IL NTOVO CIMENTO VorL. 32 B, N. 1 11 Marzo 1976

Vacuum Electromagnetics Derived Exclusively
from the Properties of an Ideal Fluid.

E. M. KELLY

Department of Physics
Californial State Polytechnic University - Pomona, Cal. 91768

(ricevuto il 19 Maggio 1975)

Summary. — If a return to ether concepts becomes necessary or desirable,
an event not as unlikely as it seemed a short time ago, the medium dealt
with here may be of interest. Maxwell’s vacuum equations are derived
from the propertics of an ideal fluid with no support from experimental
facts. The fields E and B, as so interpreted, are statistical in nature and
readily visualizable in a mechanical and geometric sense. The electro-
magnetic-momentum theorem is shown to be a second-order effect
stemming from nonlinear effects which were neglected in the derivation
of the vacuum equations. The presence of voids (hollow vortex cores)
in an otherwise incompressible fluid allows a mechanical interpretation
of the Lorentz gauge. It is suggested as a matter of parsimony that
Newton’s laws may be replaceable by kinematics, thereby reducing eleetro-
dynamics to Euclidean geometry.

1. — Introduction.

A primary objection to most ether theories is esthetic; they simply do not
meet the demands of parsimony. On the other hand, the richness of the
« vacuum », the phenomenological identity of special relativity and at least-one
ether theory ('), and recent cosmological observations (*3) suggest that re-

1} M. Erricusox: Amer. Journ. Phys., 41, 1068 (1973).

M
(3) E. K. CoNKLIN: Nature, 222, 971 (1969).
() 8. J. PrROXHOVNIK: Foun. Phys., 3, No. 3, 351 (1973).
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jection of the ether concept is not justified. The medium which is the sub-
ject of this paper satisfies some minimum requirements for an ether model by
evincing electromagnetic properties with no more than an ideal fluid as the
starting point. The reduction of ideal-fluid dynarmics to kinematics is mentioned
as a possibility for an increase in parsimony. Some of these ideas have already
been published (4), but numerous weaknesses have required extensive re-
working so that the present treatment is almost entirely self-contained. For
brevity, historical background is left to ref. (%).

The postulates are those of an ideal fluid, structureless, homogeneous, incom-
pressible, nonviscous and devoid of other intrinsic qualities such as gravitational
and electrical ones. Newton’s laws of motions are assumed, although in appen-
dix C it is suggested that they may be simplified, or at least stated in terms of
kinematics. To obtain nontrivial results we consider initial conditions which are
somewhat complicated. The model can easily be visualized by imagining a
box pierced through from all directions by pins. If the box is filled with a viscous
fluid and all pins spun about their axes, vortex motion will arise around each
pin. This motion persists if the viscosity is annihilated. Next, it can be imagined
that all the pins are withdrawn so that the medium has hollow vortex tubes.
The fluid is in eyelic irrotational motion about the tubes; these are flexible
and, as it is impossible for them to remain straight in such an environment
without internal support, they acquire a writhing motion, which persists as
a property of the medium. In an undisturbed (neutral) state, the medium has
no preferred directions. Now allow the number of tubes crossing the box to
increase, while the tube diameters decrease so as to maintain a small ratio of
the tube diameters to distances between tubes, until the individual tubes are
unresolvable. The system now appears macroscopically as a continuum in
which the extreme variations in velocity, acceleration and pressure over the
microscopic distances from tube to tube are undiscernible. The detailed ef-
fects of the hydrodynamic laws are lost in the averaging effects of large numbers
of tubes. Because of the voids (hollow vortex tubes) the bulk medium is com-
pressible even though the fluid itself is not; however, if the volume fraction of
void is small, as will be assumed, the compressibility is slight.

Although the magnitudes of the geometrical parameters (tube cross-section,
length of tube per unit volume) are presently unknown, one can make rough
estimates. For stability, the hollow tubes should never get too close to one
another; furthermore, the effects to be considered involve only slight shifts
of tubes from their average positions. The minimum distance between tubes
might be 10% or more times the tube radius. If there isto be a chance of dealing
with phenomena at the nuclear level, 10% or more tubes crossing an area of 10 2
square meter might be necessary to get good statistics. This corresponds to
10%* tubes per m?, a distance between tubes of 10~ m and a tube radius of

) E. M. KxLLy: Amer. Jouwrn. Phys., 31, 785 (1963); 32, 657 (1964).
Y
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10-20m. If the tubes were arranged so that a third of them were parallel to
each of three perpendicular axes, the tube length per unit volume (tube
density, L) would be 3-103* meters per cubic meter. These quantities are not
to be taken literally, but only to give a crude notion of the possible scale of
the model.

Although at first glance the picture appears to be one of complete chaos,
it will be seen by first considering a few properties of vortex tubes and then
averaging these ecffects over many tubes that certain statistically defined
quantities behaving like electrical quantities emerge.

When a gravitational field is present, the motion of a horizontal infinite
cylinder in a liquid, where there is circulation about the cylinder, is readily
found (5). The cylinder does not tend to sink even in the case where its weight
exceeds the buoyant force; rather, the path of the center is a horizontal trochoid.
A special case, occurring when the cylinder is released from rest, is an inverted
cycloid, the cylinder accelerating downward at first, but then laterally also as
the lift force becomes appreciable. Eventually, as the velocity increases and
changes direction, the vertical component of the lift exceeds the weight and the
cylinder accelerates upward, finally coming to rest at its original height but
with a horizontal translation. The process then repeats itself indefinitely,
since the initial conditions, except for the horizontal translation, are recovered
periodically. The average effect over a long time is a sidewise translation of
the cylinder at constant speed. This average speed will be denoted by & and
the average lateral velocity (referred to as «drift ») by &; this vector is always
perpendicular to the axis of the cylinder. It is customary to define the « strength
of circulation » % so that 2ax is the circulation about the cylinder. A cylinder
moving about in the fluid carries its circulation with it; no change in the cir-
culation is possible without friction or other extraneous forces which are, by
hypothesis, not present in the fluid. It is also convenient to define a «spin
vector » x directed along the cylinder so that, if one grasps the cylinder in the
right hand with the thumb in the direction of %, the fingers give the sense of
circulation. A cylinder perpendicular to the paper with counterclockwise cir-
culation will have » out of the paper. When such a cylinder starts to fall a lift
force to the right develops; that is the drift § is to the right. If the force F
(including weight and buoyancy but not lift) is downward, the drift is in the
direction of x X F. Later, when the geometrical properties of the medium are
emphasized, a unit veetor A, parallel to x, is introduced, so that x = »A. The
drift is parallel to A X F.

Now consider a rigid torus with circulation at rest in a liquid with no gravita-
tional field. The liquid near the surface farthest from the center of the torus
is moving more slowly than that near the nearest surface; thus there is a greater

(®) I.. M. Muu~E-THOMSON: Theoretical Hydrodynamics, 2nd edition (New York, N. Y.,
1951), p. 179.
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pressure at the outer surface. 1f the torus suddenly becomes a void, several
changes occur; the tube is flexible and compressible, and has a smaller virtual
mass (°) than a tube containing a ponderable substance. These changes result
in an acceleration of the torus toward its center. The velocity thus acquired
creates a lift force which is at first normal to the plane of the torus; that is,
drift along the axis occurs just as in the case of the straight tube, except that
here weight and buoyancy are absent and the net applied force is derived ex-
clusively from pressure differences. The motion is like that of a smoke ring;
if the magnitude of the vibratory motion is small, the torus appears to be ad-
vaneing at constant speed. This case is treated in detail by Hrcks (7).

The effect on the velocity of advance of a particular segment of a torus due
to distant segments is negligible for a large thin ring, so that the motion is
determined by local conditions. If the effects of variations in shape and size
of cross-section are negligible, as may well be the case for exceedingly thin tubes,
we may regard the tube as a line the motion of which is a function of curvature
alone. This function has, presumably, a McLaurin’s expansion (although see
appendix A) so that for small curvatures we may write

(1.1) =90,

where C is the magnitude of the curvature and # a constant, the « drift coef-
ficient ». The direction of £ is the same as that of the fluid on the inner (concave)
side of the tube, so that when the vector curvature is C, as in fig. 1,

E=nAxC.

4

Fig. 1. — The drift £ of a bent tube is in the direction of fluid flow on the side of the
tube toward O.

(8) L. M. MiLNE-TuoMSOX: Theoretical Hydrodynamics, 2nd edition (New York, N. Y.,
1951); p. 228.

(") W. M. Hicks: On the steady motion and small vibrations of a hollow vortex, in Phil.
Trans. Roy. Soc., p. 161-195 (1884).
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When a cylinder with circulation moves laterally in a fluid of density p the
lift force on it is 27xp¢ per unit length in the direction of A X E; that is

(1.2) lift per unit length = 27x0A Xé,

accompanied by a reaction thrust on ihe fluid

(1.3) thrust per unit length = 27%0E XA .

For hollow tubes these forces are fictitious since a void can neither receive
nor apply a force. They are, however, convenient fictions for expressing thrusts

associated with momentum transfer rates arising from bent tubes. To see how
momentum transfer is generated from bent tubes, consider fig. 2, showing first

Tig. 2. — The rate of momentum transfer into a region between parallel planes is zero
from straight tubes; when the tubes are bent the momentum transfer rate into the
region is different for the two planes, resulting in thrust.

a straight tube and two parallel planes intersecting it. Fluid crosses each plane
due to the circulation, but the rate of transfer of momentum into the space
between planes is zero, since as much leaves across one plane as enters across
the other. If the tube is curved this equality is upset, so that anet rate of transfer
of momentum, a thrust, is created. When the thrusts from all tube sections
in a volume V are added, the result divided by V is the average thrust per
unit volume. In the limit of small V, this is defined as the thrust vector T.

In the neutral state of the medium thrusts due to curved tubes are oceurring
everywhere, but, by definition of the neutral state, no appreciable macroscopic
acceleration of fluid results; that is, on a sufficiently large scale the thrusts
cancel with statistical accuracy. The medium, as with a quiescent gas, is in
dynamic equilibrium. However, it is easy to imagine a state where the thrusts
do not cancel. Consider a plastic in which many long straight threads are
embedded in random directions; if the plastic is bent nearly all threads acquire
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curvature, although of different amounts and directions depending upon their
original directions. The average vector curvature of the threads as a result
of a displacement resulting in strain is in general nonzero. A quantity which
has considerable prominence later is a bulk displacement D. Vortex filaments,
that is, fine vortex tubes containing fluid rather than void, move with the
fluid (8). Hollow tubes, except for motion due to curvature (and effects of large-
scale pressure gradients, which will be ignored for the present), will do likewise.
A bulk displacement as considered here is really a displacement of tubes rather
than of fluid, since there is no attempt to identify and follow a particular blob
of fluid. However, it is convenient for visualization to think of the medium
being displaced as a whole, carrying the tubes with it, just like the plastic with
embedded threads, while ignoring the microscopic cyclic motion around the
individual tubes. The form of D determines the pattern of tube curvature
and therefore the average drift and thrust on a region of fluid. Terms like
¢D,[cx are tangents of angles of rotation; when such terms are infinitesimal the
angles are equal to the tangents, and, being infinitesimal, can be regarded as
vectors. Thus, we may define

(1.4) 0=3VxD.

D and 8 appear later in close association with the vector potential and magnetic
induction, respectively.

It is already evident that large-scale (bulk) effects are statistical; in cal-
culating thrust per unit volume due to tube curvature, for example, we cannot
actually allow the volume to vanish in the limit, but must keep it large enough
to obtain a statistically valid average of thrusts from many tubes. In particular,
it will become apparent that Maxwell’s equations along with E and B for the
medium have only statistical significance. The displacement D and angular
bulk displacement , along with lateral tube displacement § and drift E, can
all be considered as measured relative to a co-ordinate system which is at rest
relative to the centroid of the fluid, assuming the latter to be of finite extent.

2. — Maxwell’s vacuum equations.

Consider a region of the medium, initially neutral, to undergo a displacement
which bends tubes. Tube bending depends partly on tube orientation; if, for
instance, an initially flat slab is bent to form a cylindrical shell, fig. 3, tubes
transverse to the axis have maximum bending, those parallel to the axis no
bending, and tubes with intermediate orientations acquire intermediate cur-

(¢) L. M. MiLxXE-TroM80N: Theoretical Hydrodynamics, 2nd edition (New York, N. Y.,
1951), p. 79.
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vatures, the general effect being an average curvature along the curvature K
of the cylinder. It is evident that tubes are drifting across the line of K in the
sense of A x C with speeds proportional to the magnitude of the latter vector.
If we choose a direction, calling it « upward » for convenience, it is apparent
that all tubes crossing K from right to left have upward spin ecomponents, while

up

Fig. 3. — Preferential sorting of spin oceurs as a result of medium bending. The short
arrows normal to tubes show the direction of drift.

those crossing from left to right have downward spin components. Sinee each
tube carries with it circulation of amount 27z, circulation is being sorted pre-
ferentially by medium bending. When drift varies in space, a net spin density
may accumulate so that the medium acquires a rotation which appears macro-
scopically as vorticity, even though there is no vorticity at the mieroscopic level.

The expressions for thrust per unit length developed in the introduction
permit us to write the thrust per unit volume T from drifting tubes in several
ways:

(2.1) T=V-1[ommg xAdl = V—1f2mgn(x><c) xdl = V-1 [2angnCal,

where dl is the element of tube length and ¥V the volume over which the integ-
ration extends. Although V cannot shrink to a point without vitiating the
meaning of T as an average, we can take it small enough, while still retaining
good statisties, to define a « quasi-point » or «statistical point » function.
Now consider a thin torus of radius » and small cross-sectional area s. The
inertia of the fluid inside the torus is g(2zrs) and the tangential velocity is rw,
w being the angular speed. The angular momentum is then 2gpAsw, where
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A =mnr? is the area of the loop. The torque on the fluid inside the torus is
r(T-sda), where da is the element of are, integrated around the loop. Equat-
ing torque to rate of change of angular momentum, we get

(2.2) A—lfT-da — 2080/3t.

For small loops the left-hand side approaches the component of V x T normal
to the loop and since the integration loop is arbitrary we have

2.3) Vx T =2¢ew/at.

This, like all similarly derived quantities, is only statistically valid, since the
integration loop cannot shrink to a vanishing limit.

After tubes have drifted for a time from their neutral positions they have
translated laterally by an amount §. Since it turns out to have properties similar
to those of the electric veetor, we define

2.4) E—1 V—lfmxpx xEdl.

Comparison with eq. (2.1) shows that this differs from k, T by the presence
of § instead of E', as well ag in the order of cross-multiplication. The latter change
is made so that later results will conform to analogues of electric and magnetic
fields.

Inspection of (2.4) and (2.1) shows that

(2.5) T=—kcEjct.
From eqgs. (2.3) and (2.5) we get
k' o' VX (CE/[Ol) == —2Cw /3t
Integration gives
(2.6) E'o'VXE =—2w,

where the function of integration vanishes if the initial state of the medium
is neutral. .

If the net spin density is spread uniformly across an area normal to w the
area spins like a rigid body except for the microscopic turbulence. We consider
only those cases where the medium experiences angular displacements which
are so small that no appreciable error is incurred by treating them as vectors.
Let the angular displacement be 0; it will be apparent shortly that this vector
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has similarities to the magnetic-induction vector, so we define a new vector
(2.7) ' B=2k,0=FVXD,

where D is the bulk medium displacement. Differentiation gives

(2.8) SB/3t = 2k, 80/3t = 2k, 0,

which, eombined with eq. (2.6), gives

(2.9) E'k, 0" VXE=—¢Bjct.

Thus, the medium exhibits a property similar to that described by Faraday’s
law for stationary circuits. Here, it is simply the assertion that, when VX E
does not vanish, more tubes of one sense of spin have entered a loop than have
left it, the result being a net spin density proportional to V X E, although op-
positely directed, and & concomitant angular velocily proportional to 8B/8t.
Consequently, there is bulk vorticity of amount 2w = k;'cB/ct.

In order to find further relationships between E, B and T in terms of D
and its derivatives, we examine the effects of the medium displacement in more
detail. Under a bulk displacement D, an initially straight tube is, in general,
rotated and bent by the strain. Consider a tube section between neighboring
points P and ¢, denoting the position vector of @ relative to P by dA. After
the displacement the points have moved to @' and P’, the new position vector
being dA’=dA-- (dA-V)D. Only the component of (dA-V)D normal to da
produces rotation; for small angles (recall that A is a unit veetor tangent to
the tube) the magnitude 8 of the rotation is 1A X (dA-V)D|/dA =A X (A-V)D|.
Furthermore sufficiently small angles may be considered as vectors so that

(2.10) 0=Ax(A-V)D.
The rotation of a tube segment at ' relative to the rotation of a segment of the
same tube at P’ is

a6 = (dA-V)9.

This differential rotation induces curvature in the (initially straight) tube.
The part of d@ directed along the tube produces no curvature but only a twist
which has no obvious significance for our present analysis. The component
normal to the tube results in curvature of magnitude dO/dA concave in the
direction of d@ xA. The curvature vector can therefore be written

C= (10 XA)/dA=[(AA-V)8] X A/dA=[(A-V)0]xA=—A x[(A-V)AX[(A-V)D]}].
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Sinee A is a constant veetor this reduces to

C=—AX[AXAV){A-V)D}] =—Ax[AXx(A-V):D],
which, upon expanding the triple vector product, becomes
(2.11) C=—[A-(A-V)2D]A 4+ (A-V)2D.
The curvature will vary with the tube direction; for the investigation of bulk
properties the mean curvature is needed, since this determines the mean thrust

from momentum transport arising from bent tubes. It is shown in appendix B
that the mean curvature is

(2.12) C = (4/15)V:D — (2/15)V(V-D).

The thrust per unit volume is, from eq. (2.1), V“1f2nxgnC dl. TUsing the average
value of C, we get T = V-1(27x91C) f 4l = 2axonLC, where L = V-1 f dl, the tube
length per unit volume. With the result of appendix B, and setting
@G = (8/15)nxonL, we get

(2.13) T=GV:D—%GV(V-D).

When V-D vanishes this reduces to

(2.14) T=a6V:D =—GVX(VxD),

a special case which will now be examined. With VxD = kB, from eq. (2.7)
and T = k*0E/ct from eq. (2.5) we can write eq. (2.14) in the form

(2.15) VxB=kk,GOE|ct,
which is analogous to the second of Maxwell’s curl equations for free space.
Since values of k, and k, have not yet been chosen, we may set k;'k, 0 '=1

and k;'k,G=c¢% so that Go~'=¢* and eqs. (2.9) and (2.15) take the fa-
miliar form of the « vacuum » equations

(2.16) VxE =—3B/ét,
(2.17) VxB = c*3Eot.

Since, by definition, B is k,VxD we get

(2.18) V-B=0.
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By taking the divergence of both sides of eq. (2.17) we see that (¢/ct)V-E
vanishes, so that V-E is a function of space only. Since this requires a field
constant in time the only solution of interest for free space is

(2.19) V-E=0.

The dependence of eq. (2.19) on eq. (2.17) must be noted; eq. (2.19) is not neces-
sarily valid when displacements have nonvanishing divergence. By contrast,
eq. (2.18) is correct for all cases. That is, the theory prohibits magnetic mono-
poles but does not, at this point, prohibit electric monopoles. Without doing
violenee to the terms, we may refer to E and B as, respectively, electric and
magnetic induection vectors. E is characterized by a lateral displacement of
tubes in the sense of & described above. B is characterized by a bulk angular
displacement small enough to be represented as a veetor along B. It is apparent
that these are merely the most obvious characteristics; since E and B are com-
plicated structures in the medium additional properties exist. Equation (2.16)
states that the density of spin (bulk vorticity) resulting from — VX E is ac-
companied by bulk medium rotation, proportional to ¢B/ct. E has been so
defined that, if its curl is positive, a negative spin is induced, fig. 4. This equa-

Fig. 4. — Vorticity results from net spin density; since E, exceeds K, more tubes of
counterclockwise spin enter the loop so that the line integral around a loop corresponds
to counterclockwise rotation.

tion is kinematic in character. Equation (2.17) is dynamic; VxB =,V X
X (VxD) is, except for a constant factor, the negative of the thrust per unit
volume due to tube curvature, while 0E/ct expresses the same thing in terms
of the reaction to the lift force as in eq. (2.5).

It is sometimes convenient to deal with a simpler form of the medium in
which the tubes are resolved along perpendicular axes. The electric field is
then much simplified as it involves only tubes perpendicular to the field. The
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magnitude of E, from eq. (2.4), reduces to k,; V—lf%mgf Al = I, (2nxpE L),
where [/ is the tube length per unit volume directed at right angles to E. It
is reasonable to suspect that the energy of the field derives from transfer of
bulk kinetic encrgy of motion; that is, if initially % vanishes but a bulk veloeity
q = cDjct exists, the fluid does work on the tubes as they drift, at the expense
of the bulk kinetic energy. The force on a tube in a current of speed ¢ is 27xoq
so that the work done in moving the tube length L’ laterally by amount d¢ is

AW = 2axpql/ d§ = — A(pq?/2) = — pqdyq,

the last term being the change in kinetic-energy density. The negative sign
arises because dq is negative for positive dé. Integration from & =0 to & =&,
with ¢ varying from ¢, to 0, gives 2axI'& = q,. The original kinetic energy
0g3/2 in terms of & is 2n°ox?L*&. This can be expressed in terms of
Ey= k(2nxoL’ &), derived in the preceding paragraph, to give W = E2/2k] .
If we identify the field with an actual electric field, we must identify &, as

(2.20) ko= (0e)
It has been shown by somewhat different reasoning (°) that
(2.21) k= (Gua)* .

These results are useful in the next section.

3. — Second-order field effects.

In averaging the effects of tube bending (appendix B) the tubes were as-
sumed to be at their neutral pogitions. Although this is a good approximation,
it is not strictly correct, since the tubes share in the bulk displacement and, in
addition, have the lateral displacements £, When these factors are taken into
account, small second-order effects become evident. As an example of . this
(using a co-ordinate system where & is to the right, y toward the top of the page
(upward) and z out of the paper) consider a plane wave propagating along
with E parallel to ¥ and B parallel to 2. The thrust T is also parallel (or anti-
parallel) to y. However, the medium has rotated during the displacement by
an average angle 0. Tubes (in the resolved version of the medium) parallel to
y do not change directions at all, while tubes in planes perpendicular to y have
their directions of drift changed by 20; that is the vector T has changed from

() E, M. Kerry: Amer. Journ. Phys., 32, 658 (1904).
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the y-direction by an angle 26 which, from eq. (2.7), can be written as k;*B.
Thus T has a component k;*B X T in the w-direction. With egs. (2.5), (2.20)
and (2.21) and interchange of order of multiplication, this can be written as
(ko ko) (DE[3t) X B = (uy¢*)~*(3E/3t) X B.

Another thrust arises because the existing electric field is rotating with
average angular velocity o (cf. eq. (2.8)). When a tube section dl is displaced
to form part of a field, one can think of this as equivalent to annihilating the
original element by superimposing a tube element — dl on it, then creating a new
section dl at a distance § from the original one. Finally a tube section & is added
to one gide and — § to the other to form a rectangular re-entrant vortex tube
of area £dl. Since this is done for all tube sections, the added tube section §
for one dl is annihilated by a — E for the next dl, so that nothing is added to
the medium. If the rectangle rotates about edge dl with angular velocity £, a
thrust is developed by the opposite edge of 2nxo(length)(velocity) = 2nxp d1£Q2;
it is apparent that the location of the axis of rotation is immaterial. For the
same reagon that 20 was taken as angle of rotation of T, the angular velocity
of rotation of E is evidently £ = 2w, so that the magnitude of the thrust is
2k Ew. The direction of thrust is to the right when E is upward and w is out
of the paper so that the thrust is 2k7'E X which, with egs. (2.8), (2.20)
and (2.21), can be written (k,k,)~*E X (0B/ct) = (u, 2 E X (cB/ot).

The total thrust from the two causes, change in direction of T and angular
velocity of E, is (u,c?)~*(d/ot)(E xB). Now although the devices of lift on a
tube by the fluid and the reacting thrust on the fluid by the tube are extremely
useful techniques because they are easy to use, it is obvious, as was mentioned
previously, that they are fictitious. That is, the thrust on a volume of the me-
divm must have its real origin in the rate of transfer of momentum across the
surface of the volume, this arising from tube motions and differential changes
in the angles at which tubes intersect the surface. In the plane wave, let R(x, ?)
be the rate of transfer of momentum across a unit area toward the right; for a
slab of unit area and thickness Az, the rate at which momentum enters from the
left is R and the rate at which it leaves toward the right is R 4 (6R/ox) Aw,
the rate of increase within the slab being — (OR/dz) Az. Thus, the thrust on
the glab in the z-direction is

— (OR[0x) Ax = (1o c®)~2(0/St)E X B).

For a wave the operator — ¢~10/0f can replace 0/dx, so that the preceding re-
lations can be written in the equivalent form

OR[3t = (o c)~1(3/01)(E X B) .

Since the space function of integration may be taken as zero in this case, in-

9 — I Nuovo Cimento B.
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tegration gives

(3.1) R = (uoo)(ExB) = c{(Ex H),

where H = B/u,, as the rate of transfer of momentum across a unit surface
normal to the propagation velocity. This result is inherent in the model, but
not in the analogues of Maxwell’s vacuum equations, eqs. (2.16) and (2.17),
since the latter were derived by neglecting the effects discussed above. That
is, at least with respect to the model, the linear vacuum equations are incom-
plete. R is interpreted here as the momentum transfer rate per unit area normal
to the wave front. That the interpretation applies only to wave motion is ap-
parent from the substitution of — ¢-13/0t for d/cx. As elsewhere, for example
in ultra-sonics, it may not be profitable to rewrite the vacuum equations to
include nonlinear terms, but rather to proceed from the solutions of the linear
equations to second-order effects as was done to obtain eq. (3.1).

Classical derivations of radiation pressure and related phenomena usually
start with the work done on charges by fields or, alternately, with the Maxwell
stresses. In either case, the experimental fact of the existence of charge is needed.
The above treatment has a clear advantage in economy, since the concept of
charge is unnecessary.

As another example of second-order effects we consider an effect of com-
pressibility which arises from the hollowness of the vortex cores. If a region
of the medium expands by an increase in core volume, each volume element
acts like a source of output V-(0D/dt) per unit volume. For irrotational bulk
motion there is a bulk velocity potential @ and a bulk velocity — V@. In
addition there may be a divergenceless component of bulk velocity @, so the
bulk velocity is

8D[3t =— Vo + Q,

and

3.2) V-(©D/ot) =— V2.
Suppose that & satisfies the wave equation. Then

V- (©0D|dt) = — V2P = — ¢202 |12,
and an integration with respect to time gives
(3.3) V:-D = —¢209P/ct,

where the space function of integration may be taken as zero when no static
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fields exist. The pressure equation (1°) is P + } oq*— 0D/t = oC(?); if the
medium at great distances is neutral, C == 0, and if ¢ is sufficiently small, we get

P = o0/ot.

That is, P is the bulk pressure, superimposed upon the hydredynamic pressure,
which arises from bulk motions of the medium. Equation (3.3) asserts that the
relative compression of the medium is proportional to the bulk (or excess)
pressure po@/ot.

The quantity I can be related to an electrical quantity by reecalling that B
was defined (eq. (2.7)) as k,V xD, so that kD is evidently the same as the
ordinary electric vector potential 4. For @ we can procede as follows: from
egs. (2.7) and (2.16) we have

E,VxD =B,
Vxk,eDjct=¢cBjot=—V X E,
Vxddjot=—VXE,

04/t =—E—Vp,

(3.4)

where @ is the electrical scalar potential. Taking the divergence of both sides
of eq. (3.4), and confining our attention to cases where V-E vanishes, we get
V-0d[ct = — Vip,

(3.5)
V-2D[ot = — Veglk,.

Comparison of eqs. (3.2) and (3.5) shows that
(3.6) ® =gk,

except possibly for an additive harmonic funetion which may be dismissed
gince such a function does not contribute to the electric or magnetic fields.
Finally, eq. (3.3) can be written in terms of electrical, rather than bulk hydro-
dynamie, quantities:

V-Alky=— ¢ *(Cp[ot) [k,

(3.7)
Ved =—c23p/dt.

Thus, within the stated limitations, we have obtained a physical interpretation
for the Lorentz gauge, relating it to the compressibility of the medium.

(**) L. M. MrNE-THOMSON: Theoretical Hydrodynamics, 2nd edition (New York, N. Y.,
1951), p. 81.
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4. — Discussion.

Several theorems identical in form to those of vacuum electrodynamics
have been derived without using any facts of observation. Even Newton’s
second law and the concepts of force and inertia may, if appendix C proves
cogent, be replaced by kinematic concepts of continuity and conservation of
fluid volume. From the standpoint of postulational economy the medium ap-
pears to be promising as a candidate for an ether model.

The nature of matter as it relates to the medium has not been discussed
here for the reason that virtually no progress has been made in this direction.
Considerations of parsimony suggest that no new postulates are needed; that
matter is a quasi-stable structure of the medium itself, an idea which is by no
means novel. The attractiveness of this approach is enhanced by the reflection
that through it the wave nature of matter and relativistic phenomena such
as rod contraction and clock retardation become qualitatively intelligible.
One quantitative property which may relate to matter is the circulation con-
stant ». If the tubes are all assumed to have the same circulation (the simplest
assumption) the medium has an intrinsic quantum; aithough one may suspect
a connection between » and Planck’s constant, the connection has not yet
been found.

APPENDIX A

Drift coefficient,

A fine hollow vortex ring advances approximately with speed
0= }x0[In (8/r0)— 3],

where C is the curvature of the vortex tube regarded as a circular line (that
is, C =1/R, where R is the radius of the aperture), x» is the strength of cir-
culation and r is the radius of tube cross-section. When the radius of cross-
section remains constant, the speed is a function of ¢ only. Although »
vanishes in the limit as C approaches zero, dv/dC does not exist at C ==0;
there is, consequently, no McLaurin’s expansion, nor is there one for a more
precise formula developed by Hicks (). Two choices are available (other than
solving a difficult problem): we can assume that the motion of the curved
portions of a straight vortex tube slightly perturbed differs sufficiently from

(*1) W. M. Hicgs: On the steady motion and small vibrations of a hollow vortew, in Phil.
Trans. Roy. Soc., p. 163 (1884).
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that of a large axially symmetric vortex ring to have a McLaurin’s expansion,
or we can use the fact that the tubes in the medium are not really straight
even in the neutral state. Additional tube curvature induced by a bulk dis-
placement will then increase or decrease an already existing tube motion.
For this case, a Taylor’s expansion of », which does exist for ¢ >0, can be
used to calculate the change in motion due to the superimposed curvature.
Since effects of tube curvature in the neutral state cancel for the phenomena
considered here, we can specify, in principle, a drift coefficient 7, such that
& =70, where C is the superimposed curvature and £ is an effective value
which does not include the tube motion in the neutral state.

APPENDIX B

Calculation of the mean curvature.

The mean value C of C is obtained by averaging over the neutral medinm
where all tube directions are equally represented. In Cartesian co-ordinates,
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Fig. 5. — Co-ordinate system used for averaging C. The element of area on unit
sphere is sin adwde. Useful relations are cos f==sin « cos @ and cosy = sin « 8in w.

fig. 5, with A=1icosa-} jcosf+ kcosy and D =iu-+tjv- kw, we get for
Z-components
[(A-V)2 D], == [, OS2 0t - Uy OS2 L + 1, CO8% Y +

+ 2u,, cosx cos B + 2u,, cO8x €08y + 2u,, o8 cosy],

[{A- (A- V)2 D}, = [c08® aftts, COS% & + 2y, OS2 + ... + 2u,, cO8 f cOS P} +
~+ cosa cos f{v,, cos?a-...-+ 20, cosfcosy} -

+ cosacos y{w,.co8?a 4 ...+ 2w,, cos f cosy}] .
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The z-component of C is, from eq. (2.1),

C’x = 8in® a{#., cos* ot - u,, cos?f + u,, cos?y |-

- 2y cO8 xx COS B + 2u,, cosa cosy + 2u,, cos f cosy} —

— c0S @ 08 f{0,, COS? o+ v,, cO82f ... 20,, cOs S cosy} —

— €08 & COS Y {W,, OS2 oL + Wy, OS2 B ... + 2w, CcOSf cosy} .

The relative frequency of tubes having directions within the element of solid
angle is sinadwde/4n. We multiply this by C. and integrate over the unit
sphere, using the relations cosf=sinxcosw and cosy=sinasinw to express
all variables in terms of « and w. Many of the integrals vanish because of
cosw, sinw or cos®*w factors in the integrands; the nonvanishing ones for the

mean value of the z-component of C are as follows (the ranges of integration
being zero to 2z for w and zero to = for a):

(4) " U f f sin*ocostadwde = (2/15) Uy, ,
(4m)™* u,,,ffsin%c cos*wdwde == (4/15) Uy, ,
(47)~ U,y J' f sindasin?wdody = (4/15)u,, ,
—2(4m)t vMJ.fsinsoccosza cos*wdwde = —(2/18)v,, ,
—2(4n)—1w“”sin3a costosint o dodo = — (2/15) 10, -
If we add and subtract (2/15)u%.., the sum of the integrals can be written
O = (4/15)(Uao - gy + thes)— (2[18) (Uaz - Vay - w2)

which is recognizable as the z-component of (4/15)V:D—(2/15)V(V- D). Since
the choice of axes is arbitrary, we infer that

C = (4/15)V:D— (2/15)V(V- D).

ArrExDIX C

Equivalence of kinematics and dynamics of the fluid.

Consider 2 fluid of finite extent where the complete boundary, including
vortex cores, is specified at time zero, along with the normal component of
fluid velocity at the boundary and the circulations associated with irreducible
circuits which embrace vortex cores.

It is assumed that the given boundary velocities are compatible with the
condition of incompressibility and with the continuity of the fluid. Details
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of the kinematic constraints may be found in standard treatises (?). For an
incompressible fluid in irrotational motion this is sufficient information, in
principle, to find the velocity potential ¢(x, v, 2, t) at time zero by the solution
of a «first » boundary-value problem. Among the kinematic constraints is the
requirement that the velocity potential has continuous second derivatives with
respect to time and any space co-ordinate so that the order of differentiation
in terms like O%p/dx ot is commutative. An «existence operator » p may be
defined such that p vanishes throughout a region of void and has an unassigned
but constant nonvanishing value throughout the fluid. We define a function

P = 0(p/dt) — }og*+ 0C(1) ,

where g =— Vg and C(?) is a continuous function of time only. The function p
is continuous within the fluid because ¢ and its first derivatives are. However,
let us require that it be continuous everywhere. It is zero in a void, since
o = 0 there, hence, for continuity at a boundary, p must approach zero as
the boundary is approached along a path lying in the fluid. That is

dp/dt—1g*+ C(t) =0 on the boundary.
At time zero this becomes
[a(p/at+ 0(_t)]3,0 == % qu?,o ’

the subscripts indicating that the quantities are evaluated on the boundary
at time zero. Since qzo=—(V¢)s, i8 known from the solution of the first
boundary-value problem, the quantity oS¢/t C(t) is therefore known on the
boundary at time zero. It is harmonie, since ¢ and C are, and since its value
is known on the boundary at time zero, the solution of a second boundary-
value problem yields the value of cp/ct+ C(¢) at time zero, but throughout
the fluid. That is, the function p is now known everywhere at time zero from
the given boundary conditions and continuity assumptions.

The aceceleration of a fluid particle is given by the convective derivative

dg/dt = dq/0t+ (q-V)q = 3q/[dt+ 4 Vg’

for irrotational motion. With g =—Vgp and VO(#) =0, and commutation of
time and space differentiations, we get

dgfdt = —V[ep/et—L¢* + C@)].
Multiplying throughout by o and recalling the definition of p, we have

dg/dt=—Vp/p .

(*2) R. Avis: Vectors, Tensors, and the Basic Equations of Fluid Mechanics (Englewood
Cliffs, N.J., 1962), p. 76.
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The acceleration of every fluid particle is therefore known at time zero. The
calculation of the state of the fluid at any other time is therefore reducible
to the solution of a differential equation.

Asg an illustration of these definitions, consider a fluid region in the form
of an infinitely long hollow cylinder (*3) of inner and outer radii ¢ and b,
respectively. The circulation around the cylinder is 2mx; for definiteness out-
ward radial velocity is assumed. Polar co-ordinates 7, § in a plane normal
to the cylinder axis may be used; incompressibility and continuity require
that 2nrg, = 27m, where m may be a function of time, but not of space, and
g, is the radial velocity. The normal components of velocity on the boundary
can then be written as ¢, =m/a and m/b at the inner and outer boundaries,
respectively. The first boundary-value problem can be solved here by inspec-
tion to get

g=—mylnr—=x=l,
where m, is the value of m at time zero. This is assumed to be given. Since
og/ct = — (em/dt) Inr = —mInr

is harmonie, it constitutes the solution to the second boundary-value problem
if we find the values of m and C(f) at time zero. Note that although m, is
given m, is not.

The vanishing of p at r=a and r=2", with C(0)= C,, gives

—mylna— (m§+ k*)/2a° + C, =0,
—titeIln b— (mE - K)/20* + Cp =0 .

‘When these are solved for 7, and (;, we get an expression for p throughout
the fluid at time zero of the form

p=A,+ A Inr+ A;r 3

where the A’s contain only given quantities. The negative gradient of this
divided by g is then the acceleration.

Although the notation in the foregoing discussion was designed to be sug-
gestive, it was not necessary to think of p as a pressure or p as an inertia
density. The equation pdg/dt=—Vp is formally the same as Newton’s
second law for an inviscid liquid with no body forces; in the above treatment
it is derived solely from kinematic concepts. It appears, therefore, that the
continuity assumptions are equivalent to an assumption of inertia.

It is interesting that something like Mach’s principle operates here; the
acceleration of a fluid particle is determined by the totality of boundary con-
ditions, so that the entire medium must, for complete accuracy, be taken
into account. There is no velocity of propagation involved, for the acceleration
of the particle is determined by the boundary conditions at the same instant.

(*¥} An even simpler case is that of an expanding spherical shell.
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® RIASSUNTO ()

Se un ritorno ai concetti di etere diviene necessario o desiderabile, evento non tanto
inverosimile come sembrava poco tempo fa, il metro trattato qui pud acquistare inte-
resse. Si deducono le equazioni di Maxwell dalle proprietd di un fluido ideale senza aleun
gostegno derivante da fatti sperimentali. I campi E e B, cosf interpretati, hanno una
natura statistica ¢ facilmente visualizzabile in un senso meeccanico e geometrico. Si
dimostra che il teorema del momento elettromagnetico & un effetto di secondo ordine
derivante da effetti non lineari che sono stati trascurati nelle deduzioni delle equazioni
nel vuoto. La presenza di vuoti (nuclei vorticali cavi) in un fluido d’altra parte incom-
pressibile permette un’interpretazione meccanica della gauge di L.orentz. Si suggerisce
per parsimonia che le leggi di Newton possono essere rimpiazzate dalla cinematica,
riducendo cosf I’elettrodinamica alla geometria euclidea.

(*) Traduzione a cura della Redazione.

BJIeKTpO}IHHaMHKa B BaKYyMe, BbIB€AeHHAA HCK/IOMMTEILHO M3 CBOHCTB H/1eaJILHOH
KHIKOCTH.

Pe3tome (*). — Ecnm Bo3Bpamesde K KOHLEOUHSIM 3QHpa CTAHOBHTCH HEOOXOIHMBIM
HJIH JKeJIaTebHBIM, TO IIOAXOM, PA3BUTHLA B 3TOM paboTe, MOXKET OKa3aTHCS HHTEPECHBIM.
VpaBrenmss Makcgenna B BakyyMe BBIBOIATCS M3 CBOMHCTB HOEANbHOM XHAKOCTH Oe3
HCIIONb30BaHAA JKCOEPAMEHTAIBHBIX (axToB. B 3ToM cnyyae mons E u B saBuswooTcs
IO CBOEM MpUPOJE CTATUCTHYECKHMH M MOrYT GBITH HATJISOHO IPEACTABJICHHI B MEXaHH-
YECKOM H TCOMETPHYCCKOM CMBICIIC. Hoxasbmacrcx, 4YTO T€OpeMa o6 HMIOYJbCC 3JIEKTPO-
MAarHUTHOTO IOJISA IpeACTaBaseT 3hdekT BTOPOTro MopsaKka, MPORCXOAAIIANA 3 HeTHHEHHBIX
3(bexToB, KOTOPHIME HpeHe0peraroT NpH BBIBOAE BaKyyMHBIX ypaBHenmit. Hanmuwe
WYCTOT (TOJIBIE BHXPEBBIE Ampa) B HECKUMAEMOM JXHOKOCTH HOIMYCKAET MEXaHHYECKYIO
mETepnpeTamto kanmopoBku JlopeHtna. Ilpeamonaraercs, 4To 3akoBB HLIOTOHA MOTYT
OBITh 3aMEHEHBl KHHCMATHKOM, IPH 3TOM 93JIEKTPOAHHAMEKA HPHBOMATCH K TE€OMETPUH
OBKIAAA.

(*) IHepegedeno pedaxyuei.



