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S u m m a r y .  - -  This paper is the first of a series based on a general method 
to discover and investigate nonlinear partial differential equations solv- 
able via the inverse spectral transform technique. The results of this 
paper are those that  obtain applyiug this method to the generalized 
Zakharov-Shabat linear problem. We give a class of nonlinear evolution 
equations solvable by the inverse spectral transform, that  is more general 
than that  introduced by Ablowitz, Kaup, Newcll and Segur because it 
includes equations involving more than one space variable and con- 
taining coefficients that are not constant. We also report a very general 
class of B/icklund transformations that  includes all such transformations 
previously considered and clarifies their significance. Aud we produce, 
for a somewhat less general class of nonlinear evolution equations 
(involving only one space variable), a remarkable functional equation 
that  relates the solution at time t to the same solution at time t'. This 
paper is focussed on a general presentation of the approach and the proof 
of the main results (some of which had been previously reported without 
proof). Although the ~malysis of spccial cquations and special solutions 
is deferred to subsequent papers of this series, there are here also a few 
results of this kind, including the explicit display of the exact nousoliton 
solution of the sine-Gordon equation corresponding to a double pole 
of the associated spectral parameter. 
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1. - I n ~ o d u c f i o n .  

Most physieul problems are represented  ma themat i ca l ly  b y  par t ia l  dif- 
ferent ia l  equations.  I n  m a n y  cases these equat ions are linear, or a t  least  a 

l inearized version is a.dequate to account  for the  main  features of the  physica l  

process. I n  m a n y  other  cases the  physical  phenomenon  is described b y  non- 

l inear  par t i a l  differential equat ions (NLPDE's ) ,  wi th  the  nonl inear i ty  p lay ing  
a nonnegligible r61c (~). 

The theory  of l inear par t ia l  differential equations has t radi t ional ly  consti- 

t u t ed  the  backbone  of ma thema t i ca l  physics ; this has main ly  occurred because 

no theoret ical  approach  to N L P D E ' s  existed whose general i ty  and  power  were 

comparable  to the  methods  ava.flable in the  l inear case (such as, for instance,  

the  Four ie r - t ransform technique to solve l inear par t ia l  differential equat ions  
wi th  cons tan t  coefficients, an  instance arising in innumerable  physical  appli-  

cations, as reflected in the  impor tance  of the  Fourier  t rans form in physics and,  
more  generally,  in applied mathemat ics ) .  

A few years  ago a technique to solve a N L P D E  has been invented  (3). The 

subsequent  demons t ra t ion  of the  appl icabi l i ty  of this technique (sui tably 
generalized) to large classes of N L P D E ' s  (s) const i tutes  a major  deve lopment  

in m a t h e m a t i c a l  physics, or, more  gencra.lly, in applied mathemat ics .  This is 

underscored b y  the  recognition (sg) t h a t  the  new technique m a y  be viewed as 

an extension of the  Four ie r - t ransform method,  to which it does indeed reduce 
in the  l inear (or linearized) case. Moreover,  the remarkab le  propert ies  of those 

(z) Throughout this paper whenever we mention NLPDE's  we include also the pos- 
sibility that these be integro-differcntial equations (that may, or may not, reduce to 
pure partial differential equations, possibly by an appropriate redefinition of the 
dependent variable). 
(3) C.S. GARDnEr, J. M. Gm'ENE, M. D. KRUSKAL and R. M. MIURA: Phys. Rev. T~ett., 
19, 1095 (1967); Comm. Pnre Appt. Math., 27, 97 (1974). 
(3) Out of the extensive literature on this topic we list here only the most significant 
contributions, selected on the basis of their review nature, their landmark character or 
their technical closeness to the approach of this paper: a) A. C. SCOTT, F. Y. F. CEU 
and D. W. McLAuGm~ZN: .Proc. IEEE,  61, 1443 (1973); b) G. B. WmTHAM: Zinear 
and Nonlinear Waves (New York, N.Y. ,  1974); e) J. MosF~, Editor: Dynamical 
Systems, Theory and Applications (Berlin, 1974) (see in particular the papers by 
M. KRUSKAL and by H. FLASCHKA and A. C. Nv.W~T,L); d) P. D. LAx: Comm. Pure 
Appl. Math., 21, 467 (1968); e) V. E. Z ~ o v  and L. D. FADD~EV: Fnne. Anal. 
Appl., 5, 280 (1971); ]) V. E. Z^~AROV and A. B. SHABAT: Soy. Phys. JETP,  34, 
62 (1972); g) M. J.  ABLOWITZ, D. J.  KAUP, A. C. N~,WELL and H. SF, GV~: Stud. Appl. 
.Math., 53, 249 (1974), hereafter referred to as AKNS; h) F. CALOGERO: .~ett. Nuovo 
Cimento, 14, 443 (1965); i) T. KOTERA and K. SAWADA: Journ. Phys. Soe. Japan, 39, 
501 (1975). Presumably another useful reference, that we have however not yet 
been able to consult, is Nonlinear Wave Motion, edited by A. C. N~w~:T,r., .Sectures 
in Applied Math., 15 (Providence, R . I . ,  1974). 



N O N L I N E A R  ~VOLI~'TION -EQUATIONS SOLVABLE ETC.  - I 2 0 ~  

~TLPDE's to which the  novel  technique is applicable open perspect ives t h a t  are 
highly interest ing also f rom a purely  ma themat i ca l  point  of view (4). 

I t  is convenient  in this discussion to focus upon evolution equations, i.e. 
~N'LPDE's describing the evolution in t ime of a field q ( that  m a y  depend on 

several  (( space ~ variables  x, y, z ..., besides the  t ime t, and t h a t  might  also 

be  a mul t i componen t  quant i ty ,  i.e. a vector  or a ma t r ix ;  see below). The main  

idea of the  deve lopment  ment ioned above consists in the association, with every  

(( solvable ~ N L P D E ,  of a linear operator  of (generalized) Sturm-Liouvil le  type,  

whose spectral  pa rame te r s  (defined more  precisely below) evolve simply in 

t ime  while q evolves (generally in a quite compl ica ted way) according to the 

:NLPDE. The field q a t  t ime t can then  be evalua ted  f rom its values a t  t ime to 
b y  first determining,  a t  t ime to, the spectral  pa rame te r s  of the  associated op- 
erator,  let t ing t hem evolve to the t ime t, and finally recovering the  field q a t  
t ime  t f rom the corresponding spectral  parameters .  The first and  third steps 

of this procedure correspond to the ~, direct )~ and ~( inverse ~ spectral  problems 
for the linear opera tor  associated with the original h~L]?DE. 

When  this me thod  was first in t roduced (~), the ~-LPDE was the celebrated 

K d V  equat ion (5), and the  associated linear problem was the  one-dimensional  

scat ter ing and bound-s ta te  SchrSdinger problem,  with q p laying the  r61e of 

the  potent ial .  In  this case the  spectral  pa rame te r s  are the  scat ter ing and  bound- 

s ta te  da ta  (reflection coefficient, bound-s ta te  energies and  normalizat ion con- 

s t an t s - - s ee  below), whose determinat ion from the poten t ia l  corresponds to the 
solution of the  direct  Schr6dinger scat ter ing and  bound-s ta te  problem, and 
theft in their  turn  determine the potent ia l  v ia  the  solution of the inverse scat- 
ter ing prob lem (6). F r o m  this last  step the  procedure  has been named  (~ inverse 
scat ter ing me thod  ~>; in their  l andm ark  contr ibut ion A K N S  (s~) emphasized 
the  relat ionship of this technique to the  Four ier - t ransform me thod  for solu 
linear par t ia l  differential equations,  and  int roduced therefore  the name  (r inverse 
scat ter ing t r ans form ~). We prefer  to use here a n a m e ~ i n v e r s e  spectra l  
t r ans form ( I S T ) - - t h a t  reflects more accurate ly  the  na ture  and  genera l i ty  of 

the  me thod  (and moreover  preserves the acronym,  IST,  in t roduced b y  
AKNS).  

(*) We list again only a few contributions, particularly significant in the context of 
this paper: H.D.  WAHLQUIST and F. B. ESTABROOX: a) Phys. Rev. T~ett., 31, 1386 (1973); 
b) Journ. Math. Phys.,lO, 1 (]975); e) D. W. MC],AUC~HLL~" andA. C. SCOT~: Journ. Math. 
Phys., 14, 1817 (1973); d) G. L. LAMB jr.: Journ. Math. Phys., 15, 2157 (1974); 
e) F. CALOG~RO: •ett. Nuovo Gimento, 14, 537 (1975); see also the papers of ref.(3). 
(5) D. J. KORr~WEG and G. Dv.VRIES: Phil. Mag., 39, 422 (1895). 
(6) I. M. GEL'~'A~'D and B. M. LEVITAN: Amer. Math. Soc. 2'ransl., 1, 253 (1955); 
Z. S. AGRANOWCI~ and V. A. MARCHENKO: The Inverse Problem o] Scattering Theory 
(translated from the Russian by B. D. S E c ~ )  (New York, N.Y. ,  1963); I. KAY 
and H. E. MOSES: ~-q, ovo Cimento, 2, 917 (1955); 3, 66, 276 (1956); Journ. Appl. Phys., 
27, 1503 (1956); I. KAr: Comm. Pure Appl. ~lath., 13, 371 (1960). 
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The applicability of the IST to solve a 5[LPDE depends upon the discovery 
of an associated linear problem tha t  allows the three steps described above 
to be performed. The main development  of the last few years has therefore 
focussed on this issue; gener:~llv the st~rting point  of the analysis is the linear 

problem, and the IqLPDE (or ra ther  the class of IqLPDE's)  associ~ted with 
it a, re then  uncovered. Three pt~rallcl, a.nd oec~sionally osculating, tech- 
niques have mainly emerge(l. 

The first originaies from the remark  by J~AX (~) that ,  if the t ime-dependent  
linear operator  L satisfies the operator  eqnation 

(1.~) L~ = [L, M] 

with ] /  some other operator,  the t ime evolution of its spectral parameters  is 
part icularly simple. Taking this point  of departure,  it has been possible to 
obtain a whole chess of h~LPDE's tha t  are solvable by  the IST (3s.3o.7). This ap 
proach has moreover been part icularly fruitful  in the context  of the discrete 
problem, leading to the discovery of a, number  of exact ly intcgrable many-  

body systems (8), and to a deeper understanding (9)of  some such models 
whose solvability had been previously demonstr ' t ted by  other  means (~o). 

The main meri t  of the Lax approach is its all-encompassing nattrre, con- 
nccted with its operator- theoret ic  standpoint .  I ts  main drawback, as a tool 
to enlarge the class of solvable ~NLPDE's, is its rchance on a start ing point,  
eq. (]), tha t  is not  very  suited to a systematic approach. 

The second, and related, technique is due to the Clarkson school (H), and 
its more complete exposition is in the AKIqS paper  (s~). I ts  s tart ing point  is 
an appropriate  Sturm-Liouville problem, such as the Z,~kharov-Shabat system (s~) 
(rather, a generalized version of i t ;  see below) or the one-dimensional 
SehrSdinger equation, whose direct and inverse spectral problems are well 
in hand. A large class of _NLPI)E's, solvable by  the IST associated with such 
problems, is then generated by  a systematic procedure, related to the Lax  
formula and based on a. convenient  ans~tz for the t ime dependence of the wave 

(~) M. WADAai and T. KA)II.IO: Prog. Theor. Phys., 52, 397 (1974). 
(s) P~pcr by J. Mos>n~ in ref. (3c); j .  MoszR: Adv. Math., 16, 197 (1975); F. CA- 
I.OC~]~RO, C. 5I.~Ir ,~nd 0. RAO_~ISC0: Lett. ATuovo Cimenlo, 13, 383 (1975); F. CA- 
I.OGI.~RO: Left. Nuovo Cimento, 13, 411 (1975); M. ADLI~.R: preprint (A new integrable 
zystem and a conjecture by Calogero, to be published). 
(~) H. FJ~ASCHKA: Phys. Re~,. ]3, 9, 1924 (1974); Prog. Theor. Phys., 51, 703 (1974) 
(s,~e also the paper by the same author in rcf. (3~)); S. V. MA~'AKOV: SOV. Phys. JETP,  
67, 543 (197,i). 
(1o) M. TODA: Journ. Phys. Soc. Japan, 23, 501 (1967); Phys. Rep. (1974); M. IIxNo~-: 
Phys. Re~. B, 9, 1921 (1974); F. C,~LOG]':aO: Journ. M,Lth. Phys.,12, 419 (1971). 
('~) M. J. ABI~OWI'rZ, D. J. KAY;p, A. C. NEw~I,L ,~nd II. SEGU~: Phys. Rev. Lett., 31, 
125 (1973). 
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flmetions of the linear problem. In comt)act form, these NLPI)E's may be 
written a.s (~) 

( 1 . 2 )  

with 

C 1 .a) 

( r~(x, t)t (r(x,t)) 
~-- 2A(L ) =- 0 

\-.. q,(x, t)/ \q(x, t) 

C 
~ 
C 

1 ~x--2rI-q 

L_ - ~ \ --2ql_q 

2r l  r 1 

L +  2qI_r] ' 

where we have introduced for short tim integral operator 

(1.4) 

o r  

(1.5) 

with 

( 1 . 6 )  L~ .- 

I_ 

q~- ~- B ( L , )  q~ = 0 

4 ~ x  ~ 

-i-co 

14 q + -  ,, q (1~" . 

x 

The first forlnul% (1.2) corresponds to the generalized Zakharov-Shabat linear 
problem; it yields a system of couph~d nonlinear evolution equations for the 
two fiehls q(x, t) and r(x, t), that  may reduce to a single equation for a single 
field in special eases, such as, for instance, tlmt treated by Z~Kmt~ov and 
SIIABAT (8~), characterized by r =  -- q*. The second formula, eq. (1.5), corre- 
sponds to the one-dimensiona.1 SchrSdinger problem. 

The generality of the class of equations yiehled by the AKNS approach 
is demonstrated by the arbitrariness of the functimls A and B in eqs. (1.2) 
and (1.5) (they are on]y requb'ed to be ratios of entire functions) ; and the direct 
connection of these functions with the dispersion relation characterizing the 
lincarizcd version of the NLPDE's (1.2) and (1.5) is of major importance, dis- 
playing, as emphasized by AKNS, the analogy of the IST treatment of NLPDE's 
to the Fourier-transform technique to solve linear partial differentiM equations 
with constant cocffmients. Moreover, by choosing simple polynomiM, or ra- 

(1.~) Throughout this paper we occasionally differ, to streamline our presentation, from 
the notation used previously. 
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tional~ exl)ressions for the functions A and B~ A K N S  were able to reobta iu  
all the previously known solvable N L P D E ' s ,  including the celebrated K d V  (~.5), 

nonlinear  SehrSdinger (3:) and sine-Gordon (~8) equations.  & l imita t ion of 

the  A K N S  approach,  tha t  m a y  however  be in the  process of being overcome (~4), 

is its restr ict ion to :NLPDE's  involving only one sp,~ce variable.  

A thi rd  approach (a~) employs  generalized Wronsk ian- type  equations,  re- 
lat ing the wave ftmctions and the  spectral  pa rame te r s  of (generalized) S turm-  

Liouville problems~ to derive a large class of N L P D E ' s  t ha t  can be solved by  
the IST. This technique is quite s t ra ightforward,  ~nd since it relies essentially 

only upon integrat ions by  p,~rts, i t  migh t  be  applicable also in the  contex t  of 

mul t id imensional  Sturm-Liouvi l le  problems.  I n  this paper  its po ten t ia l i ty  

in the  context  of one-dimensional  Sturm-IAouvil le problems is d isplayed;  

the  l inear problem t aken  as s ta r t ing  point  of the  analysis is the  generalized 

Zakha rov -Shaba t  problem. The following pape r  of this series will deal simi- 

larly with the  nlult ichannel SchrSdinger problem. 
The results yielded by  this technique in the context  of the one-dimensional  

SchrSdiager cq~ation have  been a.lready published (~.~,~) as well ~s some of 
the  results described below and in the following p~per  of this series (but wi thout  
proofs) (~). An impor tan t  advan tage  of this approach  is its del iverance of 
h~LPDE's,  solvable via the  IST, t ha t  m a y  involve more tha.n one space var iable  

and  contain coefficients t ha t  are not  cons tan t ;  note  t ha t  these results ob ta in  
even though the  linear p rob lem related b y  tile IST to the (( solvable ,; N L P I ) E ' s  
refers only to one variable.  When the approach is s tr ict ly l imited to problems 

involving only one space variable,  it ret)roduces essentially the  same results 

as the  AK~NS method,  in the context  in which t ha t  technique has been used, 
nam e ly  when the linear problems t aken  as s ta r t ing  points  are the (single channel)  
SchrSdinger or the  generalized Zakha rov-Shaba t  problems;  it  is also applicable 
in more general  contexts~ such as the  mul t ichannel  SchrSdinger case, in which 

ca.se it yiehls novel  classes of N L P D E ' s  (~s.~). 

(~3) The literature on the sine-Gordon equation and its applications is large (see, e.g., 
ref. (sa.sg)); its complete solution was first given by M. J. AI~LOWITZ, D. J. KAIrr, A. C. 
N)3WELL and II. S)'6;vJ~: Phys. Rev. Left., 30, 1262 (1973); and by L. D. I~ADDF.~V 
and L. A. TAKIITAJAN: (?omu~un. J I N R  Dubna, E2-7998 (1974). Sec also D. J. K,~L-t,: 
Stud. Appl. Math., 54, 165 (1975). 
(~4) M. J. ABLOWlTZ and R. HAmm~Ix~-: Phys. Rev. Lett. (in press). 
(~5) F. C~LOGI.mO: Nuovo Cimento, 29 B, 509 (1975). Sec also the paper by the same 
author in the forthcoming Festsehriff in honor of V. BAaC~A_~N, edited by B. SI_~ro~" 
and A. S. Wl(;nT~l~t~. 
(~e) 1~. (L~1,()C~)mO and A. l)I.:G.~sPnmS: a) Phys. Rev. Lett (submitted to); b) Lett. 
-~*uovo Cimento, 15, 65 (1976). 
(~:) Indeed, even in the case with one space variable only, only a more limited class 
of NLPDE's than the one rcpnrted here (and in ref. (~,b)) had been identitied as solvable 
by tile IST associated with the multiehannel SchrSdinger equation (7). 
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The N L P D E ' s  tha t  are shown (below and in the following paper  of this 
series) to be solvable by  the IST may be wri t ten as 

(.1.7) + 7(.~, y, t) + .(.~, y; t) ~ = o ,  
\--q,(x,  y,  t) \q(x, y,  t) \ --q(x,  y,  t)] 

where /5 is the integro-differential operator 

1 [ ( :  : ) ~  (rlq 
(~.s) L = ~ ~ + 2 

- -  \ q l q  

with 

(1.9) 

and 

-{-co 

I ~-fd~., 

(1.10) 

-rr-rl] 

- -  q l r /  J 

Qt(x, y, t) --- 2flo@_, y,  t)Q~(x, y, t) § a.(.L_., y,  t)[a. ,  Q(x, y, t)] -f- 

+ ~(L_~, y, t) o_~n+ .~(L_, y, t)~yQ(x, y, t), 

where _L~ and _G are the  integro-differential operators defined by  

-l-co 

(1.11) L,F(x) = F,,(x)-- 2{Q(x), F(x)} + ~fa~F(~), 
+co  

(1.12) G__F(x) : {O~(x), 2~(x)} A-[O(x), fd~ [Q(~),/P(~)]] . 
x 

The N L P D E  (1.7) involves the 2 fields r and q; in specia.1 cases (see below) 
it reduces to a I~LPDE for a single field. I t  is solvable b y  the IST related to 
the  generahzed Zakharov-Shabat  linear problem; the 2 fields r and q depend 
generally on the variables x, y and t (with y ,~n M-dimensional vector);  solv- 
ability means here the possibility to evaluate, employing linear techniques 
only,- q(x, y,  t) and r(x, y, t) from given ~(x, y) = q(x, y, to) and ~(x, y) = 
= r(x, y, to). The functions 7(z, y,  t) and ~(z, y,  t) are only required to be ratios 
of entire functions of z (with the same singularities for finite z, if any;  see below). 
I f  the y-dependence in (1.7) disappears, this • L P D E  reduces essentially to 
tha t  t reated previously by  AKNS,  eq. (1.2)(is); it should be noted tha t  in 

Qs) The difference between the integral operators I_ and I, eqs. (1.4) and (1.9), com- 
pensates exactly the sign differences between the deiinitions of L_ and L, eqs. (1.3) 
and (1.8); see the appendix. 
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this case, if y(z, t) is a polynomial in z, the l~LPDE (1.7) (or, equivalently, (1.2)) 
contains no integrals (i.e. it is a NLI)DE in the strict sense, not an integro- 
differential equation), in spite of the presence of the integral operator (see 
below). 

The I~Lt)DE (1.10) is an N • N matr ix  equation; it  is solvable by the [ST 
related to the N-channel SchrSdinger problem. The N • N matr ix  Q depends 
generally on the variables x,  y and t (again with y an M-dimensional vector); 
the constant  matrices a,, provide, together with the unit  matrix,  an orthogonal 
basis for N X N matrices (in the 2 • 2 case, they  may  be identified with the l)auli 
matrices), so tha t  the index n runs from 1 to N 2 -- 1 (and is, by  convention, 
summed upon when repeated) ; [A, B] ----- A B  - -  B A  a.nd (A, B} = A B  - -  B A  ; 
the operators __L~ and (7 transform N • N matrices into N • N matrices according 
to (1.11) and (1.12), where E(x) stands for a generic N •  m-~trix. Solvability 
means again the possibility to evaluate Q(x, y ,  t) from a given ~)(x, y )  - Q(x,  y ,  to) 
by linear techniques only; special ((( soliton ~;) solutions of (1.10) can be dis- 
played explicitly. The functions rio(Z, y ,  t), a , (z ,  y ,  t), ft,(z, y ,  t) and y (z, y ,  t) 
are only requfi'cd to be ratios of entire fmlctions in z (with the same singularities, 
if any). 

The h~LPDE's (1.7) and (1.10) are clearly rather  general; particularly inter- 
esting are the cases corresponding to the simplest choices (constants, or ratios 
of polynomials of very low degree) for the arbi t rary functions tha t  enter them;  
this is particularly so in the case of the more novel l~LPDE (1.10) (~0.~7). This 
analysis is, however, postponed to a subsequent paper of this series. 

I t  should also be mentioned tha t  in this paper (and in the following one of 
this series) we consider only problems in which the unknown fields (r and q 
in the case of eq. (1.7), Q in the case of eq. (1.10)) are defined, as functions of 
the x-variable, over the whole real axis and vanish asymptotically (as x --> =J= oo). 
Adoption of the approach employed here also in the context  of problems with 
different boundary  conditions is an appealing possibility tha t  remains to be 
explored. 

The generality of the i~LPDE's reported above and the simplicity with 
which the solw~bility by the IST technique can be established (see below) 
witness to the convenience of the approach based on generalized Wronskian 
relations (3h.~5). But  the power of this technique is not  limited to the generation 
of solvable I~LPDE's;  indeed, its main merit  is rather  to provide a convenient 
tool to investigate the solutions of these NLPDE's ,  and in particul~r to obtain 
explicit equations (B~cklund transformations) tha t  relate different solutions, 
and even, in some cases, explicit equations tha t  relate a solution at  one t ime to 
the same solution at  another time (a remarkable result tha t  might  be viewed 
as an extension to h-LPDE's of the resolvent formula for linear equations). 
These results have been first given for the class of I~LI)DE's (KdV and gener- 
alizations) tha t  are solvable by the IST associated with the one-channel Schr6- 
dinger equation (4~); it  was thereby possible to reobtain, explain and extend 
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the  beaut i ful  results (B~cklund t ransformat ions  and  nonhnear  superposit ion 
principle) previously given, for the K d V  equation,  by  W A H L Q U I S T  and ESTA- 

]3ZOOK W), and to discover a remarkab le  funct ional  equat ion relat ing the so- 
lutions of the  iNLPDE's  a t  t ime t and  t q- At with At finite (~). Similar results, 

bu t  in the more  general  contexts  of the ~N-LI?DE's wr i t ten  above,  were also re- 

por ted  (without proofs) (~6); they  arc proved and  discussed below and in the 

following pape r  of this series. Special cases of these results reproduce all pre- 
viously known B~cklmld t ransformat ions  (1.~); the results given here are how- 

ever nmch more  general  than  those given heretofore,  because they  apply  

direct ly to large classes of ~NLPDE's and  because they  yield large classes of 

B~ekl tmd t ransformat ions ,  not  just  those previously known, p rov id ingmoreover  

an  i l luminating explanat ion of their  origin and  significance (~0). I n  part ieul~r  

the  p e r m u t a b i h t y  of B~ckhmd t ransformat ions  is general ly demonst ra ted ,  
and  its significance displayed, together  with the  beaut i ful  results (nonlinear 

superposit iou principles) tha t  follow f rom it in the contex t  of the various 

~ L P D E ' s  (~). 
Quite novel  and  mos t  r emarkab le  is the funct ional  equat ion relat ing the same 

solution of one of these ~LPDE~s  at  different times. Even  in the very  simplest  

eases this equat ion is far  f rom tr ivial ;  in some such case it degenerates into 

remarkab le  operator  identities, t ha t  m a y  be considered nonlinear generalizations 

of the well-known linear opera tor  formula  

(.1.13) ] ( z ~ - a ) - - - e x p [ a d z ] ] ( z ) .  

Beiore ending this introduct ion we would like to call a t t en t ion  to the paper  
by  KOTERA and  SAWADA (3,)~ whose approach is in some respects similar to 
t ha t  employed here (2~). We wouhl also like to ment ion  tha t  there exists another  
general  approach,  originated by  ZAK~AROV and ~ADDEEV (3e)~ tO the problem 

of solvable NLPDE's~ t h a t  views t h e m  as integrable Hami l ton iau  systems;  
al though ve ry  impor t an t  f rom a philosophical point  of view (and  also in m a n y  

(19) Results for B~tcklund transformations have been obtained and discussed, for some 
special equations (KdV, modificd KdV, nonlinear Schrhdblger, sine-Gordon), by AKNS 
and by many others; see, for iustance, M. W~tDATI, II. SANUKI and K. Kedge :  Prog. 
Theor. Phys., 53, 419 (1975), the papers of ref. (.1) and some of the papers of ref. (~). 
(20) After this paper was partially drafted (and the two papers of l~f. (16) had been 
submitted for publication) we received a prcprint by H. FLASCnKA and D. W. 
McLAuGI~LI-~" (Some comments on Bhcklund trans]ortnations, vanonical trans/~'mations 
and the inverse scattering method, to be publishcd) that takes a point of view similar to 
that of this paper, and reports some results that coincide with special cases of those 
given here. 
(2~) A preprint by D. J. KAw': The closure el the squared Zakharov-Shabal eigenstates 
(to appear in Journ. Math. Anal. Appl.) also takes a somewhat similar point of view 
to that of this paper. 
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applications,  such as the  quant iza t ion problem),  this s tandpoin t  does not  how- 
ever  appea r  par t icular ly  appropr ia te  to enlarge the  class of solvable ~ L P D E ' s .  

I t s  relat ion to the  results of this paper  is an interest ing point  (~), t h a t  deserves 

fur ther  investigation.  
The organizat ion of this pape r  is clearly indicated b y  the  titles of the  fol- 

lowing sections and  subsections, so t ha t  we need not  describe it  here. 

2. - N o t a t i o n  and  p r e l i m i n a r i e s .  

2"1. Bas ic  notation. - We use general ly  (but not  exclusively) upper-case  

characters  for 2 • 2 matrices,  and  lower-ease characters  for 2 -component  vectors  
(or r a the r  spinors) ; an  exception to this convent ion is the  use of the  usual  Paul i  

matr ices  

C ~ C C:) C :) (2.1.1) O'o = ] = ~ al = , o'2 = ~ o'3 = �9 
1 0 - -  

The 2 eigenstates of ~3 are indicated with the nota t ion  

(2.1.2) .=(:) 
The convent ional  nota t ion  for commuta to r s  and  an t i commuta to r s  used through-  

out  is [A, B] ----- A B - -  BA, ( A , B } - - - - A B - ~ B A .  A ~ is the t ranspose  of the 
ma t r ix  A ,  (u, v) -~ u~v1~- u..v._ if u = u~%+~ u~%,_, v = v~%,+ ~ v~%,_. 

2"2. The direct problem. - The generalized Zakha rov-Shaba t  p rob lem (8~.3~) 

is character ized by  the  differential equat ion 

(2.2.1) 

I n  this equat ion the  two scalars ql and  q~ depend on the  real  var iable  x,  while 

the  spinor ~o depends on x and k; all these quant i t ies  m a y  also depend para-  

metr ical ly  on other  variables.  The subscript  x indicates of course par t ia l  dif- 

ferentiat ion,  ~ no ta t ion  t ha t  is used th roughout  this paper .  ~Tote t h a t  the  

problem (2.2.1) could be easily re formula ted  in the  fo rm Hv/----kW, the  l inear  

opera tor  H being however  general ly not  He rmi t i an  (unless q~ is imag ina ry  

and  ql is real). The connection of (2.2.1) wi th  the usual  nota t ion  (sa) obta ins  

if we set 

(2.2.2) ql = �89 (q ~- r ) ,  q~ ~- �89 (q- -  r) ; 
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in the following we use either the variables (r, q) or (q~, q2), whichever aUows 
us to write in more compact  form the various formulae, with the under-  
s tanding tha t  they  are always related to each other  by  (2.2.2). We shall 
also use occasionally~ to make the notat ion more compact,  the spinor 

(2.2.3) v ---- r z+ ~- qy_ , 

and related symbols tha t  will be defined below whenever appropriate.  Note 
tha t  the components  of v arc r, q, not q~, q~. 

The two functions q and r are assumed to vanish asymptot ical ly exponential ly 
or faster, i.e. we assume that ,  for some positive s, 

(2.2.4) ~• [exp [s]xll v(x)] = O. 

This is a stronger condition than  it is actually needed for the validi ty of most  
of the following results; bu t  it  is adequate  to cover all interesting cases, so we 

assume its val idi ty for the sake of simplicity. In  some cases ( that  will be spec- 
ified below) we shall assume even stronger conditions. 

The cont inuum par t  of the spectrum associated with (2.2.1) in the Zakharov- 
Shabat  problem is characterized by the asymptot ic  boundary  conditions 

(2.2.5a) T(x, lc) ------+ exp [-- ikxaa] - :  

-~ ~ a(-)(k)(a~ -~- in.) exp [-- ikx] -~ 1-ot(+)(k)(al - -  in2) exp [ikx] , 

(2.2.5b) ~(x, k) ~ �89 + a~) exp I;-- ikx] l- �89 -- as) exp [ikx]. 

~ o t e  that ,  for the sake of notat ional  compact~less, we consider here (and below) 
a matr ix  solution of (2.2.1), tha t  is of course built  out  of two spinor solutions 
(used as columns of the matrix).  The functions zr177 and fl(• depend of course 
parametr ical ly on other  variables, if q and r (and therefore also T)  do. 

I t  should be emphasized that ,  al though the differential equations (2.2.1) 
could be t ransformed into those characterizing a two-channel  SehrSdinger 
problem, the boundary  conditions (2.2.5) of the Zakharov-Shabat  problem 
differ from those of the corresponding SchrSdinger problem (~2). 

The discrete par t  of the spectrum consists of a finite number  of eigenvalues 

k (+) whose corresponding eigenfunctions may  be normalized as follows: 

-~-cO 

(2.2.6) f a x  al = 1 .  

(~2) This point is ignored in ref. (7), where thc interested reader may find the explicit 
connection between the differential equations of the two problems. 
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I t  is easily seen tha t  a necessary condition for this to happen is tha t  these func- 
tions be characterized by  either one of the two asymptot ic  bchaviours described 
by  the formula 

(2.2.7a) 

(2.2.7b) 

with 

F( •  - - - - - +  v (• exp [ •  ik(• )~:, x--).-{-co 

y/• ~ 6 (• exp [~: ik (• x] ):• 

(2.2.8) ~ Im [k (• > 0.  

Here,  and often in the following, we have,  for notat ional  simplicity, not  

labelled explicitly the ditterent eigenvalues (as well as the cigenspinors ~(• 
and the  quantit ies y(• ~(• with the subscript n. The distinction between 
discrete e igenvahes  (and the corresponding eigenfunctions, etc.) with super- 
scripts (~ plus ~) or (~ minus ~) is hereaf ter  characterized by  (2.2.8) (we ignore, 
for simplicity, the possibility of real eigenvalues). 

The order of the neglected terms in these asymptot ic  formulae is given b y  
the expression 

(2.2.9) 

the • sign corresponding of course to the limits x - ~  i ~ .  F rom this formula,  
the known analyt ic  properties of a(• and fl(• and a comparison 
of eqs. (2.2.5) and (2.2.7), one concludes that ,  corresponding to the values 
k~ +) respectively k(~ -), the functions ~(~), fl(+) respectively ~(-), fl(-) have a pole, and 

(2.2.10) i? (-+-) ~(-) = Q(• = res ~(• = lira {[k -- k (• a(• 
k(~) k->k(~) 

provided the values of k ~) respectively k (-) are such that ,  when subst i tuted 
in (2.2.9), they  yield an asymptot ical ly  vanishing contribution. Note tha t  this 
is guaranteed to happen if r and q vanish asymptotical ly faster than  expo- 

nentially.  I t  should however  be cautioned tha t  eq. (2.2.10), as well as eq. (2.2.6), 
arc applicable only in the  case of single poles, to which we restrict,  for simplicity, 
our considerations in this paper  (except in a special case in subsec~. 4.'4 below). 

Clearly if r and q are given functions of x, the quantit ies ac• fl(• and 
the parameters  k (~ (~) (=} .. , y ,  and 3, of the discrete par t  of the spectrmn (if any) 
are mdquely  determined,  through eqs. (2.2.1), (2.2.5) and (2.2.7). Such a de- 
terminat ion constitutes the ~ direct ~> (generalized Zakharov-Shabat)  problem. 
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2"3. The  ,inverse problem.  - The corresponding <( inverse ~> problem consists 

in the evaluat ion of r and q from the spectral parameters ,  defined above by  the 

asymptot ic  formulae (2.2.5) and (2.~~ We report  here the ~Iarchenko-typc 
equation tha t  solves this problem, referring to AKh~S for its derivation and a 
discussion of its peculiarities, related to the non-I[ermit ian nature of (2.2.1). 
The input  data  tha t  are sultieient to determine r and q are the functions a(• 

~(~). in this paper the eigenvalues k(~ > and the corresponding quantit ies y(~+)~, , 
we shall generally assume tha t  the parameters  of the discrete spectrum, k~ ) 
and - (• ~r177 are obtainable by  analytic  continuation from those characterizing 
the cont inuum spectrum, a(• being respectively the positions of the poles 
and (up to a constant ;  see eq. (2.2.10)) the residues of a(• The relationship 

of this restriction to the asymptot ic  behaviour  of r and q has been clarified 

above (23). 
The Marchenko-type equations rea.d 

+r 

(2.3.1) m(• = T i ~ e.-(• exp [:t: ik~)z]  § (2u)-~fdka(• e x p [ •  i k z] ,  
f l  

- - v o  

(2.3.2) M(z)  -= 12 m(-)(z)(1 + a~) -i- �89 l -- a3), 

(2.3.3) K ( x , x ' ) §  M(x§247247 x'>x, 
x 

q(x) --  --  2-Ku(x, x) , r(x) : - -  2K2~(x, x) , 

( 2 . 3 A )  + ~ 

f d~ q(~)r(~) = 2K~..(x, x) ---- 2K~i(x, x) .  
x 

We rei terate tha t  these equations (in particular,  eq. (2.3.1)) refer to the case 
with simple poles only, and tha t  the quant i ty  _c~) is defined by eq. (2.2.10) 
(with the last equal i ty  being a consequence of the assumption mentioned above, 
tha t  shall be used in the following without  fur ther  warning). 

2"4. T r a n s / o r m a t i o n  propert ies .  - I t  is finally convenient  to report  4 trans- 

formations of the fields r and q, whose corresponding effect on the quantities 

~c~)(k) is simple and can be e~sily evinced from eqs. (2.2A) ~nd (2.2.5). We do 
not  repor t  the effect of these transformations on the parameters  of the discrete 
spectrum, since they  can be directly read from the properties of a(+)(k). ~-ote 

(2.~) The siguificance of such a restriction is well understood in the context of the usual 
SchrSdingcr scattering problem; see, for instance, F. C~IJOO,~:Ro and J. R. Cox: N,(wvo 
Cimento, 55 A, 786 (1968). In the present context the limitation is no~ a serious one, 
but it deserves a separate discussion, in view of its relevance for soliton solutions (that 
are, however, already included in the present treatment; see below). 
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t ha t  these transformations Call be multiplied (i.e. applied sequentially), t ha t  
their  square is uni ty  and tha t  they  commute with one another  (so tha t  the 4 
transformations given below yield in fact 16 different transformations). These 
transformations follow: 

(2X.la) 

(2.4.1b) 

(2.4.2a) 

(2.4.2b) 

(2.4.3a) 

(2.4.3b) 

(2.4Aa) 

(2.4.45) 

r ' (x)  = -- r(x), q'(x)  = - -  q ( x ) ,  q~(x) = - -  qj(x), 

a(~')'(k) = - o~• , fl(+)'(k) = fl(+)(k) ; 

r'(x) =r*(x), q ' ( x ) = q * ( x ) ,  q~(x)=q*(x) ,  

a~) ' (k )  = ~ •  k*) , fl(• = fl(• k*) ; 

r'(x) = q(x), q'(x)----r(x), q~(x) = q~(x), 

~ ) '  (k ) = a(7:)( - k ) , fl(• (k ) = fl(~)(-- k) ; 

r ' (x)  = r ( - -  x + a), q '(x)  = q( - -  x + a), q~(x) = qj( - -  x § a), 

~(~)'(k) = -- a(~( - k) exp (T 2ika),  fl(• = fl(+)(-- k ) .  

j = l ,  2 ,  

j = l ,  2 ,  

q~(x) =-q~(x),  

j =  l ,  2 ,  

The third of these transformations, eqs. (2.4.3), is particularly interesting, since, 
in contrast  to the others, it interchanges the two fields r and q; it may  be com- 
bined with the other 3, to yield altogether 4 transformations tha t  share this 
property,  and tha t  are therefore suitable to ascertain which properties of a(+)(k) 
correspond to special subcases of eq. (2.2.1), containing only one field (or, in 
the language of the inverse problem, what  properties must  the input  functions 
o~)(k) have in order to generate two fields r and q simply related, i.e. essen- 
tially only a single independent field). 

3. - Genera l ized  W r o n s k i a n  re lat ion  and der ivat ion  o f  the basic  formulae .  

3"1. General ized  W r o n s k i a n  relat ion.  - The starting point of our analysis 
is the generalized Wronskian relation 

(3.].]) [T'~(x, k ) ~ ( x ) T ( x ,  k)]l:[= 

F ! i 
S.,(x)[a2, /~(x)] § 

xl 

] + ~ D~(x)[~,  F(x)] --.~ D , ( x ) { ~ ,  F(x)} + F~(x) T(x ,  k ) .  

Here, and always below, 

] I 
(3.1.2) Sr = qi(x) + q,(x) , Dr = qr - q~(x) , j = 1 , 2 ,  
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! 

where q~ a.nd qr are two different pairs of fields and W, T '  are two matr ix  solutions 
of the corresponding eqs. (2.2.1). /~(x) is an essentially a.rbitra.ry (at least once 
differentiable) 2 x 2  matrix�9 The validity of eq. (3.1.1) is a straightforward 
consequence of (2.2.1). 

3"2. Application to the continuum spectrum. - We now consider eq. (3.1.1) 
for x~ ---- -- cr x~ ---- + c~, inserting two solutions }P and T '  of (2.2.1) charac- 
terized by the boundary  conditions appropriate to the coat inuum spectrum, 
eqs. (2.2.5), a.nd assuming moreover tha t  the matrix F(x) satisfies the asymp- 
totic conditions 

(3.2.1) 

(3.2.2) 

~(+ ~ ) = 0 ,  

F ( -  ~)  = F~(- ~)al  + ~ ( -  ~)ia, ,  

the second of which obviously implies {~(--c~), a3} = 0. This yields 

(3.2.3) 

with 

(3.2.4) 

[F~(-- co) -}- ~,~(-- ~ ) a 3 ] B  -~ ~k d x T  (x, k){(~3, F(x)}T(x, k) -= 

+ m  

=- l f dx }I-"Z(x, kl[ S~(x){a~, E(x)} -- iS~(x)[a:, ~'(x)] + D~(x)[~, F(x)] -- 

-- iD.(xl{a,, 2'@)} -4- 2F~(x)] T(x, k) 

0 

B___(fl(_),(k)fl(+)(k) /~(-)(})~c§ 

We then  introduce ~ sequence of matrices F('O(x) through the rccursion 
formula. 

(3.2.5) {~,, ~,n+,(x)} = �89 ~(-)(x)} - iS~(x)[~,  ~',-,(x)] + 

-t- D~(x)[al, F(')(x)] -- iD~.(x){a~, ~v(~)(x)}] -t- ~ , , ,  

so tha.t, if ~(~)(x) sa.tisfies the conditions (3.2.1) and (3.2.2), we may  rewrite 
eq. (3.2.3) as 

(3.2.6) [~- ' ( -  ~) + ~. ' (-  ~)~] B + ik~dx~'~(x, ~){~3, ~'c-~(x)} ~ (x ,  k) = 

-[-r 
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To analyse the recursion relations (3.2.5) we set 

(3.2.7) ~,"~'(x) = P"'(x) + ~ ' ( x )  ~ + ~:~'(x)i~ + ~ ,  (~'(x) G~. 

lr Insertion of this expression in (3.2.5) shows that  -t~o ~), --3F(') d e t e r m i n e / ~ ) ,  .~  
and F (~+" ~('+~) Thus it is convenient  to introduce the sequence of spinors ~ 0  ' - -  3 " 

v (~) through tim definition 

(3.2.8) v"'(z) [~'~'(x) ~ ~"'(x)] z+ + [F':'(x) ~'"'tx~] 

or, equivalently, 

(3.2.9) (a~, 1,:(")(x)) = 2Vv(")(x), 

where we have introduced the formal operator U that  transforms a spinor into 
a diagonM matrix 

(3.2.]0) 

With these definitions we get 

(3.2.11a) 

(3.2.:11b) 

+ r  

T o o  

E~)(x) = - - fd~  (v_(t), ~ v(~)($)), 

where we have defined (note tha t  the second equali ty is consistent with (2.2.3)) 

(3.2.12) 

and 

(3.2.]3) 

v• = ~ It'(x) • r(x)] X+ + �89 [q'(x) • q(x)] z-  = �89 [v'(x) • v(x)], 

v(~+l)(x) = iAv(~)(x) , 

where we have introduced the integro-differentiM matrix operator 

(3.2.]4) 
1[ riq r rl] 

A = 2-i ~3 ?,x + \q ' Iq  + qlq '  - - q ' I r ' - - q l r /  " 

In this last formula I is the integral operator of eq. (1.9), so that ,  for instance, 

(3.2.15) 
--r 

r l q / ~  r(x)fd~ q(~)](~). 
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From eq. (3.2.13) we immediately get 

(3.2.16) v(')(x) :-- (iA)" v(~ , 

while from eqs. (3.2.6) and (3.2.9) we get 

(3.2.17) 

with 

( 3 . 2 . 1 8 )  

V , ~ + l = i k V , +  2 ,~1  ~-- , ~ , 

+ c o  

V,, = j ' d x T ' r ( x ,  k)[~v(~)(x)] T ( x ,  k) . 
- - c o  

The solution of the recursion formula (2.2.17) for the quantities V, is 
simple task, and the result thus obtained can be rewritten, by  means of 
eqs. (3.2.11) and (3.2.16), as follows: 

+ r  + c o  

(3.2.19) f dx ~'~(x, ~)[n(~A),,,(O,(x)]~(x, k)=(ik)~fdx T'r(x, k)[~ v(~ k)§ 
+oa 

1 . ( i k F - - ( i A ) "  [ ( ik) , - - ( iA)-]  \ I 

- - co  

I t  is easily seen tha t  the condition of validity of this formula for all n is tha t  all 
derivatives of v(~ v~nish asymptotically:  

(3.2.20) lira vt~ - -  0 ,  p := 0, 1,2, . . . .  

The structure of eq. (3.2.19) implies immediately the more general formula 

-I-co + c o  

(3.2.21) fax ~,T(x, k)[r k) = l(k)fdx ~'T(~, k)[Vv~~ k)§ 
- -co  ~ c o  

where ](z) is an arbi t rary entire funetion. I t  should be emphasized tha t  in this 
formula (whose validity is a consequence of (2.2.1) and (2.2.4)) the spinor 
v(~ is arbit~rary, except for the restriction (3.2.20). 

We now return to the generalized Wronski~n rel,~tion (3.1.1), inserting 
again, in the limit xl = -- c~, x2 = + c~, two solutions T and T '  of eq. (2.2.1) 
characterized by the boundary  conditions (2.2.5), bu t  with the two special 

15 - I I  Nuovo  Cimento B.  
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choices F @ ) =  ig~ and F ( x ) =  ~ .  We thus get 

(3.2.22) 
a(+)'(k)--a(+)(k) 

1 --  al+) (k) a(-)'(k) --/~(+)(k) fl(-)' (k) 
! a(-)(~)--a(-~'(k) / 

= 2fdx kW~(x, k)[Va.v_(x)]~(x, k), 

[ at+)'(k)§ a(+)(k) 
(3.2.23) 

1 § ~(+~(k)~(-)'(k)--~c+~(k)/~(-)'(~) 

(+)~ r / 1 § ~z (k)ac-)(k)--/~(+) (k)flc-~(k) 

a(-~'(k) § ~(-)(k) / 

-t-m 

= 2 fd~ N'~(x, l~)[~v+(x)]N(x, ~), 

where we have used eqs. (3.2.10) and (3.2.12). 
The last step is to set in eq. (3.2.21) vr176 ) respectively vc~ ' 

and use (3.2.22) respectively (3.2.23). We thus obtain the two final formulae 

(3.2.24) 2fd~  ~'~(x, ~)[v/(A)~.~_(x)]~(~, k) ---- 
--r  

= l(k) ( ~(+)'(k) --  ~(+)(k) 
1 - -  a (+)(k)ar t ' (k)  - -  fl(+l(k)/~(-)'(k) 

a(+)'(k)a(-)(k) § fl(+)'(k)fl(-)(k)--1~ 

! a(-~(k) - -  ~-)'(k) 

+ c o  

(3.2.25) , f dx~'~(x, k)[vg(A)~+(x)]~(x, k) = 

= g(k) ( ~ + ~+~(k) 

1 + a(+)(k) a(-)'(k) - -  fl(+)(k)fl(-)'(k) 

where 

(3.2.26a) 

( 3 . 2 . 2 6 b )  

1 § a(+~'(k)ac )(k) - -  fl(+~'(k)/~H(k)~ 
] n 

a(-)'(k) § ~-~(k) / 

• k--A ]~'v-(x))' 

- - i [ g + ( k ) §  

G+ - ~  ~62~ ~ -  ~ GI �9 
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The symbols appearing in these formulae, which consti tute the main result of 
this section and provide the main tool for our t reatment ,  are defined by 
eqs. (2.2.1), (2.2.2), (2.2.3), (2.2.5), (3.2.4), (3.2.10), (3.2.12) and (3.2.14). The 
two functions /(z) and g(z) are entire, but  otherwise arbi t rary;  they  might  of 
course depend parametrically on other w~riables besides z (not on x or k). 

3"3. Application to the discrete spectrum. - A procedare, analogous to tha t  
described above for the continuum-spectrum regime, can be applied in the 
discrete-spectrum situation. We report here only the tinal formulae, whose 
derivation follows closely the pat tern set above. There are, however, now two 
different possibilities, tha t  must  be analysed separately. 

We treat  first the case whell the problem with the (~ potential  )~ r, q has ~ 
discret(~ eigenvalue k (-~) (or k(-)), while the problem with the potential  r', q' 
does not  have the same eigenvalue. We then consider the generalized Wronskian 
built with ~+(x, k (+)) (or ~v'_(x, k(-))) and V(+)(x) (or V(-)(x)), where by definition 
~+(x, k (+)) is the first column of the matr ix  T'(x, k) characterized by the boundary 
conditions (2.2.5) (with k =  k(+); an analytic continuation off the real axis 
in the k-plane is implied here), and ~v'__(x, k) is instead the second column of 
the same matr ix  (with k = k(-)). The (normalized) eigenfunctions ~o(• have 
been defined, eqs. (2.2.6)-(2.2.8). The formulae read 

.-~co 

(3.3.1) 2fdx (W'(x, W(• = T r(':)i(k'• 
--co 

(3.3.2) 

-{-co 

2fdx (W', (% ~('),  [vg(A)v+(x)] ~v(• = ~)g(k(~:)), 
--r 

with ](z) and g(z) arbi trary entire functions and the other symbols defined 
by eqs. (3.2.10), (3.2.12), (3.2.14) and (2.2.7a). I t  should be emphasized tha t  
the condition tha t  k (• not  be an eigenvalue of (2.2.1) with r', q' is essential for 
the validi ty of this formula. 

The second type of formulae obtains from the consideration of the generalized 
Wronskian built out of ~(+)'(x) and y~+)(x), these being the normalized eigen- 
functions corresponding to the eigenvalues /d +)' respectively k I+), of (2.2.1) 
with the potentia.ls r', q' respectively r, q. They read 

(3.3.3) 

-I-r 

f dx  (V ~)'(x), [~/(A) ~3 v_(x)] y~+)(x)) = 

-t-• +co 

- a 3  - - c o  
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(3.3.4) f dx  (~+)'(x), [~.q(A)v+(x)] ~(+)(x)) := 

-boo +co 

- - ~  -co  

with 

(3.3.5) k(+' �89 (k (§ k(§ k~) ~ (~(~"- k,.)) 

and 

(3.3.6a) F(k, x) = ia~/+(k, x) -~- al/_(k, x), 

(3.3.6b) G(k, x) : :  ia~g+(k, x) + (~,g_(k, x), 

A,-r 

- H J ~  ' 

+co 

Tile symbols in these formulae ~re defined by eqs. (3.2.10), (3.2.12) and (3.2.14) 
(with ,4 in eq. (3.3.7) acting of course on the vr~ri~ble 2); the ent.ire functions 
](z) and g(z) are arbitrary. A completely ~nalogous formula, also holds, with 
the superscript (+) replaced everywhere by (-) 

Formulae tha t  involve yjc~),(x) and ~f(-)(x) (or vice versa) might also be derived~ 
but they do not seem to be useful. 

Equations (3.3.3) and (3.3.4) remain valid even if only one of the two quan- 
tities k (+)', k (+) corresponds to a.u eigenvalue of the corresponding problem (2.2.1), 
provided its irn~gim~ry ])~rt is larger thalt  the imaginary p~rt of t;he other;  
for the ca.se with superscript (-) in place of (+), the requirement is analogous, 
i.e. the v~flue (of k(-)' or )i'(-)) corresponding to the discrete eigenvalue must  have 
a.n imagina.ry part  larger in modulus than  tha t  of the other, if this does not  also 
correspond to ~ discrete eigenva.lue. 

I t  should be noted tha t  the conditions under which cqs. (3.3.t) and (3.3.2), 
respectively (3.3.3) and (3.3.4), have been derived are different; this explains 
why eqs. (3.3.3) or (3.3.4)~ in the special case k (+) . . . .  k(+)~ does not reproduce 
eq. (3.3.1) or (3.3.2); ~or the validity of the former it is indeed required, if 
k(+)' = k (+), tha.t this value be a (discrete) eigenvalue of both problems (2.2.1) 
with r'~ q' and r, q, while for the validity of eqs. (3.3.1) or (3.3.2) it i~ instead 
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required tha t  only one of the two ~4nnct ions tha t  appear  in the formulae 
corresponds to a (discrete) eigenva.lue. 

4 .  - R e s u l t s .  

"4"1. NLPI )E ' s  solvable by the IST. - Assume now that ,  in (2.2.1), the fields 
r, q (and therefore also ~p, ~c+), etc.) depend on other variables besides x (a.nd/or k). 
Le t  y be one of ?~hese variables, and consider eq. (3.2.24) with v(x)=: v(x, y) 
and v ' (x ) - -v (x ,  y -F  Ay), in the limit Ay-->0. There follows first of a.1] the 
(~ uni tar i t$  ,> equation 

(4.1.1) a' ')(1,~, y) a(-)(k, y) + fl(+)(k, y)/?~-)(k, y) = :1., 

and then, if we k(~(,p terms linear in Ay (and use (4.].D), the relation 

-]-co 

, f ,lx 1,,, y)[v]]( .L)a: ,v , , (x ,  y ) ] T ( x ,  k ,  y )  - - 

. ( -F ) /~ .  
( ~Y klc'Y) a(-)(k,y)a(/)(k,y) l fi(-)(k,y)/J'~"(k,y)) 

=] (k )  ~(+)(k,y) (-) " y)--f~(+)(k,y)l~(~-)(k,y) (-) @ - . % ( k , .  - - a ~  ( k , y )  

+ m  

--a)  

with 

( , l .  ~ . :,', ) L - ] "  . 
2-i iT3 ~x \qlq - -  qlr/  J 

In this las~ lormula I is of course the integral c~perator of eq. (1.9) (see 
eqs. (3.2.14) and (3.2.15)), and we ha~'e, for simplicity, not  indicated the 
arguments  of r, q. _Note tha t  (4.1.1) implies tha t  the ma.trix in the r.h.s, of 
(4.].2) is symmetrical .  

Le t  us re-eniphasize tha t  the entire function ](z) in (4.].2) is a rb i t ra ry ;  
if v depends on sc~,cral variables, one can write as many  equations similar to 
(4.1.2), with every vari'~.ble playing the rSle of y, and with a different: function / 

hi each ca.se. Indeed the reader  should imagine tha t  wc have done just  that ,  
once with y = t, and M times with y = y;, j = 1, 2, ..., M, under  the .~ssump- 
tion theft v ('rod yJ, a (+), etc.) depends on the scalar t and on the M-dimensional 
v(.ctor y,  besides x (and/or k). 
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Together with all these equations, one should also consider the single equa- 
tion that  obtains in the Ay-> 0 limit from (3.2.25), namely 

(4.1.4) f dx k, y)[~lg(L)v(x, y)]T(x, k, y) - 

= g(k) ( a(+)(k' Y) a(+)(k' Y)~(-)(k' Y)) q- 
\:r y)~(-)(k~ y) ~(-)(k, y) 

q_2ifl(+,(k,y)fl(_)(k,y)a~;dx(v(x,y),. [g(k)--g(L)~ y)) ~a" t k - - L  .Iv(x, . 
- - r  

We also recall tha.t the arbitrary entire function g(z) in this equation~ as well 
as the analogous functions in the equations described above, might depend 
on other variables besides z (except x and k). 

By taking a simple linear combination of all these equations there imme- 
diately then follows th,~t validity of the ~ L P D E  for the field v 

(4.~.5) 
c3 ](L, y, t)(~avdx, y, ~) ~- h(L, y, t)~-_a3v(x,y y, t)-~ g(Z, y, t)v(x, y, t ) :  0 

implies validity of the linear equations for :r fl(+) 

(4.1.6) ](k, y, t)a~(k, iF, ~) Jr h(k, y, t) ~y o~(• y, t) q- g(k, y, t)a(~:)(k, y, ~,) ~- 0, 

l(k, y, t)~)(k, y, t) + h(k, y, t) ~ fi(~)(k, y, t) • ~(k, y, t)fi(• y, t )= 0 (4.1.7) 

with 

(4.1.8) 
- - c o  

1 

Equations (4.1.6) for a(i) follow from the diagonal part of the matrix equation 
obtained from the linear combination described above~ while eqs. (4.1.7) for 
fl(-+) follows from the nondiagonal part by means of (4.1.6) (and (4.1.1)). In 
r.h.s, of the last equation we have, for notational simplicity, not indicated 
the dependence upon the variables y, t. 

We may thus conclude that, if the fields r, q evolve according to the :bTLPDE 
(4.1.5), the quantities a (+) and fl(+) evolve according to the linear equations (4.1.6) 
~nd (4.1.7). This, together with the possibility to reconstruct r, q from a (~, 
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is the basis for the solvabil i ty of the ~NLPDE (4.1.5) by  the IST (see below). Note  

t ha t  eqs. (4.1.1), (4.1.6) and (4.1.7) imply  tha t ,  if r 9 q evolve according to (4.1.5)~ 

(4.1.9a) ](k, y,  t) 8~ -Jr- h(k, y, t) ~+)(k, y,  t)od -)(1r y, t) = O, 

[ • (4.1.9b) /(k, y, t)~ + h(k, y ,  t) ~ y j  fl(+~(k, y ,  t)fl(-)(k, y ,  t) = 0 

To discuss more specifically the solvabil i ty by  the IST we prefer to rewrite 
these equations in a m anne r  t ha t  singles out  the var iable  t~ so t ha t  they  t ake  the 
form of evolution equations (2~). This is s imply achieved by  set t ing 

(4.1.10a) 

(4.1.10b) 

~,(z, y ,  t) = g(z,  y ,  t ) / / ( z ,  y ,  t) , 

,~(z, y ,  t) = h(z ,  y ,  t ) / / ( z ,  y ,  t) , 

so t ha t  the functions ~ and  v are now ratios of entire functions of z (2~). In  

pIace of eqs. (4.1.5)-(4.1.8) we then get 

(4.1.11) a3v,(x,y,t)§ ~*(L,y,t)~ya3v(x,y,t)+r(L,y,t)v(x,y,t)=O, 

(4.1.12) o~c[~)(k,y,t)-l-v(k,y,t)~--~ec•177 

(4.1.13) /~'~(k, y,  t) + ,~(k, y, tl ~ ~(• y, t) --' ~0(k, y,  t)C~(• y, t) = 0 

The der ivat ion of (4.1.14) (from (4.1.8); clearly ~0 := ~/J) requires the use of 
(4.1.11) and of some propert ies  of the opera tor  .15 t ha t  are discussed in the 
appendix~ where we also show that~ in spite of the presence of the integral  op- 
era tor  in .L, the expression / i ' v ,  with n any  posit ive integer,  contains only 
powers of r, q and of their  der ivat ives  up to the order n. 

(2~) For an outline of the diiliculties that might originate from this formal step we 
refer to previous works, such as ref. (sg,3h), postponing a more detailed discussion to 
subsequent papers of this series. 
(~b) A condition, that we have not, for simplicity, mentioned previously (16), but 
that is clearly implied by (4.1.10), is that 7 and ~ have the same singularity structure 
in the tinite part  of the complex z-plane. Lct us however also mention at this point 
that the requiremcnt that these be entire (or ratios of entire) functions is sufficient, 
but not necessary, for the validity of all these results, that might indeed also hold for 
nonentire fmlctions provided a suitable definition is given of the operator that obtains 
after replacing the argument of such a function by an operator. 
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The ~NI~PDE (4.1.11) coincides with that  presented in the introductiou~ 
eq. (1.7). Its solvability by the IST is accomplished as follows: given r, q at 
time to, 

(4.1.15a) r(x, y ,  to) = ~(x, y ) ,  q(x, y,  to) := ~(x, y ) ,  

or equivalently 

(4.1.15b) v(x, y, to) --~ ~(x, y ) ,  

one computes 

(4.1.16) ~r177 y ,  to) = &c• y)  

solving the direct problem~ i.e. through cqs. (2.2.1)~ (2.2.2) and (2.2.5) (with 
y a fixed parameter); one obtains then ~(*--)(k, y ,  t) from ar y~ to) integrating 
the linear partial differential equation (4.1.11); and one reconstructs finally 
r, q at time t from ot(• y,  t) solving the inverse problem~ i.e. using eqs. (2.3.1)- 
(2.3.4) (with y, t fixed parameters). 

To perform the last step it is required to know also the parameters of the 
discrete spectrum. The equations characterizing their time evolution follow~ 
under the assumption mentioned above~ directly from eq. (4.1.6)~ by  inserting 
the ansatz 

(4.1.17) z6• y,  t) ~ e('-')(y, t) /[k-- k~• t)], 

and then taking the limit k->/d• t). In this manner one gets 

(4.1.18) k~*~(y, t}/- v(k{• t), y, t) ~ ~y k(~)(y, t) = 0, 

(4.J.19) ~ + v a o ' + ' + [  ~k( ~' ]~,~' 0 ~)y v~ • r == �9 

In the last equation ~(i) is a function of y and t, v~ is the derivative of ,~ with 
respect to its fn'st argument and, together with v and 7, has arguments k c!), 
y and t, while everywhere k (• = k(~(y, t). A derivation of these evolution equa- 
tions that does not rely on the relationship with the singularity structure of 
~(~ in the complex k-plane is also possible; for instance~ eq. (4.1.18) is ob- 
tained by writing the equations analogous to (4.1.2) and (4.1.4), th.~t read 

2 j (r177 y), ; =  

g l  

+r 

2 j d x  (~(• y), [vg(L)v(x, y)] F(~-)(x, y)) ---- 0,  (4.1.20b) 
~ c o  

and follow from (3.3.4) and (3.3.5 b and then proceeding as above. 
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Equations (4.1.18) and (4.1.19) allow one in principle to compute the time 
evolution of the discrete-spectrum parameters. Note however tha t  eq. (4.1.18) 
is nonlinear, while cq. (4.1.19) is linear (once (4.1.18) has been solved). 

In  the slightly less general case that  obtains if ~ and 7 are independent of 
y,  eqs. (4.1.12), (4.1.18) and (4.1.19) tha t  describe the t ime cvohttion of the 
spectral parameters ea.n be integrated in closed form: 

(4.1.21a) 

(4.1.21b) 

(4.1.21c) 

to $o 

t 

t. 

o(->,,,j, t ) - - - -exp[:~ fd t '7 (k ( •  �9 
t. a 

[1 + *')]7' O'• *')), 
fo ta fo 

where of course 

(4.1.22a) [#J(y)  = k(• to), 

(4.1.22b) ~(• = .~177 to) 

are fixed by the initial condition at tinlc to (as well 'us ~(• y);  see cq. (4.1.16)). 
In eq. (4.1.21c) we have used the shorthand notation k~,~)(y') for the gradient 
of ~o:) with respect to y evaluated :~t y ' ;  the symbol ,~, has been defi~led above. 
�9 tha t  ill this equation k (• stands for k~+)(y, t) (tile last argument  is t, not  t', 
even when k(• enters under the integral sign). 

I t  is remarkable tha t  the h'I~PDE (4.1.18) is, in this case, exactly integrable; 
although of course this is implied by consistency from the integrability of 
eq. (4.1.12) (indeed (4.1.21b) alld (4.1.21c) may  be obtained from (4.1.21a) 
by using (4.1.17); it  can also be explicitly verified tha t  they  satisfy (4.1.18) 
and (4.1.19)). 

Equat ion (4.1.21b) does not  however provide the explicit expression of 
k(• t), being instead a transcendental  equation for this quanti ty,  whose 
structure depends on the initial conditions (in special cases it  reduces to an 
algebraic equation). 

In  the special case when ,~ = 0, all reference to the variable y disappears 
from the R-LPDE (4.1.11) (a possible presence of y as an argument  in 7 is 
of course trivial in this case). In this case the time evolution of the spectral 
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parameters  is par t icular ly  simple: 

$ 

t .  

(4.1.23b) fl(+)(k, t) = ~(-~(k), 

(4.1.23c) k(+)(t) = ~• 

t 

(4. .23d) = exp fa t ,  t')] 
t ,  

where of course ~c+~(k), /~c• ~l~ respectively ~w are the values t aken  b y  

zd• t), fl(~-)(k, t),/~• respectively Q(~(t) for t = to. Equat ion  (4.1.23b) follows 
immediate ly  from (4.1.13) and (4.1.14). These equations had been already 
given (with the more str ingent  assumption tha t  y be t ime independent)  b y  
AKNS, since this case coincides with tha t  t rea ted  by  them. 

The t ime independence of the  spectral parameters  fl(+~(k) t ha t  obtains in 
this case implies the  existence of an infinite number  of conservation laws; 
for the derivat ion of these we refer to the l i terature  (8.26). For  another  approach 

to  this problem see subsect. 4"3 below. The fact  that ,  if the  y-dependence  
is instead presen% both  k ~• and fl~) va ry  with t ime underscores the nontr ivial  

na ture  of this generalization. A more detailed analysis is postponed to sub- 
sequent  papers of this series. 

4"2. Bticklund trans/ormations.  - L e t / ( z )  and g(z) be two entire, bu t  other-  
wise arbi t rary ,  functions of z. I t  is then  clear t ha t  the basic equations (3.2.24) 
and (3.2.25) imply tha t  if two fields v, v' are related by  the formula 

(4.2.1) ](A) a3v_ + g(A) v+ =- 0,  

the corresponding spectral  parameters  are related by  the  formula 

(4.2.S) •  -- a~)(k)] + g(k)[a~+)'(k) + o~'-)(k)] = 0 ,  

and by  another  formula for the betas, tha t  obtains from the nondiagonal terms 

in the r.h.s, of (3.2.24) and (3.2.25) and an appropriate  use of the un i ta r i ty  
relation (4.1.1) (both for pr imed and unpr imed variables). The operatol: A 

(~s) The basic idea that is used to extract the conserved quantities is a fairly old one 
in potential scattering theory, that may be traced back to papers by N. L~.w~sox, 
R. G. N~wTo~ T and L. D. FADD:E:EV; see, for instance, F. C~J.oG~I~o and A. D~GASFERIS : 
Journ. Math. Phys.,  9, 90 (1968). 
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in eq. (4.2.1) (and in the following equations) is of com'sc tha t  defined in the 
previous section, eq. (3.2.14). 

I t  is more elegant to write these equations in the form 

(4.2.3) H+(A)  v'(x) + H _ ( A )  v(x) = 0 

with (note tha t  the order in the last term is important)  

(4.2.4) 

and 

(4.2.5) 

(4.2.6) 

with 

(4.2.7) 

H~(z)  =g(z)  •  

:r = {[/(k) ~ g(k)]/[/(k) • g(k)]} a<+)(k), 

fl(i)'(k) = [[/(k) ~: g(k)]/[/(k) + g(k)]} [O(• fl<+)(k) 

OC• = / + ( k )  + g+(k) ~: [/_(k) + g_(k)], 

where /• g• are defined by eqs. (3.2.26). 
Note tha t  these equations imply 

(4.2.8) 

(4.2.9) 

a~+)'(k) :r --  ~(+)(k)a(-)(k), 

fl(+)' (k ) fl(-)' (k ) = fl(+)( k ) flc-)(k ) . 

To obtain eq. (4.2.6) we have also used the important  relation 

(4.2.10) i[O'~=)(k)] ~ ---- - -  2g(k)~+(k)  + g+(k)] ~ 2/(k)[/_(k)  + g_(k)] 

tha t  is a consequence of the uni tar i ty  equation (4.1.1). 
The equations writ ten above remain of course valid even if v and v' depend 

on other variables, as in the preceding subsection. The two functions / and g 
might  also depend on these variables, and in the following subsection we shall 
take advantage of this possibility. Here we assume tha t  they  do not, namely 
tha t  they  are functions of their argument  z only. Then eq. (4.2.5) (where the 
reader should now imagine tha t  both ~e) and ~(• depend on y and t besides k) 
implies that ,  if ~+) satisfies the linear part ial  differential equation (4.1.12), 
so does ~(~', since it coincides with a c~ up to a factor of proportionali ty tha t  is 
independent of y and t. But  we know from the development of the preceding 
subsection tha t  the linear equation (4.1.12) corresponds to the N L P D E  (4.1.11) 
for v. We may  therefore conclude tha t  two pair of fields r, q and r', q' related 
by (4.2.3) have the property that ,  if r, q satisfy the NLPDE (4.1.11), r', q' 
satisfy the same equation. 



228 F. CALOG~r and x. DE~ASP~S 

Thus eq. (4.2.3) is a B~cklund t ransformat ion ,  i.e. a relat ion tha t  connects 
two fields v and  v'  t ha t  satisfy the sume h ' L P D E  (4.1.11). I t  should be em- 

phasized t ha t  the ftmctions ](z) a n d  g(z) in (4.2.3) and (4.2.4) are a rb i t ra ry ,  
as well as the functions ~ and y in (4.1.11); the  only connection between (4.2.3) 
and  (4.1.11) is the  s t ructure  of the operators  A and L, with the la t te r  being the  

hmi t  of the  fo rmer  for v ' ~ -v .  
The significance of the  Bi~cklund t ransformat ions  (4.2.3) is direct ly evident  

f rom eq. (4.2.5), t ha t  displays their  effect on the  spectral  pa rame te r s  a (• The 

implicat ions for the  discrete spect rum,  as long as it corresponds to the  sin- 

gularities of a (• can also be  evinced f rom this formula.  I t  is also possible to 

s tudy  more  directly the effects of these B~eklund t ransformat ions  on the para-  

meters  of the discrete spec t rum using the  results given above;  for insta.nce 

eqs. (3.3.12) imply  tha t ,  if k~• is a discrete cigenvalue for v' and not  for v, then  

(4.2.11) ](k <~)) 4- g(k ~+)) = 0,  

consis tent ly with eq. (4.2.5). 
The Bi~cklund t ransformat ions  (4.2.3) have  the same, quite general,  struc- 

ture  for all the  class of ~N/~PDE's (4.1.11); note  moreover  t h a t  they  contain 

no explicit dependence on the variables y and  t. I f  t hey  are used to genera te  

a new solution v' of (4.1.11) out  of a given solution v, t hey  yield of course a 

dependence on y and  t t ha t  obtains f rom the dependence of v f rom these var iables  
(if any) and  moreover  f rom the (~ constants  of in tegrat ion ~ t ha t  arise on solving 
(4.2.3) for v ' ;  these in fac t  depend general ly on y and  t (their cons tancy  refers 
only to the  x-dependence),  in a manne r  t ha t  is character is t ic  of the  par t icu lar  
N L P D E  considered, and  t h a t  m a y  be ascer ta ined b y  subst i tu t ing the solution 

into it  (.,7). 
As is clear f rom eq. (4.2.5), it is a general  p rope r ty  of the  Bi~cklund t rans-  

format ions  (4.2.3) to commute ;  this highly nontr ivia l  p rope r ty  has i m p o r t a n t  
implications (4), t h a t  shall be discussed in a subsequent  paper  of this series 

(except for a terse t r e a t m e n t  in some special cases in the nex t  two following 

subsections). We also defer a discussion of the  general  s t ructure  of (4.2.3), 

l imit ing our t r e a t m e n t  here to a display of the  ve ry  simplest  cases t ha t  obta in  

with the  simpler choices of thc  functions ] and  g. 

(37) The relation (4.2.3) is a generalized version of the formulae often referred to in 
the literature as ~ one half ~) of a B~cklund transformation; see the papers of ref. (3) 
and, more specifically, those of ref. (,.19.2o). Note added in proo]s. - The fa~t that the 
same BKcklund transformation applies to all the equations of the AKNS class had 
been previously noted by H. II. C I ~ ' :  Phys. Rev. ,Sett., 33, 925 (1974) (but he only 
eonsidercdt he simple B~ickhmd transformations that are included in the class of 
eq. (4.2.13a) below, since the more general Biicklund transformations introduced here, 
cq. (4.2.1), were not known, nor their spectral significance, eq. (4.2.2), understood). 
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F o r  ] a n d  g cons t an t ,  eqs. (4.2.3)-(4.2.5) y ie ld  

(4.2.12) r '  = +lr, q' : 2~ -1 q ,  C~(~)' : fl-}-I a(!:). 

F o r  ] a n d  g l inear  ( and  chosen so as to e l imina te  a s imu l t aneous  <( scale ~) 
t r a n s f o r m a t i o n  such as (4.2.12)), 

(4.2.13a) /(z) = p +  [-- 2 i z ,  g(z) ---- p _  

with (here a n d  below) 

(4.2.13b) p •  = 1. (p(+) __[: p(-)) 

we ge t  

(4.2.14a) r'~ + p(+)r' + r' J = r= + p ( - ) r  - -  r J  

(4.2.14b) q' - -  p(-)q '  + q' J = q~--  p~+)q-- qJ  , 

where  we h a v e  no t  expl ic i t ly  ind ica ted  the  x -dependence  and  

+r 

(4.2A5) g = J ( x )  = f d ~  [r'(~) q'(~) - -  r(~) q(~)] "i 

The  two c o n s t a n t s  p(~) and  p(-) are  r equ i red  to  sa t i s fy  the  condi t ions  

(4.2.16) _-t=. R c p  ~) > 0 ,  

if one a s sumes  t h a t  r a n d  q van i sh  f a s t e r  t h a n  exponen t i a l l y  as x i-~4- co,  since 
eqs. (4.2.14) ( t oge the r  wi th  the  in t eg ra l  r e la t ion  (4.2.20) g iven  below) t h e n  
i m p l y  

(4.2.17) r ' (x)  ~ exp [--  p(i) x] , q'(x) ,-~ exp  [p0:)x] as x -+ + co.  

This  is cons i s ten t  wi th  the  co r respond ing  f o r m u l a  for  t he  a lphas ,  t h a t  reads  

c~<-':)'(It) --- [ ( k -  k ( T ) ) / ( k -  kC• ~(• (4.2.18) 

with  

(4.2.19) k(•  = -  ~']9(=) . 

I f  one a s sumes  t h a t  r ' ,  q' van i sh  f a s t e r  t h a n  exponent ial ly~ then  the  signs 
ill eq. (4.2.16) a re  reversed .  

i t  should  be  n o t e d  t h a t  in this  case g•  ]_ == 0, so t h a t  O (~-) = ]+7 and  
m o r e o v e r  f+ = - / J ( - - o o ) .  Thus  eq. (4.2.1.0) yields  the  in tegra l  i den t i t y  

(4.2.20) J ( - -  c+) = p( ) - -  p(+). 
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:From eqs. (4.2.14) one easily obtains  the  formulae  for the (( soliton ~) 

solution, t h a t  were a l ready given and  discussed (in the  case wi thout  y-de-  
pendence)  b y  AKNS.  The explicit  expression for r ' ,  q' is in fact  easily obta ined 

by  assuming tha t  r, q vanish.  I t  is convenient  to write these formulae  in the  

fo rm 

(4.2.21a) 

(4.2.21b) 

wi th  

(4.2.22) 

r ' (x )  = - -  io~ (+) exp [--p(+)xo] exp [ - - p + ( x - -  xo)]/cosh [ p _ ( x -  xo)] , 

q' (x)  = io~ c-~ exp [p~-)xo] exp [p +(x - xo)]/cosh [ p _ ( x  - xo)] 

p2_ exp [2p_xo] ---- - -  ~(+) ~o ~-) , 

since the  dependence upon the  var iables  y and  t can then  be obta ined  direct ly 

f rom the formulae  of the preceding subsection (see eqs. (4.1.18) and  (4.1.]9) 
and,  if appropr ia te  (4.1.21b) and  (4.1.21c), and  recall  (4.2.19)) (.~s). 

4"3. F u n c t i o n a l  equa t ion .  - Let  us res t r ic t  our a t t en t ion  in this subsection 

to the  case when v = 0, so t h a t  the  ~qLPDE (4.1.11) reduces to the  fo rm 

(already considered by  AKNS,  bu t  in the  slightly less general  case of t ime-in-  

dependent  ~) 

(4.3.1) as v t (x ,  t) + ~ ( L ,  t) v (x ,  t) = O,  

and the corresponding evolution of the  spectral  pa r ame te r s  is given b y  the  
simple formulae  (4.1.23). Consider then  the  t rans format ion  (4.2.3), bu t  now 
with functions / a.nd g t ha t  depend also on t ime,  and  in such a m a n n e r  t h a t  

t 

$o 

Comparison of eq. (4.2.5) (with this choice for / and  g) to eq. (4.1.23a) implies 

t h a t  the  field v' re la ted  to v by  (4.2.3) and  (4.2.4) (with this choice of ] and  g) 

is jus t  the  field into which v, given a t  t ime  to, has evolved a t  t ime  t, following 
the  N L P D E  (4.3.1). I n  other  words (and af ter  a lit t le algebra) we have  found 

tha t  the  r emarkab le  funct ional  equat ion 

\ q ( x ,  t ' ) /  t) ! 

(2s) Note that, since in this ease both ~(~) and ~(~)' vanish, we are in fact extrapolating 
our results to a case in which the discrete spectrum cannot be obtained by analytic 
continuation from the alphas. A discussion of this point is deferred to a subsequent 
paper, as well as a more detailed analysis of this (~ soliton, solution when a nontrivial 
y-dependence is present (in which case in general it does not behave like a soliton at all). 
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relates the  solution r(x, t), q(x, t) of the  ~LPD:E (4.3.1) at  t ime t to the same 
solution at t ime t'. Of course the operator A in (4.3.3) is given by  eq. {3.2.14), 
with r ' =  r(x, t'), q '= q(x, t'), r = r(x, t), q = q(x, t). 

The functional equation (4.3.3) is an intriguing mathemat ical  construct,  
and we propose to investigate it in some detail in a subsequent  paper  of this 
series. I t  yields nontrivial results even in the simplest cases, as shown by  the 
following two examples tha t  we report,  for completeness, from ref. (lsa). 

i) I f  7(z, t ) =  1, eq. (4.1.11) becomes 

(4.3.4) rtA-r----O, q t - - q = O ,  

and eq. (4.3.3) yields directly the solution of this equation 

(4.3.5) r(t') = r(t) exp [t--  t ' ] ,  q(t') = q(t) exp [t'-- t ] .  

ii) I f  ~,(z, t ) =  2iz, eq. (4.1.11) becomes 

(4.3.6) rt -4- r~ = 0 ,  qt § q~ = 0 ,  

and has therefore the solution 

(4.3.7) r(x, t) : : / ( x -  t) , q(x, t) = g ( x -  t) 

with ](z) and g(z) arbi t rary functions (vanishing for z--> =t= c~). Inserting this 
solution in (4.3.3) we get the remarkable nonlinear operator ident i ty  

(4.3.8) 

with 

(g ](Z)a))#= exp [--aC] (f(z ~ a) t 
(z ~- \ g(z) / 

(4.3.9) C --~ _ -~z ~- \g 'Ig ~-gig'  - - g ' I ] ' - - g I / /  ' 

where we have wri t ten for short /'----](z-~ a), g'---g(z Jr a), ] = / (z ) ,  g-= g(z) 

and, as above, I =fdz'. The arbitrariness of ](z) and g(z), tha t  are only re- 
z 

quired to vanish asymptot ical ly  and to be infinitely differentiable, should be 
emphasized. The special choice g(z)= k/(z) yields 

(4.3.10) ](z + a) = E+1(1 -- kE_)/ (z) ,  
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where the operators E+ are defi~led by  

(4.3.11) E• = (%~, exp [-- a q  y~• 

with ;~+ defined by eq. (2.1.2) and of course C given by (4.3.9) w i th  g ' =  ]t]', 
g == ~]. For 2 = 0 eq. (4.3.11) goes over into the well-known linear operator 
formula 

(4.3.12) [(z J r - a ) :  exp[a  ~--]/(z). 
L czJ 

A comparison of eqs. (4.3.2), (4.2.5) and (4.1.23a) has allowed us to conclude 
tha t  the functionM equation (4.3.3) relates the same solution of eq. (4.3,.1) 
a,t different times. We are therefore now also allowed to conclude~ from 
eqs. (4.1.23b) and (4.2.6), thut  if ] and g are given by eq. (4.3.2), we have 

(4.3.13) ( / ~ :  g) O cT) = (] T g) O~• 

This equation, together with (4.2.10), implies 

(4.3.14) 0 c• = 0 

or equivalently (see (4.2.7)) 

(4.3.15) ]+ ~- g+ = 0.  

The two equations (4.3.15) may  be rewritten in terms of the definitions (3.2.26) 
and  the formula definhlg the B~cklund transformation (most conveniently in 
the form (4.2.1)). In  this manner  one gets 

(4.3.16) fdx t, t,), 
--co 

where of eom'se 

t 
t '  

t 

= 0 ,  

(4.3.17) v• t, t') ~ �89 Iv(x, t') :]: v(x,  t)], ~+ ~ ia~, (~_ ~ a l ,  

and tile operator A is defined by eq. (3.2.14) with r ' =  r(x, t'), q ' =  q(x, t '),  
r = r(x, t), q = q(x, t). 

Also these equations are functional relations connecting the same solution 
of the NLPDE (4.3.1) at  different times; note tha t  they  contain the parameter  z, 
tha t  may  take any  value. They constitute in some sense & gener&lization~ for 
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finite t ime intervals ,  of the  infinitely m a n y  conservat ion laws t h a t  are known 
to character ize the N L P D E ' s  of the  class (4.3.1). Indeed  these conservat ion 

laws can be easily derived by  taking the  l imit  of (4.3.16) for t ' - -  t --> 0 (and using 
the  results of the appendix)  ; bu t  we prefer  to defer a discussion of this question 

to a subsequent  paper  of this series. 

4"4. Special cases. - Using the results of subsect.  2"4 one can easily analyse 

possible subclasses of solutions of the N L P D E  (4.1.11), as well as subclasses of 

N L P D E ' s  involving only one field. This we do in this subsection, tha t  ends with 

a terse t r e a t m e n t  of some specific results in the special case of the sine-Gordon 
equation,  singled out as an example  in view of its special importance.  

In  the following formulae  e is always such t h a t  e 2 =  1, i.e. e : + 1 or 

= - -  1. We do not  list below the propert ies  of the spectral  pa ramete rs  (alphas 

and  betas),  since t hey  can in each case be easily evinced f rom the formulae 

of subseet.  2"4. These propert ies  are of course ins t rumenta l  for the derivat ion 

of the  results repor ted  below. 

Subclasses el solutions. ~Ve list below 3 cases. 

i) I f  in (4.1.11) 

(4.4.1) v(z, y ,  t) = v(--  z*, y,  t ) ,  7(z, y,  t) ---- ~*(-- z*, y,  t) ,  

the  relat ion 

(4.4.2) r(x, y,  t) = er*(x, y ,  t ) ,  q ( x , y ,  t ) = e q * ( x , y ,  t) 

is consistent with (4.1.11), namely ,  if t rue a t  t = to, it remains t rue  for t >  to. 
Moreover,  if this relat ion is t rue  for r, q, it m a y  also be t rue  for r ' ,  q' obta ined 
f rom r, q via a B~cklund t rans format ion  (4.2.3), provided the functions ] and  g 
t h a t  characterize it sat isfy the relat ion 

(4.4.3) / ( z ) g * ( - - z * ) = ] * ( - - z * ) g ( z ) .  

_Note t h a t  this condition is necessary but  not sufficient, since addit ional  rcstric.- 

tions (easy to ascertain and to implement)  mus t  of course be imposed on the 

constants  of integrat ion t ha t  obtain b y  (, solving )> the Bi~cklund t ransformat ion  

for r ' ,  q'. I n  the case of the linear B~cklund t ransformat ion  (4.2.13) this con- 

dition implies p(•  p(+)*, namely  the  poles are constrained to occur on the 

imaginary  axis. Tile corresponding restrict ions for the residues, in the ease. of 

the soliton solution (4.2.21), is 9 ( •  eQ (• 

if) I f  in (4.1.11.) 

(4.4.4) ,~(z, y ,  t) = ,~(-- z, y,  t) ,  ?(z, y ,  t) = 7(--  z, y ,  t) ,  

1 6  - I I  Nuovo  Cimento ]3. 



2 3 4  F. CALOGERO a n d  . .  D E G A S ~ I ~ I S  

the  relat ion 

(4.4.5) r(x,  y ,  t) = s r ( - -  x + a, y ,  t ) ,  q(x,  y ,  t) : eq(- -  x § a, y ,  t) 

is consistent  with (4.1.11). The corresponding (in the sense detailed above) 

condition for the B~cklund t ransformat ions  is 

(4.4.6) / (z )  g ( - -  z) = ] ( - -  z) g(z)  . 

No linear Bi~cklund t rans format ion  exists consistent  with this condit ion (ex- 

cept  the t r ivial  one with constants  ], g corresponding to simple scaling of r, q). 

iii) I f  in (4.1.11) 

(4.4.7) v(z ,  y ,  t) = "r y ,  t) , y (z ,  y ,  t) = y*(z*,  y ,  t) , 

the relat ion 

(4.4.8) r(x ,  y ,  t) = ~r*(--  x + a, y ,  t ) ,  q(x,  y ,  t) = sq*(- -  x -t- a, y ,  t) 

is consistent  with (4.1.11). Thc corresponding condition for the B~cklund 

t rans format ion  is 

(4.4.9) ](z) g*(z*) =/*(z*)  g(z) . 

Thus a l inear Bi~cklmld t ransformat ion  m a y  be compat ib le  with (4.4.7) only 
if it yields poles on the real  axis. 

This completes our list of possible special solutions of (4.1.1]). A more 

interest ing class of special cases obtains f rom t ransformat ions  t ha t  include 
(2.4.3), and  therefore  relate  r to q, since one obtains in this manne r  N L P D E ' s  

for one field only. We list below the  4 cases t h a t  obtain in this manner .  

Subclasses  o] NLPDE~s ]or one ]ield. 

i) I f  in eq. (4.1.11) 

(4.4.10) "~(z, y ,  t) = v( - -  z, y,  t ) ,  y(z, y,  t) = - -  7( - -  z, y ,  t ) ,  

it is consistent  to set 

(4.4.11) r(x,  y ,  t) = sq(x,  y ,  t) , 

obtaining the reby  a single ~NLPDE for the field q (or ra ther  2 different N L P D E ' s ,  

depending on whether  e = - t - 1  or s = -  1). A necessary condition for the  
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B i i c k h m d  t r a n s f o r m a t i o n s  (4.2.3) to be  cons is ten t  wi th  (4.4.11) is 

(4A.12) ](z) g( - -  z) = - - / ( - -  z )g ( z ) .  

I n  t he  special  case of l inear  B~ck lund  t r a n s f o r m a t i o n s  this  impl ies  p(+) = - -  p(-), 

or  equ iva l en t l y  p+ = 0. The  co r respond ing  res t r i c t ion  for  t he  res idues  in t he  

case of the  sol i ton solut ion is ~ ) ( ~ ) = -  so (-). This case is a p a r t i c u l a r l y  in ter -  

es t ing  on% since it  includes the  s ine -Gordon  a n d  modif ied  K d V  equa t ions ;  

i t  is f u r t he r  discussed below. 

ii) I f  in cq. (4.1.11) 

(4.4.13) v(z, y ,  t) = v(z*, y ,  t ) ,  y(z, y ,  t) = - -  y*(z*, y ,  t ) ,  

i t  is cons i s ten t  to  set  

(4.4.14) r(x,  y ,  t) = sq*(x, y ,  t) . 

The  necessa ry  condi t ion  on the  B~tcklm~d t r a n s f o r m a t i o n  (4.2.3) to  be con- 

s i s ten t  wi th  (4.4.14) is 

(4.4.15) ](z) g*(z*) = - -  J*(z*) g(z) . 

I n  the  l inear  case this  impl ies  p ( + ) = = -  p(-)*~ and~ for  t he  sol i ton solution~ one 
has  t he  res t r i c t ion  ~o (+) = so (-)*. This  case is also impor tan t~  since it  includes 
the  nonl inear  SchrSdinger  equa t ion  (i t  coincides in fac t  wi th  the  case or iginal ly  

s tudied  b y  ZAK~A~OV a n d  SI~h~AT (af)). 

iii) I f  in eq. (4.1.11) 

(4.4.16) r ( z ,  y ,  t) = o ,  

i t  is cons i s ten t  to se t  

(4.4.17) r(x,  y,  t) = ~q(-- x ,'-- a, y ,  t ) .  

The  co r respond ing  l im i t a t i on  on the  B~ck lund  t r a n s f o r m a t i o n s  is g := 0 (namely~ 

t h e r e  is no Bfi.ckluud t r a n s f o r m a t i o n  cons i s ten t  wi th  (4.4.17)). Clear ly  this 

is no t  an  in te res t ing  case. 

iv) I f  in eq. (/ .1.11) 

(4.4.18) v(z, y ,  t) ---- v ( - -  z*, y ,  t ) ,  

it is cons i s ten t  to  set  

(4.4.19) 

7(z, y ,  t) = - -  ~,*(-- z*, y ,  t ) ,  

r(x,  y ,  t) = sq*(--  x i -  a, y ,  t ) ,  
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ob ta in ing  t h e r e b y  a n o n h n e a r  func t iona l  evo lu t ion  equa t ion  for  t he  field q, 

t h a t  con ta ins  its va lues  a t  x and  the  va lues  of its complex  con juga t e  a t  - -  x -k a. 

The  subclass  of B~ck lund  t r a n s f o r m a t i o n s  (4.2.3) cons i s ten t  wi th  (4.4.19) is 

cons t r a ined  b y  the  necessary  condi t ion  

(4.4.20) ](z) g*(- -  z*) = - -  ]*( - -  z*) g(z) . 

The  poles arc  h o w e v e r  cons t r a ined  to occm" on the  real  axis,  s ince one has  the  
condi t ion  p(t)*=_ p(-). Clear ly this  is a r a t h e r  pecul ia r  e x n m p l e ;  we are  no t  

a w a r e  of its h a v i n g  been  cons idered  b y  o the r  au thors .  

This  concludes  our  list of t he  cases in which  one ob ta ins  f r o m  (4.1.11) a 

so lvable  ~ L P D E  for  a single field. W e  h a v e  no t  wr i t t en  these  equa t ions  ex-  

pl ic i t ly ,  since t he  s impler  p r o c e d u r e  is to  ob t a in  t h e m  in each  case f r o m  (4.1.11). 

W e  end this  p a p e r  discussing the  implica, t ions of the  p e r m u t a b i l i t y  of B~ck-  

lurid t r a n s f o r m a t i o n s  in t he  special  case  of t he  equa t ion  for  t he  single field q 

of case i) a b o v e  (see (4.4.10)). W e  no te  first  of all  t ha t ,  a f t e r  a l i t t le  a lgeb ra  (~9), 

t he  l inear  B~ieklund t r a n s f o r m a t i o n  cons i s ten t  wi th  (4.4.11) yie lds  

(4.4.21) 

I n  this  f o r m u l a  

(4.4.22) 

(4.4.23) 

q'(x) = q(x) § p sin [Q'(x) ,-i- Q(x)] .  

p = p(+) _-- _ p(-), 

-i-~ +co 

and  we h a v e  a s s u m e d  s ---- - -  1 (if s = -F :1, t he  sine is r ep laced  b y  the  h y p e r -  
bolic sine;  we do no t  wr i te  expl ic i t ly  the  restflts for  th is  c~se). 

W e  explo i t  n o w  the  p e r m u t a b i l i t y  of two Bi~cklund t r a n s f o r m a t i o n s  of th is  

k ind ,  cha rac t e r i zed  b y  p a r a m e t e r s  Pl ,  P2, ob ta in ing ,  wi th  an  obv ious  m e a n i n g  

of the  symbols ,  the  non l inear  superpos i t ion  f o r m u l a  (4) 

(4.4.24) sin Qa = {sin Q.[(p~ § p~) cos (Q2 - Q~) - 2p~p2] -F 

i o - -  2 I 2 " . -7 (p[ - -  p~) cos Q1 sin (Q~ - Q~)} [p~ -7 p:  2p~p2 cos (Q2 - Q.~)]-I 

I t  is i m m e d i a t e l y  seen t h a t  this  f o r m u l a  impl ies  Q~ =- Q1 (mod 2n) if p~ = - -  Pl.  

(29) Write explicitly the linear B/~cklund transformation for the fields (using eqs. (4.2.3) 
r 

and (4.2.13a)), introduce the function w(x)~Sdx'q2(x ') (and w'(x), similarly related 

to q'(x)), solve for w ' - - w  in terms of ~' Lq (choosing appropriately the sign in the 
solution of the second-degree equation), differentiate, simplify, and finally integrate 
using the asymptotic boundary conditions Q(+ c~) = Q ' ( +  oo) = q(+ c~) =: q'(q- oo) = 0. 
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If  instead p~ = p~ = p, one obtains the interesting formula 

(4.4.25) s inQ" = s i n Q  + 2pQ'~(cosQ - pQ'~s i l lQ)( l  + p , z - ~ ,  

where Q' is the field obtained from Q by the B ~ k l u n d  t ransformat ion  with 
paramete r  p, and Q: indicates the part ial  derivat ive of Q' with respect to p. 

Q" indicates of course the field obtained from Q by a double application of 
the Bi~ckluud transform,~tion (so tha t  the corresponding spectral parameters  
s177 contain generally a, double pole). 

i f  Q = 0, eq. (4.4.25) provides an explicit solution of the ~NLPDE, since 
in this case Q' is known (see eqs. (4.2.21) and (4.4.22)): 

(4.4.26) Q ' =  2 arctg {exp [p(x  - x0)]} �9 

Note however that ,  to get Q~, account  must  also be taken  of the p-dependence 

of xo, t ha t  is characterist ic of the part icular  ~ L P D E  being considered (while 
the soliton expression (4.4.26) is instead common to all the equations of the  
class (4.1.11) with (4.4.10) and (4.4.11)). For  instance, for the special case 

-- 0, y(z, y,  t) = -- (2iz) -~, tha t  is an interesting one since it yields for 

(4.4.27) ~p = 2Q 

the sine-Gordon equation 

(4.4.28) ~ t  = sin ~o, 

one finds xo = t /p ~-, so tha t  eq. (4.4.25) yields 

(4.4.29) 

with 

(4.4.30) 

q~ = 2 arctg {2u+ cosh u_/[cosh" u_ -- u+]} 

u•  = p x  • t /p . 

The physical significance of this solution is best  discussed going over to the 
variables X = x - - t ,  T = x + t. Note  that ,  in terms of these variables, 

(4.4.31a) 

(4.4.3]b) 

with 

(4.4.32) 

u _  = ( 1  - v2)-~(x- vT), 

u +  = - ( [  - v2)-~(vX - T)  

v = ( 1  - p~)/(1 + p~) ; 

while the sine-Gordon equation takes its proper  (relativistically invariant)  
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fo rm 

(4.4.33) ~ r  - -  ~xz = sin 9~. 

Assuming  t h a t  this or iginates  f r o m  a classical field t heo ry  wi th  L a g r a n g i a n  

dens i ty  

(4.4.34) ~<f ---- ~ (--  q~r~% + q)xq~x) - -  (1 - -  cos 9~) 

one obta ins  for the  ene rgy  dens i ty  

(4.4.35) ~ = -~-(~z~r + ~zTx) + (1 - -  cos ~) 

co r r e spond ing  to the  special  solut ion (4.4.29) the  express ion 

(4.4.36) ~ = 4(cosh ~ u + u~_)-2[p"(cosh u _ - -  u+ sinh u_) 2 + 

4- p-~(cosh u_ + u+ sinh u_) 2 -+- 2u~ cosh 2 u_] , 

which  c lear ly  vanishes  as T -+ oo, even ff X diverges (in con t r a s t  to  the  sol ; ton 

solut ion (4.4.26), which  yields 

(4.4.37) 5(f ~- 4 ( 1 -  v2) -1 cosh -2 u_ ,  

so t h a t  in this wel l -known case ~ remains  cons t an t  if T and  X b o t h  diverge 

keep ing  u c o n s t a n t ;  this solut ion represents  of course a d is turbance ,  the  sol; ton,  

m o v i n g  wi th  ve loc i ty  V). 

.Note added in  proo/s. 

The special solution of the sine-Gordon equation discussed here had been pre- 
viously obtained by G. L. I , ~ B  jr.: Rev.  Mod.  Phys . ,  43, 99 (1971); it can also be 
recovered from the <( breather )) solution by an appropriate limiting procedure (private 
communication by L. D. F~DDEEV, P. P. KUIASH and L. A. TAKHTAJAN). 

AP P ]d I~" D IX 

I n  th i s  append ix  we show some impor t~mt  p rope r t i e s  of t he  operu tor  L,  
which  fol low d i r ec t ly  f r o m  its det ini t ion 

(A.l) 

co 

- -  . L = ~i ~3 ~x § 2v(x) $ [~a~v($)] T 
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Here  v(x) is the  vec tor  (2.2.3) and the  m ~ t r i x  opera tor  /~ has been  exprcssed 
in t e r m s  of the  well-known dyadic  notution.  

Le t  us in t roduce the operator-v~lucd funct ion of the  complex va r i ab le  z 

(A.2) A(z) : ( i - -2 i zL)  -~ 

t h a t  sa.tisiies the  equat ion 

(A.3) A(z) = 1 -~ 2izLA(z) , 

and the  vec tor -va lued  funct ion 

(A.4) ;.(z; x) = A(z)v(x). 

~ o t e  t h a t  ~11 coet~icients of the  power  expansion in z of )~(z; x) v~nish as 
x - ~  :t: c~. Equa t ion  (A.3) then  impl ies  t h a t  

(A.5) ).(z; x) ~ [l ~ 2zJ(z; x)]v(x) -~ z(~).~(z; x) ,  

where  we have  delined 

(A.6) J(z; x) =fd~ ( i~v(~),  ;.(z; ~) ) . 

~Note tha t ,  for  z -  0, )~----v ~nd J ~ 0 (due to  the  a n t i s y m m e t r y  ef a~). 
The following differential  relat ion can be easily derived f rom (A.5): 

(A.7) (z ,~-  z~)( ).(z~), ~ ( z ~ )  ) = 

d 
" ~X [ZlZ2( fl'(Zl)' 0'1~(Z2)) -~ ZltI(ZI) ~-  z~J(z~)-~ 2z~zJ(z~)J(z2)] . 

I t e re  we hay% for nota t ional  s impl ic i ty ,  not  indicated the  a rgument  x. 
I f  we set now z~ = z~ = z in th is  expression,  i t  follows tha t  the  complex 

funct ion 

(A.8) C(z) := z( ).(z), a~(z)  ) ~- 2J(z) + 2zJ2(z) 

is independent  of x, and therefore  the  coeiticients of its power  expansion in z 
are also x- independent  (.for those values  of x such t ha t  this  power  expansion 
is meaningful) .  On the  other  h 'md,  these  eoefficients can be expressed in t e r m s  

of (L'~v(x), alL'~v(x)) ana~d~ (ia2v(~), s only (n, m nonnegat ive  integers),  
ar 

t h a t  v~nish as x ~ . c~ since we assume v(x) to vanish  in th is  l imi t  with all 
i ts  der ivat ives .  We the re fore  conclude t h a t  the  funct ion C(z) vanishes or, 
equivalent ly ,  t h a t  

(A.9) J(z) + 
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)~roln this  formula  and the  r emark  (A.4) it then  follows tha t  the coefficients 
of the  power expansion in z of J(z, x) vanish in the x ~ - -  c~ l imit ,  so tha t  

(A.10) f d x  (~,(x), i~.L~v(x)) = O, ~ = O, l, 2, . . . .  

An immedia te  consequence of these in tegral  relat ions is t he  complete 
equal i ty  of the  class of N L P D E ' s  given by  A K ~ S  to the  class given in this 
paper  (or r a the r  to a subclass of these,  ~s explained above). To show this it 
suffices to prove tha t  

(A.11) L"v(x) = L"v(x)  , 

where Z_ is the  integro-differentiM operator  defined b y  (1 .3)and  introduced 
by  AK_NS (~g). We begin by  not ing t ha t  

(A.12) L_ = L + T ,  

-~-co 

T ~- iv(x)fd~ [ia~v(~)] r , 

--r 

and tha t  the  operator  T annihilates all vectors  obtained f rom v(x) b y  repeated 
applicat ion of L 

(A.13) TL"v(x) = 0, n = O, 1, 2, . . . .  

The equal i ty  (A.]])  t hen  follows immedia te ly  from this  formula and the  defi- 
ni t ion (A.12). 

Equa t ion  (A.9) obtains upon solving (A.8) for J - L  If  one solves instead 
for J and then  subst i tu tes  in (A.5), one gets 

(A.|4) ;,(z; x) = [~--2z:(~(~; x), ~Z(z; x))J~v(x) + z ~ L ( z ;  x) .  

Equat ing  the coefficients of the  expansion in powers of z of this formula  one 
concludes (by recursion) tha t  the  vectors  L*v(x) do not  contain any  integral  
expression of the functions r(x) and q(x), being instead expressed only in t e rms  
of products  of these ~wo funct ions and of the i r  derivatives.  This resul t  had 
been repor ted  a l ready in sect. 4. 

Another  in teres t ing formula  is the  equal i ty  

+r 

(A.15) f d x  (L'~v(x), ia~L"v(x)) : 0,  n, m = 0, 1, 2, . . . ,  

t h a t  shM1 play an impor tan t  r61e in the  discussion of the infinitely many  con- 
stants of mot ion associated with the class of solvable ~NLPDE's with only 
one apace co-ordin~te (see the  last pa r t  of subsect. 4"3). In  order to prove  this 
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equa t ion  we p e r f o r m  a double  expans ion  in powers  of z~ and  z2 of (A.7), and  
equa te  t h e  coefficients;  in  th is  w a y  one concludes  t h a t  t he  quan t i t i e s  
(L"v(x),ia2L'~v(x)) arc  exac t  differentials ,  and  this ,  t o g e t h e r  wi th  (A.]0) ,  
implies  (A.15). 

F ina l ly ,  us ing  (A.10), we ob t a in  f rom the  defini t ion (4.1.8) of t he  func-  
t ion  ~(k,y,t) t h e  express ion  (,1.1.14) g iven  in subsect .  4"1. I n  fact ,  b y  
us ing  t he  I ~ L P D E  (4.1.5), t he  equut ion  (4.1.8) m a y  be  r educed  to  

+co 

- - c o  

+co 

since t he  con t r i bu t i on  of t he  in teg ra l  ~dx(v(x),ia2(k--L)-~v(x))vanishes ~s 
~co 

consequence  of (A. 10). I f  t he  evo lu t ion  cqm~tion is t h e n  used  to  e l imina te  
~av~(x) in  (A.16), we are  lef t  wi th  the  final express ion  

+co 

(A.17) ~ ( k , y ,  t) = q~(k, y ,  t)/](k)-~ 2i dx v(x),ia~[ ~ _ - ~  j a3v(x) , 

+,co 

where  once aga in  the  in teg ra l  jdx(v(x),ia2(k--L)-~y(L)v(x)) has been  elim- 
ina t ed  us ing  (A.IO). -~' 

�9 R I A S S U N T O  

Questo lavoro ~ il primo di una serie dedicata ad un inetodo generale per trovare e studiare 
equazioni non lineari alle derivate parziali risohlbili per mezzo della tecnica della trasfor- 
mata spettrale inversa. In questo articolo si presentano i risultati che si ottengono appli- 
cando questo metodo al problema lineare generalizzato di Zakharov-Shabat. Si d~ 
una classe di equazioni di evoluzione nonlineari, solubili con la trasformata spettrale 
inversa, che 5 pifi generale di quella presentata da Ablowitz, Kaup, Newell e Segur, 
poich6 si ineludono anche cquazioni contenent.i coefficienti non costanti e pid di 
una variabile spaziale. Riportiamo inoltre una elasse molto generale di trasformazioni 
di Bi~cklund che contiene tutte le trasformazioni gih note e ne chiarisee il signitieato. 
Infine otteniarno, per una classe pi~t ristretta di equazioni nonlineari di evohlzione 
(eontenenti solo una variabile spaziale), un'interessantc equazione funziolmle che lega 
la soluzione al tempo t alla stessa soluzione al tempo t'. Questo artieolo 5 dedicato ad 
una prcsentazione gcnerale del mctodo ed alla dimostrazione dei risultati principali 
(alcuni dei quali sono gih stati pubblicati scnza dimostrazione). Sebbene l'analisi di 
equazioni particolari e di soluzioni speciali ~ rilnandata ai lavori successivi di questa 
serie, alcuni risultati di questo tipo sono gih presenti in quest() lavoro, tra i quali 
l'espressione esplicita della soluzione esatta, non di tipo solitone, dell'equazione sink- 
Gordon, elm eorrisponde ad un polo doppio dei corrispondenti parametri spettrali. 
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HeJIHHefiHble ypaBHeHHH 3BOJIIOHHH, pemae.~m~e c HOMOII]~IO o6parHoro cneKTpaJlbHOFO 

n~peo6pa3oBanmt - I .  

Pe31oMe (*). - -  ~Ta CTaTb~I ~BZneTC~ nepBott CTaTt,e~ 143 ceprm, OCHOBaHHOfi na  o6meM 
MeTo~e ~YI~I accne~oBaHrm Hemt~ei~H1,1x ~nqbqbepeHurlanJ, nbIx ypaBneHnti B qaCTttI, IX npon3-  
BO]IHblX, pentaeMJ, LX c IlOMOmbIO TeXHH/(H o6paTnoro cnerTpanbHOrO npeo6pa3oBamam 
Pe3ynbTaTbt, noJ~y~IeItHbre B 3TO~ CTaTbe, aHa~or/4~rtbi pe3yJIbTaTaM, KOTOp~,Ie nonyqaroTca 
npr~ rtpr~MeHeerrrI aTOrO MeTo~a K o6o6menHo~ nnue~Hoi~ rtpo6aeMe 3axapoBa-KIa6axa. 
M~t IIpI4BO2~I4M Knacc He~IHHelllttblX ypaBHeHHl~I 3BOIIIOI2tlIJ, pemaeMblX c n o Mo n ~ t o  o6paT- 
HOrO cneKTpaJTbHoro npco6paaoBaHn~. ~TOT Knacc $1BI/$1eTCR 6once o6maM, HeM rnacc ,  
BBeZ~eHHblffl A6JIOBHT~eM, KaytIOM, HeBeYlYIOM H CerypoM, T.r. OH Co2/epTKHT ypaBHeHI~, 
BKJiIoqa/olttHe 60flee qeM O~I~y ItpocTpaHCTBerLqyio rtcpeMcmly~o H co~ep~Kam~te KO3t~- 
qbI4tlJCeHTbl, KOTOpI, le He ~IBJIflIOTC~ IIOCTOflHHbIMH. MIal T a I ~ e  pacCMaTpl~BaeM o~Iel//~ 

06ram2 xnacc ~peo6pa30BaH~ Berny~aa ,  KOTOpIaLI~ C02~ep)KHT Bce TaKHe npeo6pa30-  
BaIlPI~I, XOTOpt,te ~t,IYlH pacCMOTpeHbI pance.  I'IpoBo~I~ITCff aHanH3 qbH3~IqecKoro CMblC~la 
3TnX npeo6paaoBann~i. ~ n ~  cJ~y~an MeHee o6mero r n acca  HeYlHHel~HbLX ypaBHennti 3BO- 
n~omff~ (BXnro~a~ou~ero T0 ,~ ro  O~t~y npocTpancTBeHnyro nepeMe~ayro) M~I rmny~ae,~ 
qbyrtKttaoHaJtbttoe ypaBHeHne, KOTOpOC CB~t3bIBaeT perrrenae a MOMeHT BpeMeH~r t C TeM 
>re penleHrleM B MOMerlT BpeMCtitf t'. OCHOBHOe BHtlMaHrde B CTaTbe y~en~eTca O6ttieMy 
IIO~xo~y 14 ~oKa3aTe~It,CTBy OCHOBHbIX pe3yYibTaTOB (HCKOTOpblC H3 KOTOp/,IX 6blJIH lrpl~- 
Be)~eHbI paHee 6e3 ~OKa3aTe.q~CTB). XOT~t aHann3 cnet(~anbr~btx ypaBHem4~ r~ crte~rranl,- 
n~ix penlerm~ OTJIO~KeH Ha rtocnej%yro~r~e CTaTbH 3TOI4 cepmt,  B 3TOfi pa6oTe nprmo- 
~vlrc~t HecKonbI(O pe3ynbTaTOB TaKoro po~a,  KoTopbIe BKJIIOqalOT TOqnOe rteconHTOHHOe 
perffeHne ypaBHeH~ Fop~orm,  COOTBeTCTByIOHIeFo ~IBOI~HOMy IIOYlIOCy aCCOHhq4pOBaHHOI'O 
cncrTpanbnoroTnapaMcTpa.  

(*) Ilepesec)eno pe3a~:~ue~. 


