may turn 
our attention to calculate the transition amplitude between the states when )~1 r ),2 
and 21 = ),z, in both the coherent and the number  states. 

To do so, we have first to obtain the wave function in the coherent state for the 
Hamiltonian (2.2) when )~1 = ),e = 2. We find the following expression: 

[1 ] 
(4.1) ~(ql,q2, t)=[(--~)z ] exp - ~ [ ~ 2 ( t ) +  ( t ) +  1s I~12] �9 

[1 ] 
�9 exp - ~ [k~ (cos ~ql + sin ~qz) 2 + k_ (cos ~qe - sin ~ql) 2] �9 

where 

�9 exp a ( t ) ~ - - ~  2- ] (q~ cos~ + q2 sin~) exp [ ~ ( t ) ~ - - : - ( q 2  cos ~ -  q l s in~) ] ,  

(4.2a) k2+ = (o~ cos2~ + co~ sine~ + 2~ V~1co2 sin2~, 

(4.2b) k z = (o ~ cos 2 ~ + o J,2 sin 2 ~" - 2), ~/(o 1092 sin 2~, 
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(4.2c) 

and 

(4.2d) 

~ = 1  l  tg- 
~1 ~ _ o~ ] 

~(t) = ~(0) e x p [ - i k §  ~(t) =~(0) e x p [ - i k _ t ] .  

M. SEBAWE ABDALLA 

where 

(4.5) 

and 

(4.6a) 

(4.6b) 

(4.6c) 

l' = [k~k_JxJ.~ + k~Jy(k§ f~ + k_ f~) + kyJ~(k§ f,~ + k_ f~) + k~ky] 

= cos 0 cos ~ + sin 0 sin ~, 

= sin 0 cos ~ - -~  cos 0 sin ~, 

= cos o cos ~ + sin 0 sin ~, 

The amplitude connecting two coherent states is given by 

o c  

(4.3) (~, fl[fl, a) f * = ~ ( q l ,  q2, t ) r  q2, t)dqldq2. 

By inserting eqs. (2.13) and the complex conjugate of eq. (4.1) into eq. (4.3) and then 
evaluating the integral, one finds 

2 (4.4) (~, ~1~, Z) --  ~ (k~ k_ ~ + 12_)1/2. 

[ 1 +~.2  ] 
�9 exp - ~ [ s  ( t ) + a 2 ( t ) + ~ 2 ( t ) +  1~[2+ I/~]2+ 1~12+ I~l 2] �9 

�9 e x p [ ~ [ ~ ( t ) V ~ y - ~ f ~ y ( ~ * ( t ) V ~ - + f 2 - ~ * ( t ) ~ - f ~ ) ] 2 ]  �9 

�9 exp l- 7 
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(4.6d) f4 = Y1 sin 0 cos ~ - cos 0 sin 8. 

Now we shall calculate the transition amplitude A~mn,, from the state In, m} to the 
state Ir~, ~}, where In, m} and In, rh} are the eigenstates for the eases ~1 r ),2 and 
),1 = )~2, respectively. The transition amplitude can be calculated from the following 
equation: 

I * (4.7) Anma,~ = '~m (ql, q2, t) ~,~ (ql, q'2, t) dql dq2 , 

where ~,~(q~, q2, t) is the wave function for eq. (2.2) when ),~ = ),2 which takes the 
form 

(4.8) ~bnm(ql, q2, t) = (h~) 2 j [2~+'hn!m!]-l/2H~ (eos~ql + sin~q,~) �9 

�9 H,~ (eos~q~ - sin~ql) exp - ~ (k+ eos~  + k_ sin~')q~ �9 

[1 ] [ 1  ] 
�9 exp - ~-~ (k_ e o s ~ +  k+ sin'~)q~ exp - ~-~ (k+ - k_) sin2~q~q2 �9 

By inserting eq. (2.14) and the complex conjugate of eq. (4.8) into eq. (4.7) we 
have 

(4.9) A~,~m = (~)-~(k§247247 ~/~. 

[[ ( 1) ( ( 1) ( 1)]] 
�9 exp i k~ ~ +  ~ + k  ~h+ ~ -~2+ n +  ~ -~ ]  m +  ~ t �9 

dx dyH~ x H,~ y exp - - ~ ( k ~  xZ + k y~) �9 
- ~ c o  

where f l ,  f i ,  f3 and f4 are given by eqs. (4.6). 
To calculate the integral in eq. (4.9) we shall introduce the generating function 
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(4.10) A~,8, ,  = dxdy exp - ~-h k_~ + -~xfl + fg X 2 + 

+ (k_ + k~ 2 ky 2~ ~ f s f 4 ) x Y ] ]  _.~ f~ + __~y f :~ } ye + 2 ( k~: ky 

�9 e x p [ -  (sz 2 + s~ + s:~ + s42)] exp 2x s, + s8 t~/~ ] fl - s4 

LL T) 
Therefore, the transition amplitude is given by 

(4.11) 
2 

Anm~m -- --  - -  ( k  + k _  ~ + ~ __ )1/4 [2n+.~+~+,~ n!  m !  ~ !  9Tt!] - 1 / 2 .  

�9 exp i k + ( ~ + ~  t + k _  ~ h + - ~ ) t - t ) +  n + ~  t - t ] _  m +  t �9 

~n+Th-~ n+m 

as~ as/' as~ as$ 
e x p [ -  (s~ + s~ + s~ + s~)]. 

�9 exp ~7 l-- 

2 2 - 

where 

(4.12a) ]1 = ~ - k ~ J ~ f l ,  

(4.12b) s V~+ kjyf~, 

(4.12c) s = V~:+ kyj~f~, 

(4.12d) ~ = ~ -  kyJ~f4 , 

and f i ,  f2, J~ and f4 are given by eqs. (4.6). 
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After some minor algebra, eq. (4.11) can be expressed in the following form: 

(4.13) 
2 

A n m n ~ h  - -  - - -  (k+ k_t~ +t~ _)ll4[n!m!~!th!]l/2. 

�9 exp[i[k+ (~ + 1)t+k_(~+ 1)t-tJ+(n+ 1)t-~2_(m+ 1)t]]- 
~h n P 
~ ~ ~ [ r ! ( p - r ) ! ( ~ t - k - p + r ) ! ( ~ h - j - r ) ! ] - ~ 4  I~+m-j-kl. 

k = O j = O  p=O r=O 

�9 ( _ ) n + r - k - p  ( F 1 8 / F 4 2 ) P - r  ( F 2 4 / F 3 1 ) r  (F31)~-J (F42)~-k  . 

�9 (A +/.4_ )(~-~)/4 (B+ /B_  )on-m)~4 (i~+F-[! ~!)-I (A + A_ - F2) (~ +~)/4 �9 

_ J - - (n  + ra)/2 - -  G 2 

where P stands for an associated Legendre function of the f'utst kind. Note that  in the 
above expression ~h I> r + j ,  and ~ I> p + k - r, also n - m and n - ~h are even, while 
A~,~,a is equal to zero otherwise. The following abbreviations have been used: 

(4.14a) 

(4.14b) 

(4.14c) 

(4.14d) 

(4.14e) 

(4.14f) 

while 

(4.15a) 

F13 = l- 7 , 

1 IX/k+ k_ Jj s + F31 = l-; 

re ,  = i [ ~ r 2 4 7  + kV~k~f4] 
l' 

F 4 2 : l [ ~ r  + k~f~kys 
l' 

2 
F =  l' ( • s 1 6 3  

2 - - 

V = ~7 ( f2~ - f l f 4 ) ,  

1 
A• = -F [(k~ k_ J~Jy - k~ky) +_ (]~ + ]~ - ]~ - ] ~ ) ] ,  



454 

(4.15b) 

and 

(4.16a) 

(4.16b) 
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B,_ : ~[(k~ky - k+ k_J~Jy) +_ (fZl + f~ - f~ - f~ ) ] ,  

1-= l [ ( n  + m ) +  In-ml], 
2 

1 
= - - [ ( ~ + ~ h ) +  I ~ - m l ] .  

2 

5. - T h e  c o n s t a n t s  o f  t h e  m o t i o n .  

As has been stated in earlier work [17], if one can find explicitly time-dependent 
invariants, then the eigenvalues and eigenstates of these invariants would be helpful 
for solving some explicit quantum-mechanical problems. Therefore, we shall concen- 
trate in this section on discussing the constants of the motion for the system given by 
eq. (2.2). Let us start by seeking linear invariants in the form [18,19] 

2 
(5.1) I = ~ [2i(t)pi + ~i(t)qi]. 

i=1 

To construct a linear invariant we need 

2 
(5.2) i =  3I + ~ aI 3H aI 3H _ 0 ,  i = 1 , 2  

Ot i=l aqi 3pi api Oqi 

From eqs. (2.2) and (5.1) together with eq. (5.2) we have 

(5.3a) d21 - oj2~l q-/z1,~2, 
dt 

(5.3b) d2z _ 0)2222 + ~t121, 
dt 

(5.3c) dil l  _ 2 1 - , u z 2 z ,  
dt 

(5.3d) dflz _ 2 2 - ~ 2 2 1 .  
dt 

After some minor algebra we find 

/1/4 
(5.4a) ~ ( t )  = ~ /  [A~ s in(O+t  + r cos0 - B 1 sin(t2_t + r sin0], 
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(5Ab) ~2 ( t )=  ~ /  [Bl sin(t2_t +r cosO+Al s i n ( ~ t  +r 

] = - -  A~ eos(~ t+r162  , 
rl ~ * Jy 

= 1"/2/ B l ~ c o s ( ~ _ t + r  cosO+Al-~cos( t2+t+r , 

A~, B1, r and r are arbitrary constants, while 71,72,  0 and ~ + and t2 _ are given by 
eqs. (2.5) and (2.6), respectively. 

Now we turn our attention to construct a quadratic invariant, therefore, we shall 
introduce the following transformation: 

(71)1/4 
(5.5a) q~ = \ ~ (x cos 0 - y sin 0), 

(5.5b) q2 ( 7 2 )  ~/4 = (y cos 0 + x sin 0), 
\7~  

(5.5c) Pl (72)  1/4 = - -  (p~ c o s 0 - p y  sin0), 
71 

(5.5d) p,~ (7-~2)~/4 = (p~ cos 0 + Px sin 0). 

Then the Hamiltonian (2.2) will take the form 

1 2 2 (5.6) H---) H' = --1 (J~P~ + k~x2) + 2 (JyP~ + kyy ), 
2 

where 

(5.7) [x, P~] = ih = [y, Py]. 

Since we assume that  the relation (5.7) holds, therefore eq. (5.6) is simply identified 
as the linear superposition of two independent oscillators 

1 (./21) 2 + kx x ) ,  

1 (.].21)2 2 2 = kyy ) (5.8b) Hy ~ , ~ y .  y + . 

Now, we are in the position to construct two pairs of invariants I~. and Iy satisfying 
eq. (5.2), thus 

(5.9a) Ix = a~P~ + fl~x 2 + 7~[x, P~]+ , 
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(5.9b) Iy = ayP~ + flyy2 + ry[Y, Py]+ , 

where aj,  fly and r j ,  J = x, y are real functions of time, then by substituting eqs. (5.8) 
and (5.9) into eq. (5.2) and after some manipulation, we have 

( 5 . 1 0 a )  

(5.10b) 

(5.10c) 

(5.10d) 

where 

(5.11a) 

(5.11b) 

i(j) = C~1/2j;2[ x~+ 

i~q) = C~/2 jy-2 - ~  

2 ] + ( 5 + x - J~ a + P~)2 , 

+ (~_ y _ j~ ~_ py)2 , 

] I(~P) = C~/2k~-2 ,z--T + (~ + P~ + '~ + k~x)e ' 

] c ] / 2 k ;  + (a_P  + p k y) 2 , 

• ( t )  : ~ • I ~  + I - 1/2 [cosh ~ • +/z + sinh ~ + sin (2~ + t + r + ) ] 1 / 2 ,  

z+ (t) = ~+ [~+ [ -1/2[cosh~ +f i •  sinh~+ sin(2~ + t + V~)]1/2, 

r • ~ , ,  ~ • ~ • ~ • ,~ • C1 and C2 are independent constants, while r • and rj • are 
real phases. 

By making use of the inverse transformation of eqs. (5.5) and substituting the result 
into eqs. (5.10), we obtain the quadratic invariants for the Hamiltonian (2.2). 

6. - C o n c l u s i o n .  

In the present paper we have considered the problem of two-mode coupled 
oscillators with two different coupling parameters, which is the result of the 
quantization of the cavity modes, by taking forth the magnetic permeability and the 
electric permittivity to vary at the same time. The problem has been considered in a 
purely quantum-mechanical way, for example we have managed to calculate the wave 
function in both coherent state and SchrSdinger picture, by using the accurate 
definition of Dirac operators (2.4) where the Hamiltonian (2.2) can be diagonalized. 
The Green's function has been calculated by employing the coherent-state wave 
function and then the average value of the energy is obtained. 

From the earlier work [20], it is well known that the transition amplitude between 
two different eigenvalues can be regarded as a general coherent-state wave function, 
which has wide applications in quantum optics, and, since the energy for the system 
given by eq. (2.2) will be different if we take the coupling parameters )~1 and ),2 to be 
equal, therefore we extended our discussion to include the transition amplitude in 
both coherent state and number state. Finally, explicit formulae are obtained for the 
linear invariant, and a construction for two equivalent families of quadratic invari- 
ants for each mode is given. Elsewhere the statistical properties at exact resonance 
for the Hamiltonian (1.1) are discussed in detail [21]. 
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