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Summary. — This paper is the first of a series based on a general method
to discover and investigate nonlinear partial differential equations solv-
able via the inverse spectral transform technique. The results of this
paper are those that obtain applying this method to the generalized
Zakharov-Shabat linear problem. We give a class of nonlinear evolution
equations solvable by the inverse spectral transform, that is more general
than that introduced by Ablowitz, Kaup, Newell and Segur because it
includes equations involving more than one space variable and con-
taining cocfficients that are not constant. We also report a very general
class of Bicklund transformations that includes all such transformations
previously considered and clarifies their significance. And we produce,
for a somewhat less general eclass of nonlinear evolution equations
(involving only one space variable), a remarkable functional equation
that relates the solution at time ¢ to the same solution at time ¢’. This
paper is focussed on a general presentation of the approach and the proof
of the main results (some of which had been previously reported without
proof). Although the analysis of special equations and special solutions
is deferred to subsequent papers of this series, there are here also a few
results of this kind, including the explicit display of the exact nonsoliton
solution of the sine-Gordon equation corresponding to a double pole
of the associated spectral parameter.
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1. — Introduction.

Most physical problems are represented mathematically by partial dif-
ferential equations. In many cases these equations are linear, or at least a
linearized version is adequate to account for the main features of the physical
process. In many other cases the physical phenomenon is described by non-
linear partial differential equations (NLPDE’s), with the nonlinearity playing
a nonnegligible role ().

The theory of linear partial differential equations has traditionally consti-
tuted the backbone of mathematical physics; this has mainly occurred because
no theoretical approach to NLPDE’s existed whose generality and power were
comparable to the methods available in the linear case (such as, for instance,
the Fourier-transform technique to solve linear partial differential equations
with constant coefficients, an instance arising in innumerable physical appli-
cations, as reflected in the importance of the Fourier transform in physics and,
more generally, in applied mathematics).

A few years ago a technique to solve a NLPDE has been invented (2). The
subsequent demonstration of the applicability of this technique (suitably
generalized) to large classes of NLPDE’s (3) constitutes a major development
in mathematical physics, or, more generally, in applied mathematics. This is
underscored by the recognition (%) that the new technique may be viewed as
an extension of the Fourier-transform method, to which it does indeed reduce
in the linear (or linearized) case. Moreover, the remarkable properties of those

(1) Throughout this paper whenever we mention NLPDE’s we include also the pos-
sibility that these be integro-differential equations (that may, or may not, reduce to
pure partial differential equations, possibly by an appropriate redefinition of the
dependent variable).

(?) C.S.GaARDNER, J. M. GREENE, M. D. KrusgaAL and R. M. M1vRrA: Phys. Rev. Leit.,
19, 1095 (1967); Comm. Pure Appl. Math., 27, 97 (1974).

(®) Out of the extensive literature on this topic we list here only the most significant
contributions, selected on the basis of their review nature, their landmark character or
their technical closeness to the approach of this paper: a) A. C. Scort, F. Y. F. CHU
and D. W. McLavGHLIN: Proc. IEEE, 61, 1443 (1973); b) G. B. WurrHAM: Linear
and Nonlinear Waves (New York, N.Y., 1974); ¢) J. MosEr, Editor: Dynamical
Systems, Theory and Applications (Berlin, 1974) (see in particular the papers by
M. KruskAaL and by H. Frascuka and A. C. NEweLL); d) P. D. Lax: Comm. Pure
Appl. Math., 21, 467 (1968); ¢) V. E. ZaKkHAROV and L. D. FADDEEV: Func. 4nal.
Appl., 5, 280 (1971); f) V. E. ZagHAarROV and A. B. SmaBar: Sov. Phys. JETP, 34,
62 (1972); ¢) M. J. ABLowrrz, D. J. Kaup, A. C. NEWELL and H. SEGUR: Stud. Appl.
Math., 53, 249 (1974), hereafter referred to as AKNS; 1) F. CALoGERO: Lett. Nuovo
Cimento, 14, 443 (1965); 4) T. Korera and K. Sawapa: Journ. Phys. Soc. Japan, 39,
501 (1975). Presumably another useful reference, that we have however not yet
been able to consult, is Nonlinear Wave Motion, edited by A. C. NEwxkLL, Lectures
in Applied Math., 15 (Providence, R.I., 1974). ’
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NLPDE’s to which the novel technique is applicable open perspectives that are
highly interesting also from a purely mathematical point of view (4).

It is convenient in this discussion to focus upon evolution equalions, i.e.
NLPDE’s describing the evolution in time of a field ¢ (that may depend on
several « space » variables », y, #..., besides the time ?, and that might also
be a multicomponent quantity, i.e. a vector or a matrix; see below). The main
idea of the development mentioned above consists in the association, with every
« solvable » NLPDE, of a linear operator of (generalized) Sturm-Liouville type,
whose spectral parameters (defined more precisely below) evolve simply in
time while q evolves (generally in a quite complicated way) according to the
NLPDE. The field ¢ at time ¢ can then be evaluated from its values at time £,
by first determining, at time {,, the spectral parameters of the associated op-
erator, letting them evolve to the time ¢, and finally recovering the field ¢q at
time ¢ from the corresponding speetral parameters. The first and third steps
of this procedure correspond to the « direct » and «inverse » spectral problems
for the linear operator associated with the original NLPDE.

‘When this method was first introduced (2), the NLPDE was the celebrated
KdV equation (°), and the associated linear problem was the one-dimensional
scattering and bound-state Schrédinger problem, with ¢ playing the rdle of
the potential. In this case the spectral parameters are the scattering and bound-
state data (reflection coefficient, bound-state energies and normalization con-
stants—see below), whose determination from the potential corresponds to the
solution of the direct Schrodinger secattering and bound-state problem, and
that in their turn determine the potential via the solution of the inverse scat-
tering problem (¢). From this last step the procedure has been named «inverse
scattering method »; in their landmark contribution AKNS (%) emphasized
the relationship of this technique to the Fourier-transform method for solving
linear partial differential equations, and introduced therefore the name « inverse
scattering transform ». We prefer to use here a name—inverse spectral
transform (IST)—that reflects more accurately the nature and generality of
the method (and moreover preserves the acronym, IST, introduced by
AKNS).

(¥) We list again only a few contributions, particularly significant in the context of
this paper: H.D. WaHLQUIST and F. B. EsTABROOK: @) Phys. Rev. Leit., 31, 1386 (1973);
b) Journ. Math. Phys.,16, 1 (1975); ¢) D. W. McLaveHLIN and A. C. ScorT: Journ. Math.
Phys., 14, 1817 (1973); d) G. L. LamB jr.: Journ. Math. Phys., 15, 2157 (1974);
e) F. CALOGERO: Lett. Nuovo Cimento, 14, 537 (1975); see also the papers of ref. (3).
(®)) D. J. KortEWEG and G. pEVRIES: Phil. Mag., 39, 422 (1895).

() I. M. GerL’raxD and B. M. LEviTAN: Amer. Math. Soc. Transl., 1, 253 (1955);
Z. S. AcraNovicH and V. A. MARCHENKO: The Inverse Problem of Scattering Theory
(translated from the Russian by B. D. Seckrkr) (New York, N.Y., 1963); I. Kay
and H. E. MosEs: Nuovo Cimento, 2, 917 (1955); 3, 66, 276 (1956); Journ. Appl. Phys.,
27, 1503 (1956); I. Kay: Comm. Pure Appl. Math., 13, 371 (1960).
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The applicability of the IST to solve a NLPDE depends upon the discovery
of an associated lincar problem that allows the three steps described above
to be performed. The main development of the last few years has therefore
focussed on this issue; generally the starting point of the analysis is the linear
problem, and the NLPDE (or rather the class of NLPDE’s) associated with
it are then uncovered. Threce parzllel, and occasionally osculating, tech-
niques have mainly emerged.

The first originates from the remark by LAXx (%) that, if the time-dependent
linear operator I satisfies the operator equation

(1.1) Li=[L, M]

with M some other operator, the time evolution of its spectral parameters is
particularly simple. Taking this point of deparlure, it has been possible to
obtain a whole class of NLPDE’s that are solvable by the IST (%-3¢7). This ap
proach has moreover been particularly fruitful in the context of the diserete
problem, leading to the discovery of a number of exactly integrable many-
body systems (), and to a deeper understanding (*) of some such models
whose solvability had been previously demonstrated by other means (*°).

The main merit of the Lax approach is its all-encompassing nature, con-
nected with its operator-theoretic standpoint. Its main drawback, as a tool
to enlarge the class of solvable NLPDE’s, is its reliance on a starting point,
eq. (1), that is not very suited to a systematic approach.

The second, and related, technique is due to the Clarkson school (*'), and
its more complete exposition is in the AKNS paper (%). Its starting point is
an appropriate Sturm-Liouville problem, such as the Zakharov-Shabat system (¥)
(rather, a generalized wversion of it; see below) or the one-dimensional
Schrodinger equation, whose direct and inverse spectral problems are well
in hand. A large class of NLPDE’s, sclvable by the IST associated with such
problems, is then generated by a systematie procedure, related to the Lax
formula and based on a convenient ansatz for the time dependence of the wave

() M. Waparr and T. Kaymijo: Prog. Theor. Phys., 52, 397 (1974).

(&) Paper by J. MosER in ref. (3¢); J. Moskr: Adv. Yath., 16, 197 (1975); F. Ca-
LOGERO, C. MarcuIORO and O. Raaxisco: Lett. Nuovo Cimenio, 13, 383 (1975); F. Ca-
LOGERO: Lett. Nuovo Cimento, 13, 411 (1975); M. ADLER: preprint (4 new integrable
system and @ conjecture by Cealogero, to be published).

{*) H. I'LascHKA: Phys. Rev. B, 9, 1924 (1974); Prog. Theor. Phys., 51, 703 (1974)
(see also the paper by the same author in ref. (*°)); 8. V. Maxaxov: Sov. Phys. JETP,
67, 543 (1974).

('9) M. Topa: Journ. Phys. Soc. Japan, 23, 501 (1967); Phys. Rep. (1974); M. IIENON:
Phys. Rev. B, 9, 1921 (1974); I'. Cavocrro: Jowrn. Math. Phys., 12, 419 (1971).

(*Y) M. J. Asrowrrz, D. J. Kaupr, A. C. NeweLL and 1. SEGUR: Phys. Rev. Lett., 31,
125 (1973).



NONLINEAR EVOLUTION EQUATIONS SOLVABLE ETC. - I 205

functions of the linear problem. In ecompact form, these NLPDE’s may be
written as (12)

T, t) r(x, )
(1.2) 4 24(L.) =0
_"(lt(my t) (I('vy t)
with
»f— —2r]_g¢q 20l ¥
1 jcx
(1.3) Lo -5 N ,
24 v 6]
—2¢l_q ——+2¢l_r
cw

where we have introduced for short the integral operator

(1.4) I_-:.fdf;‘-,
or
(15) q: -+ 13(-1/.;) G.= 0
with

1 e 1T
1.6 La——— g =g lde-.
(1.6 - pam e

X

The firgt formula, (1.2) corresponds to the generalized Zakharov-Shabat linear
problem; it yields a system of coupled nonlinear evolution equations for the
two fields q{z, t) and »(x, t), that may rediice to & single equation for a single
field in special cases, such as, for instance, that treated by ZAXHIAROV and
SHABAT (¥), characterized by » == — ¢*. The second formula, eq. (1.5), corre-
sponds to the one-dimensional Schridinger problem.

The generality of the class of cquations yielded by the AKNS approach
is demonstrated by the arbitrariness of the functions A and B in eqs. (1.2)
and (1.5) (they are only required to be ratios of entire functions); and the direct
connection of these functions with the dispersion relation characterizing the
linearized version of the NLPDE’s (1.2) and (1.5) is of major importance, dis-
playing, as emphasized by AKNS, the analogy of the IST treatment of NLPDE’s
to the Fourier-transform technique to solve linear partial differential equations
with constant coefficients. Moreover, by choosing simple polynomial, or ra-

('2) Throughout this paper we oceasionally differ, to streamline our presentation, from
the notation used previously.
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tional, expressions for the functions A and B, AKNS were able to reobtain
all the previously known solvable NLPDE’s, including the celebrated KdV (25),
nonlinear Schroédinger () and sine-Gordon (%) equations. A limitation of
the AKNS approach, that may however be in the process of being overcome (14),
is its restriction to NLPDX’s involving only one space variable.

A third approach (**) employs gencralized Wronskian-type equations, re-
lating the wave functions and the spectral parameters of (generalized) Sturm-
Liouville problems, to derive a large class of NLPDE’s that can be solved by
the IST. This technique is quite straightforward, and since it relics essentially
only upon integrations by parts, it might be applicable also in the eontext of
multidimensional Sturm-Liouville problems. In this paper its potentiality
in the context of one-dimensional Sturm-Liouville problems is displayed;
the linear problem taken as starting point of the analysis is the generalized
Zakharov-Shabat problem. The following paper of this series will deal simi-
larly with the multichannel Schridinger problem.

The results yielded by this technique in the context of the one-dimensional
Schrodinger equation have been already published (3*41%) as well as some of
the results deseribed below and in the following paper of this series (but without
proofs) (*¢). An important advantage of this approach is its deliverance of
NLPDE’s, solvable via the IST, that may involve more than one space variable
and contain coefficients that are not constant; note that these results obtain
even though the linear problem related by the IST to the «solvable » NLPDE’s
refers only to one variable. When the approach is strictly limited to problems
involving only one space variable, it reproduces essentially the same results
as the AKNS method, in the context in which that technique has been used,
namely when the linear problems taken as starting points are the (single channel)
Schrodinger or the generalized Zakharov-Shabat problems; it is also applicable
in more general contexts, such as the multichannel Schrédinger case, in which
case it yields novel classes of NLPDR’s (*617).

(3) The literature on the sine-Gordon equation and its applications is large (sce, e.g.,
ref. (3:39)); its complete solution was first given by M. J. AsrLowrrz, D. J. Kaur, A. C.
NeweLL and II. SeGUr: Phys. Rev. Lett., 30, 1262 (1973); and by L. D. FapDEERV
and L. A. TaxutasaN: Commuu. JINR Dubna, FE2-7998 (1974). See also D. J. Katre:
Stud. Appl. Math., 54, 165 (1975).

(% M. J. Asrowirz and R. HABERMAN: Phys. Rev. Lett. (in press).

(%) F. CaLoGuro: Nwuove Cimento, 29 B, 509 (1975). See also the paper by the same
author in the forthcoming Festschrift in honor of V. Barayaxx, edited by B. StmoxN
and A. 8. WIGHTMAN.

(%) I'. (Carogrro and A. Dreasperis: a) Phys. Rev. Lett (submitted to); &) Lett.
Nuovo Cimento, 15, 65 (1976).

(**) Indeed, even in the case with one space variable only, only a more limited class
of NLPDE’s than the one reported here (and in ref. ('*)) had been identified as solvable
by the IST associated with the multichannel Schrodinger equation (7).
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The NLPDE’s that are shown (below and in the following paper of this
series) to be solvable by the IST may be written as

r{@, ¥, 1) (@, ¥, t) o (@, ¥, 1)
(1.7) ( )+7(L’y7t)( )+V(L’y;t)a—( ):0’
—4(@, 3, 1) 9@ y, ) Y \—ql@, 1)

where L is the integro-differential operator

1T O rlg —rlr
Y\ —1/°* qlg —qlr
with
+e
(1.9) szdg-,
and

(1-10) Q(W,y, = ﬁ@saya Q(ac,y, +“ﬂ@s7y7 [GMQ(“‘,y’ 1]+

A

+/3n L, y, 1 GO"n‘*‘Y( 03 ¥y t) (;Q(m’y’ 1),

where L, and G are the integro-differential operators defined by

+o
(1.11) L, F(z) = Fo(o) — 2{Q(@), F(a)} + G.fdé k),

+o
(1.12) GF(@) = (o), P} +[Q), [a510e), FEN|.

The NLPDE (1.7) involves the 2 fields » and ¢; in special cases (see below)
it reduces to a NLPDE for a single field. It is solvable by the IST related to
the generalized Zakharov-Shabat linear problem; the 2 fields » and ¢ depend
generally on the variables @, y and ¢ (with y an M-dimensional vector); solv-
ability means here the possibility to evaluate, employing linear techniques
only; q(z, y,t) and r(x, y,t) from given g(z, ¥)=4q@ y,%) and F(z, y)=
=r(x, 5, %). The functions y(z, ¥, t) and v(z, y, t) are only required to be ratios
of entire functions of z (with the same singularities for finite 2, if any; see below).
If the y-dependence in (1.7) disappears, this NLPDE reduces essentially to
that treated previously by AKNS, eq. (1.2) (*8); it should be noted that in

(!8) The difference between the integral operators I_ and I, egs. (1.4) and (1.9), com-
pensates exactly the sign differences between the definitions of I_ and L, eqs. (1.3)
and (1.8); see the appendix.



208 F. CALOGERO and A. DEGASPERIS

this case, if y(2, t) is a polynomial in z, the NLPDE (1.7) (or, equivalently, (1.2))
containg no integrals (i.e. it is a NLPDE in the striet sense, not an integro-
differential equation), in spite of the presence of the integral operator (see
below).

The NLPDE (1.10) is an N X N matrix equation; it is solvable by the IST
related to the N-channel Schrodinger problem. The ¥ XN matrix @ depends
generally on the variables x, y and ¢ (again with y an M-dimensional vector);
the constant matrices ¢, provide, together with the unit matrix, an orthogonal
basis for N X N matrices (in the 2 X 2 case, they may be identified with the Pauli
matrices), so that the index n runs from 1 to ¥*— 1 (and is, by convention,
summed upon when repeated); [4, B] = AB— BA and {4, B} = AB + BA;
the operators L, and & transform N x N matrices into N x N matrices according
to (1.11) and (1.12), where F(z) stands for a generic N X N matrix. Solvability
means again the possibility to evaluate Q(z, y, t) from a given Q(z, y)=@Q(x, ¥y, )
by linear techniques only; special (¢« soliton ») solutions of (1.10) can be dis-
played explicitly. The functions Sy(z, ¥, t), o.(2, ¥, 1), B.(2, ¥, %) and Y(z, ¥, ?)
are only required to be ratios of entire functions in z (with the same singularities,
if any).

The NLPDE’s (1.7) and (1.10) are clearly rather general; particularly inter-
esting are the cases corresponding to the simplest choices (constants, or ratios
of polynomials of very low degree) for the arbitrary functions that enter them;
this is particularly so in the case of the more novel NLPDE (1.10) (*¢*7). This
analysis is, however, postponed to a subsequent paper of this serics.

It should also be mentioned that in this paper (and in the following one of
this series) we consider only problems in which the unknown fields (r and ¢
in the case of eq. (1.7), @ in the case of eq. (1.10)) are defined, as functions of
the x-variable, over the whole real axis and vanish asymptotically (as # — 4= o0).
Adoption of the approach employed here also in the context of problems with
different boundary conditions is an appealing possibility that remains to be
explored.

The generality of the NLPDE’s reported above and the simplicity with
which the solvability by the IST technique can be established (see below)
witness to the convenience of the approach based on generalized Wronskian
relations (3*1%). But the power of this technique is not limited to the gencration
of solvable NLPDE’s; indeed, its main merit is rather to provide a convenient
tool to investigate the solutions of these NLPDE’s, and in particular to obtain
explicit equations (Bécklund transformations) that relate different solutions,
and even, in some cases, explicit equations that relate a solution at one time to
the same solution at another time (a remarkable result that might be viewed
as an extension to NLPDE’s of the resolvent formula for linear equations).
These results have been first given for the class of NLPDE’s (KdV and gener-
alizations) that are solvable by the IST agsociated with the one-channel Schré-
dinger equation (%); it was thereby possible to reobtain, explain and extend
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the beautiful results (Bicklund transformations and nonlinear superposition
principle) previously given, for the KdV equation, by WAHLQUIST and ESTA-
BROOK (%¢), and to discover a remarkable functional equation relating the so-
Iutions of the NLPDE’s at time ¢ and ¢ 4+ At with A¢ finite (%). Similar results,
but in the more general contexts of the NLPDE’s written above, were also re-
ported (without proofs) (1¢); they are proved and discussed below and in the
following paper of this series. Special cases of these results reproduce all pre-
viously known Bicklund transformations (**); the results given here are how-
ever much more general than those given heretofore, because they apply
directly to large classes of NLPDE’s and because they yield large classes of
Bicklund transformations, not just those previously known, providing moreover
an illuminating explanation of their origin and significance (2). In particular
the permutability of Bécklund transformations is generally demonstrated,
and its significance displayed, together with the beautiful results (nonlinear
superposition principles) that follow from it in the context of the various
NLPDE’s (%).

Quite novel and most remarkable is the functional equation relating the same
solution of one of these NLPDE’s at different times. Even in the very simplest
cases this equation is far from trivial; in some such case it degenerates into
remarkable operator identities, that may be considered nonlinear generalizations
of the well-known linear operator formula

(1.13) fle+ a) —exp [aad;] f(@) .

Before ending this introduetion we would like to call attention to the paper
by KoTERA and SAWADA (*), whose approach is in some respects similar to
that employed here (2'). We would also like to mention that there exists another
general approach, originated by ZAKHAROV and FADDELV (%), to the problem
of solvable NLPDE’s, that views them as integrable Hamiltonian systems;
although very important from a philosophical point of view (and also in many

("®) Results for Bicklund transformations have been obtained and discussed, for some
special equations (KdV, modified KdV, nonlinear Schrédinger, sine-Gordon), by AKNS
and by many others; see, for instance, M. Wapari, H, Sanvkr and K. Koxno: Prog.
Theor. Phys., 53, 419 (1975), the papers of ref. () and some of the papers of ref. (3).
(%) After this paper was partially drafted (and the two papers of ref. (*¢) had been
submitted for publication) we received a preprint by H. Frascigka and D. W.
McLauGHLIN (Some comments on Bdcklund transformations, canonical transformations
and the inverse scattering method, to be published) that takes a point of view similar to
that of this paper, and reports some results that eoineide with special cases of those
given here.

(#') A preprint by D. J. Kavupr: The closure of the squared Zakharov-Shabal eigenstates
(to appear in Journ. Math. Anal. Appl.) also takes a somewhat similar point of view
to that of this paper.
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applications, such as the quantization problem), this standpoint does not how-
ever appear particularly appropriate to enlarge the class of solvable NLPDE’s.
Its relation to the results of this paper is an interesting point (*), that deserves
further invegtigation.

The organization of this paper is clearly indicated by the titles of the fol-
lowing sections and subsections, so that we need not deseribe it here.

2. — Notation and preliminaries.

2'1. Basic notation. — We use generally (but not exclusively) upper-case
characters for 2 X 2 matrices, and lower-case characters for 2-component vectors
(or rather spinors); an exception to this convention is the use of the usual Pauli
matrices

1 0 0 1 0 —1¢ 1 0
(2.1.1) 00:]:( ), alz( ), 02:—_( )’ 03:( )
0 1 1 0 ¢ 0 0 —1

The 2 eigenstates of g, are indicated with the notation

1 0
(2.1.2) X+ = ( ), X-= ( ) .
0 1

The conventional notation for commutators and anticommutators used through-
out is [4, Bl = AB— BA, {4,B} = AB+ BA. A" is the transpose of the
matrix A, (4, v) =01+ U0 if u =30, - ay_, V=0, %, + V2x_-

2'2. The direct problem. — The generalized Zakharov-Shabat problem (3/-3)
is charaecterized by the differential equation

(2.2.1) Yo+ thoyyp = [q10y + iqa00] .

In this equation the two scalars ¢, and ¢, depend on the real variable », while
the spinor u depends on « and k; all these quantities may also depend para-
metrically on other variables. The subscript z indicates of course partial dif-
ferentiation, a notation that is used throughout this paper. Note that the
problem (2.2.1) could be easily reformulated in the form Hy = ky, the linear
operator H being however generally not Hermitian (unless g, is imaginary
and ¢ is real). The connection of (2.2.1) with the usual notation (%) obtains
if we set

(2.2.2) a=%0@+7r, G=3q-—1);
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in the following we use either the variables (r, ¢) or (qy, ¢;), Wwhichever allows
us to write in more compaet form the various formulae, with the under-
standing that they are always related to each other by (2.2.2). We shall
also use occasionally, to make the notation more compact, the spinor

(2.2.3) v =7y + qx-,

and related symbols that will be defined below whenever appropriate. Note
that the components of v are r, ¢, not ¢y, ¢..

The two functions ¢ and r are assumed to vanish asymptotically exponentially
or faster, i.e. we assume that, for some positive ¢,

(2.2.4) Tim_ [exp [elo]] o(@)] =0.

This is a stronger condition than it is actually needed for the validity of most
of the following results; but it is adequate to cover all interesting cases, so we
assume its validity for the sake of simplicity. In some cases (that will be spec-
ified below) we shall assume even stronger conditions.

The continuum part of the speetrum associated with (2.2.1) in the Zakharov-
Shabat problem is characterized by the asymptotic boundary conditions

(2.2.5a) V(z, k) s> exp [— thaoy] -+

+ Yot k) (oy -+ to.) exp [— tha] + §oP(k)(oy — i0,) exp [tka] ,

(2.2.50) V(@ k) 5= $ BV (k)L + 03) exp | — ika] + §F7(k)(1 — 0y) exp [ha] .
Note that, for the sake of notational compactness, we consider here (and below)
3 matrix solution of (2.2.1), that is of course built out of two spinor solutions
{(used as columns of the matrix). The functions «* and & depend of course
parametrically on other variables, if ¢ and » (and therefore also ¥) do.

It should be emphasized that, although the differential equations (2.2.1)
could be transformed into those characterizing a two-channel Schrodinger
problem, the boundary conditions (2.2.5) of the Zakharov-Shabat problem
differ from those of the corresponding Schridinger problem (22).

The discrete part of the spectrum consists of a finite number of eigenvalues
k) whose corresponding eigenfunctions may be normalized as follows:

400

(2.2.6) fdw (wm(m)’ 0‘1"/)(’”(90)) —=1.

(32) This point is ignored in ref. (), where the interested reader may find the explicit
connection between the differential equations of the two problems.
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It is easily scen that a necessary condition for this to happen is that these func-
tions be characterized by either one of the two asymptotic behaviours described
by the formula

(2.2.7a) YO(@) s ¥ exp [k kP a] g,
(2.2.7d) PI(@) ——=> 0 exp [F kP a] g, ,
with

(2.2.8) + Im [ > 0.

Here, and often in the following, we have, for notational simplicity, not
labelled explicitly the different eigenvalues (as well as the eigenspinors
and the quantities &, §=) with the subscript . The distinction between
discrete eigenvalues (and the corresponding eigenfunctions, ete.) with super-
seripts « plus » or «minus » is hereafter characterized by (2.2.8) (we ignore,
for simplicity, the possibility of real eigenvalues).

The order of the neglected terms in these asymptotic formulae is given by
the expression

+o

(2.2.9) x,rO[exp [— ika] f dE g(€) exp [2ik§]] +

40

- ;{_O[exp [ikz] f AE (&) exp [— 2ik§]] :

the -- sign corresponding of course to the limits # —> - co. From this formula,
the known analytic properties of a®(k) and F¥(k) (¥) and a comparison
of eqs. (2.2.5) and (2.2.7), one concludes that, corresponding to the values
kS respectively k7, the functions !, B+ respectively «, 8 have a pole, and

(2.2.10) By 6 — o) = res (k) = lim {[k— k] a2 (k)}
k 3

k-rklE

provided the values of k™ respectively £ are such that, when substituted
in (2.2.9), they yield an asymptotically vanishing contribution. Note that this
is guaranteed to happen if r and ¢ vanish asymptotically faster than expo-
nentially. It should however be cautioned that eq. (2.2.10), as well as eq. (2.2.6),
are applicable only in the case of single poles, to which we restriet, for simplicity,
our considerations in this paper (except in a special case in subsect. 44 below).

Jearly if » and ¢ are given functions of », the quantities «®(k), f¥ (k) and
the parameters k5, ¥ and 6 of the discrete part of the spectrum (if any)
are uniquely determined, through eqs. (2.2.1), (2.2.5) and (2.2.7). Such a de-
termination constitutes the « direct » (generalized Zakharov-Shabat) problem.
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2'3. The inverse problem. — The corresponding «inverse » problem consists
in the evaluation of # and ¢ from the spectral parameters, defined above by the
asymptotic formulae (2.2.5) and (2.2.7). We report here the Marchenko-type
equation that solves this problem, referring to AKNS for its derivation and a
discussion of its peculiarities, related to the non-TTermitian nature of (2.2.1).
The input data that are sufficient to determine r and ¢ are the funetions a9 (k),

the eigenvalues & and the corresponding quantities y¢”6%; in this paper
we shall generally assume that the parameters of the discrete spectrum, &9
and ¢ 6 are obtainable by analytic eontinuation from those characterizing
the continuum spectrum, «®P(k), being respectively the positions of the poles
and (up to a constant; see eq. (2.2.10)) the residues of « (k). The relationship
of this restriction to the asymptotic behaviour of » and ¢ has been clarified
above (23).
The Marchenko-type equations read

+ o
2.3.1)  mD(2) = TF i Y o exp [+ kP 2] + (2m) f dk a®(k) exp[ + ike] ,

(2.3.2) M) = imOENL + o)) 4 km@)(1 —0y),
233) K@ o)+ M +o) +[dE K@ o ME +2) =0, o>,

| g@) = —2Ky(x, ), r@)=—2K,(, 2),

(2.3.4) teo
[aga(@rr(@) = 2K, 7) = 2Kon(, 2).

We reiterate that these equations (in particular, eq. (2.3.1)) refer to the case
with simple poles only, and that the quantity o' is defined by eq. (2.2.10)

(with the last equality being a consequence of the assumption mentioned above,
that shall be used in the following without further warning).

24, Transformation properties. — It is finally convenient to report 4 trans-
formations of the fields » and ¢, whose corresponding effect on the guantities
a (k) is simple and can be easily evinced from eqgs. (2.2.1) and (2.2.5). We do
not report the effect of these transformations on the parameters of the discrete
spectrum, since they can be directly read from the properties of a® (k). Note

(®3) The significance of such a restriction is well understood in the context of the usual
Schrédinger scattering problem; see, for instance, F. Carogero and J. R. Cox: Nuovo
Cimento, 33 A, 786 (1968). In the present context the limitation is not a serious one,
but it deserves a separate discussion, in view of its relevance for soliton solutions (that
are, however, already included in the present treatment; see below).
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that these transformations can be multiplied (¢.e. applied sequentially), that
their square is unity and that they commute with one another (so that the 4
transformations given below yield in fact 16 different transformations). These
transformations follow:

(2.4.1a) r'(®) =—r@@), ¢@=—q@), g =—0e(), =12,
(2.410) a'(k) = —aB(E), P (k) = BL(k);

(2.4.20) ') =1*@2), ¢@=g@), g@)=g@), j=12,
(2.4.2b) a@'(k) = 0 P¥(—Ek*), PE(k) = D (— k¥);

(24.30) 7'(@) =q@), @ =r@), &) =a@), @o=—a@,
(2.4.30) «'(k) = oaD(—F), LK) =pV(—h);

(2.4.4a) 7'(2) =r(—v+a), ¢@)=q—2+0), ¢@)=g¢(—av+a), j=1,2,
(2.4.40) oP'(k) = — aF(— k) exp (F 2ika), [LY(k)=pP(—F).

The third of these transformations, eqs. (2.4.3), is particularly interesting, since,
in contrast to the others, it interchanges the two fields » and ¢; it may be com-
bined with the other 3, to yield altogether 4 transformations that share this
property, and that are therefore suitable to ascertain which properties of a'®(k)
correspond to special subcases of eq. (2.2.1), containing only one field (or, in
the language of the inverse problem, what properties must the input functions

P (k) have in order to generate two fields » and ¢ simply related, ¢.e. essen-
tially only a single independent field).

3. — Generalized Wronskian relation and derivation of the basic formulae.

3'1. GQeneralized Wronskian relation. — The starting point of our analysis
is the generalized Wronskian relation

31.1) [, B F @) P, B =
= [0 wnta, 1) [ ko, @)} + 3 540 o, Flo)— 5 Siollon, Plo] +
+ 5 D@, F@ll—3 Dya)on, Flo}+ Fle)| Pla, ).

Here, and always below,

(3.1.2) 80) = g)(@) + @), Dye) = g@) — 4@, i=12,
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where ¢, and g, are two different pairs of fields and ¥, ¥’ are two matrix solutions
of the corresponding eqs. (2.2.1). F(x) is an essentially arbitrary (at least once
differentiable) 2 x2 matrix. The validity of eq. (8.1.1) is a straightforward
consequence of (2.2.1).

32. Application to the continuum spectrum. — We now consider eq. (3.1.1)
for @y = — oo, 2, = - oo, inserting two solutions ¥ and ¥’ of (2.2.1) charac-
terized by the boundary conditions appropriate to the continuum spectrum,
eqs. (2.2.5), and assuming moreover that the matrix F(x) satisfies the asymp-
totic conditions

(3.2.1) F(+ c0) =0,

(3.2.2) F(— co) = Fy(— 00) 0y + Fy(— o) 0y,

the second of which obviously implies {F(— co), o5} = 0. This yields
+eo

(3.2.3) [Fi(— 00) + Fo(— o) 03] B + ikfdm?’"(x, k){os, F(z)}¥(z, k) =

—c

+o

= %-fdﬂﬁ (@, k) 8u(#){o1, F(@)} — i8y(@) 02, F(2)] 4- Dy(@)[o1, F(2)] —

— iDy(@){0y, F(2)} + 2F.(2)] ¥ (=, k)

( I} ﬂ(—)(k)ﬂﬁ)l(k))
_B = — .
(%) (k) 0

We then introduce & sequence of matrices F(x) through the recursion
formula

(3.2.5) {0'37 F"“(x)} = %[Sl(w){ah F(")(a’)} — i8,(w)[o,, F ™ (x)] 4
+ Dy(x)[0y, F@(2)] — iDy(x){0, F(2)}] + FP (@),
so that, if F"(z) satisfies the conditions (3.2.1) and (3.2.2), we may rewrite
eq. (3.2.3) as
+o
(3.2.6) [FP(—00) + FP(— c0) 0] B -+ ik a0 P "(a, ) oo, Fo(o)} Plo, ) =

+co

- f AP " (x, k){oy, T+ (@)} Pla, k) .
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To analyse the recursion relations (3.2.5) we set

(3.2.7) Fg) = FP(z) + F™ (@) 0, + FP(2) io, + FP () o, .

Insertion of this expression in (3.2.5) shows that F F® determine F™, F(

and F& ) F0. Thus it is convenient to introduce the sequence of spinors
9® through the definition

(3.2.8) v™(@) = [F(@) + FP(@)] 4+ [FP (@) — FP(@)] 4.

or, equivalently,

(3.2.9) {o3, F™ ()} = 2nv(x),

where we have introduced the formal operator # that transforms a spinor into
a diagonal matrix

a a 0
(3.2.10) 7 ( ) = ( ) .
b 0 b

With these definitions we get

+o

(3.2.11a) F(z) = — f dE (v,(8), ioy o)) ,
+o

(3.2.11b) FP(@) = —fdf (v_(8), 1 v(8))

where we have defined (note that the second equality is eonsistent with (2.2.3))
(3.2.12)  w(@) = }[r'(@) + r(@)] 4 + 3[0'@) Lk q@)] z. = $[v'(@) + v(@)]
and

(3.2.13) B (g) = {Av(x) ,

where we have introduced the integro-differential matrix operator

(3.2.14) A=1 [03

2 r'Ig'-\-rlg —v'Ir—rly'
il | )

v \g'Ig+ql¢ —q'Ir—qlr

In this last formula I is the integral operator of eq. (1.9), so that, for instance,

(3.2.15) rIgf =r(o) (a6 4(E)F(E).
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From eq. (3.2.13) we immediately get
(3.2.16) v(x) == (34)" v (z),

while from eqs. (3.2.6) and (3.2.9) we get

(3.2.17) Vg = 1kV, + [FP(— o0) + Fy’(— o) ;] B
with

+o
(3.2.18) V. deﬂl (@, k)[o(2)] Pz, k) .

-

The solution of the recursion formula (2.2.17) for the quantities V, is a
simple task, and the result thus obtained can be rewritten, by means of
eqs. (3.2.11) and (3.2.16), as follows:

+o 400
(3.2.19) fdw Y1z, k)[n(id)* v (x) ¥ (x, k) = (ik)"fdm it (g, k)[n v (2)]¥(x, &)+

— . —m

+ - 3 de {(v+(x) wz[@)—ﬁlﬁ] v“’)(oc))-{— (v_(w), o, [WGZT:%—A—]W)@))%}B .

It is easily seen that the condition of validity of this formula for all n is that all
derivatives of v®(x) vanish asymptotically:

>+ | da?

(3.2.20) lim [—d—p—v“’)(m)] —0, p=0,1,2, ...

The structure of eq. (3.2.19) implies immediately the more general formula

+co +o

(3.2.21) fda:?[f’“‘(x EMnf(A) v (@)W (e, k) = f(k )fdx Y'T(x, k)[no(x)] P (@, &)+

— —®

+@
+5 Jao{(o.10 0 =L o)) i (o0, o (B LD i) o} 2,

where f(2) is an arbitrary entire function. It should be emphasized that in this
formula (whose validity is a consequence of (2.2.1) and (2.2.4)) the spinor
v9() is arbitrary, except for the restriction (3.2.20).

We now return to the generalized Wronskian relation (3.1.1), inserting
again, in the limit 2, = — co, @, = + oo, two solutions ¥ and ¥’ of eq. (2.2.1)
characterized by the boundary conditions (2.2.5), but with the two special

15 — Il Nwovo Cimento B.
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choices F(z) = io, and F(z) = o0y. We thus get

a('H’(k) _a(+)(k) “(‘H’(k)a( —)(k) + ﬂ('*‘)’(k)ﬁ(—)(k) —1
(3.2.22) ( ) _
1— a(k)od (k) — B ) () () — o (k)
4o
=9 f e 5 (z, B)jow_(2)] (@, k),
aH (k) + a(k) 1+ Y (k) o) (k) — BV (k) B k)
(3.2.23) ( ) -
1+ atP(E) o (k) — BH () B (e () + o (k)

_2 f Az P'%(z, B[, ()] P, k),

where we have used eqs. (3.2.10) and (3.2.12).
The last step is to set in eq. (3.2.21) v () =0,v_(x) respectively v(x)=v_(z),
and use (3.2.22) respectively (3.2.23). We thus obtain the two final formulae

4
(3.2.24) 2 f dw Y2 (x, k)[nf(A)o,0_(@)]¥ (@, k) =

o (k) — o P(k) (k) ol (k) 4 D () B () — 1
1k ) _
(1 — (k)oY (k) — BH () B (ke al=Y(k) — o' (k)
—z[f+ k) f_(k)os] B,

+ o

(3.2.25) 2 f Az W'T(w, k)[ng(A) v, (@)1 (x, k) =

-_

24 (k) + (k) 1 o () ot () — B () B i)
=9 (1 + P (k) o (k) — BH () B (K (k) + ad(E) )
— g, (k) + g (k)] B,
where
to .
6.2.200)  fu0) = a0 (0,00) i{’ &) —Q(A)] oap _m) 0, =ioy, 0. =01,

—cc
+

(3.2.26b)  g.(k)=|dz (vi(ac),g [9(7073_!/11(/1] v, (@ )) o, =ioy, 0_=0,.

—®
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The symbols appearing in these formulae, which constitute the main result of
this section and provide the main tool for our treatment, are defined by
eqs. (2.2.1), (2.2.2), (2.2.3), (2.2.5), (3.2.4), (3.2.10), (3.2.12) and (3.2.14). The
two funetions f(2) and g(2) are entire, but otherwise arbitrary; they might of
course depend parametrically on other variables besides z (not on z or k).

3'3. Application to the discrete spectrum. — A procedure, analogous to that
described above for the continuum-spectrum regime, can be applied in the
discrete-spectrum situation. We report here only the final formulae, whose
derivation follows closely the pattern set above. There are, however, now two
different possibilities, that must be analysed separately.

We treat first the case when the problem with the « potential » », ¢ has a
discrete cigenvalue &) (or k), while the problem with the potential »/, ¢
does not have the same eigenvalue. We then consider the generalized Wronskian
built with y/, (@, k) (or y.(x, k7)) and y+(z) (or y(x)), where by definition
Y’y (@, k) is the first column of the matrix ¥'(x, k) characterized by the boundary
conditions (2.2.5) (with k= k™®; an analytic continuation off the real axis
in the k-plane is implied here), and ¢’ (x, k) is instead the second column of
the same matrix (with ¥ = k-’). The (normalized) eigenfunctions ¢®(x) have
been defined, eqs. (2.2.6)-(2.2.8). The formulae read

4

(331)  2[dw (yi, k), f(4) oy 0_@)] pH() = F yOf0),
+o

(332 2[ae (vl k), Ig(d) v, (@)] p () = $2 (k)

with f(z) and g(2) arbitrary entire functions and the other symbols defined
by eqgs. (3.2.10), (3.2.12), (3.2.14) and (2.2.7a). It should be emphasized that
the condition that k& not be an eigenvalue of (2.2.1) with #/, ¢’ is essential for
the validity of this formula.

The second type of formulae obtains from the consideration of the generalized
Wronskian built out of ¢+'(x) and y*(x), these being the normalized eigen-
functions corresponding to the eigenvalues k' respectively &+, of (2.2.1)
with the potentials #', ¢’ respectively 7, ¢. They read

(3:33)  [de (4(@), yi(4) oy0_(@)] y0(e) =

+oo

+o
— {10 [0 (= (@), o1 p0@) + [ (49 @), PO, 0)990)]

—©



220 F. CALOGERO and A. DEGASPERIS
+w
B.3.4)  [do (@), Dig(4) v, ()] (o)) =

-+ +o
— [ g() [ 2 (4 @), o, y(@) + i do (7 (@), GP, ) y9() )

with

(3.3_5) kf:—) — %_ (k(+)l + k(+)) , k;H — -%—(k“')' — k(+)) ,

and

(3.3.64) F(k, ) = iosf (K, @) -+ o1 _(k, @),

(3.3.6b) G(k, @) = 10,9, (k, ) + 019_(k, @),

(3.3.7a)  f.(k, @) = [d§ ('IL(E); 0. ﬂk]z—:ﬁ/l—)] asv_,(f)) , o0, =iy, o_=0y,
(3.3.70)  g.(k, x) = |d& (q;:,_(s),gi g—(%@] v,f_(f)), G, =iGy, 0. =0,

x

The symbols in these formulae are defined by egs. (3.2.10), (3.2.12) and (3.2.14)
(with A in eq. (3.3.7) acting of course on the variable &); the entire functions
f(z) and g(2) are arbitrary. A completely analogous formula also holds, with
the superscript @ replaced everywhere by ©).

Formulae that involve ¢V (x) and y(x) (or viece versa) might also be derived,
but they do not seem to be useful.

Equations (3.3.3) and (3.3.4) remain valid even if only one of the two quan-
tities k', k) corresponds to an eigenvalue of the corresponding problem (2.2.1),
provided its imaginary part is larger than the imaginary part of tie other;
for the case with superseript © in place of ¥, the requirement is analogous,
i.e. the value (of k™ or k) corresponding to the digerete eigenvalue must have
an imaginary part larger in modulus than that of the other, if this does not also
correspond {o a discrete eigenvalue.

It should be noted that the conditions under which eqs. (3.3.1) and (3.3.2),
respectively (3.3.3) and (3.3.4), have been derived are different; this explains
why eqs. (3.3.3) or (3.3.4), in the special case k%’ ==k®, does not reproduce
eq. (3.3.1) or (3.3.2); for the validity of the former it is indeed required, if
k' = k9, that this value be a (discrete) eigenvalue of both problems (2.2.1)
with #, ¢ and v, ¢, while for the validity of egs. (3.3.1) or (3.3.2) it ix instead
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required that only one of the two y-functions that appear in the formulae
corresponds to a (discrete) eigenvalue.

4. — Results.

-4'1. NLPDY’s solvable by the IST. — Assume now that, in (2.2.1), the fields
7, ¢ (and therefore also y, ¥, ete.) depend on other variables besides z (and/or k).
Let y be oune of these variables, and consider eq. (3.2.24) with v(x) — v(z, ¥)
and v'(w) == v(x, ¥ + Ay), in the limit Ay — 0. There follows first of all the
« unitarity » equation

(4.1.1) a )k, y) ek, y) + PO, y) fOR, y) =1,

and then, if we keep terms linear in Ay (and use (4.1.1)), the relation

+w
(4.1.2) i’fdw Fr(a, by y)nf (L)ogv,(x, )W, ky y) =
/ OCL'H(_k, K/ ) “(_)(ky Y )“1(/+)(k’ 7/) : ) ,ﬁ(_)(l"'; y)ﬁ;m(/‘;y y)
— 1(&) ( )
— Pk, y) o, Ry ) — PP (Ry y) 5 (ky 1) —o (R, y)
4o
= 20, P 1), [ d (vt 0, [%} e, 9))
with
o 4 o rlg —rlr
(4.7.3) L— logx-- 2 .
okl B ¢l —qlr

In this last formula [ is of course the integral cperator of eq. (1.9) (see
egs. (3.2.14) and (3.2.15)), and we have, for simplicity, not indieated the
arguments of », ¢. Note that (4.1.1) implies that the matrix in the r.h.s. of
(4.1.2) is symmetrical.

Let us re-cuiphasize that the entire function f(z) in (4.1.2) is arbitrary;
if » depends on several variables, one can write as many equations similar to
(4.1.2), with every variable playing the role of y, and with a different funetion f
in cacl case. Indeed the reader should imagine that we have done just that,
once with y =¢, and M times with y =y;, j =1, 2,..., M, under the assump-
tion that v (and y, «®, ete.) depends on the scalar ¢ and on the M-dimensional
vector y, besides x (and/or k).
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Together with all these equations, one should also consider the single equa-
tion that obtains in the Ay ->0 limit from (3.2.25), namely

TRWINE f 4o ®'7(0, &, 9)ing(L)o(a, )Pz, b, g) —

—c

( D (k, y) aP(k, y)al(k, y))
= g(k
a )k, y)a (K, y) «Nk, y)

w©

20k, )8, )4 [ a5 (010,91, i [LE =22 o, )

—®

We also recall that the arbitrary entire funetion g(2) in this equation, as well
as the analogous functions in the equations deseribed above, might depend
on other variables besides 2 (except x and k).

By taking a simple linear combination of all these equations there imme-
diately then follows that validity of the NLPDE for the field »

0
(418) [T, 3, 00500, ¥, 1)+ BTy 3,0 52030(0, 3, 0+ (T 3, 10(z, 3, =0
implies validity of the linear equations for a®, g
0
(4.1.6)  f(k, y, )« (*)( y ¥ 0+ h(k, Y )—y“(ﬂ( y ¥y ) gk, y, )Pk, y, 1) =0,

(4.1.7) f(k’y’t)ﬁ(ti)(kyyy )+h( 5y ¥y 1) /0(*) 1yy ‘Pkya ﬂ(i) 7y7t)'~

with

+

(4.1.8) Glky y, 1) = 2ifdac (v(w), 10y {[f %] O,04(x) -+
- h{k)—h(L)] ¢ k)—g(L
+ [P ke + T4 vw])

Equations (4.1.6) for «® follow from the diagonal part of the matrix equation
obtained from the linear combination described above, while eqs. (4.1.7) for
g follows from the nondiagonal part by means of (4.1.6) (and (4.1.1)). In
r.h.s. of the last equation we have, for notational simplicity, not indicated
the dependence upon the variables v, ¢.

We may thus conclude that, if the fields r, ¢ evolve according to the NLPDE
(4.1.5), the quantities a2 and f& evolve according to the linear equations (4.1.6)
and (4.1.7). This, together with the possibility to reconstruct », ¢ from @,
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is the basis for the solvability of the NLPDE (4.1.5) by the IST (see below). Note
that eqs. (4.1.1), (4.1.6) and (4.1.7) imply that, if r, g evolve according to (4.1.5),

A ~

(4.1.9q) [f(k, ¥t §t+h(k, ¥, 1) y] a(ky y, Byl Uk, y, 1) =

~

(4.1.9b) I:f(kyy’ §t+h(’”’yat)a ]ﬂ(ﬂ y Y, DBk, y, 1) =0

To discuss more specifically the solvability by the IST we prefer to rewrite
these equations in a manner that singles out the variable ¢, so that they take the
form of evolution equations (2¢). This is simply achieved by setting

(4.1.10a) Y@ ¥, 8) = 9(2, 3, 0[f (2 ¥, ?)
(4.1.100) v(z, ,t) = h(z, y,)/f(z ¥, 1),
8o that the functions y and v are now ratios of entire functions of z ().

place of eqs. (4.1.5)-(4.1.8) we then get

A

(4.1.11) o30:(@y ¥, 1) + (L, ¥, t) %030(‘”, Y, )+ v(L, y, t)o(@, y, 1) =0,

A

(4.1.12) “(‘:t)( y ¥y 1)+ v(k, y, t) %“(i)(ky ¥y, t) L yk, y, )Pk, x, 1) =0,

:
(4.1.13) ﬂ“*)(k, ¥, 0+ vk, x, 1) aiyﬂ(i)(k) ¥y t) = ok, y, ﬂ(i) y ¥, 1) =0,
+
— d
(4.1.14)  g(k, y,0)=2i f dx( o(@, ¥, 1), i, [”‘L&‘,}-_—“,-;“"—’”—”] 55500 ) ") ’

-

The derivation of (4.1.14) (from (4.1.8); clearly @ = @/f) requires the use of
(4.1.11) and of some properties of the operator L that are discussed in the
appendix, where we also show that, in spite of the presence of the integral op-
erator in L, the expression L*v», with » any positive integer, contains only
powers of r, ¢ and of their derivatives up to the order n.

(*) For an outline of the difficultics that might originate from this formal step we
refer to previous works, such as ref. (39:3%), postponing a more detailed discussion to
subsequent papers of this series.

(%) A condition, that we have not, for simplicity, mentioned previously (!%), but
that is clearly implied by (4.1.10), is that » and v have the same singularity structure
in the finite part of the complex z-plane. Let us however also mention at this point
that the requirement that these be entire (or ratios of entire) functions is sufficient,
but not necessary, for the validity of all these results, that might indeed also hold for
nonentire functions provided a suitable definition is given of the operator that obtains
after replacing the argument of such a function by an operator.
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The NLPDE (4.1.11) eoincides with that presented in the introduction,
eq. (1.7). Its solvability by the IST is accomplished as follows: given 7, ¢ at
time ,,

(4.1.15a) @y, ) =T@,y), 9@y h) =74y,
or equivalently

(4.1.15b) 0(®, ¥y b)) =02, ¥),

one computes

(4.1.16) aB(k, y, 1) = &P(k, y)

solving the direct problem, i.e. through eqs. (2.2.1), (2.2.2) and (2.2.5) (with
y a fixed parameter); one obtains then a®(k, y, t) from oB(k, y, {,) integrating
the linear partial differential equation (4.1.11); and one reconstruets finally
r, ¢ at time ¢ from «(k, y, f) solving the inverse problem, {.e. using eqs. (2.3.1)-
(2.3.4) (with y, t fixed parameters).

To perform the last step it is required to know also the parameters of the
discrete spectrum. The equations characterizing their time evolution follow,
under the assumption mentioned above, directly from eq. (4.1.6), by inserting
the ansatz

(4.1.17) Nk, x, 1) = 02y, 1)/[k— ED(y, D],

and then taking the limit & — k¥(y, ). In this manner one gets

A

(4.1.18) By, )+ v(kD(y, 1), y, 1) g;kw(y, t)=0,
0 0

4.1.19 & = ol L (£) —=

( ) 01 +vay0 +[vkayk iy]g 0.

In the last equation ¢® is a function of y and ¢, v, is the derivative of v with
respect to its first argument and, together with v and p, has arguments k',
y and ¢, while everywhere ¥+ = k#Xy, ¢). A derivation of these evolution equa-
tions that does not rely on the relationship with the singularity structure of
o in the complex k-plane is also possible; for instance, eq. (4.1.18) is ob-
tained by writing the equations analogous to (4.1.2) and (4.1.4), that read

4o

(4.1.20a) 2 f de (y (2, ), [nf (L)oo, (2, y) 9P (@,y)) = — %f(k‘i"(y))k?’(y) ,

—o

+o

(4.1.200) 2 f da (9D(x, ¥), [ng(L)v(@, »)1yH(z, y)) =0,

-

and follow from (3.3.4) and (3.3.5), and then proceeding as above.
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Equations (4.1.18) and (4.1.19) allow one in principle to compute the time
evolution of the diserete-spectrum parameters. Note however that eq. (4.1.18)
is nonlinear, while oq. (4.1.19) is linear (once (4.1.18) has been solved).

In the slightly less general case that obtains if v and ¢ are independent of
y, eqs. (4.1.12), (4.1.18) and (4.1.19) that describe the time evolution of the
gpectral parameters can be integrated in closed form:

[ t
(4.1.21a) a@(k, y, ) = exp [if at’ y(k, t’)] a‘c‘i’(k, y— ,f dt' v, t’)) ,

t

(4.1.210)  ES(y, t) = E‘i’(y —fdz'v(y':)(y, 1), t’)) ,

22

(41.21¢) o P(y, t) = exp [Jr_fdt'y(k‘i’, t’)] .
A
-[1 +- Z!(;”(y —Jtdt’v(lct’-’, t’)) ‘dt’ v (D, t’)]_.l @"i’(y —j'dt’v(k‘i’, t’)) ,

to te o

where of course
(4.1.22a) E9(y) = E=9(y, 1) ,

(4.1.22b) 0P(y) = o®(y, &)

are fixed by the initial condition at time #, (as well as &2(k, y); see eq. (4. 1.16)).
In eq. (4.1.21¢) we have used the shorthand notation I_c;*’(y’) for the gradient
of £ with respect to y evaluated at y'; the symbol v, has been defined above.
Note that in this equation k= stands for ¥ (y, ?) (the last argument is ¢, not ¢,
even when k2 enters under the integral sign).

It is remarkable that the NLPDE (4.1.18) is, in this case, exactly integrable;
although of course this is implied by consistency from the integrability of
eq. (4.1.12) (indeed (4.1.210) and (4.1.21¢) may be obtained from (4.1.21a)
by using (4.1.17); it can also be explicitly verified that they satisfy (4.1.18)
and (4.1.19)).

Equation (4.1.215) does not however provide the explicit expression of
E¥(y,1), being instead a transcendental equation for this quantity, whose
structure depends on the initial conditions (in special cases it reduces to an
algebraic equation).

In the special case when v = 0, all reference to the variable y disappears
from the NLPDE (4.1.11) (a possible presence of y as an argument in y is
of course trivial in this case). Tn this case the time evolution of the spectral
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parameters is particularly simple:

(4.1.234) «B(k, 1) = exp [UFfdt’y(k, t’)] ZO(k)
(4.1.23b) BBk, t) = fO(E)

(4.1.23¢) ER@) =D,

(4.1.23d) oB(t) = exp [%Cfdt’y(k‘*’, t’)] or,

te

where of course a®(k), fP(k), k' respectively g are the values taken by
ot B(E, 1), BBk, 1), k‘i’(t) respectlvely o P(t) for t =¢,. Equation (4.1.23b) follows
immediately from (4.1.13) and (4.1.14). These equations had been already
given (with the more stringent assumption that y be time independent) by
AKNS, since this case coincides with that treated by them.

The time independence of the spectral parameters S (k) that obtains in
this case implies the existence of an infinite number of conservation laws;
for the derivation of these we refer to the literature (>-2¢). For another approach
to this problem see subsect. 43 below. The fact that, if the y-dependence
is instead present, both k* and = vary with time underscores the nontrivial
nature of this generalization. A more detailed analysis is postponed to sub-
sequent papers of this series.

4’2, Bdcklund transformations. — Let f(2) and g(z) be two entire, but other-
wise arbitrary, funetions of 2. It is then clear that the basic equations (3.2.24)
and (3.2.25) imply that if two fields v, v’ are related by the formula
(4.2.1) f(A)asv_4- g(A)v, =0,
the corresponding spectral parameters are related by the formula
(4.2.2) £ (k) [« (k) — (k)] + g(k)[a®' (k) + aH(k)] = 0,
and by another formula for the betag, that obtains from the nondiagonal terms

in the r.h.s. of (3.2.24) and (3.2.25) and an appropriate use of the unitarity
relation (4.1.1) (both for primed and unprimed variables). The operator A

(*®) The basic idea that is used to extract the conserved quantities is & fairly old one
in potential scattering theory, that may be traced back to papers by N. LEVINSON,
R. G. Newrox and L. D. FADDEEY; sce, for instance, F. CALOGERC and A. DEGASPERIS:
Journ. Math. Phys., 9, 90 (1968).
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in eq. (4.2.1) (and in the following equations) is of course that defined in the
previous section, eq. (3.2.14).
It is more elegant to write these equations in the form

(4.2.3) H (A)v' (@) + H_(A)v{x) =0
with (note that the order in the last term is important)

(4.2.4) H,(2) = g(2) £ 1(2) 05,

and

(4.2.5) D' (k) = {[f(k) F g(B)]/[{(k) £ g(k)]} « (),

(4.2.6)  pr(k) = {[#(k) F g(R)] /L1 () + gURIT} (O (k)] O ()] e (k)
with

(4.2.7) OB(k) =1.,(k) + g..(k) F [f_(k) + g_(R)],

where f_(k), g.(k) are defined by eqs. (3.2.26).
Note that these equations imply

(4.2.8) o' (k) o' (k) = oV (k) a(E)

(4.2.9) B (k) B (k) = BD(k) f(K) .
To obtain eq. (4.2.6) we have also used the important relation
(4.2.10)  [OD(R)]* = — 29(R)[f (k) + g, ()] £ 2f(B)[f_(k) + g_(k)]

that is a consequence of the unitarity equation (4.1.1).

The equations written above remain of course valid even if » and o' depend
on other variables, as in the preceding subsection. The two functions f and g
might also depend on these variables, and in the following subsection we shall
take advantage of this possibility. Here we assume that they do not, namely
that they are functions of their argument 2 only. Then eq. (4.2.5) (where the
reader should now imagine that both «® and «®’ depend on y and ¢ besides k)
implies that, if «® satisfies the linear partial differential equation (4.1.12),
30 does a'¥’, since it coincides with «® up to a factor of proportionality that is
independent of y and ¢. But we know from the development of the preceding
subsection that the linear equation (4.1.12) corresponds to the NLPDE (4.1.11)
for v. We may therefore conclude that two pair of fields r, ¢ and ¢/, ¢’ related
by (4.2.3) have the property that, if », ¢ satisfy the NLPDE (4.1.11), ', ¢’
satisfy the same equation.
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Thus eq. (4.2.3) is a Bécklund transformation, 4.e. a relation that conneects
two fields » and o' that satisfy the same NLPDE (4.1.11). It should be em-
phasized that the functions f(z) and g¢(z) in (4.2.3) and (4.2.4) are arbitrary,
as well as the funetions v and o in (4.1.11); the only connection between (4.2.3)
and (4.1.11) is the structure of the operators A and I, with the latter being the
limit of the former for v = o.

The significance of the Bicklund transformations (4.2.3) is directly evident
from eq. (4.2.5), that displays their effect on the spectral parameters a®. The
implications for the discrete spectrum, as long as it corresponds to the sin-
gularities of &, can also be evinced from this formula. It is also possible to
study more directly the effects of these Bicklund transformations on the para-
meters of the discrete spectrum using the results given above; for instance
eqs. (3.3.12) imply that, if k¥ is a discrete eigenvalue for v' and not for v, then

(4.2.11) f(ED) £ g(B+) =0,

congistently with eq. (4.2.5).

The Bicklund transformations (4.2.3) have the same, guite general, struc-
ture for all the class of NLPDE’s (4.1.11); note moreover that they contain
no explicit dependence on the variables y and ¢. If they are used to generate
a new solution o’ of (4.1.11) out of a given solution », they yield of course a
dependence on y and ¢ that obtains from the dependence of » from these variables
(if any) and moreover from the « constants of integration » that arise on solving
(4.2.3) for v’; these in fact depend generally on y and ¢ (their constancy refers
only to the z-dependence), in a manner that is characteristic of the particular
NLPDE considered, and that may be ascertained by substituting the solution
into it (¥).

As is clear from eq. (4.2.5), it is a general property of the Bicklund trans-
formations (4.2.3) to eommute; this highly nontrivial property has important
implications (%), that shall be discussed in a subsequent paper of this series
(exeept for a terse treatment in some special cases in the next two following
subsections). We also defer a discussion of the general structure of (4.2.3),
limiting our treatment here to a display of the very simplest cases that obtain
with the simpler choices of the functions f and g¢.

(27} The relation (4.2.3) is a generalized version of the formulae often referred to in
the literature as « one half» of a Bicklund transformation; sce the papers of ref. (3)
and, more specifically, those of ref. (#1220). Note added in proofs. — The fact that the
same Bicklund transformation applies to all the equations of the AKNS class had
been previously noted by H. 1. CHEN: Phys. Rev. Lett., 33, 925 (1974) (but he only
consideredt he simple Bicklund transformations that are included in the class of
eq. (4.2.13a) below, since the more general Bicklund transformations introduced here,
©q. (4.2.1), were not known, nor their spectral significance, eq. (4.2.2), understood).
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For f and ¢ constant, eqs. (4.2.3)-(4.2.5) yield
(4.2.12) r'= Ar, q=A1q, ol — Al

For f and g linear (and chosen so as to eliminate a simultaneous «scale »
transformation such as (4.2.12)),

(4.2.13a) f&) =p. - 2iz, 9(z) =p_

with (here and below)

(4.2.13d) Py =} (pP 4+ p),

we get

(4.2.14a) r; +pHr ' =r, 4+ pOr—1rd,
(4.2.14b) € —P7¢+qJ =~ pPq—aJ,

where we have not explicitly indicated the x-dependence and

+o
(4.2.15) J = I@) = [AE[r'()g'(§) — (&) g(&N ]

bl

The two constants p' and p are required to satisfy the conditions
(4.2.16) + Repd >0,

if one assames that r and ¢ vanish faster than exponentially as m:—>:t oo, since
eqs. (4.2.14) (together with the integral relation (4.2.20) given below) then
imply

(4.2.17) r{xz)~exp[—pPa], ¢(@)~exp[pTa] ag & — + oo.

This i3 consistent with the corresponding formula for the alphas, that reads

(4.2.18) a9 (k) = [(k— k) [(k — k=)] aD(k)
with

b b
(4.2.19) JAES) :Epa_)‘

If one assumes that ', ¢’ vanish faster than exponentially, then the signs
in eq. (4.2.16) are reversed.

1t should be noted that in this case g, —f_-=0, so that @2 =f_, and
moreover f, = —iJ(— oo0). Thus eq. (4.2.10) yields the integral identity

(4.220) J(— oo) — ])(")_pH-) .
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From eqs. (4.2.14) one easily obtains the formulae for the «soliton »
solution, that were already given and discussed (in the case without y-de-
pendence) by AKNS. The explicit expression for 7/, ¢' is in fact easily obtained
by assuming that r, ¢ vanish. It is convenient to write these formulae in the
form

(4.2.21a) r'(w) = — g™ exp [— PP @] exp [— p (@ -- @)l /cosh [p_(x — x,)] ,
(4.2.21b) (@) = ig") exp [pa,] exp [p, (& — a,)]/cosh [p_(z — 2,)]
with

(4.2.22) P exp [2p_&,] = — P o7,

since the dependence upon the variables y and ¢ can then be obtained directly
from the formulae of the preceding subsection (see eqs. (4.1.18) and (4.1.19)
and, if appropriate (4.1.21b) and (4.1.21¢), and recall (4.2.19)) (*¥).

4'3. Functional equation. — Liet us restrict our attention in this subsection
to the case when v =0, so that the NLPDE (4.1.11) reduces to the form
(already considered by AKNS, but in the slightly less general case of time-in-
dependent y)

(4.3.1) a3 04y ) +p(L, t) v(x, 1) =0,

and the corresponding evolution of the spectral paramecters is given by the
simple formulae (4.1.23). Consider then the transformation (4.2.3), but now
with functions f and ¢ that depend also on time, and in such a manner that

(4.3.2) file 1) F gtk ) = exp | F 3[ar'ye )] .

Jomparison of eq. (4.2.5) (with this choice for f and g) to eq. (4.1.23a) implies
that the field o' related to » by (4.2.3) and (4.2.4) (with this choice of f and g)
is just the field into which v, given at time ¢,, has evolved at time ¢, following
the NLPDE (4.3.1). In other words (and after a little algebra) we have found
that the remarkable functional equation

+

r(@, t) r(a, 1)
(4.3.3) ( ) = exXp [Jdry(/l, r)] ( )
q(@, ') q(2, 1)

t

(%) (£)/

(28) Note that, sineo in this ease both «'* and «'™" vanish, we are in fact extrapolating
our results to a case in which the discrete spectrum cannot be obtained by analytic
continuation from the alphas. A discussion of this point is deferred to a subsequent
paper, as well as a more detailed analysis of this «soliton » solution when a nontrivial
y-dependence is present (in which case in general it doesnot behave like a soliton at all).
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relates the solution r(z, t}), ¢{z, {) of the NLPDE (4.3.1) at time ¢ to tlie same
solution at time #'. Of course the operator A in (4.3.3) is given by eq. (3.2.14),
with »'=r(w, ), ¢'= q(@, V'), r =1z, 1), ¢=q(®,1).

The functional equation (4.3.3) is an intriguing mathematical construct,
and we propose to investigate it in some detail in a subsequent paper of this
series. It yields nontrivial results even in the simplest cases, as shown by the
following two examples that we report, for completeness, from ref. (*¢°).

i) If y(2,t) =1, eq. (4.1.11) becomes

(4.3.4) r+r=0, :—q=20,

and eq. (4.3.3) yields direetly the solution of this equation

(4.3.5) r(t'y =r(t) exp[t—1t], qt') = q(t)exp [t'—1] .
ii) If yp(z, t) = 2i2, eq. (4.1.11) becomes

(4.3.6) retr.=0, q+¢=0,

and has therefore the solution

(4.3.7) r(x, t) == flw—1), gz, 1) = glo— 1)

with f(2) and g(z) arbitrary functions (vanishing for z — 4 oo). Inserting this
solution in (4.3.3) we get the remarkable nonlinear operator identity

f(=) f(z4- a)
(4.3.8) ( )!= exp [—a(] ( )
g(z+ a) 9(2)

with

10\ 4 f'Ig'+ fIg —fIf—JIf
(4.3.9) C= ( )a—’+ ( . )

0 -1/ \g'Ig+gly —g'If'—gIf
where we have written for short f'=f(z--a), g'=g(z )y F=1(2), g=g(2)

+o
and, as above, I =fdz’. The arbitrariness of f(z) and g(z), that are only re-

quired to vanish asymptotically and to be infinitely differentiable, should be
emphagized. The special choice g(z) = Af(z) yields

(4.3.10) fz + a) = B;Y(1 — AE_) f(2),
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where the operators E, are defined by

(4.3.11) E.= (%, exp [— aC] y.)

with y, defined by eq. (2.1.2) and of course € given by (4.3.9) with g'= Af',
g—=Af. For =0 eq. (4.3.11) goes over into the well-known linear operator
formula

)
(4.3.12) f(z+ a) = exp [a e_z] f(2).

A comparison of eqs. (4.3.2), (4.2.5) and (4.1.23a) has allowed us to conclude
that the functional equation (4.3.3) relates the same solution of eq. (4.3.1)
at different times. We are therefore now also allowed to conclude, from
eqs. (4.1.23b) and (4.2.6), that if f and ¢ are given by eq. (4.3.2), we have

(4.3.13) fE9OF =(fFgOP.
This equation, together with (4.2.10), implies
(4.3.14) OB =0,

or equivalently (see (4.2.7))

(4.3.15) fitg.=0.

The two equations (4.3.15) may be rewritten in terms of the definitions (3.2.26)
and the formula defining the Bicklund transformation (most conveniently in
the form (4.2.1)). In this manner one gets

+o

(4.3.16) J.d:c (vi(w, t,t'), o (g — A {cosh [%-Jt"dry(z, r)] oy v_(%, 8, ') +

.
- sinb [4[azp(z, 1] o.@ 1, 0)}) = 0,
t
where of course
(4317)  wyla b, ¢) = hlole, 1) Lol ], 0. =ic, o =ay,

and the operator A is defined by cq. (3.2.14) with #'= r(x, t'), ¢ = q(=, '),
r=r1), ¢= q(z, 1).

Also these equations are functional relations conneefing the same solution
of the NLPDE (4.3.1) at different times; note that they contain the parameter 2,
that may take any value. They constitute in some sense a generalization, for
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finite time intervalg, of the infinitely many conservation laws that are known
to characterize the NLPDE’s of the class (4.3.1). Indeed these conservation
Iaws can be easily derived by taking the limit of (4.3.16) for ¢’ — ¢t — 0 (and using
the results of the appendix); but we prefer to defer a discussion of this question
to a subsequent paper of this series.

4’4. Special cases. — Using the results of subsect. 2'4 one can easily analyse
possible subelasses of solutions of the NLPDE (4.1.11), as well as subclasses of
NLPDE’s involving only one field. This we do in this subsection, that ends with
a terse treatment of some specific results in the special case of the sine-Gordon
equation, singled out as an example in view of its special importance.

In the following formulae ¢ is always such that &2=1, 4e. e= +1 or
¢ =—1. We do not list below the properties of the spectral parameters (alphas
and betas), since they can in each case be easily evinced from the formulae
of subsect. 2'4. These properties are of course instrumental for the derivation
of the results reported below.

Subclasses of solutions. We list below 3 cases.

i) If in (4.1.11)
(4.4.1) vz, ¥, 1) =v(— 2% ¥, 1), (2, y, 1) =y¥(—2% ¥, 1),
the relation
442)  rlm gy =ty t),  a@y, 0= et 5,1

is consistent with (4.1.11), namely, if true at ¢t =1¢,, it remains true for ¢ > {,.
Moreover, if this relation is true for », ¢, it may also be true for ', ¢’ obtained
from r, ¢ via a Bécklund transformation (4.2.3), provided the functions f and ¢
that characterize it satisfy the relation

(4.4.3) f2) g*(— %) = f*(— %) 9(2) -

Note that this condition is necessary but not sufficient, since additional restric-
tions (easy to ascertain and to implement) must of course be imposed on the
constants of integration that obtain by «solving » the Bicklund transformation
for v, ¢’. In the case of the linear Bicklund transformation (4.2.13) this con-
dition implies p& = p®*, namely the poles are constrained to occur on the
imaginary axis. The corresponding restrictions for the residues, in the case of
the soliton solution (4.2.21), is o™ = — gp@*,

i) Tf in (4.1.11)

(4.4.4) vz, ¥y 1) =v(—2¥51), YR, ¥, 0) =v(—2 5 1),

16 — Il Nuovo Cimento B,
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the relation
(4.45) 1@, y,t)=er(—x+a, 1), @, y, 1) = eq(— 2+ a, y, 1)

is consistent with (4.1.11). The corresponding (in the sense detailed above)
condition for the Bicklund transformations is

(4.4.6) Hz) g(—2) =(—2)9(2) .

No linear Bicklund transformation exists consistent with this condition (ex-
cept the trivial one with constants f, g corresponding to simple scaling of », ¢).

iii) If in (4.1.11)

(4.4.7) vz, y, 1) = (2% ¥, 1), vy, 1) =y** ¥, ),

the relation
(4.4.8) 1@,y ) =er*(—z+a,y,0), 9z, ¥y t) = eq*(— v+ a, 5, 1)

is consistent with (4.1.11). The corresponding condition for the Bécklund
transformation is

(4.4.9) 1) g*(z*) = 1*(z*) g(2) .
Thus a linear Bicklund transformation may be compatible with (4.4.7) only
if it yields poles on the real axis.

This completes our list of possible special solutions of (4.1.11). A more
interesting class of special cases obtains from transformations that include
(2.4.3), and therefore relate r to ¢, since one obtains in this manner NLPDE’s
for one field only. We list below the 4 cases that obtain in this manner.

Subclasses of NLPDE’s for one field.
i) If in eq. (4.1.11)

(4.4.10) vz, ¥, 1) =v(—2, ¥, 1), e, ¥ty =—y(—2,51),

it is consistent to set

(4.4.11) r(@, y, 1) = eq(@, y, 1),

obtaining thereby a single NLPDX for the field ¢ (or rather 2 different NLPDE’s,
depending on whether ¢=--1 or ¢=—1). A necessary condition for the
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Bicklund transformations (4.2.3) to be consistent with (4.4.11) is

(4.4.12) f(2)g(—2) = —f(—2)g(2) .

In the special case of linear Bicklund transformations this implies pf = — p*,
or equivalently p, = 0. The corresponding restriction for the residues in the
case of the soliton solution is o) = — g, This case is a particularly inter-
esting one, since it includes the sine-Gordon and modified K4V equations;
it is further discussed below.

ii) If in eq. (4.1.11)
(4.4.13) v(z, , 1) = v(e*, ¥, 1), YR, y, 1) = — y*(eH ¥, 1),
it is consistent to set

(4.4.14) r(@, y, 1) = eq*(@, y, 1) .

The necessary condition on the Bicklund transformation (4.2.3) to be con-
sistent with (4.4.14) is

(4.4.15) f(2) g*(2*) = — f*(2*) g(2) -

In the linear case this implies p == — p*, and, for the soliton solution, one
has the restriction o™ = go>". This case is also important, since it includes
the nonlinear Schridinger equation (it coincides in fact with the case originally
studied by ZAKHAROV and SHABAT (¥)).

iii) I in eq. (4.1.11)
(4.4.16) Y&y, 1) =0,
it is consistent to set

(4.4.17) 7@y y,f) =eq(—@+a, y,1).

The corresponding limitation on the Bécklund transformations is g := 0 (namely,
there is no Bieklund transformation consistent with (4.4.17)). Clearly this
is not an interesting case.

iv) If in eq. (4.1.11)
(4-4-18) V(Z, Y, t) = V(_ Z*’ Y, t) ’ 7(27 e t) = ’}/*(— 2*5 Y, t) ’
it is consistent to set

(4.4.19) 7@, y, 1) =eq*(— v -+ a, y, 1),
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obtaining thereby a nonlinear functional evolution equation for the field ¢,
that contains its values at # and the values of its complex conjugate at — x + a.
The subeclass of Bicklund transformations (4.2.3) consistent with (4.4.19) is
constrained by the necessary condition

(4.4.20) 1(2) g*(— #*) = — [*(—2*) g(2) .

The poles are however constrained to oceur on the real axis, since one has the
condition p‘D* = p). Clearly this is a rather peculiar example; we are not
aware of its having been considered by other authors.

This concludes our list of the cases in which one obtains from (4.1.11) a
solvable NLPDE for a single field. We have not written these equations ex-
plicitly, since the simpler procedure is to obtain them in each case from (4.1.11).

We end this paper discussing the implications of the permutability of Bick-
lund transformations in the special case of the equation for the single field ¢
of case i) above (see (4.4.10)). We note first of all that, after a little algebra (2?),
the linear Bicklund transformation consistent with (4.4.11) yields

(4.4.21) q'(#) = q(@) + p sin [Q'(x) + Q(x)] .

In this formula

(4.422) P = p(+) _ — p(—) ,
+ T
(4.4.23) Q) =[aq®, Q@ =[dq @),
@ z
and we have assumed ¢ = —1 (if ¢ = -+ 1, the sine is replaced by the hyper-

bolic sine; we do not write explicitly the results for this case).

We exploit now the permutability of two Bicklund transformations of this
kind, characterized by parameters p,, p,, obtaining, with an obvious meaning
of the symbols, the nonlinear superposition formula (*)

(4.4.24)  sin@, = {sin Q,[(p? + p?) cos (@, — Qs) — 2P, P2l +
+ (p? — p%) cos Q, sin (Qy — @,)}[p? + P} — 291 P, €08 (@ — Qu)] .

It is immediately seen that this formula implies @; = ¢, (mod 2z7) if p, = — p,.

(2?) Write explicitly the linear Bicklund transformation for the fields (using eqs. (4.2.3)
and (4.2.13a)), introduce the funection w(z) +.|'dav’ ¢*(@’) (and w’(x), similarly related

to ¢'(x)), solve for w'—w in terms of ¢ - ¢ (choosing appropriately the sign in the
solution of the second-degree equation), differentiate, simplify, and finally integrate
using the asymptotic boundary conditions Q(+ oco) =@’(4 o) = g(+ o0) =: ¢'(+ o0) = 0.
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If ingtead p,= p, = p, one obtains the interesting formula
(4.4.25) sin@Q” = sin ¢ + ZpQ;(cosQ —pQ, sinQ)(1 + p* @)™,

where ' is the field obtained from ¢ by the Bécklund transformation with
parameter p, and @ indicates the partial derivative of @' with respect to p.
Q" indicates of course the field obtained from @ by a double application of
the Backlund transformation (so that the corresponding speetral parameters
" eontain generally a double pole).

If ¢ =0, eq. (4.4.25) provides an explicit solution of the NLPDE, since
in this case Q' is known (see eqs. (4.2.21) and (4.4.22)):

(4.4.26) Q' = 2 arctg {exp [p(x — w,)]} .

Note however that, to get Q;, account must also be taken of the p-dependence
of z,, that is characteristic of the particular NLPDE being considered (while
the soliton expression (4.4.26) is instead common fo all the equations of the
class (4.1.11) with (4.4.10) and (4.4.11)). For instance, for the special case
v =10, y(2, y,1) = — (2i2)%, that is an interesting one since it yields for
(4.4.27) @ =2Q

the sine-Gordon equation

(4.4.28) Pr=siNQ,

one finds x, = ¢/p? so that eq. (4.4.25) yields

(4.4.29) @ = 2 arctg {2u, cosh u_[[cosh® u_— 3]}
with
(4.4.30) u,=pr4tp.

The physical significance of this solution is best discussed going over to the
variables X =z —1t, T =z +t. Note that, in terms of these variables,

(4.4.31a) u_= (1— 03X —oT),
(4.4.31b) u, =— (L—v) X —T)
with

(4.4.32) v=(1—p»/(1L+p%;

while the sine-Gordon equation takes its proper (relativistically invariant)
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form

(4.4.33) Crp— Pzz = SN Q.

Assuming that this originates from a classical field theory with Lagrangian
density

(4.4.34) L =3 (— Qe r+ Pxps) — (1 —cos )

one obtains for the energy density

(4.4.35) H =5 (@rPr+ 2 9x) + (L — o5 9)
corresponding to the special solution (4.4.29) the expression

(4.4.36) A = 4(cosh® u_+ u3)*[p*(cosh u_— u, sinhu_)*+

-+ p~2(cosh u_ + u_ sinh u_)% - 2u} cosh?u_],

which clearly vanishes as T — oo, even if X diverges (in contrast to the soliton
solution (4.4.26), which yields

(4.4.37) H = A1 — v?)~1 cosh—2u_,

so that in this well-known case 5# remains constant if 77 and X both diverge
keeping u_ constant; this solution represents of course a disturbance, the soliton,
moving with velocity V).

Note added in proofs.

The special solution of the sine-Gordon equation discussed here had been pre-
viously obtained by G. I.. Laus jr.: Rev. Mod. Phys., 43, 99 (1971); it can also be
recovered from the « breather » solution by an appropriate limiting procedure (private
communication by L. D. Fappeev, P. P. KurisH and L. A. TAKHTAJAN).

APPENDIX

In this appendix we show some important properties of the operator L,
which follow directly from its definition

©

(A1) L= [oa 2 1 20(a) f aé [mv(w] :

21 o

E
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Here v(z) is the vector (2.2.3) and the matrix operator L has been expressed
in terms of the well-known dyadic notation.
Let us introduce the operator-valued function of the complex variable 2

(A.2) A(z) = (1 —24=2L)™*
that satisfies the equation

(A.3) A(z) =14 2{zLA(2),
and the vector-valued function

(A.4) Mzyz) = A=z)v(r).

Note that all coefficients of the power expansion in z of A(z; ) vanish as
x — |- co. Hquation (A.3) then implies that

(A.5) Me; @) = [1 4 200 (23 0)]0(2) + 20374(2; @),

where we have defined
+o
(A.6) J(2; @) = |dé (ioyv(&), A(2; &) .

Note that, for ¢ —0, 2=» and J = 0 (due to the antisymmetry of o).
The following differential relation can be casily derived from (A.5):

(A7) (zz—zx)(l(zl),io'z/l(zz)) =

= % [zlzz(}‘(zl)’ Ull(zz)) + 2 (21) + 2y (2,) - 22122J(z1)'7(z2)] .

Here we have, for notational simplicity, not indicated the argument z.
If we set now 2, = 2, = #z in this expression, it follows that the complex
function

(A.8) C(z) = 2(A(), 01 4(2)) + 2J (2) + 22J%(2)

is independent of x, and therefore the coefficients of its power expansion in 2
are also z-independent (for those values of x such that this power expansion
is meaningful). On the other hand, these coefficients can be expressed in terms

+
of (L*v(x), o, L™v(x)) and ﬁl& (ioy0(&), Lv(&)) only (n, m nonnegative integers),

that vanish as £ — — oo since we assume v(z) to vanish in this limit with all
its derivatives. We therefore conclude that the function C(z) vanishes or,
equivalently, that

(A.9) J(2) = —2(i(2), 0, /(2) )[1 + (L —222(A(2), Gll(z)))i]_l )



240 ¥. CALOGERO and A. DEGASPERIS

From this formula and the remark (A.4) it then follows that the coefficients
of the power expansion in # of J(2, #) vanish in the # —— oc limit, so that

+eo
(A.10) ~{dac (v(®), io, L"v(x)) =0, n=0,1,2,....

— o

An immediate consequence of these integral relations is the complete
equality of the class of NLPDE’s given by AKNS to the class given in this
paper (or rather to a subclass of these, as explained above). To show this it
suffices to prove that

(A.11) LMy(z) = L v(x),

where L_ is the integro-differential operator defined by (1.3) and introduced
by AKNS (*). We begin by noting that

+o
(A.12) L_=L+T, TI= iv(m)fdcf [io,0(&)]7,

—

and that the operator I' annihilates all vectors obtained from v(x) by repeated
application of L

(A.13) TLw(x)=0, n==0,1,2,....

The equality (A.11) then follows immediately from this formula and the defi-
nition (A.12).

Equation (A.9) obtains upon solving (A.8) for J~. If one solves instead
for J and then substitutes in (A.5), one gets

(A.14) Mz; w) = [1—222(A(z; @), 0, A(2; @) ) [ o(@) + 203 4e(2; ) .

Equating the coeflicients of the expansion in powers of z of this formula one
concludes (by recursion) that the vectors L"s(x) do not contain any integral
expression of the functions 7(x) and ¢(x), being instead expressed only in terms
of products of these two functions and of their derivatives. This result had
been reported already in sect. 4.

Another interesting formula is the equality

+o :
(A.15) J’dm (L"v(w), io, Imo(x)) =0, n,m=0,1,2, ...,

that shall play an important rdle in the discussion of the infinitely many con-

stants of motion associated with the class of solvable NLPDE’s with only
one space co-ordinate (see the last part of subsect. 4'3). In order to prove this
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equation we perform a double expansion in powers of 2z, and 2, of (A.7), and
equate the coefficients; in this way one concludes that the quantities
(L"v(x), io,L™v(w)) are exact differentials, and this, together with (A.10),
implies (A.15).

Finally, using (A.10), we obtain from the definition (4.1.8) of the func-
tion ¢(k, y,1) the expression (4.1.14) given in subsect. 41. In fact, by
using the NLPDE (4.1.5), the equation (4.1.8) may be reduced to

~+o0
(A16) (3,0 = 20 s (o(0), il — ) o)+ 90 £ ox0(a )

+o
since the contribution of the integral fdw (v(m),iaz(k——L)—‘v(m)) vanishes a8

a consequence of (A.10). If the evolution equation is then used to eliminate
o30,(x) in (A.16), we are left with the final expression

+o
. . . k L)] ¢
(AT) gk, 3, 1) = G, 3, ]f() = 23 f d (v(w>, ia, [‘Lk’_%“] = osv(x)) ,

+e
where once again the integral de(v(w),iaz(k—L)“y(L)v(m)) has been elim-
inated using (A.10). -

@ RIASSUNTO

Questo lavoro & il primo di una serie dedicata ad un metodo generale per trovare e studiare
equazioni non lineari alle derivate parziali risolubili per mezzo della tecnica della trasfor-
mata spettrale inversa. In questo articolo si presentano i risultati che si ottengono appli-
cando questo metodo al problema lineare generalizzato di Zakharov-Shabat. Si da
una classe di equazioni di evoluzione nonlineari, solubili eon la trasformata spettrale
inversa, che & piu generale di quella presentata da Ablowitz, Kaup, Newell e Segur,
poiché si includono anche equazioni contenenti coefficienti non costanti e pit di
una variabile spaziale. Riportiamo inoltre una classe molto generale di trasformazioni
di Bicklund che contiene tutte le trasformazioni gid note e ne chiarisce il significato.
Infine otteniamo, per una classe pilt ristretta di equazioni nonlineari di evoluzione
(contenenti solo una variabile spaziale), un’interessante equazione funzionale che lega
la soluzione al tempo ¢ alla stessa soluzione al tempo ¢'. Questo articolo & dedicato ad
una presentazione generale del metodo ed alla dimostrazione dei risultati principali
{alcuni dei quali sono gid stati pubblicati senza dimostrazione). Sebbene P'analisi di
equazioni particolari e di soluzioni speciali & rimandata ai lavori successivi di questa
serie, aleuni risultati di questo tipo sono gid presenti in questo lavoro, tra i quali
Iespressione esplicita della soluzione esatta, non di tipo solitone, dell’equazione sine-
Gordon, che corrisponde ad un polo doppio dei corrispondenti parametri spettrali.
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Hemneiinble ypaBHeHHs YBOIOUHH, pelllaeMble ¢ TIOMOIBIO 0GPATHOTO CNEKTPAJBHOIO
npeoGpa3osanus - 1.

Pesrome (*). — OTa cTaThd SBIAETCA MEPBOYM CTaThell M3 CepMM, OCHOBAaHHOH Ha obmem
METOJE IJIA MCCIIENOBAHNs HEJTMHEHHBIX na(depeHIInanbHbIX YPaBHEHANM B YACTHBIX IPOM3-
BOJIHBIX, pellfaeMblX C ITOMOIILIO TEXHHKH OOPAaTHOTO CIEKTPAJILHOTO Opeofpa3oBaHms.
PeaynbTathl, MONYYEHHBIE B 3TO) CTATHE, AHAIOTHYHEI pe3y/IbTaTaM, KOTOpPbIE NOJIYYaIOTCA
Ip4 IPUMEHEHHH 3TOro MeTona K 06o061eHHOH nuHeiHOW npobneme 3axaposa-Illabara.
Mpur npuBoAMM KNacc HEAHHEHHBIX YPaBHEHUH DBOJIIOIHH, PellaeMbiX ¢ IOMOLIBLIO 06paT-
HOY'O CIIEKTPAJIBHOTO NpcoOpa3oBaHud. IJTOT Kiacc ABNAETCH Oonee obmmM, YeM Kiace,
BBenieHHbIT AbnoBurueM, KaynoM, HesenioM n CerypoM, T.K. OH COIEPKHT YPABHCHHS,
BKIFOUarollpe GoJsicc YeM OOBY MPOCTPAHCTBEHHYIO IEPEMCHHYIO M COZEpXaInue Ko3g-
GUiMeHTBI, KOTOpBIE HE ABJIAIOTCS TIOCTOSHHbIMH. MBI TakKe pAacCMATPHBAaEM OYEHB
obmuit knacc mnpeobpasoBammit BeknyHma, XOTOpBIi CONEPXKMT BCe Takhe Ipeobpaso-
BapysA, KOTOpble OBLIM paccMOTpeHsl panee. IlpoBomurcs aHanus QU3MYECKOro CMEICTA
3THX npeoOpa3osannit. J{ns ciyyas mexee oOINEro kKnacca HenuHeHHBIX YPABHEHHI 3BO-
JrouMK  (BKIIIOYAIOUIETO TOMBKO OHY HNPOCTPAHCTBCHHYIO IIEPEMCHHYIO) MBI IIOJIy4aeM
(OYHKUHMOHATTEHOE YPABHEHHE, KOTOPOE CBA3bIBAET DELICHUE B MOMCHT BPEMEHH ! C TeM
Xe pelleHHeM B MOMEHT BpeMcHH ¢t'. OCHOBHOC BHHMAHHE B CTAThE yImenseTcs OOIIeMy
MOAXOdY M JOK434TENbCTBY OCHOBHBIX Pe3y/IbTATOB (HCKOTODHIC M3 KOTOPBHIX OBIIM IIPH-
BejleHbl paHee 0e3 I0Ka3aTelkCTB). XOTA AHANMM3 CHEUHANBHBIX YPABHEHMII H CIIELIAAIL-
HBBIX PCUICHHH OTJIOXKEH HAa DOCIERYIOUIMEC CTATbU ITOH Cepuu, B 3TOH paboTe mpHBO-
IATICSA HECKOIBKO PE3YIBLTATOB TAKOTO PONA, KOTOPBIC BKIIIOYAIOT TOYHOE HECOJIMTOHHOE
perreHne ypasHeHus [OpioHa, COOTBETCTBYIOUIErO ABOHROMY HOJIOCY aCCONMMPOBAHHOIO -
CICKTPAJILHOT O} [IAPAMCTPA.

() Iepesedeno pedaryueii.



