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Summary. A nonperturbative approach to the quantization of the
canonical algebra of pure gravity is presented. The problem of factor
ordering of operators in the constraints #,% = 0 is resolved by invoking
Hermiticity under the invariant inner product in hyperspace—the space
of all three-dimensional metrics g;,(x)— and covariance under co-ordinate
transformations. The resulting operators #, receive corrections of order %
and #2 only and the algebra closes up to a conformal anomaly term.
If the algebra is enlarged by the inclusion of the anomalous operator,
it can be shown that, by some suitable choice of the gauge parameter
corresponding to this unphysical symmetry, the integrated form of the
algebra can be made to close.

PACS. 04.60. — Quantum theory of gravitation.
PACS. 04.20.Fy. — Canonical formalism, Lagrangians and variational
principles.

1. — Introduction.

The attempts to quantize Einstein’s theory of gravitation are more than
fifty years old (1). Nevertheless, the formulation of the theory was obscured
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(**) Facultad de Ciencias, Universidad de Chile, Casilla 653 Santiago, Chile, and Centro
de Estudios Cientificos de Santiago Casilla 16443 Correo 9.

() L. RoSeNFELD: Ann. Phys. (Leipzig), 5, 113 (1930); Z. Phys., 65, 589 (1930);
P. G. BERGMANN: Helv. Acta Suppl., 4, 79 (1956), and references therein.
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by the existence of constraints among the dynamical variables. A consistent
treatment of constrained systems was put forward by Dirac (2) and further
developed by TEITELBOIM (®) and others. Following Dirac’s original programme,
the weak constraint equations 5, ~ 0 ought to become conditions on the
physical states of the corresponding quantum theory #,% = 0. While the
congistency of the classical constraints is ensured by the first-class algebra
obeyed by them

(1.1a) (., #.)=—[g9#:+ g7 #]0 (@, &),
(1.1b) [, ;'%1] =H;0,/x, T) + H:0 5z, &),
(1.1¢) [y H 1] =H 64w, &)

(a tilde under a symbol is used to indicate that the argument of the corresponding
funetion is #; otherwise it is assumed to be z), the realization of the corre-
sponding quantum algebra is obstructed by ordering ambiguities in the op-
erators /,. Some authors (*) have come to the conclusion that there exists
no Hermitian factor ordering that gives a consistent (closed) algebra. Those
investigations, however, have been restricted by the implicit assumption that
Hermiticity is to be defined in terms of the trivial inner product

f‘P{“T, IT1a%g(@)1.
Here we propose that the inner product should be
[, 11 [Vigiay]

instead, where G is the determinant of G*!(z)—the metric in hyperspace (5).
This seems to be a more natural choice in view of the fact that all Lagrangian
theories are constructed in terms of generalized co-ordinates and should, there-
fore, be covariant under general co-ordinate transformations. The co-ordinates

() P.A.M. Dirac: Can. J. Math., 2, 129 (1950); Lectures on Quanium Mechanics
(Academic Press, New York, N.Y., 1965),

(®) C. TeirELBoIM: The Hamiltonian structure of Spacetime, Ph.D. Thesis, Princeton
University; S. Hosman, K. Kucuar and C. TerrerBoiM: Ann. Phys. (N. Y.), 96, 88
(1976).

() J. ANDERSON: Phys. Rev., 114, 1182 (1959); A. KoMar: Phys. Rev. D, 20, 830
(1979).

(®) We adopt the name hyperspace for the space of all three metrics g,,(x) instead of
the traditional one of superspace, to avoid confusion with the superspace of super-
symmetric theories.
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in this case are the metric components g,;(x). This idea was previously ex-
ploited in the context of quantum cosmological models (°) and the present paper
extends it to the general case, in which no particular symmetry assumptions
for the three-space are made.

Recently, there has been growing interest in quantum-cosmological models
mainly in connection with the fate of the singularities of classical general
relativity (7). Statements based on the wave function(al) of the Universe are,
however, crucially dependent upon the choice of the quantum operator # N
which defines it. It is, therefore, not of merely academic interest to resolve the
ordering ambiguities for the quantum operators.

The paper is organized as follows. In sect. 2 a resolution of the ordering
ambiguity for operators of the form 1 f(q)p? in one dimension is presented and
the extension to several degrees of freedom is discussed. In sect. 3 we propose
a Hermitian ordering for % . which is naturally induced by the symmetry
of hyperspace. In sect. 4 the remaining operators #; are given and the quantum
algebra is presented. Section 5 contains some discussion on the results obtained.

2. — Quantum mechanics.

a) One degree of freedom. In writing the quantum-mechanical version
of a classical theory, it is necessary to invert the limiting process # — 0, but,
a8 is well known, this problem does not possess a unique solution except in
a few very simple cases—e.g. theories without derivative couplings in Cartesian
co-ordinates. The problem is, in its simplest form, that there is more than one
quantum operator F(g, #) that in the limit %# — 0 approaches a given classical
function F(q, p) (}). (Here ¢, p are the classical co-ordinates and momenta
and ¢, p are their quantal counterparts.)

Here we suggest a procedure that gives a unique prescription for the quan-
tization of a wide class of theories which is a generalization of a prescription
developed in the context of quantum-cosmological models (). In this paper
we shall only consider theories whose Hamiltonians are quadratic in momenta
so that their quantum dynamics are given by second-order (functional) dif-
ferential equations.

(&) T. CurisToDOULAKIS and J. ZANELLI: Phys. Rev. D, 29, 2738 (1984); Phys. Lett. 4,
102, 227 (1984).

() J.B. HARTLE and S. W. HawkiNGg: Phys. Rev. D, 28, 2960 (1983), and references
therein.

(®) See, for instance, L. CoHEN: Contemporary Research in the Foundations and Philo-
sophy of Quantum Theory, edited by C. A. Hooker (D. Reidel Publ. Co., Dordrecht,
1973).
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In order to illustrate the idea, consider the Hamiltonian of a one-dimensional
clagsical system of the form

(2.1) H==H,p,q)+ V),
where
{ H,= 3 f(@)p*, fle) >0,
(2.2)
g, p1=1.

Clearly there are many possible orderings in the quantum theory which
could give rise to (2.1) in the limit # — 0; to mention just a few, take

(2.30) AP = 319 5*,
(2.3b) AP =$1%f(g),
(2.30) AP = 15(9)#,
(2.34) HY = 3 $*4(@)Bf*(q) , ete.

In order to resolve this ambiguity, we first note that Hamiltonian (2.1) is
obtained from the Lagrangian (°)

(24) L=3}f"9¢—V@.

In the Lagrangian we can change the variable ¢ by a new co-ordinate x de-
fined by

a
(2.5) v =a(g) =[Hg)ag &= f4d,
and we observe that (2.4) now takes the form

(2.6) L = it~ V(q()) .

The change of co-ordinates (2.3) is a point (canonical) transformation and,
therefore, Lagrangian (2.6) describes the same system and contains the same

information as (2.4). The Hamiltonian in the new variables is

(2-7) Hozép:y p‘,:-'i’:fip-

(®) Here we are interested in cases in which f(¢g) > 0, so that the action will have a mini-
mum rather than a maximum on the classical orbits.
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This familiar form can be quantized in the standard manner and has no ordering
ambiguity. Since the Poisson bracket of x with p, is one, we take in the Schrod-
inger representation

(2.8) t=u, Po=—1——
and the quantum Hamiltonian is just

1 4z
(2.9) E"_“Q‘Eﬁ'

Now, either by a change of variables in (2.8) from « back to ¢, or by virtue
of eq. (2.7), we have

, d p
(2.10) P = —if¥(q) = Mos,
where
.d

Thus the ordering assigned to H, is naturally selected to be

(2.11) ' H,=}1q) 849 B,

which is different from the more ¢« plausible » orderings in (2.3). It should be
stressed that the different choices (2.3), (2.11) give rise to radically different
Schridinger equations and it is, therefore, an important point to decide which
one is the correct choice. In deriving (2.11) we have only assumed invari-
ance of the system under co-ordinate transformations. This is correct clas-
sically, since the Lagrangian formalism is constructed using generalized co-
ordinates, as well as quantum-mechanically, because (2.10) is a standard
change of variables in a differential equation (°). As a result, the canonical
momentum transforms as a covariant vector and the Hamiltonian is the Laplace-

(1%} It could be argued that invariance under the more general class of canonical
transformations (g, p) - (q'(¢. ), »'(¢, p)) should be required. This generalization, how-
ever, is bound to fail because canonical transformations do not commute with the quan-
tization procedure. The points is that in quantizing one chooses a polarization in order
to reduce the number of dimensions of phase space by half—e.g. 9/(dp)¥(q, p) =
= 0 > ¥ = ¥(q). Thus, unless one considers transformations which leave invariant
the subspace defined by the polarization, it would be impossible to implement them
as symmetries of the quantum theory. In this sense, general co-ordinate covariance
is the maximal symmetry one could demand for a generic quantum theory, if one is
to work in the configuration representation. (Particular systems may, of course, possess
extra symmetries but these are not required by the canonical approach.)
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Beltrami operator which is a scalar under co-ordinate transformations, as it
should be.

There is still the question of Hermiticity of H, to be clarified. But the
Hermiticity of (2.9) is obviously guaranteed if we define the inner product in
the x co-ordinates to be

(2.12) Wil = [ @) p,(0) do

and we require it to be invariant under co-ordinate transformations.
Then in the g co-ordinates (2.11) is trivially Hermitian under the inner
product

(2.13) il = [ @ vl0) @ g,

where ft is the Jacobian of the transformation z — g¢.

b) N degrees of freedom (point particle in ecurved space). One can try to
generalize the steps of the previous construction for several variables. The
programme, however, is a nontrivial one because it is impossible to diagonalize
the metric everywhere in a generic higher-dimensional manifold by a pure
co-ordinate transformation.

Consider a mechanical system described by co-ordinates ¢* (¢ =1, ..., N)
and the corresponding momenta p, = 9L/d¢* (where ¢* = dg*/d4, A being some
affine parameter). The generalization of (2.2) is

(2.14) Hy = }y**(Q)paps

with [¢%, pg] = 0%. Here y*# is a nondegenerate arbitrary symmetric matrix
function of the co-ordinates only. Expression (2.14) also corresponds to the
Hamiltonian of a free point particle of unit mass on a manifold with metric
vas (the inverse of y*8) and can be derived from the Lagrangian

(2.15) L(g(4), 4(4)) = }vaslg) 4*¢#,
so that

oL .
(2.16) e =55 = vas(q)g®

(here A can be identified with the proper time or proper arc length dA: =
= yapdg*dg#). The signature of y will be assumed to be

(2.17) I R R T t+s=N.

i 8
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One can now try to proceed by analogy with the one-dimensional case and de-
fine new co-ordinates s*(q) such that

(2.18) VapG*qdP = 1,5 8°8°,

e = diag (41,..., +1,—1,...,—1).
i s

Obviously this cannot be done globally unless the. manifold is flat. In the
flat case—and only then—one can define the canonical momenta conjugate
to s°,

oL
2.19 = = 7 S0
( ) pu asa 7] bs
and hence
§o = /g )

where n® is the inverse of #,. Then in a straightforward way the quantum-
mechanical counterpart of H, is found to be

(2.20) By =— }y0DuDs = — } V2,

where D, is the covariant derivative on the manifold.

It should be stressed that the generalization of (2.20) to arbitrary spaces
requires some extra assumptions. So far we have only required covariance of
the Lagrangian formulation. This guideline is, however, insufficient to define
uniquely a canonical ordering in a generic curved space. In fact, there are
still many possible second-order differential operators that reduce to (2.20)
in flat space which are not the Laplacian.

One could invoke some principle like « naturalness », or « simplicity », ete.
and define by flat (2.20) as the correct form in an arbitrary manifold, but one
should be aware that this does not follow from any prineciple of classical or
quantum theory.

Taking the minimal substitution of ordinary derivatives by covariant
derivatives in curved spaces certainly eliminates the ordering problem: D,
and y*8 commute. This does not mean, however, that — <D, should be identified
with the canonical momentum conjugate to g¢#:[g#,iD,] % 64, whereas
[q, — 20y] = d4,.

One important case in which there are compelling reasons to choose form
(2.20) over other alternatives is that of maximally symmetric spaces of the
form G/H. Then besides the reparametrization—or co-ordinate transforma-
tion—invariance of the theory there exists the group of isometries of the space
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and the Laplacian can be written in the form (1)

(2.21) Ve = 5—2 [e(G) — e (H)],

where ¢,(@) and c¢,(H) are the quadratic Casimir operators of the groups @
and H, respectively, and a is some constant that sets the scale. Then the La-
placian choice is required if one wants to guarantee the invariance of the
quantum theory under the isometry transformations of the manifold.

The choice of the Laplace-Beltrami operator amounts to selecting the
ordering of p’s and ¢’s to be

(2.22) H=—1Vi=1§{ytpptyeeps, 1y ==|det [yall,

where fx = — i(0/d¢%). Naturally, the operator H, is Hermitian under the
co-ordinate invariant inner product

(2.23) il =[vH @ vl V7 e

It is trivial to check that in one dimension (2.22) and (2.32) reduce to (2.11)
and (2.13), respectively. One might want to consider the most general linear
combination of monomials constructed out of 4*f and quadratic in p. of the
form

(2.240) A = p8yepoy® Poye, a+b+e=0,
(2.24b) B =y puy poy ey, e+i+h=0,
(2.240) O = y*Bay'y*s Boy™, k+1+4+m=0,
(2.244) D = yryu Bayyu oy y?8 p+qgtr=0,
(2-24¢) B = yty s poy* yur Bay* v t+utv=0,

ete., all of which reduce to (2.14) in the limit # — 0. One can observe that,
whatever linear combination of these expressions is chosen, the resulting op-
erator has the form

(2.25) Hy=—}[y» 0.0+ Bro,+ o],

(1Y) J. SrraTHDEE: ICTP, internal report IC/83/3, unpublished. K. Prrnce and A.N.
SCHELLEKENS: Stony Brook preprint ITP-8B.84-20, submitted to J. Math. Phys.
(N.Y.). '
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where B« is linear in first derivatives of y,,, while ¢ is quadratic in first derivatives
and linear in second derivatives of . If one demands H, to be a scalar, it
can be shown that B* = — y”‘ﬁ]’;‘ﬂ and ¢ is a scalar, which cannot be anything
else but the Ricci scalar (up to constants). Thus, the most general form ad-
missible for H, is

(2.26) A,=—1V: L kR.

3. — Quantum gravity (infinitely many degrees of freedom).

The natural generalization of (2.14) to infinitely many degrees of freedom
is obtained by introducing a set of continuous indices x = (2, ..., ¥). The
co-ordinates are now field variables ¢*(#) and their canonical conjugate mo-
menta my(x) satisfy

3.1) [94(2), 7P(@')] = 0.°0(w, @) .

We generalize (2.14) in the form

(3.2) Hy = }@.olg (@, 2')n4(o) 2(@)

where a sum is understood over repeated indices including the continuous
indices #, #', and G,z is, in general, a functional of the fields q.(x).

In gravity, the operator that plays the role of the Hamiltonian is the gen-
erator of normal deformations of the three-space geometry, 57, (*»12):

(3.3) H, =} Cyuntint'— g R,
where
(3.4) Qi =0 G0 + Ju i — Gii ) » g= ldet gi.’ll'

Here g,;(z) stands for the metric of the 3-geometry and R is the Ricei scalar
associated with it. Because G, (#) is trivially diagonal in the continuous index
z, ' (all the g,;’s are taken at the same point), instead of (3.2), it is more con-
venient to consider the density

(3.5) Ho(w) = § Gisu(@)ntH(@)n* (@),
where the sum runs over the discrete (Latin) indices only.

It is clear that the operator ordering problem is particularly severe in this
case. We would like to say in the spirit of our previous discussion that the

(**) B.S8. DE Wirr: Phys. Rev., 160, 1113 (1967).
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quantum descendant of 5#, is some operator 9?0, which should be invariant
under co-ordinate transformations g,, —>gz'.j[g]. (These co-ordinate transfor-
mations have nothing to do with the diffeomorphisms on the three-space sur-
faces. The latter should be thought of as changes in the space of indices z — &/,
that label the co-ordinates g,(x) of hyperspace .# (**).) The changes g, —
— ¢.,[g] need not be local, namely the new co-ordinates g,,(#) can be functionals
of the old co-ordinates {g,,(x')}. However, since the metric is diagonal in the
continuous index x, we can restrict ourselves to only local co-ordinate trans-
formations, g¢,,(x) — g:.j(gk,(x)) so that metric (3.4) remains diagonal. In
other words, since .# has the geometry of a direct product of a flat (infinite
dimensional) space labelled by x, times a six-dimensional manifold M with
metrie @45(9.) (4, B, C =1, ..., 6), we will only worry about the invariance
of 57, under diffeomorphisms of M.

It has been shown by DE WitTT (2) that M is a manifold of hyperbolic
signature (—, 4+, +, +, +, +) formed by stacking up along the « time di-
rection » five-dimensional manifolds (£2,), having all the same intrinsic shape
SL,/80, and differing only by a scale factor. Were we to restrict ourselves
to one of these five-dimensional subspaces, we would be compelled to choose
the Laplace-Beltrami operator for 5#,. But, having at our disposal a family
of £,’s parametrized by the scale factor, we can consider the operator analogous
to the more general form (2.26). Thus we take (%)

~ 1 D D

(3.6) %o:—gaﬁkzmm‘l“k@’

where D/Dg and # are the covariant derivative and the Ricei scalar on ./,
respectively. Using the results of appendix A, one finds

~

(3.7) B\ = 1@ AR — i5(0) g guumn 4+ kO(0)2 gt — PR
Here #7 = — 4(3/3¢,;) is the operator conjugate to g,; which acts on the space

of functionals of g,;, ¥[g]. These functionals are supposed to be orthonormal
under the invariant inner product

(3.8) PP = f TTIV16] d%) ¥, ,

(1%) In this light, general co-ordinate covariance of general relativity can be regarded
as an internal symmetry of the variables in hyperspace.

(%) To the best of our knowledge, this idea was first clearly proposed by K. KucHAR
(see K. KucHAR: in Relativity, Astrophysics and Cosmology, edited by W. ISRAEL
(Reidel, Dordrecht, 1973)). The same idea was later also used by Pilati and Teitelboim
in a different approach to quantum gravity (see M. HENNEAUX, M. Pirati and C. TeI-
TELBOIM: Phys. Lett. B, 110, 123 (1982)).
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where @ is the absolute value of the determinant of G/*' with respect to the

discrete indices only. In this functional Hilbert space, the operator /2, is
Hermitian by construction.

4. — The quantum algebra of the constraints.

The full dynamical content of Einstein’s theory of gravity in the absence
of matter can be expressed by the four classical constraint equations

(4.1) H, ~0, H,~0,

where 5, is the generator of normal deformations of the three-space given
by (3.3) and 5#; are the generators of diffeomorphisms of the three geometries

(4.2) Hy=— 29,7, k—2¢g,[ a™".

Consistency of weak equations (4.1) is guaranteed by the fact that these con-
straints obey the classical (Poisson bracket) algebra

(4.3a) [,y #.] = — [#5+ #7800, 7).
(4.30) iy H5] =H;68,:(2, &) + H:,(x, 2),
(4.3¢) [y # 1] =H,6,xT).

Here s = gi#, with g*/ being the inverse of the «co-ordinate» ¢, and
o(xz, &) is a scalar density such that

(4.4) [1t@) 8, &) %0 = (@)

In the quantum theory, eqs. (4.1) are to be understood as conditions on the
wave function(al)s which define the physical Hilbert space

(4.5) & Plgl=0, HPgl=0.

In order to construct a consistent quantum theory of gravity along these lines,
one has to first define operators #, and J#, and then test the consistency of
these relations by constructing an algebra analogous to (4.3). The latter is,
in general, a nontrivial requirement: the classical algebra can be spoiled by
anomalies, or, if the theory is nonrenormalizable, by infinite series of quantum
corrections to the classical form of the operators.
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The procedure we adopt here is the following. We assume 2 . to be given
by (3.6) and, through the quantum analogue of (4.3a), we define /. In ap-
pendix B it is shown that

(4.6) [*}?J_, ’9%_1_] = 7:[J?i + ?t] 0, &),
where
(4.7) = — 2, — oI A % 8(0)g" IE,.

The operator At can be seen from eq. (4.6) to be Hermitian under the same
inner product as # . Indeed one can write ##* in the manifestly Hermitian
form

(4.8) # = — 2GigHeY)  — (I, a6,

where {4, B} is the anticommutator of A and B. The Hermiticity of #* can
be easily seen in (4.8) since G~*#£” G* is the analogue of the Hermitian derivative
operator g 40,¢% in ordinary curved space.

In order to define J;, we multiply S/ by g;; from the left. This ensures
that 42, = 0, provided #¥ = 0. Thus we obtain

~

(4.9) #y = — 20,8 — 20, Tind™ — 2 8(0) I

and the analogue of eq. (4.30) is found to be (see appendix B for details)
(4.10) [, #5] = i(#,;0,(x, &) + #:6,(@, &) .

Finally, the relation analogous to (4.3¢) can be shown to be

(@11) [, £.] =i, 0 i, B) —

-4(0) [g-*(gmmmﬂ— (i35 5) o0 )ocs w)]

The discussion of the anomalous terms in (4.11) will be left to the following
section.

The classical limit of the operators #,, #, and their commutator algebra
is recovered by dropping the terms that contain §(0) and §(0)2 since they arise
from the commutators of #‘/ and g,;, which are of order #.

Wl ot
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5. — Discussion.

As we have shown, it is possible, starting from first prineciples, to define
a set of quantum operators 9?,, that obey the correct classical algebra in the
limit % —>0. The constraints #2,¥ = 0, however, cannot be consistently
imposed on the states unless the anomalous term appearing in (4.11) can be
set to zero.

One way to avoid the problem is to restrict the class of allowed diffeomor-
phisms of three-space to those generated by operators of the form

5.1) #1f] = [ (@) # (@)

with f%; = 0. In this case the anomalous terms in (4.11) drop out from the
integrated out-form of the commutator algebra.

An alternative approach (**) would be to impose an additional requirement
of the form

(5.2) AV = (igp, 7 + ad(0)) ¥ =0

and fix the value of k¥ = k(«) so that the anomaly in (4.11) is just A. This
would be the quantum analogue of Dirac’s maximal slicing gauge (*), 7z = n‘;, =
= g;m* ~ 0, where «4(0) in (5.2) can be viewed as a counterterm required by
quantization. The geometrical meaning of g,,A™" is that of a generator of
conformal (scale) transformations: consider the effect on g.(x) produced by
it, namely

6:3)  gulo) > Q19u(0) = i[2(0") gnal@) (@) X' g.(a) = 32@) gus(@)

which is indeed a conformal transformation. Thus the appearance of these
extra terms in the quantum algebra which were not present in its classical
counterpart is reminiscent of the conformal anomalies found in the context
of other quantum theories with massless fields ().

The condition Ay = 0 means that we have chosen the wave functional
to be a constant along orbits in hyperspace which correspond to some particular
rescaling of the metric g,;. In order to make (5.2) consistent with the remaining
constraints, one has to evaluate their commutators. It is straightforward to

(13) K. 8. NARAIN: private communications.

(1%) M. J. DuFrr: Nucl. Phys. B, 125, 334 (1977); B. 8. DE WiTT: in General Relativity,
as Hinstein Oentenary Survey, edited by S. W. HawkiNg and W. IsrarL (Cambridge
University Press, Cambridge, 1979).
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check that

(5.4) [4, A1=0

for any value of « and that

(5.5) [, £ =il4d + 6(0)(& — 0)] 6,z &) .
Therefore, A and J#; form a closed first-class algebra if we take o = §. This

in turn fixes the value of & to be — 5. The last commutator can be shown

to be

~

(5.6) (A, # 1= — 3£, 8, & — 204(V* + R) d(x, &) .

Strictly speaking, the fact that the right-hand side of (5.6) is not a linear com-
bination of #, and A could mean a serious obstacle to this programme:
#, and A are now second-class operators and hence cannot be consistently
imposed as unrestricted conditions on the states. This is also the case in the
classical problem (*) and occurs because A ~ 0 corresponds to choosing a fol-
liation of space-time into slices with vanishing extrinsic curvature and this
slicing is obviously not invariant under arbitrary normal deformations gen-
erated by # .- However, the troublesome term in (5.6) can be eliminated from
the integrated out-form of the algebra by suitably restricting the gauge changes
generated by A. That is allowing transformations of the form €[z4] =
=[e4(2) A(w) d% with

(5.7) (V2+ R)et=0.
This makes it possible to consistently impose f ev#,d2x¥ = 0 and feﬂ/i-
-d%¥ = 0. The question is now whether under successive transformations

generated by #, and A relation (5.7) will be maintained. Some light can be
shed on this problem by studying the change of the classical action

(5.8) 8= f (@7t — N1, — Nio#, — NAA) Q% dt
under an infinitesimal transformation generated by
(5.9) His] = f (L, s+ 64 A) Lo .

Here 5/, and A stand for some classical functions of the dynamical variables

(17) P. A. M. Dirac: Phys. Rev., 114, 924 (1959).
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satisfying the following Poisson bracket algebra:

(5.10a) [#u, 7] :J‘wa(x, &; o) Ho(e') %'+ | Ki (v, &5 o) A (@) A%,

(5.106) [#, 4] = f K- (2, %; o) Ao) A%,

(5:100) [#., 4] =[EL @, & o) # (@) @'+ 2:(V* + R) b(a, &),

where K/, K, and KT, can be read off from (4.6), (4.10), (5.4), (5.5) and (5.6).

Action (5.8) is invariant under (5.9) then, provided the Lagrange multipliers
transform according to ()

(5.11a) SN+ = ¢t 4+ f KL (¢ N — Nigh) + f KL (Ntet— N4eb,
(5.116) SNt = g f K N*e + f R Ntet,
(3.11¢) SN4 — 34 4 f KA (Ntei— Négh) + f RA(N4gi — Nted)

(we have omitted the explicit #, ' and 2" dependence for simplicity) and the
gauge parameter &4 is restricted by (5.7). In order to see that eq. (5.7) can be
maintained under a successive transformation of the form (5.11), it is suf-
ficient to find some parameter &4, also a solution of (5.7), and such that

(5.12) Set = 4"+ | K4 (N*ef — Nigt) | K (e*s' — Niet') =0
11 i4

for a given set of functions ¢#, N#. In principle, there seems to be no reason
to believe that this equation could have no solutions, especially since the time
dependence of 4’ is not restricted by boundary conditions of the type that
fix e%, which is instead associated to a symmetry generator quadratic in
momenta (38). In particular, for Teitelboim’s proper-time gauge (**), N’ =
= 0 =N, one finds

(5.13) 84 4 (4 + N4)ehy =0,

which certainly admits many solutions and one can expect the same to be
true for other gauges. In this sense, the presence of the anomalous term in the
algebra can be interpreted as a gauge artifact.

Although this discussion only shows that classically the anomaly is a gauge
effect and a complete quantum-mechanical proof is still needed, this problem

(18) C. TrrreLBoiM: Phys. Rev. D, 235, 3159 (1982).
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lies beyond the scope of this work which is merely interested in studying the
consequences of what seems to be the natural ordering proposed here for the
operator # . A more detailed and thorough discussion on this issue will be
presented elsewhere.

In their final form, the operator #, and A exhibit corrections of order %
and #? only with respect to their classical counterparts O, and s#. This suggests
that in the action one would need at most two-loop counterterms, which in turn
means that only a finite number of parameters of the theory would have to be
adjusted in order to renormalize it. Moreover, the fact that the algebra could
be made to close seems to indicate that a consistent quantum theory might
exist which has Einstein’s gravity as its classical limit and has the same sym-
metry group as it. (Of course, all this is conditional on the existence of a con-
sistent gauge choice, for which we have given a heuristic argument only.) As
to what could be the conventional (perturbative) form of such a theory we can
not say, but it must be something quite different from the standard weak-
field linearized approximation which does not seem to be renormalizable (1°).

® % ok
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APPENDIX A

In this appendix we give some useful relations concerning the geometry
of the space of all metrics g,,(x), .#. Following DE WiTT, the metric on this
space is taken to be the hypermetric

(A.1) Giikl(g(w)) = g“‘é‘(m)(gik(w)g”(w) + gal®) g (@) — g:5(w) gk;(w)) .

We assume the co-ordinates to be given by the entries of the 3-metric g,;(x).
Thus G,,;, in eq. (A.1) should transform as a contravariant second-rank tensor

() G. ‘v HooFT: Quantum Gravity: o fundamental problem and some radical ideas,
Lecture delivered at The Cargese Summer School 1978, edited by M. LEvy and 8. DESER
(1978), and references therein.
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in order that the contraction of it with n‘/, n*' transforms as a scalar in /.
The inverse (covariant) metric is

(A.2) Gkt = 1gigtg” - gt g™t — 2g71 ") ,
(A.3) G " = 03" = 3(07'67 +- 67 07) .
From now on, the xz-dependence will be implicitly assumed except for ambig-

uous cases. Starting from definitions (A.1) and (A.2) one can find the Chri-
stoffel symbol

) {ij kl}

to be

I

1 S
5 Gmnm[

Qiive 4 8 Grlza — 8 Giikl]
3!]7:1

Sgii Sgw
wa {7 = fres g — ot — gt
— 4" 0 — 9" O+ 971G g, 6(0)

Analogously, one defines the curvature tensor

. S [ii K] S (i pq
iiklpg .~ T
(A.6)  Ru —ng{ mn } Sgk,{ mn +

+ij k) {pq rs_@';ipq Kkl rs
78 mn 78 mn |’

From this, the Riceci tensor R#*! and the scalar curvature R are found to be

(A7) Rii ket — lit}gijgkzé(o)z
and
3
_ —— —% 2
(A.8) R 169 8(0)2,

respectively. Throughout this calculation use has been made of the defini-
tions

8 Yy - St !
(A.9) W gu(@') = 0iid(w, '),

(A.10)

1
By = — = (gt ¢! il ik /
Sgo@) @) 5 (979" + g g*) o(w, @) .

Using the hyperspace analogue of the relation
ItE=4%0,Ing,

2 — Il Nuovo Cimento B.
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we can find the relationship between G = det Gi/*' and g — |det g,

1

_ g1
(A.11) G = 2569

where the factor 1/256 has been fixed by taking the flat-space limit g,, = 9,;.

APPENDIX B

In this appendix we outline the derivation of the quantum algebra for
the constraints. The basic commutator between the eanonical variables is

(B.1) [#4(2), gra(@')] = — 103,0(x, @)

in the units # = ¢ = 1. Using this relation and the definition of the Ricei
sealar R,

B = 9" Bur = ¢"" 9" (G s,nr — Gum,re) + 979" gl e Lu— I'3n 7))
one finds, after a little algebra,

(B.2)  [#¥, Bl = 2iRH8(x, &) — 2igt Grame [T, (2050 o, &) — 030 ., &)) +

+ 2ig GEmn 6 (0, )
where a tilde under a symbol denotes its evaluation at the point &; otherwise
the funection is understood to be evaluated at #. In order to calculate the com-

mutator appearing in (4.6), we first observe that the only nonvanishing con-
tributions are

~ ~

(B.3)  [Fu, Z1)=—}Guud8*, gi Bl — 1P R, Gund"d] +
+96(0{[g* 9.2, g* Bl + [g* R, g% g, 7]} .
The first two terms reduce to

(B.4) i[249 - {Th, A} — §18(0) Thg*] — i[w > &1 ,

where the last term is minus the first one with # and & interchanged. The
lagt two terms are

(B.5) 26(0)g* ' I'%0 (x, &) — [ Z] .

Combining (B.4) and (B.5) one obtains relation (4.6) with definition (4.7).
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In this derivation use has been made of the identities

(B.6a)  fo(w, @) = fo(z,%),
(B.6b) jé,i(x, &)= [0(x, &) + .= &),
(B.6¢) gzé(w, Z) mn— gjé,m,,(m, E) =

= E{(vgj,m‘g,mj) 6(“, z),n + (gj,n_g,nj)a(wy i) m—(w(_)i)} ’
where

g 0z, &) =— (2, &), = ——a—. oz, &) .

6,4.'(“;7 i) = axl

We have also adopted the traditional convention

(B.7) 8,4(my #) = 1lim 8 ,(w, ") = 0,

'z

which imples, in particular, that
(B'S) [ﬁi,jky gmn] = 0= [7%”7 gmn,k] .

Relation (4.‘10) can now be easily deduced by observing that, in
(B.9) By = — 29,7 — 29, T2, 8™ — 2 8(0) T,
the first two terms have no factor ordering problem by virtue of (B.8). Then,

(B.10) [, #)] o Ci1—

~ 7 é/ [F,Z,O,]———(S [01’F1]7

where C, stands for the first two terms in (B.9), the C, — Q,- commutator
reproduces the « classical » result

(B.11) [C,, C1 =0, i, &) + iC.0 4(m, &) .
Furthermore, it can easily be verified that
(B.12) (e, G+ (0., Ll =ik (», &) — ik (z, &),

By adding (B.11) to (B.12) eq. (4.10) follows.
The last commutator ( q. (4 11)) is obtained as follows. The operator # N
can be split into a « classical » part C, and « quantum corrections » as

~

(B.13) A, = Cy—16(0) g grnfimn + k6(0)2 g1,
where
(B.14) Oo = 3Gy AR — AR .
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Then the commutator in (4.11) can be written ag
~ ~ . A i
(B.15)  [#,, £.)=10s Co]—i0(0)[Cs, g gondim] — 5 OV, Co —

— 5 BT g% gun™] -+ BOOPC, g1

The first term on the right-hand side is
30, Goar 18 + £ Goora([0s, #7187 + 87900, 41) — [Cs, ¢ B].

Since €, is linear in #* and g,.,, all the #’s can be put on the far right in this
expression without picking up any further commutators. Moreover, because C,
has no factor ordering problem, the last commutator gives back i-times the
clagsical value. Thus we conclude

(B.16) 10s, Col = iCy 68 4(a, %) .
The remaining terms in (B.15) can be found in a straightforward manner to be

—£0(0)(g7Hgua?t™), (2, B) — 1 6(0) g gmadt™d,s(w, &) +-
+ (3 — k)id(0)2g738,(m, &) — (§ — 2K)16(0)2g4 I, 6(w, T) .

Then (B.15) becomes

(B-17) [%ia ‘.:%_L] = i'y}J_a,i(a% i) - %6(0)(g~—§gmnﬁm"6(w’ :i)),¢ +
+ (3 — 2k)i0(0)2(g6(x, #)) , ,
which is the result claimed in (4.11).

Note added in proof.

Recently, anomalous quantum theories have attracted considerable interest, par-
ticularly in connection with the theory of strings (see, e.g., (2:21), and references therein).
In fact, some anomalous theories are seen to correspond to ray representations of the
symmetry group and can be conveniently discussed in the laguage of co-cycles (21).
We have an alternative point of view in the case of our anomalous quantum algebra
(4.11), which we present in the following paper of this issue. There we show that the
nonclosure of the algebra does not necessarily mean that the group of diffeormor-
phisms is an anomalous quantum symmetry, but it only reflects the fact that the
basic commutation relations (3-1) do not transform tensorially under co-ordinate
changes.

(20} L. FappEEV: Phys. Lett. B, 145, 81 (1984),

(?1) R. Jacriw: Anomalies and co-cyeles, MIT preprint CTP No. 1268; Making sense of
anomalous gauge theories, APS Particle and Field Meeting, Eugene Dregon, MIT preprint
CTP No. 1300, and references therein.
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® RIASSUNTO (*)

8i presenta un approccio non perturbativo alla quantizzazione dell’algebra canonica
della gravitdh pura. Il problema dell’ordinamento in fattori di operatori nei vincoli
#,¥ =0 & risolto invocando I’hermiticitd sotto il prodotto interno invariante nell’iper-
spazio — lo spazio di tutte le metriche tridimensionali g,;(x) — e covarianza sotto tra-
sformazioni di coordinate. I risultanti operatori /2, ricevono solo correzioni d’ordine #
e #i? e l'algebra chiude fino ad un termine ad anomalia conforme. Se 1’algebra & allar-
gata con l'inclusione dell’operatore anomalo, si pud mostrare ¢he, con adeguata scelta
del parametro di gauge che corrisponde a questa simmetria non fisica, la forma integrata
dell’algebra pud esser fatta chiudere.

(*) Traduzione a cura della Redazione.

Pezrome He TONy4eHO.



