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Abstract. The Lin-Shu dispersion relation is applicable in the (asymp- 
totic) case of tight spirals (large wave number kR). Here we reconsider 
the various steps leading to the Lin-Shu dispersion relation in higher 
approximation, under the assumption that the wave number kR is not 
large [(kRr) = O(1)], and derive a new dispersion relation. This is valid
for open spiral waves and bars. We prove that this dispersion relation 
is the appropriate limit of the nonlinear self-consistency condition in 
the case where the linear theory is applicable.  
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1. Introduction 
 
The basic dispersion relation of Lin and Shu (1964) for spiral density waves was 
derived on the asymptotic assumption of a large wave number kR, i.e. of a small 
pitch angle (tight spirals). However, this assumption is not applicable to open 
spirals, or to bars.  

As we will see below in the response calculations the wave number kR enters 
through the combination krε, where  
 

(1) 
 
is the epicyclic small parameter, with 〈r2〉½ the dispersion of velocities and κ the 
epicyclic frequency. In the Lin-Shu dispersion relation the quantity [k R r ] is
about 1 at co-rotation. Thus it is smaller than 1 in the whole ‘long wave’ branch 
of the dispersion relation from the inner Lindblad resonance up to co-rotation, as 
well as in the extension of the ‘short wave’ branch beyond co-rotation up to the 
outer Lindblad resonance. 

The various steps and assumptions used in deriving the Lin-Shu dispersion 
relation were analysed in the Maryland Notes on the Dynamics of Spiral Structure 
 

.
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(Contopoulos 1972). There, however, only a first order epicyclic theory in   was
used. 

In order to find a dispersion relation appropriate for relatively small kR (kRr = 
O(1), or smaller), we will need a second order epicyclic theory. 

In §2 we derive the response density in the case of a flat (two-dimensional) galaxy. 
Then, using also Poisson’s equation, we derive, in §3, the new dispersion relation. 
We show that this dispersion relation agrees with the self-consistency conditions 
derived for nonlinear waves (Contopoulos 1979) in the limit where the linear theory 
can be applied.  
 
 

2. The response density 
 
We write the potential of the spiral galaxy V in the form  
 

(2) 
 
where V0 = V0(r) is the axisymmetric background and 
 

(3) 
 
Represents a two-armed spiral mode with eigenvalue ω =2Ωs, where Ωs is the 
angular velocity of the spiral pattern. We write 
 

(4) 
 
where Φ is complex; the derivative of Φ is the complex wave number 
 

(5) 
 
(Accents mean derivatives with respect to r). The imaginary part KI is related to the 
amplitude A of the potential by the relation  
 

(6) 
 

Thus kR is the wave number used by Lin and Shu. In our case kR is of 0(r–1) 
and it may even be zero (bar). 

The corresponding density response is given by Shu (1968)  

 
 

 
(7) 

 
 

∋ 
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where f0 is the axisymmetric distribution function, given as a function of the energy 
 

(8) 
 
and the angular momentum  
 

(9) 
 

Here Ƭ0 is the half-period of the unperturbed orbit, θ0 the angle between the peri- 
centron and apocentron of an epicyclic orbit going through a given point (r, θ) at 
time Ƭ 0. The quantity r0 is defined by equation (9). 

A second order epicyclic theory gives (Contopoulos 1975)  
 

(10) 
 
 
and (11)
 
 
where (12)
 
 
with (13) 
 
τ1 being the time of the apocentron passage (where θ1=0). This orbit goes through 
r=r, with radial velocity r = r (defined by equation (8) if E0 is given) at time Ƭ  = Ƭ 0, 
i.e. for θ1= π – γ1. 
 

We have further 
 

(14) 
 
 
where K0 is the ‘epicyclic frequency’ 
 

(15) 

 
and (16) 
 
We can see that s 1/r0 is of O(  ), while s2/r0= O(  2). 

The value of Ƭ 0 is given by 
 

(17) 
 
But the expression of a0 will not be needed. 
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Using these relations, and omitting terms of O(  3) we find 
 (18) 

 
where (19)
 
 

and 
 
 

(20) 
 

We have also 
 

(21) 
 
where the dot means differentiation with respect to Ƭ . Hence, in this approximation, 
 

(22)  
 
therefore (r0 – r)/r and r/Kr are of 0( ). 

The dispersion of velocities 〈r2〉1/2 cannot be smaller than a minimum value 
(0·2857)1/2K/kT, necessary for axisymmetric stability (Toomre 1964), where 
 

(23) 
 
And σ0 is the surface density. Thus we write 
 

(24) 
 
 

Where Q  1. In realistic models Q may be of order 2. For Q = 1 (marginal 
stability) the small parameter ε in our galaxy varies between 0·26 at r = 4kpc and 
0·10 at r = 20kpc, while for Q = 2 it varies between 0·5 and 0·2. 

In equation (7) we need also the expression (derived from the formulae of Ap- 
pendix A of contopoulos 1975): 
 

(25) 
 
 
 
where (26) 
 
 

 
(27) 

 

∋ 
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and  
 

 

(28)  
 
where s2 = O( 2). As we will see the terms containing s2 do not contribute in the
response integral, thus its value is not given. 

We write further 
 

 
(29) 

 
 
where (30) 
 
In the last integral of equation (7) we have also 
 

 

(31)  
 
Thus equation (7) is written 
 

 
 

(32) 
 
 
where k, k’ … are calculated at r. 

We introduce not the unperturbed distribution function (Shu 1970) 
 

 
(33) 

 
 
where E0, J0 are given by equations (8) and (9) and 
 

(34)
 
 
 
Thus                                                                                                                         (35)
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After some operations we find 
 

(36)  
 
 
where 
 
 

Further  
 

 
Using these values in equation (32) together with the expressions  

 
(39) 

 
 
and (40) 
 
 
we find  
 
 
 
 
 

 
 

(41)  

This is the basic ‘response equation’. From this equation we can easily derive
the Lin-Shu formula (1974) under the following assumptions and simplifications: 

(i) We assume that ⏐kr⏐ is large, of 0(  −1). 
(ii) We assume that we are not close to the Lindblad resonances or the particle 

resonance, i.e. sin (v 0π) is not of 0(  2) or smaller. 
(iii) We write ξ = r0 – r and integrate ξ from – ∞ (instead of – r) to ∞. 
(iv) We omit all terms except those of the lowest order. 
Then we find the well-known formula 

 
 

(42)
 
 
 
where  (43)
 
 

(37)

(38)

∋ 
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and (44) 
 

The various quantities like v, K are calculated at r, while the corresponding quan-
tities v0, K0 are calculated at r0. [An exception to this rule is the unperturbed sur- 
face density σ0, which means σ0(r), while the surface density at r0 is written explicity 
σ0(r0)]. In the next approximation in ε we use also in equation (41) the terms kR2 
and ½k’R2

1 and the cubic term in (E0 – E00). After several operations we find 
 

(45)
 
 
where k is now complex. This formula is essentially that of Shu (1970) if we set 
k = kR + ikI and omit terms of O(k1

2). 
In fact, if k is complex, we can write  

 

 
omitting terms of O(kI

2), and 
 

 
(46)

 
But 2k1r = – d In A2/ d In r, thus the response density (45) becomes  

 
 
 
 
 

(47)
 
 
We can check that this form is exactly that of Shu (1970).  

In deriving eq. (45) we notice that the epicyclic terms of O( 2), namely the terms
containing s2/s1

2 do not contribute in the response density. The same can be seen 
in Shu’s (1970) derivation of the dispersion relation. 

We come now to the case where kr=O(1) i.e. kr is not large. In this case we start
again with equation (41), assuming now Λ 1 and kR1 of O( ) and Λ2, kR2, and ½ k΄R2

1

of O(  2).  
As regards sin (v0π) it can be away from zero (non-resonant case) or close to zero 

(resonant cases).  We consider here the non-resonant case and leave a special re- 
sonant case (v0 ~ 0) for the Appendix. 

We develop the last exponential of (41) and sort out the terms of various orders. 
The terms of orders O(  -2) and O( -1) in the second member of (41) give  
 

 
(48) 

 
 
and this is equal to zero. 

∋ 

∋ 
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In the next higher order, O(1), we find 
 

 
 
 
 
 
 
 
 
 
 
 
 

(49) 
 
 
where 
 
 
and O2 is a term containing the factor (r0 – r)4/〈r2〉0. 

If we use the values (19), (20), (27) and (28) for R1, R2, Λ1, Λ2  and perform the
integration with respect to r, we find 

 

(50)

.

.
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(51)
 
 
where 
 
and 
 
 

We set now r0 – r = ξ and expand every quantity around ξ = 0. Thus  
 
exp  

 
 

(54)  
 
where the last O2 contains terms with ξ4/〈r2〉 and ξ/〈r2〉2. 

Also 
 

 
(55) 

 
 
with (56) 
 

 
(57) 

 
 
and exp (58) 
 
 

Further s1/s1, calculated previously at r0, is replaced by  
 

 
where now s1/s1 is calculated at r(ξ = 0).  

If we integrate now over ξ from – ∞ to + ∞ (replacing the lower limit by – ∞ as 
done by Lin and Shu) we see that the terms of O( –2) are zero. The terms of O( -1)
are odd in ξ, thus they are also zero. After some operations we find  

 

(52)

(53)

. .

–

–
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(59) 
 

Using now the values of Z, s2/s1
2 , s1/s1 and T1, given by (56), (14), (52) and (50), 

we finally find 
 

 
 
 
 
 

(60)
 
 

We notice that this response is by two orders in ε σ smaller than the response of Lin 
and Shu (42). However the present formula is valid for k R r not large, namely
for kR r = O(1). 
 
 

3. Dispersion relation 
 
We find the dispersion relation if we set the response density given by equation (60), 
equal to the imposed density derived by solving Poisson’s equation. 

Kalnajs (1971) solved Poisson’s equation in the case of a flat galaxy, by finding a 
relation between the Mellin transforms of the ‘reduced potential’ r½ V1 and the 
‘reduced surface density’ r½ σ1. In the case of a potential of the form 
 

(61) 
 
the corresponding density is 
 

 
(62) 

 
 
where, approximately 
 

(63) 

–
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The approximation is very good for |α| large, while the greatest error occurs for 
α = 0 and is less than 3 per cent. 

As the form of most spiral galaxies is close to a logarithmic spiral we can use a 
formula of the form (61) and derive  
 

 (64) 

 
In Kalnajs’ calculations α is considered real.  
However one can extend these formulae to complex α provided that the imaginary 

part of α is small (Contopoulos 1980).  
We write the solution of Poisson’s equation in the form  

 
 

(65) 
 
 
with k complex. 

Using (65), (60) and (23) we find 
 

 
 
 
 
 

(66) 
 
 

This is the required dispersion relation. It is valid away from the main resonances 
of the galaxy (where v2 = 1 or ν = 0), provided kR r is of 0(1), and (kT r — ½)2 

< (kR r)2 + 4.  
 

If we disregard the quantity i/2 in the first term of (66) the dispersion relation 
becomes  
 
sgn  

 
 

(67) 
 

 
In this form the dispersion relation was given without proof by Contopoulos (1973) 
A resonant form of the dispersion relation valid near the particle resonance is 

given in the Appendix.  
It is of interest now to compare our dispersion relation (66) or (67) with the classi- 

cal Lin-Shu dispersion relation  
 

 
(68) 
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which is derived by solving Poisson’s equation for large real k, in which case 
(65) gives σ1 = – V* | k |/2πG, and inserting this value in (42). 

We notice that  
 

(69) 
 
 

In our case, where kr= O (1), we have χ= O( 2). Thus we can expand the
exponential in (43) and write exp [– χ (1 + cos γ)] =1 – χ – χ cos γ. 
Then we find, up to terms of O (  2),  
 

(70) 
 
 
 
and the dispersion relation becomes  
 

(71) 
 
 

This dispersion relation contains only a few of the terms of our dispersion relation 
(66). On the other hand if in (66) we consider kr real and large the most important 
terms give again the relation (71).  

We conclude that the Lin-Shu dispersion relation for kr not large tends to our 
dispersion relation (66) for large kr. This establishes a continuity between the two 
formulae but indicates clearly that the dispersion relation (66) is the correct one 
if kr is of O(1), or smaller, and not large of O (  -1).  

We will prove now that the dispersion relation (66) can be derived as the limiting 
case of the nonlinear self-consistency equations derived by Contopoulos (1979). 

If we are not very near resonance the self-consistency equations (80) and (81) of 
Contopoulos (1979) are written, in the present symbolism,  
 

 
 
 
 

(72) 
 

 
and 
 

 
 
 
 

(73) 
 

 
where x is the deviation of a periodic orbit from a circle, and 
 
cot (74)
 

*
1

∋ 

∋ 
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Combining (72) and (73) in one complex equation we find
 

 
 
 
 

(75) 
 
 

In the linear approximation the deviation x is (Contopoulos 1979) 
 

 
(76) 

 
 

If we insert this value of x in (75) we find, after some operations 
 

 
 
 
 

(77)
 
 

In the general neighbourhood of the inner Lindblad resonance (for which our 
theory was mainly developed) we have 
 
l + v = η (small). (78) 
 

If we keep only terms of 0(η–2) and 0(η–1) in the second member of (77), we
can write Ω – Ωs = – ½κν, hence  
 

 
 
 
 

(79) 
 
 

Exactly the same formula is derived from the dispersion relation (66) in the same 
approximation, i.e. including only terms of 0(η–2) and 0(η–1). This provides a 
verification both of the dispersion relation (66) and of the self-consistency con- 
ditions of our previous paper.  

This coincidence provides also the necessary continuity between the non-linear 
theory and the linear theory. Very close to the resonance the value of x given by 
(76) increases very much and tends to infinity as ν → 1. This is not possible, and the 
nonlinear theory provides the correct value of x there. However, further away 
from resonance the linear theory is sufficient and one can use the linearised 
self-consistency conditions or the dispersion relation (66). We must remember here 
that the nonlinear theory of Contopoulos (1979) was developed for kr not large, 
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while the corresponding theory for large kr (tight spirals) is much more complicated 
(Mertzanides 1976). 
We finish this section by writing the dispersion relation in the case of a bar 
(kR = 0): 
 

 
 
 
 
 

(80) 
 

 
The first term represents approximately the function [K(α, 2)]–1 of Kalnajs (1971)

and is valid if 
 

 
A better representation of [K (α, 2)]–1 is the expansion  

 

 
Which is approximately valid for ⏐k r – ½⏐    2·2. 
 
 

4. Conclusions 
 
We summarise here the main conclusions of the present paper. 

(i) We found a dispersion relation which is valid for relatively open spirals and
bars. 

However, it is expected that this dispersion relation is approximately valid also 
for smaller pitch angles, of the order of 20°. The evidence is derived from the fact 
that the linear theoretical formula (76) above, gives good numerical results for pitch 
angles even less than 20° (Contopoulos 1979, Appendix C). 

(ii) Our dispersion relation has a common limit with the Lin-Shu (1964) dispersion 
relation. Namely the Lin-Shu dispersion relation for kr not large coincides with 
our dispersion relation for large kr. 

(iii) Our dispersion relation is the limit of the nonlinear self-consistency conditions 
(Contopoulos 1979) when the linear approximation is valid, namely not very near 
resonances. 

(iv) The dispersion relation is in complex form, therefore it contains two equa- 
tions that have to be satisfied simultaneously. These equations correspond to the 
self-consistency conditions, requiring that the phase and amplitude of the response 
density should coincide with the phase and amplitude of the imposed density. 

In the case of a bar we have only one equation, that refers to the amplitude of the 
bar. 
 

≲ 
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(v) The complex second order dispersion relation of Shu (1970) depends only 
on the first order epicyclic orbits and not on the second order epicyclic terms.  

On the other hand in our dispersion relation we have also contributions from the 
epicyclic orbits of O(  2). 

(vi) In the Appendix we give a dispersion relation valid near the particle reso- 
nance.  

Numerical applications of the new dispersion relations will be given in another 
paper.  

 
 

Appendix 
 
We will apply now the basic response equation (41) to the neighbourhood of the 
particle resonance. In this case the result (60) is not valid because it contains ν 
in the denominator which tends to zero as r tends to the particle resonance r* . The
Lin-Shu formula (42) gives the impression that no singularity occurs at v=0 because 
vπ/sin (vπ) → 1 as ν → 0. However, the singularity appears in the amplitude A if 
we solve Shu’s (1970) complex dispersion relation.  

A more careful examination of the basic response equation (41) shows that if v0 is 
small, of O( 2), then we cannot disregard the other terms of O( 2), besides v0, in the 
coefficient of the last integral. This coefficient contains the denominator sin (v0 π), 
therefore it tends to infinity as v0 → 0. 

One way to avoid the singularity is to consider v0 complex  
 
v0 = vR + ivI, (Al) 
 
where  and 
 

(A2) 
 
 
i.e. we assume that the eigenvalue ω is complex 
 

(A3) 
 
containing a small negative imaginary part (ωΙ < 0), corresponding to a slightly 
growing wave. As we will see this method is valid also if ωI → 0, i.e. if a neutral 
wave is considered as the limit of a growing wave.  

Near the resonance v0 can be replaced by  
 

(A4)
 
 
where 
 
This approach was used in the case of the Lindblad resonances by Mark (1971). 
If vI is small the major contribution to the integral over ξ = r0 – r comes from the 
region near ξ – ξ∗. 
 

∋ 

∋ ∋ 

(A5)
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In equation (51) the lowest order terms in the expression for σ* that become
infinite as v0 → 0 are 
 

 
 
 
 
 
 

(A6)
 
 
These terms are of 0( 2). Introducing the above expression (A4) and omitting
higher order terms we find  
 

 
 
 
 
 

(A7) 
 
 
where (A8) 
 
The integral extends from – ∞ (instead of – r) to + ∞, as in the case of Lin and Shu.

Using the w function (Abramowitz and Stegun 1965)  
 

 
(A9)

 
 
 
we find  
 

 
(A10) 

 
 
where (A11) 
 

Assuming that vI → 0 we have for a neutral wave, considered as a limit of growing 
waves, up = u*, where  
 

(A12) 
 
Thus the last term of the response density (60) must be replaced by  
 

 
(A13) 

 

1

∋ 
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and the final form of the dispersion relation near the particle resonance is†  
 

 
 
 
 
 
 
 
 

(A14)
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†This dispersion relation was given without proof by Contopoulos (1973) but with an erratum: 
A factor κ should be put in front of w (u*) there. 


