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Operator Ordering in Quantum Mechanics 
and Quantum Gravity. 

T. CHRISTODOULAKIS (*) and  J .  ZA]~ELLI (**) 

International Centre ]or Theoretical -physics - Trieste, Italy 

(rieevuto il 6 Set tembre 1985; manoscri t to  revisionato r icevuto il 12 Febbraio 1986) 

Summary .  - -  A nonper turbat ive  approach to the quant izat ion of the  
canonical algebra of pure grav i ty  is presented. The problem of factor 
ordering of operators  in the  constraints  ~ u W =  0 is resolved by  invoking 
Hermit ie i ty  under the invariant  inner product  in hype r space - - the  space 
of all three-dimensional  metrics g~(x)--  and covariance under co-ordinate 
t ransformations.  The result ing operators ~ u  receive corrections of order ]~ 
and h 2 only and the algebra closes up to a conformal anomaly  term. 
If  the a lgebra  is enlarged by  the inclusion of the anomalous operator,  
it can be shown that ,  by  some suitable choice of the gauge parameter  
corresponding to this  unphysieal  symmetry ,  the  in tegra ted  form of the 
algebra can be made to close. 

PACS. 04.60. - Quantum theory  of gravi tat ion.  
PACS. 0 4 . 2 0 . F y . -  Canonical formalism, Lagrangians and var ia t ional  
principles. 

1 .  - I n t r o d u c t i o n .  

T h e  a t t e m p t s  to  q u a n t i z e  E i n s t e i n ' s  t h e o r y  of g r a v i t a t i o n  a r e  m o r e  t h a n  

f i f ty  y e a r s  o ld  (1). Neve r the l e s s ,  t h e  f o r m u l a t i o n  of t h e  t h e o r y  was o b s c u r e d  

(*) Hellenic Research Establ ishment ,  48 Vas. Konstant inou Avenue, Athens, Greece. 
(**) Faeu l tad  de Ciencias, Universidad de Chile, Casilla 653 Santiago, Chile, and Centro 
de Estudios Cientificos de Santiago Casilla 16443 Correo 9. 
(i) L. ROSe,FIlL]): Ann. .Phys .  (Leipzig), 5, 113 (1930); Z. Phys., 65, 589 (1930); 
lP. G. BERGMANN: Helv. Acta Suppl., 4, 79 (1956), and references therein. 
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by  the existence of constraints among the dynamical  variables. A consistent 
t r ea tmen t  of constrained systems was pu t  forward by  DIRAC (2) and fur ther  
developed by  TEITELBOI~ (s) and others. Following Dirac~s original programme,  
the weak constraint  equations ~ ~ 0 ought to become conditions on the 
physical  states of the corresponding quan tum theory  ~ T  = 0. While the 
consistency of the classical constraints is ensured by  the first-class algebra 
obeyed by  them 

(1.1a) 

(1.1b) 

(1.1~) 

[ 9 ~ ' ~ ,  ~ ]  ---- - -  [g".~l '~, + g~J ~ , ]  (~ , j (x ,  2), 

[ ~ ,  ~ ]  = ~ t a x ,  2) + ~ t a x ,  ~2) , 

[~ , ,  o ~ ]  = ~ ~ ~,,(x, ~) 

(a tilde under  a symbol is used to indicate tha t  the argument  of the corresponding 
funct ion is 2; otherwise i t  is assumed to be x), the realization of the corre- 
sponding quan tum algebra is obstructed by  ordering ambiguities in the op- 
erators ~ .  Some authors (4) have come to the conclusion tha t  there exists 
no Hermi t ian  factor  ordering tha t  gives a consistent (closed) algebra. Those 
investigations, however, have  been restr icted by  the  implicit assumption tha t  
Hermi t ic i ty  is to be defined in terms of the trivial inner product  

f T * T ~  l-I [d6g(x)] . 

Here  we propose tha t  the  inner product  should be 

instead, where G is the de terminant  of G"k~(x)--thc metric in hyperspace (5). 
This seems to be a more na tura l  choice in view of the fact  tha t  all Lagrangian 
theories are constructed in terms of generalized co-ordinates and should, there- 
fore, be covariant  under  general co-ordinate transformations.  The co-ordinates 

(2) P .A.M.  DI~AC: Can. J. Math., 2, 129 (1950); Lectures on Quantum Mechanics 
(Academic Press, New York, N.Y.,  1965). 
(a) C. TEIT]~LBOIM: The Hamiltonian structure o] Sl~acetime, Ph.D. Thesis, Princeton 
University; S. HOJMAN, K. KUCHAI~ and C. T~IT]~L~OI~: Ann. Phys. (N. :Y.), 96, 88 
(1976). 
(4) J. A~D~RSO~: Phys. Bey., 114, 1182 (1959); A. KEMP: Phys. Rev. D, 20, 830 
(1979). 
(5) We adopt the name hyperspace for the space of all three metrics g~(x) instead of 
the traditional one of superspace, to avoid confusion with the superspace of super- 
symmetric theories. 
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in this case are the metric components  g,(x). This idea was previously ex- 
ploited in the context  of quantum cosmological models (e) and the present  paper 
extends it  to the general case, in which no part icular  symmet ry  assumptions 
for the three-space are made. 

Recently,  there  has been growing interest  in quantum-cosmological models 
mainly in connection with the fate  of the singularities of classical general 
relat ivi ty (7). Sta tements  based on the wave function(M) of the  Universe are, 
however, crucially dependent  upon the choice of the quan tum operator  ~ .  
which defines it. I t  is, therefore, not  of merely acad.emic interest  to resolve the 
ordering ambiguities for the quan tum operators. 

The paper  is organized as follows. In  sect. 2 a resolution of the ordering 
ambiguity for operators of the form 1](q)p2 in one dimension is presented and 
the extension to several degrees of freedom is discussed. In  sect. 3 we propose 
a Hermi t ian  ordering for 9~• which is natural ly  induced b y  the symmet ry  
of hyperspace.  In  sect. 4 the remaining operators ~ are given and the quan tum 
algebra is presented. Section 5 contains some discussion on the results obtained. 

2. - Q u a n t u m  m e c h a n i c s .  

a) One degree o] ]reedom. In  writing the quantum-mechanical  version 
of a classical theory,  it is necessary to invert  the limiting process ~ --~ 0, but,  
as is well known, this problem does not  possess a unique solution except  in 
a few very  simple cases--e.g, theories wi thout  derivat ive couplings in Cartesian 
co-ordinates. The problem is, in its simplest form, tha t  there is more than  one 
quantum operator  P(~, :~) tha t  in the limit ~ ~ 0 approaches a given classical 
function F(q, p)(8). (Here q, p are the classical co-ordinates and momenta  
and ~, :~ are their  quantal  counterparts .)  

Here we suggest a procedure t ha t  gives a unique prescription for the quan- 
t ization of a wide class of theories which is a generalization of a prescription 
developed in the context  of quantum-cosmological  models (e). In  this paper 
we shall only consider theories whose Hamiltonians are quadrat ic  in momenta  
so tha t  their  quan tum dynamics are given by  second-order (functional) dif- 
ferential equations. 

(e) T. CHRISTODOULAKIS and J. ZAN]~LLI: Phys. Bey. D, 29, 2738 (1984); Phys. Lett. A, 
102, 227 (1984). 
(7) J .B.  HARTLE and S. W. HAWKING: Phys. Rev. D, 28, 2960 (1983), and references 
therein. 
(s) See, for instance, L. COHEN : Contemporary Research in the l~oundations and Philo- 
sophy o] Quantum Theory, edited by C.A. HOOKER (D. Reidel Publ. Co., Dordrecht, 
1973). 
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I n  o rder  to  i l lus t ra te  the  idea, consider  the  H a m i l t o n i a n  of a one-d imens ional  

classical sys t em of the  f o r m  

H = Ho(p,  q) + V(q),  (2.1) 

where  

Ro = �89 /(q) > o ,  
(2.2) [ [q, p]  = 1 .  

Clearly there  are m a n y  possible order ings in the  q u a n t u m  t h e o r y  which  

could g ive  rise to  (2.1) in the  l imit  ~ -~ 0; to  m e n t i o n  jus t  a few, t a k e  

(2.3a) --o~(') - -  � 8 9  

(2.3b) --o~(2) = �89 

(2.3c) /~(o ~, = l~l(q)~, 

(2.3d) ~-o~('~: �89 etc. 

I n  order  to r esoNe  this  amb igu i ty ,  we first no te  t h a t  H a m i l t o n i a n  (2.1) is 

ob t a ined  f rom the  L a g r a n g i a n  (9) 

(2.4) L = � 89  V(q). 

I n  t he  L a g r a n g i a n  we can  change  the  var iab le  q b y  a new co-ord ina te  x de- 

f ined b y  

q 

(2.5) x = x(q) = j F ~ ( q ' ) d q ' ,  ~ = 

and  we observe  t h a t  (2.4) now takes  the  f o r m  

(2.6) L = �89 3 -  r ( q ( x ) ) .  

The  change  of co-ord ina tes  (2.5) is a po in t  (canonical)  t r a n s f o r m a t i o n  and,  

therefore ,  Lag rang ian  (2.6) describes the  same s y s t e m  and  conta ins  t he  same 

in fo rma t ion  as (2.4). The  H a m i l t o n i a n  in the  new var iables  is 

(2.7) Ho 1 2 ~p~ ' P~ = ~ = 1~p �9 

(9) Here we are interested in cases in which/(q) > 0, so tha t  the action will have a mini- 
mum rather than a maximum on the classical orbits. 
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This familiar form can be quantized in the s tandard manner  and has no ordering 
ambiguity. Since the Poisson bracket  of x with p ,  is one, we take in the SchrSd- 

inger representation 

. d  (2.8) ~ = x ,  ~ = - ~  

and the quan tum Hamil tonian is just  

(2.9) /~'o-- 1 d 2 
2 dx 2 " 

Now, either by  a change of variables in (2.8) from x back to q, or by  virtue 

of eq. (2.7)7 we have 

d 
(2.10) p .  = - -  i]�89 ~qq ~-  1�89162 

where 

. d  i=q, ~=-*~. 

Thus the ordering assigned to /~o is natural ly  selected to be 

(2.11) I~o ---- � 8 9  , 

which is different f rom the more (( plausible ~) orderings in (2.3). I t  should be 
stressed tha t  the different choices (2.3)7 (2.11) give rise to radically different 

SchrSdinger equations and it is, therefore, an impor tan t  point  to decide which 

one is the correct choice. I n  deriving (2.11) we have only assumed invari- 

ante  of the system under co-ordinate transformations. This is correct clas- 
sically, since the Lagrangian formalism is constructed using generalized co= 

ordinates, as well as quantum-mechanical ly,  because (2.10) is a s tandard 
change of variables in a differential equation (lo). As a result, the canonical 

momentum transforms as a covariant  vector  and the Hamil tonian is the Laplace- 

(lo) It  could be argued that invariance under the more general class of canonical 
transformations (q, p) -* (q'(q, p), p'(q, p)) should be required. This generalization, how- 
ever, is bound to fail because canonical transformations do not commute with the quan- 
tization procedure. The points is that in quantizing one chooses a polarization in order 
to reduce the number of dimensions of phase space by half--e.g. 8/(8p)T(q,p)= 

0 -+ V / ~ T(q). Thus, unless one considers transformations which leave invariant 
the subspace defined by the polarization, it would be impossible to implement them 
as symmetries of the quantum theory. In this sense, general co-ordinate covariance 
is the maximal symmetry one could demand for a generic quantum theory, if one is 
to work in the configuration representation. (Particular systems may, of course, possess 
extra symmetries but these are not required by the canonical approach.) 
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Belt rami  operator  which is a scalar under  co-ordinate transformations,  as it  
should be. 

There is still the  question of Hermit ic i ty  of / to to be clarified. Bu t  the 
Hermi t ic i ty  of (2.9) is obviously guaranteed if we define the inner p roduc t  in 
the x co-ordinates to be 

(2.12) <~p,ly~} =f~v*(x) ~p2(x) dx 

and we require it  to be invar iant  under  co-ordinate transformations.  
Then in the q co-ordinates (2.11) is tr ivial ly Hermi t ian  under  the inner 

p roduc t  

(2.13) <~]~2> :f~P*~(q)~P~(q)/-+(q) dq,  

where It is the gacobian of the t ransformation x--> q. 

b) _IV degrees o/]reedom (point particle in curved space). One can t ry  to 
generalize the steps of the previous construction for several variables. The 
programme,  however, is a nontr ivial  one because i t  is impossible to diagonalize 
the metr ic  everywhere in a generic higher-dimensional manifold b y  a pure  
co-ordinate t ransformation.  

Consider a mechanical  system described by  co-ordinates qa (a = 1, ...~ iV) 
and the  corresponding momen ta  p~ ~ ~ / ~ / ~  (where ~ ~ dq~/d2, ~ being some 
affine parameter) .  The generalization of (2.2) is 

(2.14) He = �89 

with [q~, p~] = ~ .  Here  7 ~  is a nondegenerato a rb i t ra ry  symmetr ic  mat r ix  
funct ion of the co-ordinates only. Expression (2.14) also corresponds to the 
Hamil tonian  of a free point  particle of uni t  mass on a manifold with metr ic  
y ~  (the inverse of y~)  and can be derived from the Lagrangian 

(2.15) 

so t ha t  

~Z 
(2.16) p= ~ ~ =  - r ~ ( q ) ~ .  

(here 2 can be identified with the proper  t ime or proper  arc length d2 ~ = 
= ? ~ d q  ~ dqa). The signature of y will be assumed to be 

(2.17) ( § 2 4 7  , , . . . , - ) ,  t + s = N .  
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One can now t ry  to proceed by  analogy with the one-dimensional case and de- 
fine new co-ordinates s~(q) such t ha t  

(2.18) 

~ a b ~ d i a g  ( ~ - l ,  . . . ,  -~ ] ,  - - 1 ,  ..., - - 1 )  . 

Obviously this cannot  be done globally unless the, manifold is flat. In  the 
flat case - -and  only t hen - -one  can define the canonical momenta  conjugate 
to 8 a, 

~L 
(2.19) p~ -~ ~ = ~/,,,,~ 

and hence 

where ~]~b is the inverse of ~ab. Then in a s traightforward way the quantum- 
mechanical counterpar t  of Ho is found to be 

(2.20) ~o = - �89 = -- �89 

where D~ is the  covariant  derivat ive on the manifold. 
I t  should be stressed tha t  the generalization of (2.20) to arb i t rary  spaces 

requires some ext ra  assumptions. So far we have only required covariance of 
the Lagrangian formulation.  This guideline is, however,  insufficient to define 
uniquely a canonical ordering in a generic curved space. In  fact,  there  are 
still ma ny  possible second-order differential operators tha t  reduce to (2.20) 
in fiat space which are not  the Laplacian. 

One could invoke some principle like (( naturalness )), or (~ simplicity ~, etc. 
and define by  flat (2.20) as the correct  form in an a rb i t ra ry  manifold, b u t  one 
should be aware tha t  this does not  follow from any principle of classical or 
quan tum theory.  

Taking the minimal subst i tut ion of ordinary derivatives by  covariant  
derivatives in curved spaces certainly eliminates the ordering problem: /)~ 
and ~ g  commute.  This does not  mean, however, tha t  --  iD~ should be identified 
with the canonical momentum conjugate to q,:[q~,iD~] # ~ ,  whereas 
[q, -- i~ ]  ---- ~,~. 

One impor tan t  case in which there  are compelling reasons to choose form 
(2.20) over other  alternatives is t ha t  of maximal ly  symmetr ic  spaces of the 
form G/H. Then besides the reparamet r iza t ion- -or  co-ordinate t ransforma- 
t ion- - invar iance  of the theory  there exists the group of isometrics of the space 
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and the Laplacian can be wri t ten  in the form (n) 

] 
(2.21) v ~ = ~ [e~(G) -- v~(H)], 

where e~(G) and c~(H) are the quadratic Casimir operators of the groups G 
and H~ respectively, and a is some constant that  sets the scale. Then the La- 
placian choice is required if one wants to guarantee the invariance of the 
quantum theory under the isometry transformations of the manifold. 

The choice of the Laplace-Beltrami operator amounts to selecting the 
ordering of p's and q's to be 

(2.22) /~ _ �89 ~ 1 - - - I det  [~'~,~]l 

where /~  = -  i(~/aq~). Naturally~ the operator  /~o is Hermit ian  under  the 
co-ordinate invariant  inner p roduc t  

(2.23) OP~IYh> =f~*(q )  Yh(q) V~ d~'q. 

i t  is t r ivial  to check tha t  in one dimension (2.22) and (2.82) reduce to (2.]1) 
and (2.13), respectively. One might  want  to consider the most  general l inear 
combinat ion of monomials constructed out  of ~ and quadrat ic  in p~ of the  
form 

(2.24a) ~ = F ~ , ~ l e ~ b / 6 ~  ~ , a ~ b ~- v : 0 ,  

(2.24b) ~ = F , 1 6 ~ r , ~ , r ~ r  ~ , e + ] + h = O, 

(2.24v) 0 = F~ ~ t r ~ r , ~  , k + 1 + m = o,  

(2.24d) / )  = ~ , v ~ , ~ r , r , , ~ r . 7  ~ , p + q + r = o,  

(2.24e) _E = F t r ~ , l e ~ F ~ r , , ~ r ~ r ~  , , t + u + v = o, 

etc., all of which reduce to  (2.14) in the limit ~ - >  0. One can observe tha t ,  
whatever  linear combination of these expressions is chosen, the resulting op- 
erator  has the form 

(2.25) 

(11) J. STRATHDE~: ICTP, internal report IC/83/3, unpublished. K. PILCH and A. N. 
SCHELLEKENS: Stony Brook preprint ITP-SB-84-20, submitted to J.  Math. Phys. 
(•. Y.). 
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where B ,  is l inear in first der ivat ives  of ~ ,  while c is quadra t ic  in first der ivat ives  
and linear in second derivat ives of ?,~. I f  one d e m a n d s / t o  to be a scalar, i t  
can be shown t h a t  B" ---- - -  ?~z_F~ and v is a scalar, which cannot  be any th ing  
else bu t  the  l~icci scalar (up to constants) .  Thus, the  mos t  general fo rm ad- 
missible for /t0 is 

(2.26) / to = - -  �89 2 ~- kR .  

3. - Quantum gravity (infinitely many degrees of' freedom). 

The na tu ra l  generalization of (2.14) to infinitely m a n y  degrees of f reedom 
is obta ined b y  introducing a set of continuous indices x-= (x ~, ...,xN). The 
co-ordinates are now field var iables  q~(x) and their  canonical conjugate  mo- 
men ta  zB(x) sat isfy 

(3.1) [q~(z), ~ ' (x ' ) ]  = (52(5(x, x ' ) .  

We generalize (2.14) in the  fo rm 

(3.2) Ho = �89 G ~,[qo](x, x ' ) ~ ' ( x )  ~ ' ( x ' )  , 

where a sum is unders tood over  repea ted  indices including the continuous 
indices x, x ' ,  and  G~B is, in general,  a funct ional  of the  fields qA(x). 

In  gravi ty ,  the  operator  t h a t  p lays  the role of the  Hami l ton ian  is the  gen- 
era tor  of normal  deformations of the  three-space geomet ry ,  ~%fz (a.~2): 

(3.3) 

where 

(3A) g ---- ]det g,j]. 

Here  g~j(x) stands for the metr ic  of the  3-geometry  and R is the  l~icci scalar 
associated with  it. Because G ~ ( x )  is t r ivial ly diagonal  in the  continuous index 
x, x '  (all the  g~/s are t aken  a t  the  same point) ,  ins tead of (3.2), i t  is more  con- 
venient  to consider the densi ty 

(3.5) ~ . ( x )  = �89 G . ~ ( x ) ~ ' ~ ( x ) ~ ( x )  , 

where the sum runs over the  discrete (Latin) indices only. 
I t  is clear t h a t  the  opera tor  ordering problem is par t icular ly  severe in this 

case. We would like to say in the  spirit  of our previous discussion t ha t  the  

(i~) B.S. DE WITT: Phys. Rev., 160, 1113 (1967). 
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q u a n t u m  descendant  of ~fo is some operator  ~fo, which should be invar ian t  
! 

under  co-ordinate  t ransformat ions  g~j--->g~[g]. (These co-ordinate t ransfor-  
mat ions  have  nothing to do with  the diffeomorphisms on the three-space sur- 
faces. The la t ter  should be though t  of as changes in the space of indices x --~ x' ,  
t ha t  label the  co-ordinates g, (x)  of hyperspace  J//(1~).) The changes g , - - >  

! ! 
--> g~j[g] need not  be local, name ly  the new co-ordinates g~j(x) can be functionals  
of the  old co-ordinates {gk~(x')}. However ,  since the  metr ic  is diagonal in the  
continuous index x, we can restr ic t  ourselves to only local co-ordinate t rans-  

! 
format ions ,  g~(x)--~ g,(gk~(x)) so t ha t  metr ic  (3.4) remains diagonal. In  
other words, since J /  has the  geomet ry  of a direct  p roduc t  of a flat (infinite 
dimensional)  space labelled b y  x, t imes a six-dimensional  manifold  M with  
metr ic  G~,(go) (A, B, C -~ 1, ..., 6), we will only worry  abou t  the  invar iance 
of ~ o  under  diffeomorphisms of M. 

I t  has been shown by  DE WITT (~2) t ha t  M is a manifold  of hyperbol ic  
s ignature ( - - ,  ~-, ~-, ~-, ~-, ~-) formed b y  s tacking up along the (~time di- 
rection ,~ five-dimensional manifolds  ( ~ ) ,  having  all the  same intrinsic shape  
SLa/SO 3 and differing only b y  a scale factor.  Were  we to restr ict  ourselves 
to one of these five-dimensional subspaces, we would be compelled to choose 
the  Laplace-Bel t rami  opera tor  for 5/f0. But ,  hav ing  a t  our disposal a fami ly  
of ~ ' s  pa ramet r i zed  by  the scale factor,  we can consider the  opera tor  analogous 
to the more  general form (2.26). Thus we take  (1~) 

1 ~) II) 
(3.6) 5~o ---- - - ~  G~jk~Dg" Ogk~ -~ k ~ ,  

where ~)/~)g and ~ are the  covar iant  der ivat ive  and  the  l~icci scalar on ~f ,  
respectively.  Using the results of appendix  A, one finds 

(3.7) ~'•  _~ �89 k~ -- i(~(O)g-tgmn~ '~ ~- k~(O)~g-t-- g t R .  

Here  g "  ~ - -  i(~/~g~j) is the  opera tor  conjugate  to g~j which acts on the space 
of funct ionals  of g~j, T[g]. These functionals are supposed to be  o r thonormal  
under  the  invar ian t  inner p roduc t  

(3.8) 

(13) In this light, general co-ordinate covariance of general relativity can be regarded 
as an internal symmetry of the variables in hyperspaee. 
(14) To the best of our knowledge, this idea was first clearly proposed by K. KVC~AR 
(see K. KUCHAR: in Relativity, Astrophysics and Cosmology, edited by W. ISRAEL 
(Reidel, Dordrecht, 1973)). The same idea was later also used by Pilati and Teitelboim 
in a different approach to quantum gravity (see M. HENNEAVX, M. PILATI and C. T]~I- 
T~LBOIM: Phys. Lett. B, 110, 123 (1982)). 
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where G is the absolute value of the determinant of G ~jkz with respect to the 
discrete indices only. In this functional Hilbert space, the operator J t~  is 
Hermitian by construction. 

4. - The quantum algebra of  the constraints. 

The full dynamical content of Einstein's theory, of gravity in the absence 
of matter can be expressed by the four classical constraint equations 

(4.1) a~f• ~ 0, ~fi ~ 0 

where ~f• is the generator of normal deformations of the three-space given 
by (3.3) and 9 ~  are the generators of diffeomorphisms of the three geometries 

(4.2) Z ' ~ i - ~  - -  2 g i T d k k ,  k -  2 g i j F ~ , , z ~  m" . 

Consistency of weak equations (4.1) is guaranteed by the fact that these con- 
straints obey the classical (Poisson bracket) algebra 

(4.3a) [.za . , { . ]  - -  - [ ~ ,  + Ce,] a,,(x, ~) , 

(4.3b) [Y~',, ~ ]  = W~a,,(x, 2) + {,a,s(x,  x) , 

(4.3~) [~ , ,  { . ]  = Y~= a,,(x, 2 ) .  

Here ~g'~----g~J~fj with g~J being the inverse of the ~ co-ordinate ~ g~. and 
a(x, ~) is a scalar density such that  

(4.4) fl(x)a(x, 2)d~x=] (~) .  

In the quantum theory, eqs. (4.1) are to be understood as conditions on the 
wave function(al)s which define the physical Hilbert space 

(4.5) ~ •  = o ,  ~ , ~ [ g ]  = o .  

In order to construct a consistent quantum theory of gravity along these lines, 
one has to first define operators ~ and ~ and then test the consistency of 
these relations by constructing an algebra analogous to (4.3). The latter is, 
in general, a nontrivial requirement: the classical algebra can be spoiled by 
anomalies, or, if the theory is nonrenormalizable, by infinite series of quantum 
corrections to the classical form of the operators. 
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The procedure we adopt here is the following. We assume ~ x  to be given 
by (3.6) and, through the quan tum analogue of (4.3a), we define 9~*. In  ap- 
pendix B it  is shown tha t  

(4 .6)  [ ~ ,  ~ ]  = - i [ ~ ,  + do , ]  ~ , (x ,  2),  

where 

(4.7) a~ ~ - 2 ~ " -  ' "~" * " '~ = ,, 2 / ~ . ~  --~-3(0) 9 F~,.  

The operator ~ can be seen from eq. (4.6) to be t termit ian  under the same 
inner product  as ~ .  Indeed one can write ~f~ in the manifestly Hermit ian 
form 

(4.8) 5~ ~ _  _~j x _]~i 2(G ~ (7) ,~-  { ~., G-~""G ~'} 

where {A, B} is the ant icommutator  of A and B. The Hermit ici ty of ~ can 
be easily seen in (4.8) since G-~':~i'G ~ is the analogue of the Hermit ian derivative 
operator g-'~ G g "~ in ordinary curved space. 

In order to define ~ ,  we mult iply ~ by g~j from the left. This ensures 
tha t  9~T-- - -0 ,  provided #~T-- - -0 .  Thus we obtain 

(4.9) 

and the analogue of eq. (4.3b) is found to be (see appendix B for details) 

(4.10) E # , ,  = + 

Finally, the relation analogous to (4.3e) can be shown to be 

(4.11) = 
4 

The discussion of the anomalous terms in (4.11) will be left to the following 
section. 

The classical limit of the operators 5~. ,  ~v~ and their commutator  algebra 
is recovered by dropping the terms tha t  contain 3(0) and 3(0) * since they  arise 
from the commutators of ~ij and g**, which are of order h. 
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5 .  - D i s c u s s i o n .  

As we have  shown, it  is possible, start ing from first principles, to define 
a set of quan tum operators 9 ~  tha t  obey the correct classical algebra in the 
limit ~ - > 0 .  The constraints 9 ~ , T =  0, however, cannot  be consistently 
imposed on the  states unless the anomalous te rm appearing in (4.11) can be 
set to zero. 

One way to avoid the problem is to restr ict  the class of allowed diffeomor- 
phisms of three-space to those generated by  operators of the form 

(5.1) ~[/]  =fit(x) ~,(x) d'x ,  

with ]*;, = 0. In  this case the anomalous terms in (4.11) drop out f rom the 
integrated out- form of the commuta to r  algebra. 

An al ternat ive approach (~) would be to impose an addit ional  requirement  
of the form 

(5.2) ~_~  ~ ,ri ,~ ~ .  + a~(0)) T = o 

and fix the value of k = k(a) so tha t  the anomaly in (4.11) is just  2:. This 
would be the quan tum analogue of Dirac's maximal  slicing gauge (~), ~ = ~** = 
= g ~  ~ 0, where a~(0) in (5.2) can be viewed as a counter term required by  
quantization.  The geometrical meaning of ia ~ is tha t  of a generator  of ~mn 

conformal (scale) t ransformations:  consider the effect on gij(x) produced by  
it, namely 

g.(x)  --> ~'[9] g.(x)  = i ~ ( x ' )  g~.(x')~m'(x ') d~x ' g.(x)  = 3.Q(x) g . ( x ) ,  ~ 5 ~ 3 ~ 
d 

which is indeed a conformal t ransformation.  Thus the appearance of these 
extra  terms in the quantum algebra which were not  present  in its classical 
counterpar t  is reminiscent of the  conformal anomalies found in the context  
of other quan tum theories with massless fields (le). 

The condition ~v----  0 means tha t  we have chosen the wave functional  
to be a constant  along orbits in hyperspace which correspond to some part icular  
rescaling of the  metr ic  giJ. In  order to make (5.2) consistent with the remaining 
constraints,  one has to evaluate their  commutators .  I t  is s traightforward to 

(15) K.S. NA~AI~: private communications. 
(le) M.J. DUFF: Nuol. Phys. B, 125, 334 (1977); B. S. DE WITT: in General Relativity, 
as Einstein Centenary Survey, edited by S.W. HAWKING and W. ISRAEL (Cambridge 
University Press, Cambridge, 1979). 
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check t ha t  

(5.~) 

for any  value of ~ and tha t  

[~t, # ]  = 0 

(5.5) [~i, ~ ]  = i [ ~  + ~(0)(~ - ~)] ~,(x, ~). 

Therefore,  fi~ and 5 ~  form a closed first-class algebra if we take a ---- -~. This 
in tu rn  fixes the value of k to be -- ~ .  The last commuta to r  can be shown 
to be 

(5.6) 

Str ict ly speaking, the fact t ha t  the r ight-hand side of (5.6) is not  a linear com- 
bination of ~ and _4 could mean a serious obstacle to this programme:  
~ •  and ~ are now second-class operators and hence cannot  be consistently 
imposed as unrestr icted conditions on the states. This is also the case in the 
classical problem (17) and occurs because A ~ 0 corresponds to choosing a fol- 
liation of space-time into slices with vanishing extrinsic curvature  and this 
slicing is obviously not  invar iant  under  arb i t rary  normal  deformations gen- 
erated by  ~ . .  However,  the troublesome te rm in (5.6) can be el iminated from 
the in tegrated out-form of the  algebra by  suitably restricting the gauge changes 
generated by  A. Tha t  is allowing transformations of the form ~[e ~] ---- 
= f e'~(x)A (x) d3x with 

(5.7) (V ~ + / ~ ) ~  = o .  

This makes it  possible to consistently impose f e , ~ d 3 x T - ~  0 and fe~A �9 
�9 d S x T ~  O. The question is now whether  under  successive t ransformations 
generated by  ~ and fi~ relation (5.7) will be maintained.  Some light can be 
shed on this problem by s tudying the change of the classical action 

(5.s) S - ~ - f ( ~ i j ~  i j  - -  ~ V i ~ l  - -  ~ i ~  i - -  ~ A A )  d S x d t  

under  an infinitesimal t ransformat ion generated by  

(5.9) 

Here  ~t~ and A stand for some classical functions of the  dynamical  variables 

(IT) p . A .  • .  DIRAC: .Phys. Rev., 114, 924 (1959). 
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satisfying the following Poisson bracket  algebra: 

(5.1Oa) 

(5.10b) 

(5.1oc) 

[~,, A] = f  K~Ax, ~; x') A(x') d~x' , 

y )  2g (W + R) 

where K~Q, K,~ and K ~.~ can be read off f rom (4.6), '(4.10), (5.4), (5.5) and (5.6). 
Action (5.8) is invar iant  under  (5.9) then,  provided the Lagrange multipliers 
t ransform according to (18) 

(5.11a) 

(5.11b) 

(5.11c) A .L i 

(we have omi t ted  the explicit  x, x' and x" dependence for simplicity) and the 
gauge paramete r  e ~ is restr icted by  (5.7). In  order to see t h a t  eq. (5.7) can be 
maintained under  a successive t ransformat ion of the  form (5.11), it  is suf- 
ficient to find some parameter  ~ ' ,  also a solution of (5.7), and such tha t  

(5.12) 

for a given set of functions ~,, N , .  In  principle, there  seems to be no reason 
to believe t ha t  this equat ion could have no solutions, especially since the  t ime 
dependence of e ~' is not  restr icted by  boundary  conditions of the type  tha t  
fix s x, which is instead associated to a symmet ry  generator  quadrat ic  in 
momenta  (18). In  particular,  for Teitelboim's proper- t ime gauge (18), N i ~  

0 - ~  ~ ,  one finds 

(5.13) ~ '  + (~ + N~)e';, ---- O, 

which certainly admits many  solutions and one can expect  the same to be 
t rue for other  gauges. In  this sense, the presence of the anomalous t e rm in the 
algebra can be interpreted as a gauge artifact.  

Although this discussion only shows tha t  classically the  anomaly is a gauge 
effect and a complete quantum-mechanical  proof is still needed, this problem 

(18) C. T~IT~LBOI~: Phys. Rev. D, 25, 3159 (1982). 
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lies beyond  the scope of this work  which is mere ly  interested in s tudying the 
consequences of wha t  seems to be  the na tura l  ordering proposed here for the 
opera tor  ~ . .  A more detai led and  thorough discussion on this issue will be 
presented elsewhere. 

I n  thei r  final form, the  opera tor  ~ and fi~ exhibi t  corrections of order 
and ~2 only with respect  to thei r  classical counterpar t s  C~ and ~. This suggests 

t ha t  in the  action one would need a t  mos t  two-loop counter terms,  which in tu rn  
means  t h a t  only ~ finite n u m b e r  of pa ramete r s  of the  theory  would have  to be  
adjus ted  in order to renormalize  it. ) ioreover ,  the  fact  t ha t  the  algebra could 
be made  to close seems to indicate  t ha t  a consistent  q u a n t u m  theory  migh t  
exist which has Einstein 's  g r av i ty  as its classical l imit  and has the same sym- 
m e t r y  group as it. (Of course, all this is condit ional on the existence of a con- 
sistent gauge choice, for which we have  given a heurist ic  a rgument  only.) As 
to wha t  could be the convent ional  (per turbat ive)  fo rm of such a theory  we can 
not  say, bu t  it mus t  be something quite different f rom the s tandard  weak- 
field l inearized approx imat ion  which does not  seem to be renormalizable  (x9). 

We would like to t h a n k  A. AStITEKA]~ A. IqAMAZIE, K . S .  NAlCAIIN and 
t L  SAI~ADI for helpful and  encouraging discussions and G. GHIRARDI for 
interest ing comments  on the  manuscr ip t .  One of us (JZ) is grateful  to L. CA- 
STELLANI, G . D .  DATE, 1VI. DUFF, J .  1~. F. LABASTIDA, W. NAHlVl, K.  PILCH, 
J .  STlCATHDEE and C. TEITELBOIlV[ for s t imula t ing  discussions on different 
points  contained in this paper .  Bo th  authors  would like to t hank  Prof.  ABDUS 
SALAd, the  In te rna t iona l  Atomic  Energy  Agency and  UNESCO for hospi ta l i ty  
a t  the  In te rna t iona l  Centre for Theoretical  Physics,  Trieste. 

APPENDIX A 

I n  this appendix  we give some useful relat ions concerning the  geome t ry  
of the  space of all metr ics  gij(X)~ J/[. Following DE WIT~, the  metr ic  on this 
space is t a k e n  to be  the  hype rme t r i c  

(A.1) G,kz(g(x))  = g-~(x)(g~k(x)g~(x) ~- g~z(x)g,~(x) --  g~j(x)gkz(x)) . 

We assume the  co-ordinates to be  given b y  the  entries of the  3-metr ic  g , ( x ) .  
Thus G ~  in eq. (A.1) should t r ans fo rm as a con t r ava r i an t  second-rank tensor  

(19) G. 'T I-IOOFT: Quantum Gravity: a /uudameutat problem and some radical ideas, 
Lecture delivered at The Cargese Summer School 1978, edited by M. LEvy and S. DES~R 
(1978), and references therein. 
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in order t h a t  the  contract ion of i t  with ~ ,  z ~  t ransforms as a scalar in ~//. 
The inverse (covariant)  metr ic  is 

(~.2) 

(A.3) 

G ~  _~ { gt(g~ g~S q_ gi~ g ~ _  2gi~ g~) , 

l [ , ~ m t ~ n  m n G~~sG ~s~"= ~i'3" ~ ~ ~ + d~ d~) . 

F r o m  now on, the  x-dependence will be  implici t ly assumed except  for ~mbig- 
uous cases. S ta r t ing  f rom definitions (A.1) and  (A.2) one can find the  Chri- 
stoffel symbol  

(A.4) 

to be  

(A.5) 

{ ij kl I 1 [ ~ G~j~q_ ~ ~ G ~ t ~ _ ~ G , ~ s  ] 

{i~ kl I 1 ks ii ~ ks ~i ~ a J~ ~- g 6m. 
mn ~ [g O~, + g 6.. .--  g 6.. .-- -- J 

_ gkjO~. _ g~6~. -+- g-tGlJ~Sg~. ~(0). 

Analogously,  one defines the cu rva tu re  tensor 

" '~  - -  ~g ~  [ m n  j 3g~s ( m n  j 

-~ {iJrskl ! [pq rs I [i] Pql ! k[ rsl 
j (  mn j - - (  rs j [  mn j" 

F r o m  this, the  l~icci tensor R "ks and  the  scalar curva ture  R are found to be 

RiJ ks _ 1 
--  ]-6 g~g~Sc~(O)~ (A.7) 

and 

(A.8) 

respectively.  
tions 

(A.9) 

(A.~o) 

3 
R ---- - -  ~-6 g - t  ~ ( 0 )  2 , 

Throughou t  this calculat ion use has been made  of the  defini- 

3gi~(x) g~s(x') = 6~5(x, x ' ) ,  

~g.(x) 
1 

_ _  gk~(x, ) = _ ~ (g~k g~ + g ,  g~k) 5(x, x ' ) .  

Using the hyper space  analogue of the  relat ion 

F~ = �89 ln g , 

2 - l l  N u o v o  C i m e n l o  B .  
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we c~n find the relationship between G ~ det G "k~ and g : Idetg , [  

i g-~  
(A.11) G - -  256 ' 

where the factor 1/256 has been fixed by  taking the flat-space limit g~. ~ 5 , .  

APPENDIX B 

In this appendix we outline the derivation of the quan tum algebra for 
the constraints.  The basic commuta to r  between the canonical variables is 

(B.1) [~i~(x), g~(x')] ---- --  i~(~(x,  x') 

in the units ~ ~ e ~ 1. Using this relation and the definition of the Ricci 
scalar R, 

one finds, ~fter a little algebra, 

(B.2) - -  - ~ - " ~ . , o , , t x ,  2 ) )  § 

~- 2ig-~ G k ~  (~ ~ ( x ,  2 ) ,  

where a tilde under a symbol  denotes its evaluation at the point  2; otherwise 
the funct ion is understood to be evaluated at  x. I n  order to calcttlate the com- 
muta to r  appearing in (4.6), we first observe tha t  the only nonvanishing con- 
tr ibutions are 

~ o s  J j .  

The first two terms reduce to 

(B.4) i[2~J,~ -t-- "rFi 4 ~z't ( ~z, s--~i(~(O)F~,gZ']--i[x+-~2], 

where the last te rm is minus the first one with x and 2 interchanged. The 
last two terms are 

(B.5) 28(0 ) - "F*~  ~x 2 ) - -  [x~-~2] 

Combining (B.4) and (B.5) one obtains relation (4.6) with definition (4.7). 
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In this derivation use has been made of the identities 

(B.6a) ]~(x, 2) : ]~(x, 2 ) ,  

(B.6b) ]~.,(x, 2) : f6.,(x, 2) ~- ].i ~(x, 2) ,  

(B.6c) g/~(x,  2).~,-- g[(~ .... (x, 2) = 

where 
c ~  8 

i(x, 2) ~ ~ x  ~ ~(x, 2) = - ~(x, 2),i -- ~(x, 2 ) .  , ~ 2 ~  

We have also adopted the traditional convention 

(B.7) (~,i(x, x) ~ l im 6,i(x, x") = 0 , 

which imples, in particular, t ha t  

(B.8) Lnr A,J,k, gm,] 0 --~ [~J, gm,,~] �9 

Relation (4.]0) can now be easily deduced by observing that~ in 

(B.9) 3~f ~ _ 2g,~k.k J ~,,,, ~ k = - 2 g . F ~ . ~  - ~ a ( o ) F L ,  

the first two terms have no factor ordering problem by virtue of (B.8). Then, 

where C~ stands for the first two terms in (B.9), the r  commutator  
reproduces the <( classical )> result 

Furthermore,  i t  can easily be verified tha t  

(B.12) [F~,, ~j] + [0,, F:j] = iFf~(~,,(x, 2) - - iF~,~(x ,  2),~. 

By adding (B.1]) to (B.]2) eq. (4.10) follows. 
The last commutator  (eq. (4.11)) is obtained as follows. The operator ~ •  

can be split into a (( classical ~) part  Co and (( quantum corrections ~> as 

(B.13) fits. =- Co-- i5(O)g-~gm,~""  + k~(0)2g -t  , 

where 

(B.14) ~o = �89 G ~  ~ " ~ -  g~R .  
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T h e n  t he  c o m m u t a t o r  in (4.11) can  be  wr i t t en  as 

(B.15) [ ~ , ,  5 ~ ]  = [03, 0el - -  i6(0)[0; ,  - - � 8 9  4m.q _ i O(0)[F~,, Oo] - -  

i ~ ( o ) ~ [ ? ~  ' . _ ~ . . ~ . ~  ,-~ ~ m ~  ~ § k~(0)~[0,,_g-~]. 

The  first  t e r m  on the  r i g h t - h a n d  side is 

Since r is l inear in ~** a nd  gin,,, all t he  ~ ' s  can  be  p u t  on the  far  r igh t  in  this  
express ion  w i t h o u t  p ick ing  up  a n y  fu r the r  c o m m u t a t o r s .  Moreover ,  because  ~ 
has  no f ac to r  order ing p rob l em,  t he  las t  c o m m u t a t o r  gives b a c k  i - t imes  t he  
classical  value.  Thus  we conc lude  

(]3.16) [0 , ,  Q0] = iOoa,,(x, ~2). 

The  r ema in ing  te rms  in  (]3.15) can  be  f o u n d  in a s t r a i gh t fo rwa rd  m a n n e r  to  be  

~- (s a - -  k)i(~(0)~g-~(~,(% ~) - -  ( ~ -  2k)ie(O)2g-iF~,6(x,  ~).  

Then (]3.15) becomes  

(]3.17) [~f , ,  @~]  = ifff  • s -- { 8 ( O ) ( g - i g ~ 5 ( x ,  ~)),, + 

~- (~-- 2k) i~( O)~(g-i 5(x, ~) ).~ , 

which  is t he  restflt c la imed in (4.11). 

_7%re added in proo]. 

Recently, anomalous quantum %heories have at tracted considerable interest, par- 
ticularly in connection with the theory of strings (see, e.g., (~0,21), and references therein). 
In  fact, some anomalous theories are seen to correspond to ray representations of the 
symmetry  group and can be conveniently discussed in the laguagc of co-cycles (~1). 
We have an alternative point of view in the case of our anomalous quantum algebra 
(4.11), which we present in the following paper of this issue. There we show that  the 
nonclosttre of the algebra does not necessarily mean that  the group of diffeormor- 
phisms is an anomalous quantum symmetry,  but  it only reflects the fact that  the 
basic commutation relations (3-1) do not transform tensorially under co-ordinate 
changes. 

(20) L. FADDEEV: Phys. Left. B, 145, 81 (1984). 
(al) R. JACKIW: Anomalies and co.cyeles, MIT preprint CTP No. 1268; Making sense el 
anomalous gauge theories, APS Particle and ]Field Meeting, Eugene Dregon, MIT preprint 
CTP No. 1300, and references therein. 
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�9 R I A S S U N T 0  (*) 

Si presenta un  approceio non perturbativo alla quantizzazione dell 'algebra canonica 
della gravit~ pura. I1 problema dell 'ordinamento in fattori  di operatori nei vincoli 
~ r  ~ risolto invocando l 'hermiticits sotto il prodotr interne invariante nell 'iper- 
spazio - -  lo spazio di tut te  le metriche tr idimensionali  gt j (x)  - -  e covarianza sotto tra- 
sformazioni di coordinate. I r isul tant i  operatori ~F, ricevono solo correzioni d'ordine 
e 52 e l 'algebra chiude fine ad un termine ad anomalia conforme. Se l 'algebra ~ allar- 
gata con l ' inclusione dell 'operatore anomalo, si pus  mostrare the, con adeguata scelta 
del parametro di gauge che corrisponde a questa simmetria non fisica, la forma integrata 
dell 'algebra pub esser fat ta ehiudere. 

(*) Tq 'aduz ioue  a e u r a  del la R e d a z i o n e .  

Pc31oMc He llO21y-qeHO. 


