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Summary. — The phase factors which can appear in the definition of the
inversions, C, P, T and their products are discussed. It is shown that
because of the existence of « physically equivalent » Hamiltonians, the
phases in C, CP, T and TP for complex fields are unmeasurable. For
the remaining inversions, it is possible to construet interactions which
require more general phases for complex fields than the usual +1, -+ 4,
when and only when the theory contains certain discrete multiplicative
symmetries. Examples of such interactions are given.

1. — Introduction.

The transformations of the field operators of a quantized field theory, which
are generated when the state vectors undergo invergion operations such as
space reflection (P), charge conjugation (C) and time reversal (T) are not en-
tirely determined a priori. In particular, when these operators act on the
complex fields which represent particles different from their antiparticles, there
is the possibility of introducing arbitrary complex numbers of modulus 1 (phase
factors) into the action of the inversion on such fields, while still maintaining
their unitary character, the invariance of the free field Lagrangian and the
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required transformation properties of free field observables such as currents,
momenta, etc. The existence of this formal possibility has long been realized,
but there has been some dispute as to its physical content, particularly in the
case of space refleetion. The purpose of this paper is to discuss the restrictions
on the phase factors which may exist in field theories and the physical content
of such restrictions. A consequence of our discussion is a specification of which
phases are purely conventional and which are fixed by a particular theory, and
hence may, at least in principle, be determined by experiment. The main
results are contained in the following two statements:

1) In a theory invariant under charge conjugation the phase factors
which occur in the transformation of complex fields under C can always be
chosen to have any value for any such field without altering the physical
content of a theory, and so are not observable quantities.

A similar result holds for the phase factors occurring in time reversal. How-
ever, the product of the phases in C and T cannot be chosen arbitrarily, and
is related to the phase factor in P for each field, in a way to be discussed,
provided that the TCP theorem is satisfied.

2) In a theory invariant under space reflection it is not in general pos-
gible to restrict the phase factor in P to the « usual » values (41 for boson
fields, and 41, 44 for fermion fields). That is, it is possible to construct
theories which are invariant under space reflection operations involving more
general phase factor than these, but which are not invariant with any of the
usual phase factors.

Such theories are characterized by the existence of new multiplicative sym-
metry operations which are not part of continuous gauge groups. No examples
are known for any of the commmonly accepted interactions of the known ele-
mentary particles. While the formal theory of inversions can be carried through
most easily by working with the fields and the corresponding phase factors,
the physically interesting quantities are the phase factors occurring in the
transformation of states, the so-called intrinsic parities. It will be shown that
intrinsic parities may be compared only for states which have the same trans-
formation under all multiplicative symmetry operations.

In the second section of this paper, we will define the operations P, C, T
as well as certain other operators and discuss several of their properties. In
the third section, we discuss the ambiguity in inversions due to the existence
of many physically equivalent Hamiltonians, and justify the first statement
above. In the fourth section we discuss the consequence for inversions of the
existence of multiplicative symmetries. In the final section we will prove
certain relations among produets of the inversions.
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2, — Inversion operators and multiplicative operators.

In this paper, we consider only theories in which the degeneracy of the
1 particle states is completely specified by the spins and the particle-anti-
particle character. This means that the transformations representing the in-
versions can only take the field operator into itself or into its Hermitian
conjugate, rather than permuting fields which refer to different particles.
Theories in which there is additional degeneracy and in which the space re-
flection and time reversal operators are more general have been considered
by WiGNER and by MICHEL and WIGHTMAN (1).

The form of the inversion operators is chosen to make the observables
transform in accordance with the classical interpretation of these operations.
For example, we make the a priori requirement that space reflection should
not change particles to antiparticles but should change the sign of momentum,
while charge conjugation should change particle to antiparticle without chang-
ing momentum. The use of the term parity for an operation which does not
satisfy the first criterion appears unwarranted on the basis of the classical
concept of space reflection.

Let ¢,(X) be the operators for spinless boson fields, @um (X) the operators
for spin 1 fields and y,,(X) the operators for spin } fields. The three inversions
are defined by the following equations:

Cy.(X)C'=nloh(X);  Cgl (X)C = nlig,(X),
(1) Cpn(X)C = nsp1,(X) 5 Col, (X)C = 0}, (X),

Cyn (X) € =}, O(X) 5 € (X)C = —m "yl (X)CF.
Here ( is the usual charge conjugation matrix satisfying
Oy Ct=—y,.
We use hermitian y, satisfying
Vuls T VY= 20, (r=1, 2, 3, 4, alwayg).
The superseript T on a matrix or a field indicates transposition in the spin

space. The dagger operation means hermitian conjugation in Hilbert space,

(1) See L. MrcuerL and A. WIGHTMAN: Lecture notes at Princeton University (un-
published).
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together with transposition of spinor indices. The operator C is linear and
unitary. For spin 1 fields we shall let u take the values 0, 1, 2, 3, where

Qo = — ’l:(p4.
Pp, (X)P-'=npgu(eX);  Pp, (X)P-1=nZg(oX),
@) | PpumX)P = n]00,m(0X); Py (X)P-1= uf oph.(0X),
Py, (X)P1 = ingpapu(0X); PP (X)Pi=—ing §n0X)ys-
Here pX represents the transformed coordinates, i.e. o(X, t)=(— X, #). Simi-
larly o@im == — @, for the space components of a vector field, and egs.=@sn
for the time component of a vector field. P is also a linear unitary operator.
Ton (X)T' = np@u(eX); Ty, (X)T-' = n} g, (1X)
@) | Tgm(X)T1 = 0, 7 (vX); T X)T-" = 0}, 7}, (0 X)
Ty, (X)T-1= 02 O-'y,p.(tX); T9, (X)T-1= 0% 9, (xX)ysC.
T is an antiunitary operator, i.e. TAT' = A* for any ¢-number. 7X again repre-
sents the transformed coordinate, i.e. T(X,t) = (X, —1).
The conditions that C, P, T should be unitary (antiunitary) and that the
free field Lagrangian is invariant restrict n¢,, »2, %7 to be phase factors, i.e.
[n&PT| =1 for any field.

For the «real » fields which represent particles identical to their antipar-
ticles, one has the additional conditions

ee= =g,
(4) Pu= e =95,
y)r = Cﬁ;fz 1/’:' -

These conditions just insure the identity of the particle and antiparticle states.
By substituting these conditions into equations (1), (2), (3), it is easily seen
that nS, nr, nT must all be real for such fields, and thus are restricted to the
values +1.

These are the only conditions on the phase factors which are imposed
by the general requirements on the inversions, which involve the free field
observables. A theory will be said to be invariant under one of the inversions
whenever the phase factors u,, for the fields appearing in the theory can be
chosen so that the inversion as defined with these phases commutes with the
total Hamiltonian. Furthermore, if more than one choice of phase lead to
inversion operators which commute with H, then any of the distinct operators
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which are defined by the different choices of phase can be chosen to represent
the inversion.

The physical content of this definition can be illustrated for the case
of space reflection. A theory is invariant under space reflection if no
experiment enables one to distinguish between left and right. This will be the
case if and only if in all transitions from an initial state with a definite orbital
parity to final states containing a specified set of particles, the orbital parities
of the final states are always the same. It is easy to see that this condition
is satisfied whenever there is invariance in the sense we have used above.
Furthermore, the assighment of intrinsic parities to particles by the use of the
phase factors »n® is from this point of wiev a way of keeping track of the fact
that when transitions take place between certain particles, the orbital parities
change in a certain way. Any choice of phase consistent with the unitarity
requirement and the invariance of the Hamiltonian is to be admitted, whe-
never such a choice is required to summarize a physical consequence of the
theory. In the fourth section we will see an example of how this possibility
of arbitrary phases is actually necessary for space reflection. We have stated
these rather trivial points here at such lenght because they are in conflict
with views which have sometimes been advanced. We believe that any requi-
rement to be made on the inversion operators beyond the ones we have stated
must involve additional physical assumptions which should always be empha-
sized clearly.

In the subsequant discussion a class of unitary operators to be referred
to as multiplicative operators will be met with frequently. A multiplicative
operator U is defined by

(5) Upu(X) U= n, (Dpu(X); Ul U= n}(U)el,,

where the ¢, are boson or fermion fields, and the =,(U) are phase factors.
Each U is prescribed by giving the quantities #,, for all the fields, which in
general are different for the different fields, Since U is assumed unitary the
n,, again satisty |n,|=1. Also for real fields n, = + 1.

Several properties of multiplicative operators follow from the definition.

a) The product of any number of multiplicative operators is a multi-
plicative operator.

b) The inverse of a multiplicative operator is a multiplicative operator,
whose phases satisty n,(U-1) =n(U).

¢) Define VT, a square root of a multiplicative operator U, by
’\/—U_(Pm\/v?: \/m U)i(Pm .
Then v/ T is also a multiplicative operator satisfying v/ TU+/T = U. There
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are a number of such square roots, corresponding to the choice of sign of

vV n,(U) for each m.
d) Any two multiplicative operators commute.

¢) Let U be any multiplicative operator. Then

UP— PU,
(6) vc = crt,
UT=TU".

We prove the results of eq. (6) for a spinless boson, the proof being trivially
generalized to other cases

UPp, (X)P U= Unl e, (0X)U 1= nin, (U)p.(0X),
PU@.(X)U'P'= Pn,p, (X)P 1= nin, (0)p.(0X),

50 UP=PU,
UCq, (X) C U~ = Unl(X) U~ = ngnnpn(X) ,
CU',(X)U1C = Cn}p, (X)C' = nln,pg,(X),

50 UC =CU',
UTp, (X)T1U-' = Unte, xX)U 1= nin,gu.(1X),
TU'g(X)UT' = Tnig, (X) T = 2hn.p.(cX),
where the last eq. follows because T is antilinear;

50 UT = TU*.

If a multiplicative operator commutes with the total Hamiltonian, it will
be called a multiplicative symmetry operator.

A well known class of multiplicative operators is given by the gauge trans-
formations, U, defined by

U,9nU; ' = explign Al@m,

where A is an arbitrary number which is the same for all fields ¢,, while ¢,
is a number, usually an integer, which varies from field to field and represents
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the « charge » of the particle which is conserved if the gauge transformations
commute with the Hamiltonian. Certain multiplicative operators occur natu-
rally when discussing inversions. In particular, it may be seen from the phy-
sical requirement of how inversions act on states that the square of each in-
version operator should be a multiplicative operator, as the double applica-
tion of an inversion must take each state into a physically equivalent state.
Furthermore, the «commutator» of the inversions I, and I, defined by
I,I,I7'1;" should also be a multiplicative operator.

It is easy to verify this with the definitions given for the inversions in (1), (2),
(3). In particular

(Ta) Cc=1,
(7b) P:=@F,
(7e) T:=F,

Here 1 is the identity operator, and # and G are multiplicative operators
defined by

(8) GpuG = (n7)*u ,
for any field, fermion or boson

[ Fg, F1=g,, for boson fields ,

9) , .
| Fy, F1=—w,, for fermion fields .

F will be recognized as the operator (— 1)"# where N, is the total number
of fermions. It is also the operator of rotation through 360° about any axis,
and so will commute with the Hamiltonian in any theory invariant under
proper Lorentz transformations. Note that Fz=1.

It should be stressed that eqs. (7Ta) and (7¢) are true for all choices of the
phase factor n%,,nj, whereas by (8), the form of P* depends on n’.

If the inversions P(TI) commute with H for some particular theory, then
so will their squares FG(F), and the theory will at least contain these as mul-
tiplicative symmetry operators.

If a theory is invariant under all three inversions it will in general process
an additional multiplicative symmetry E. To see this, consider the operator
CPT.

CPTg,(X) (CPT)'=n nfnnf,'b(pm(ng) ,

(10) CPTy,, (X)(CPT)* = n], gup”m(ng)
CPTy,(X) (CPT)'=—in%nln? yIp!7 (01X) .

m
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It C, P and T each commute with H then so will this product, where the

phases nf, n?% n” are the same ones that make the separate inversions commute.
In the proof of the TCP theorem (2), it is shown that the product 6 of the

operations of strong reflections and hermitian conjugation, defined by:

Q(PM(X) 61 = (Pm(QTX)
11) 0@, m(X)01 = o190, (07X)
0P, (X) 0-1 = — iyl (o X) .

will always comm ute with H for a local, Lorentz invariant theory with the
usual connection between spin and statistics. Comparing this with the defi-
nition of CPT, we conclude that for theories where the TCP theorem is true,
it T, C and P separ ately commute with H, then the multiplicative operator E
defined by

(12) Egn Bt = none P »

will commute with H where n;,, n%, nl are any phases for which the sepa-
rate inversions commute with H .

3. — Ambiguities due to physieally equivalent Hamiltonians.

It is been recognized by PaAULI (?), and others, that the relation between
observable quantities such as transition probabilities, and the interaction
Hamiltonian, is in general not one to one, but rather one to many. In par-
ticular, there may be many different interaction Hamiltonians involving the
same particles, which lead to identical transition probabilities between any
two states.

A theorem expressing this possibility can be stated as follows (3): Let U
be a unitary transformation which leaves invariant (up to a multiplicative
phase factor) the initial and final states for some process. Then the two inter-
action Hamiltonians H and UHU-! lead to the same transition probabilities
for the process.

In particular, if a transformation U multiplies all free particle states
(«in » states) by arbitrary phase factors (which may vary from state to state)
then the physical consequences (as expressed by transition probabilities) of

(3) G. LtpERS: Ann. Phys., 2, 1 (1957).
(3) W. Pavurr: Nuovo Cimento, 6, 204 (1957). See also D. PURSEY: Nuovo Cimento,
8, 266 (1957).
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the theories in which H or UHU-! are the interactions, are identical. Note
that we are not simply expressing the unitary equivalence of the two theories,
which is trivial. The transition probability is to be computed between the
same states for each Hamiltonian, rather than between unitarily transformed
states.

The multiplicative transformations U defined in the previous section are
examples of such transformations. This is because the «in » states are defined
as eigenstates of the free particle Hamiltonian, with quantum numbers given
by the free particle observables. But the multiplicative operators commute
with the free particle Hamiltonian and all the free particle observables. It
therefore follows that for any «in» state |p)>, and any multiplicative oper-
ator U,

(13) Ulyp> =n,O) >,
where [n,|=1 and in general depends on the state [y), as well as on U.
We will now demonstrate the above stated theorem for the operators U.

Consider the two interaction Hamiltonians H and H'= UHU-'. The S-matrices
calculated from H and H' are clearly related by

8'=TUSU-!.
Then if |a)> and [b) are any two «in » states, it follows that

(14) (a|8 by = (a|USU-1|b) .
But by the above,
U=tlay = nfla,
U-1[b)y = ny|b)
(15) (a|8'[b) = n,n;<alS|b) .

It follows from this that the two transition probabilities

Pab:|<al8ib>lz7

(16) ,
Py =1<a|8[b) 2,
are equal for any states |a>, |b>, which is Pauli’s theorem in this case. The
Hamiltonians H and H' therefore describe the same physical system, and so
can be used interchangeably without any change in the states. Two such
Hamiltonians will be called equivalent.
This holds for states which contain fixed numbers of particles of each type.
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States which are superpositions of such states, such as:

Vi |naty + exp [IAVE | pa®y
or

| K" + exp [i2]| K,

where 1 is any real number, will not be transformed into themselves by ar-
bitrary multiplicative transformations (*) but rather into states with different
values of 4. This does not contradict cur contention that the Hamiltonians H
and UHU-! are physically indistinguishable. This is because there are mo
experiments which directly determine the mixing phases A for states like the
above. To see this, we note that the matrix elements of all the free particle
observables are independent of A. Indeed, one can regard the introduction
of the superposition states ag merely a mathematical convenience. Only after
a particular interaction Hamiltonian is chosen is it possible to distinguish
between states with different mixing phases. But for a given choice of 1, the
properties of the state will depend on which of the equivalent Hamiltonians
is chosen, and so in the absence of an independent way of distinguishing
between the different values of 1, this cannot be used to determine which of
the equivalent Hamiltonian is correct.

For example, the eigenstates of total isotopic spin are superpositions of
the above type. However, the isotopic spin operator can be specified only
after choosing a particular set of coupling constants in the interaction Hamil-
tonian. When one transforms to an equivalent Hamiltonian, the isotopic spin
operator, I, will also change to UIU-!, unlike the free field observables. The
U-transformed isotopic spin states will be eigenstates of the transformed iso-
topic spin operator. This implies that transition probabilities between states
of definite isotopic spin are also unchanged by the multiplicative transfor-
mations. It may therefore be seen that the use of isotopic spin as an observable
does not allow one to distinguish between equivalent Hamiltonians.

For comparison, instead of a multiplicative transformation consider an
operator like P. The interactions H and PHP-! are not equivalent unless P
commutes with H, because some free particle observables, such as momentum,
are not invariant under P, and therefore H and PHP-!, give different tran-
sition probabilities for states of fixed momentum, which is an observable dis-
tinction. For example, if 3 Hamiltonian contains a spinor field always in the

(4) This was pointed out to the authors by Dr. G. C. Wick. We thank Dr. Wick
for very helpful discussions of this and many other points in this paper.
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form (1-+y,)y, so that only left-handed particles interact, then PHP- will
contain (1 — y,)y and here only right-handed particles interact.

In general U will not commute with H, and so H and H' will be different
functions of the field operators. In particular, the phase factors of certain
coupling constants may be altered after transforming with U. A corollary
of this theorem is therefore that the absolute phase of the coupling constants
for interactions which involve a complex field linearly is unobservable, since it
can always be changed by transforming the Hamiltonian with a multiplicative
operator without changing the physical content of the theory. Of course, the
relative phase of coupling constants for several interactions involving the same
fields may be measureable.

Suppose now that some Hamiltonian H is invariant under any inversion I,
satisfying IU=U"T (e.g., C, T, CP, PT), with a particular set of phase factors
nl, for the fields ¢, involved in H. This will mean that the coupling constants
appearing in H will satisfy certain reality conditions, involving also the
phase »l,. We can construct a Hamiltonian, equivalent in the sense defined
previously, which is invariant under a new inversion in which the phase factors
for all complex fields are +1 or any other number we choose, whereas the
phase factors for real fields are unchanged.

To do this define a multiplicative operator U, by

U;‘Pm U: = nm(UI)(pm ’
na(U,) = +/ni, for ¢, any « complex » field ,
na(U,) =+1 for ¢, any «real» field .

Either square root may be chosen for each m. The definition of =, (T,) for ¢,
real is forced upon us by the condition that U, be unitary, as discussed in
Section 2.

By hypothesis [I, H] = 0. Therefore

(18) [UIIU;’ UIHUI] =0,

so that I'=1T,1 Uj would be a suitable operator to represent the inversion with
U,HU! as the Hamiltonian. But U,H U’ is equivalent to H, and so we could
adopt it as the Hamiltonian without changing the result of any experiment.
It follows from eqs. (8) that the transformed inversion operator is

(19) I'=0IU0'=01.

This operator will have all phase factors -1 for complex fields. To see this
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in the case of C for example, one has for a spinless field
CoC—1= UCpC(U")?
— ncvz (Pf(Ugl)E

— non%g,

= Q’L.

so the phase is +1. Clearly, any other phase factor can be obtained for any
complex field by choice of U,. On the other hand, for real fields, U2=1 so
that I'= I which means that the inversion is unchanged.

Since the results of experiments are invariant under transformations which
change the phase factors in these inversions in an arbitrary way, the phase
factors for complex fields must be unobservable, either absolutely or relative
to each other. This is not so for real fields as we have seen. In particular the
phases for the photon field #°=—1, n*=1, n*=—1, which make the
electromagnetic interaction invariant, cannot be changed by such transfor-
mations, and thus éan be determined by experiment.

While the phases appearing in C, T, CP, TP are unobservable they cannot
be simultaneously changed in an arbitrary way. This is because such inver-
sions as P, CT and PCT commute with multiplicative operators, and there-
fore the phases for these inversions will be unaltered by the transformation
to an equivalent Hamiltonian. That is, for the equivalent Hamiltonian UH U-1,
the parity operator is

UPU=P,
and
UCTU'=CT.

These phase factors are then in principle measurable. The restrictions on
measurements of such phases will be discussed in the next section.

The above results show that it is meaningless to ask for the relative «’
even for particles like X° and A® which can decay into each other by inter-
actions which eonserve (. Similarly, the relative #” of the neutron and A°
is not measurable even if the decay A®—n-4n® conserves 7. Experiments
to measure these quantities therefore can not be devised.

4. — Ambiguities due to conservation laws.

In this Section we consider those inversion phases which are the same for
all equivalent Hamiltonians. These include the phases in P, €T and POT
for any field, since these inversions commute with multiplicative transfor-
mations, and all inversion phases for real fields.
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If I is any inversion that commutes with the Hamiltonian, and U is any
multiplicative symmetry of the theory, then ITU also is an inversion that
transforms the «in » and «out » states in the way required by physical consi-
derations, and which commutes with H. Furthermore, the inversions I and
ITU will differ only in their phase factor, according to

(21) wl = nln, (U).

m

It is not possible to distinguish by experiment between the choice of I or IU
to represent the inversion. The physical reason for this is that the matrix
elements of these operators between two states differ only when the states
transform differently under the multiplicative symmetry U, and transitions,
either real or virtual, between such states are forbidden by the conservation
of U. This fact was first pointed out by Wick, WicHTMAN and WIGNER (°).

The converse of this result also holds for these inversions. That is, if a
particular Hamiltonian commutes with two inversions I and I’, both of which
transform the free particle observables in the same way, then the Hamil-
tonian also commutes with the quotient operation I-I’, which is a multipli-
cative operation, and so the theory contains at least one multiplicative sym-
metry. This leads directly to the main problem of this Section, which is the
question of what phases can arise in a physical theory, and what properties in
the theory allow for the use of «unconventional» phases.

We will illustrate the discussion by referring to the parity operation, which
is the most familiar and most often discussed (°). According to eqs. (7), (8), (9),
if a theory is invariant under space reflection, it will be invariant under the
multiplicative operator Pz= GF. It has sometimes been argued (%) that since
P2 ig the operator representing double reflection, it must be the identity ope-
rator for bosons, and either the identity operator or F for fermions. This is
based on a principle that observable quantities should be unchanged by double
reflection. It was pointed out in the fundamental paper by Wick, WIGHT-
MAN and WIGNER that such a principle cannot be used without some way of
specifying what quantities are observable. These authors have given examples
of some hermitian operators which occur in field theories and yet cannot be
measured if the theory contains certain symmetries. A detailed analysis of
which quantities 4ppearing in field theories are observable would be difficult,
although quite interesting. However, it appears reasonable that only such

(®) G. C. Wick, A. WicHTMAN and E. P. WicNeRrR: Phys. Rev., 88, 101 (1952).
This wiil be referred to as WWW.

() See ref. (%), and also C. N. YaNG and J. TiomNo: Phys. Rev., 79, 495 (1950);
P. T. MattHEWS: Nuovo Cimento, 6, 642 (1957).
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quantities that are invariant under all of the multiplicative symmetries of a
theory can be observed. Since the field operators themselves are not in ge-
neral invariant under multiplicative transformations, they will not be obser-
vables in theories containing such symmetries. Quantities such as the mo-
mentum, spin and charge, which are constructed from the free particle Lagran-
gian, are invariant under all multiplicative transformations, since they involve
products like ¢l ¢,. Thus, for these quanities the principle that observable
quantities should be invariant under double reflection therefore does not re-
strict the operator P? at all, and such restrictions can only be obtained by
examining the interactions. But these will only require that the phases be chosen
to give invariance of the Hamiltonian, and we will show below examples of
interactions which require arbitrary phases to give invariance. We conclude
that no a priori restrictions on the phases for space reflection, ete., can be
admitted.

Suppose that the Hamiltonian commutes with a parity operator P for
some choice of phages nZ,. In general, since P? s 1, the operator P will have
complex eigenvalues. Thus with this choice of phases, the «intrinsic parities »
of the particles created by the fields ¢,., ¢, will be complex numbers of mo-
dulus one. We examine the circumstances under which these complex intrinsic
parities can be eliminated by a redefinition of the parity operator.

Since P commutes with H, and P?s£1, the theory necessarily contains at
least one multiplicative symmetry P?= @F. We consider theories invariant
under rotation, which also have the multiplicative symmetry . The general
condition under which intrinsic parities may be chosen real is that +/G*F
should commute with the Hamiltonian (?). For if this happens, it is possible
to define a new parity operator P'-—=+/G+F P, which satisfies

(22) P? = @'FP:= G @F =1

and thus has real eigenvalues. Furthermore, P’ commutes with H, since it
is the product of operators which commute with H. Conversely, the condition
is a necessary one, because if there exists a conserved parity operator P’
satisfying P’*=1, then P'=UP, where U is a multiplicative symmetry oper-
ator, and U?= @'F. Therefore, having once found a parity operator which
commutes with H, involving complex phases, it is possible to test whether the
use of such phases is essential by seeing whether for the @& defined by these
phases, v/G'F is a symmetry of the theory. There are three general cases
to be considered.

1) All of the multiplicative symmetries of the theory, including ¥, are
parts of continuous gauge groups. This is believed to be the case in the present

(?) Here V' G*F refers to any of the square roots defined above.
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theory of elementary particles, assuming that strangeness is an additive quantum
number for strong interactions, rather than a multiplicative one (®). For such
theories, since G'F (= P~?) is a number of a gauge group which commutes
with the Hamiltonian, v/ @' F is also 2 member of the gauge group and so also
commutes with the IMamiltonian. It is then always possible to make the
intrinsic parity of fermions and bosons real in theories satisfying assumption 1.
As indicated, this is probably the case in the present theory of elementary
particles.

2) The theory contains apart from gauge transformations the additional
invariance ¥, such that +/F is not a multiplicative symmetry. In such theories
there is no additive conservation of fermions, or else v/ F would be part of
the fermion gauge group. If there is parity conservation with P2= G'F' then
since ¢ commutes with H, there are two possibilities for G. Either

a) G = a gauge transformation, y, so that P2 =yF,
or
b) G=yF, so that P*=r.

In case a), the conserved operator P'—+/ptP satisfies
P*=F.

Thus up to a gauge transformation, the intrinsic parities of all bosons are real,
and of all fermions are imaginary in this case. An example of such a theory
is given by the interaction

(23) H., =7 pp+pype+hc

Here ¢ is a real boson field and ¢ a complex fermion field. It is easy to see
that for invariance under P, n,= 41, n,=1, so that G =1, P*=F or the
intrinsic parity of the fermion is imaginary, while that of the boson is real.
Since this theory has no gauge invariances, there is no freedom in choosing
these parities, except that coming from F, which accounts for the + sign in
n, and makes the relative parity of the boson and fermion unobservable.

Theories containing real fermion fields and satisfying assumption 2 must
fall under case «) if they conserve parity, since according to Section 2, P2 = F'
for such fields.

(8) The possibility that strangeness conservation might be multiplicative was sug-
gested by W. HeE1SENBERG and W. PAuLl (preprint). See also K. M. Case, R. KArpLUS
and . N. Yang: Phys. Rev., 101, 874 (1956).

38 - Il Nuovo Cimento.
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In case b), the parity operator can again be redefined as P'= y*P, and
P’*=1, so that up to a gauge transformation, all parities, fermion or boson,
are real.

A Hamiltonian giving such a theory is

(24) Ho=9"ve+9y,pp+h.c

with the same symbols as before. Now n,= 4- i, fy=— 1, 80 that G=F, P=1.

It should be emphasized that if assumption 2a is satisfied, then all fermions
have imaginary parity, whereas if 2b is satisfied, all have real parity, modulo
gauge transformations. This type of theory does not have enough symmetry
to allow some fermion to have irremovably real parity while others have ir-
removably imaginary parity. This is because the only non-gauge multipli-
cative invariance we have allowed is #, which does not distinguish between
fermions.

3) The theory contains multiplicative symmetries U, other gauge trans-
formations and F, such that /Ut and v TU'F do not commute with H. In
this case, if there is parity conservation with ¢ = U, then it is impossible to
find a parity operator which commutes with H and satisfies P2=1,0r P2 =F.
Then we expect that the intrinsic parities of bosons and fermions might be
arbitrary complex numbers, providing that the theory has sufficiently com-
plicated multiplicative symmetries. It is clear that the existence of « discrete »
multiplicative symmetries is only a necessary condition that use of compiex n”
should be unavoidable in a theory, rather than sufficient. This is because there
is never a conservation law for intrinsic parities alone, without specification
of the orbital states involved. This is illustrated by the interactions (23)
and (24) which have the same multiplicative symmetry F.

We continue the discussion by reference to a particular example. Consider
the interaction of a fermion field y with a complex boson field ¢, given by

(25) H=30y¢* + 5 0yp" (0=7,0"y,).
We wish to consider two cases

(a) 0=y,.

Here the theory is invariant under space reflection transformations with the
following phases

n, = any phase factor,

P .
n(p_i'b.
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Thus

GyG— = — (ny)'y
(26)
GG 1= —gp.

Furthermore, the theory possesses the following multiplicative invariances:
(27) B,pB;' = exp[il]y, for all real
a gauge transformation on the spinor field, and

UpUt=—yp

a discrete transformation on the boson field.

It is clear that the phase factor in the transformation of the spinor field
is only conventional, and can be removed by a redefinition of the parity ope-
rator. However, the phase factor + ¢ for ¢ cannot be removed. This is
because the operator 1/ U', defined by

VUiV T = + igp

does not commute with the Hamiltonian, so that +/UTP is not a conserved
operator. The existence of the phase factor 4 4 is essential in the physical
interpretation of the theory. The interaction (25) involves, among other pro-
cesses, the annihilation of two S wave ¢ quanta together with a transition
of the fermion from an 8 state to a P state. Such process cannot be consistent
with invariance under space reflection unless the intrinsie parity of the ¢ quanta
is -+ 4. This follows immediately from the conservation law
(28) (3'2)2(—— 1)% mitial == (— 1) imar .

b) Consider next O =1. The Hamiltonian has the same multiplicative
invariances as before, but now it is invariant under space reflections with

n, = any complex number ,
p= £ 1
and so here by a suitable redefinition of the parity operator the intrinsic pari-
ties can be made real. This indicates as stated that the existence of discrete

multiplicative symmetries only allows the possibility of irremovably complex
intrinsic parities, without requiring them.
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Next we construet a Hamiltonian requiring 4/¢ for the space reflection of
a fermion field. To do this, consider a complex spinor fiéld ¢ interacting with
a real boson field ¢.

(29) Hyo = g9ysyp + Mppp°pp +h. c.
From the definition of ¢ it is easy to see that
PypP-1 =— ms AT
The interaction (29) is invariant under space reflection with

(30) nf=—1, nb=++1.

¢

It is also invariant under the multiplicative transformations F' and
WopW' = +ip.

However, it is not invariant under 4/ W+, and therefore the factors -4 +/% in
the space reflection of g are not removable.

From these examples, it may be seen that one can construct Hamiltonians
which require any #-th root of 1 as a phase factor in the transformation of
complex fields under space reflection. These Hamiltonians will be characterized
by the existence of diserete multiplicative invariances, whose square roots
are not invariances of the theory. It is also possible to write «interactions »
which require other complex phase factors, but these will involve irrational
operations, on the field operators, whose meaning is questionable.

In the light of our discussion, we can conciude the following about the four
classes of spinors introduced by YaNe and Tiomno (°), and used by many
other authors. In any theory invariant under space rotations, F' = (— 1)¥r is
a multiplicative symmetry. Any such theory could possibly be invariant
under a parity operation in which P2=F. As we have stressed, this would
mean that all fermions have parity -+ i. However, the invariance under F
does not by itself allow the relative parity of two fermions to be imaginary.
Such a possibility is connected with the existence of other discrete multipli-
cative symmetries, which do not act the same way on all fermion fields.

It may be further noted that the use of discrete multiplicative symmetries
or of space reflection invariance to forbid unwanted processes as is sometimes
done involves the difficulty that these can only give conservation laws « mo-
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dulo » » and not the absolute conservation laws associated with gauge groups (°).
If one accepts the usual conservation laws as absolute (conservation of charge,
baryons, leptons, and strangeness in strong interactions) the use of phases
+ 4 for some fields is unnecessary, and can be removed by a redefinition of
the parity operator. On the other hand, if strangeness conservation only held
modulo 4, for instance, it might be necessary to use complex phase factors
for strange particles. This would happen, e.g., if four A® in S states could
go into three S state neutrons and one P state neutron.

We conclude this discussion with some comments about the conditions
under which the relative parity of two states is measurable. Our conclusions
here are in essential agreement with those of WWW. The general result may
be stated as follows

The relative parity of two states is measurable only if the states trans-
form the same way under all the multiplicative symmetry operations of the
theory.

These is because, if P is a conserved parity operator, then so is UP. where
U is any multiplicative symmetry operator. But if |p,> and [p,> are two
eigenstates of P, with

{P}wl\? =& P,

(31)
P;V’Z) = & ﬂ}’z) .
Then
(32) { UP I"/’1> = g1, (U) IV}1> ’
UPlp,) = &n,(U) ),
where

Z'T;wl\/> - nl(U) \1/)1> ’
Uips> = mo(U) 1)

Then unless n, (I') = n, (U) for all U, the two parity operators, which according
to our previous remarks are physically indstinguishable, will have different
relative eigenvalues for the two states.

Equivalently, the phase factor in the inversion of a field, or a product
of fields, is measurable only if the field or product of fields is invariant under
all multiplicative symmetries of the theory.

As an example of this, we note that the quantity which is measurable is
the relative parity of a E7p) system compared to a 2 A° system, rather than
the relative parity of = and nucleon. If strangeness is an additive quantum

(°) This is true unless one assumes in addition specific forms for the interaction,
such as Yukawa couplings. If the latter is done, the discrete multiplicative invariance
of H may imply a continuous gauge invariance.
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number, then the intrinsic parity of the A may be chosen real by convention,
and then there is no difference in the two statements. However, if strange-
ness were multiplicative, the statements are not equivalent.

The above discussion of parity can also be applied to CT, CPT and all
inversions of real fields, which commute with all multiplicative transformations.

5. — Products of inversions.

In this Section we discuss some of the relations among products of the
inversions, and the multiplicative operators E, ¥, @. We consider a theory
invariant under C, P and T simultaneously. Then according to Section 2,
it will be invariant under E, F and ¢. The following results for the products
of inversions can easily be demonstrated.

(@) P:=F@,
@ C=1,
() T:=F y

(@) (CPy= (PCy: =F,
(e) (TP): = (PT): = F,
(33)
(fi (CT) = (TC)2 = FGE-
(99 CP=PCG,

() TP=PTFG,

(¥) CT = TCGE—,

(j) (TCP):= FE?,

As an example, we derive the relation CT == TCGE-* for a spinor field. From
(1), (3)
CT T C-'= n,n,ysy",
CTyC—T- = n}n,y, %",
CTyT-'C'= nin;,TCyp C T
= TCny'n) p C-2 T

— TCGE-2y(GE-)CT-,
CT = TCGE- .
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Because of the relations (6) between C, T and maultiplicative operators, the

relations (b), (¢), (d), (¢) cannot be changed by redefinition of C, P or T.
Since E commutes with H, one can redefine P by

P=E'P

and obtain a conserved parity operator for which

(33a) P* = FGE— = F¢'
(33f) (CT» =Fa',
(33g) CP =PCq§,
(33h) TP' =PTF¢',
(33i) CT —=TCw,
(337) (TCP'): = F'.

This is the general result in a theory containing some discrete multiplicative
invariances. If, however, 4/ G F is a symmetry of the theory, then it is pos-
sible to again redefine P and € so that other relations becomes simplified,

P = '\/G+/FP, ,
¢ = VEFC

and we drop primes. Then P, C still commute with H and

(33a") P =1,
(331") (CTy =1,
(33h") TP = PT,
(33¢") CP = PCF,
{331) CcT = TCF,
{33j") (TCPy == F' .

It is also possible, by omitting the +/F in the definition of P”, to remove
the factor F' from the relations g, ¢ at the price of restoring it to the others.
The form used here is that usually adopted, while the latter is used in the
Majorana neutrino theory, where C is a multiplicative operator.
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Note added in proof.

We have been informed by Dr. G. LUDERS that problems similar to those treated in
our Section 4 were discussed by him at the Summer School in Varenna in July 1959.

RIASSUNTO ()

Si discutone i fattori di fase che possono comparire nella definizione delle inver-
sioni C, P, T, e i loro prodotti. Si dimostra che, a causa dell’esistenza di Hamiltoniane
« fisicamente equivalenti», le fasi in o, CP, T e TP non sono misurabili per campt
complessi. Per le restanti inversioni si possono costruire delle interazioni che richiedano
fasi pit generali delle usuali +1, 4-i per i campi complessi; cid & possibile se, ¢ solo
se, la teoria contiene certe discrete simmetrie moltiplicative. Si danno esempi di tali
interazioni.

(*) Troaduzione a curg della Reduzione,



