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S u m m a r y .  - -  The phase factors which can appear in the definition of the 
inversions, C, P, T and their products are discussed. It  is shown that 
because of the existence of (~physically equivalent )) Itamiltonians, the 
phases in C, C P ,  T and T P  for complex fields are unmeasurable. For 
the remaining inversions, it is possible to construct interactions which 
require more general phases for complex fields than the usual ~: I, ~: i, 
when and only when the theory contains certain discrete multiplicative 
symmetries. Examples of such interactions are given. 

1 .  - I n t r o d u c t i o n .  

The transformations of the field operators of a quantized field theory,  which 

are generated when the state vectors undergo inversion operations such as 

space reflection (P), charge conjugation (C) and time reversal (T) are not  en- 

tirely determined a priori.  In  particular,  when these operators act on the 

complex fields which represent particles different from their antiparticles; there 

is the possibility of introducing arbi t rary  complex numbers of modulus i (phase 

factors) into the action of the inversion on such fields, while still maintaining 

their uni ta ry  character, the invariance of the free field Lagrangian and the 
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required t ransformation properties of free field observables such as currents,  
momenta ,  etc. The existence of this formal possibility has long been realized,  
bu t  there has been some dispute as to its physical content,  par t icular ly  in the  
case of space reflection. The purpose of this paper  is to discuss the  restr ict ions 
on the phase factors which may  exist in field theories and the physical con ten t  
of such restrictions. A consequence of our discussion is a specification of which 
phases are purely conventional  and which are fixed by  a par t icular  theory,  a n d  
hence may,  at least in principle, be determined by  experiment .  The main  
results are contained in the  following two s ta tements :  

1) In  a theory  invar iant  under  charge conjugation the phase factors 
which occur in the t ransformat ion of complex fields under  C can always be 
chosen to have any value for any such field wi thout  altering the physical 
content  of a theory,  and so are not  observable quantit ies.  

A similar result  holds for the phase factors occurring in t ime reversal. How- 
ever, the product  of the phases in C and T cannot  be chosen arbitrari ly,  and 
is related to the phase factor  in P for each field, in a way to be discussed, 
provided tha t  the TCP theorem is satisfied. 

2) In  a theory  invar iaut  under  space reflection it is not  in general pos- 
sible to restr ict  the phase factor  in P to the (~ usual ~ values (:J: 1 for boson  
fields, and ~-1, =hi for fermion fields). Tha t  is, it is possible to cons t ruc t  
theories which are invar iant  under  space reflection operations involving more 
general phase factor  t han  these, bu t  which are not  invar ian t  with any  of the  
usual phase factors. 

Such theories are characterized by  the existence of new mult ipl icat ive sym- 
me t ry  operations which are not  par t  of continuous gauge groups, l~o examples  
are known for any  of the commonly accepted interact ions of the  known ele- 
men ta ry  particles. While the formal theory  of inversions can be carried th rough  
most  easily by  working with the  fields and the  corresponding phase factors,  
the physically interesting quantit ies are the phase factors occurring in the  
t ransformat ion of states, the so-called intrinsic parities. I t  will be shown tha t  

intrinsic parities may  be compared only for states which have the same trans- 
format ion under  all mult ipl icat ive symmet ry  operations. 

In  the second section of this paper,  we will define the operations P, C, T 
as well as certain other  operators and discuss several of their  properties.  I n  
the third section, we discuss the ambigui ty  in inversions due to the existence 
of m a n y  physically equivalent  Hamiltonians,  and just i fy the first s t a tement  
above, i n  the four th  section we discuss the consequence for inversions of the  
existence of mult ipl icat ive symmetries.  In  the final section we will prove  
certain relations among products  of the inversions. 
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2. - Inversion operators and multiplicative operators.  

In  this paper, we consider only theories in which the degeneracy of the 

1 particle states is completely specified by  the spins and the particle-anti- 
part icle character.  This means tha t  the t ransformations representing the in- 
versions can only take the field operator  into itself or into its Hermi t ian  
conjugate,  ra ther  than  permut ing fields which refer to different particles. 
Theories in which there  is addit ional degeneracy and in which the space re- 
flection and t ime reversal operators are more general have been considered 
by  WIG~EI~ and by  MICHEL and WIGHTMA~ (1). 

The  form of the inversion operators is chosen to make the observables 
t rans form in accordance with the classical in terpreta t ion of these operations. 
F o r  example, we make the a priori requirement  tha t  space reflection should 
no t  change particles to antiparticles bu t  should change the sign of momentum,  
while charge conjugation should change particle to antipart icle wi thout  chang- 
ing momentum.  The use of the term par i ty  for an operat ion which does not 
satisfy the first criterion appears unwarran ted  on the basis of the classical 
concept of space reflection. 

Le t  ~.,(X) be the operators for spinless boson fields, ~ (X) the operators 
for spin ] fields and W.~(X) the  operators for spin ½ fields. The three inversions 
are defined by  the following equations:  

(~) 

C ~ m ( X  ) C -1 =: nem~l)fv, t ( X )  ; 

C~)  m ( X ) C - I :  n C m ~ S X )  ; 

e --T C~2~n ( X )  C -1 : n m ~ ? ~ m ( X )  ; 

c~.*~ ( x )  c - ~  *o = n~ ~ , . (X)  , 

c ~.~ (x) c-1 *o = n~  ~ ( X )  , 

C ~  (X)  C - ~ = -  ~° ~ + , ,~ ~f,~(X)C . 

Here C is tlle usual charge conjugation matr ix  satisfying 

Cy~C l = _  y , .  

We use hermit ian y~ satisfying 

y,y~ + y,y~, =- 2~, , ,  (/~ = 1, 2, 3, 4, a lways) .  

The superscript T on a mat r ix  or a field indicates transposit ion in the spin 
space. The dagger operat ion means hermit ian conjugation in Hilber t  space, 

(1) See L. MICHEL and A. W~GHTMAN: Lecture notes at Princeton University (un- 
published). 
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together  with transposit ion of spinor indices. The operator  C is l inear and 
uni ta ry .  ~or  spin 1 fields we shall let  # take  the values 0, 1, 2, 3, where 

(2) P ~ ( X ) P  -* = n~e~v,,,~(eX); 

P ~  ( X ) P  -~ = in~y4 ~m(eX) ; 

P~#m (X) P-1 P* ~ - %, ~ . , ( e x ) ,  

n,. ~q~ ~,,~(eX) , 

- -  , n , .  ~ o , . ( ~ X ) y ~ .  p~p~,,.(X)p-~= " ~*- 

Here  CX represents the t ransformed coordinates, i.e. ~(X, t ) = ( - - X ,  t). Simi- 
larly ff~0,.~----~v~,,, for  the  space components  of a vector  field, and ~o4~ = ~4m 
for the t ime component  of a vector  field. P is also a linear uni ta ry  operator .  

(3) 

Tq~,. (X)T-~ = n~, , , ( rX) ;  

T ~ . . ( X ) T - '  - n~ ~ . ( r X ) ;  

T~ +. ( X ) r - ,  "* + = n~ ~ (vX) , 

TG.(x)r-~=: ~ ,  + x , %, ~o.,(~ ) 

T is an ant iuni ta ry  operator,  i.e. T A T + :  2* for any c-number, zX again repre- 
sents the t ransformed coordinate,  i.e. v(X, t ) =  ( X , - - t ) .  

The conditions tha t  C, P ,  T should be un i ta ry  (antiunitary) and tha t  the 
v P T to be phase factors, i.e. free field Lagrangian is invar iant  restr ict  n~,  n~, n m 

I n~*"r't = 1 for any field. 
For  the  <~ real ~ fields which represent  particles identical to their  antipar-  

ticles, one has the additional conditions 

(4) 

These conditions just  insure the ident i ty  of the particle and antipart icle states. 
B y  subst i tut ing these conditions into equations (1), (2), (3), it is easily seen 
tha t  n~c, n~, n~ must  all be real for such fields, and thus are restr ic ted to the 

values -5 1. 
These are the only conditions on the phase factors which are imposed 

by  the general requirements  on the inversions, which involve the  free field 
observables. A theory  will be said to be invar iant  under  one of the inversions 
whenever  the phase factors n,~ for the fields appearing in the theory  can be 
chosen so tha t  the inversion as defined with these phases commutes  with the 
to ta l  Hamil tonian.  Fur thermore ,  if more than  one choice of phase lead to 
inversion operators which commute  with H,  then  any of the distinct operators 
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which are defined b y  the  different choices of phase  can be chosen to represent  
the  inversion. 

The physical  content  of this definition can be i l lustrated for the  case 
of space reflection. A theory  is inva r i an t  under  space reflection if no 

exper iment  enables one to  distinguish between left  and  r ight .  This will be the  
case if and only if in all t ransi t ions f rom an initial s ta te  wi th  a definite orbi tal  

pa r i t y  to final s tates containing a specified set of particles,  the  orbi ta l  pari t ies 

of the final s ta tes  are a lways the  same. I t  is easy to see t h a t  this condit ion 

is satisfied whenever  there  is invar iance in the  sense we have  used above.  

Fur the rmore ,  the ass ignment  of intrinsic parit ies to particles b y  the use of the 
phase  factors  n~., is f rom this point  of wiev a way  of keeping t rack  of the  fact  
t h a t  when transi t ions t ake  place be tween cer tain particles,  the  orbi ta l  parit ies 
change in ~ certain way.  Any  choice of phase  consistent wi th  the  un i t a r i ty  

requ i rement  and the  invar iance of the  Hami l ton i an  is to be  admi t ted ,  whe- 
never  such a choice is required to summar ize  a physical  consequence of the 
theory.  I n  the  four th  section we will see an example  of how this possibil i ty 

of a rb i t r a ry  phases is ac tual ly  necessary for space reflection. We have  s ta ted  

these r a the r  tr ivial  points  here a t  such lenght  because they  are in conflict 

wi th  views which have  somet imes  been advanced.  We believe t ha t  any  requi- 
r ement  to be made  on the  inversion operators  beyond  the  ones we have  s ta ted  

mus t  involve addit ional  physical  assumpt ions  which should always be empha-  
sized clearly. 

I n  the  subsequant  discussion a class of un i t a ry  operators  to be referred 

to as mul t ip l ica t ive  operators  will be m e t  wi th  f requent ly .  A mult ipl icat ive 
opera tor  U is defined by  

(5) 

where the  ~.~ are boson  or fe rmion  fields, and the  nm(U) are phase  factors.  
Each  U is prescr ibed b y  giving the quant i t ies  nm for M1 the fields, which in 

general  are different fo r  the different fields. Since U is assumed un i ta ry  the 

n,,~ again satisfy In,,, l =  1. Also for real fields n~ = ± 1. 
Several  propert ies  of mul t ip l iea t ive  operators  follow f rom the definition. 

a) The p roduc t  of any  num ber  of mult ipl icat ive operators  is a multi-  
pl icat ive operator .  

b) The inverse of a mul t ip l ica t ive  operator  is a mul t ip l icat ive  operator ,  

whose phases satisfy n~(U -1) = n *(U). 

c) Define V U, ~ square root  of a mult ipl icat ive opera tor  U, b y  

Then v / U  is also a mul t ip l ica t ive  opera tor  satisfying v / U V ~  = U. There 
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are a number  of such square roots, corresponding to the choice of sign of 
~ - ~ ( U )  for each m. 

d) Any two mult ipl icat ive operators commute.  

e) Let  U be any mult ipl icat ive operator.  Then  

U P =  P U  , 

(6) U C  = C U  ~ , 

U T  = T U  t . 

We prove the results of eq. (6) for a spinless boson, the proof being tr ivial ly 
generalized to other  cases 

U P % n ( X ) P - '  U -1 = U n ~ c f , ~ ( e X ) U - '  = n~n,, ,(U)q~m(eX) , 

P U c f m ( X ) U - 1 P  - 1 =  Pnmcfm ( X ) P  - 1 =  nP n,~(U)cf ,~(eX) , 

so U P =  P U  , 

UCcfm ( X ) C - 1 U  -1 Un~cf,~(X)~ t U_I = o * t,~_., ~t~nmcfmi.A~ ) 

CU~%~(X)U~_~C_~ = * a * ¢ Cn,,,p,~ ( X ) C  -1 : n , , n m p , ~ ( X )  , 

so U C  ~ C U *  , 

UTcf , ,  ( X ) T - '  Y -~ = U n ~  cf ~ ( v X )  U -1  ~-  nTmnmq)m(7~X) , 

T U * c f ~ ( X )  U T  -~ = * ( X )  T n ~ % ~  T -1  = n ~ m ~ c f m ( ' v X )  , 

where the last eq. follows because T is anti l inear;  

so U T  : T U  ~. 

I f  a mult ipl icat ive operator  commutes  with the to ta l  Hamil toniun,  it  will 

be  called a mult ipl icat ive symmet ry  operator.  
A well known class of mult ipl icat ive operators is given by  the gauge trans- 

formations,  Ua defined by  

where ~ is an a rb i t ra ry  number  which is the same for all fields ~ ,  while q~ 
is a number,  usually an integer, which varies f rom field to field and represents 
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the  (~ charge ~) of the  part icle  which is conserved if the gauge t ransformat ions  
commute  with  the  Hamil toniun .  Certain mul t ip l ica t ive  operators  occur natu-  
ra l ly  when discussing inversions, i n  par t icular ,  it m a y  be seen f rom the phy-  

sical r equ i rement  of how inversions act  on s ta tes  t h a t  the square of each in- 
vers ion opera tor  should be a mul t ip l ica t ive  operator ,  as the double applica- 

t ion of an inversion mus t  t ake  each s ta te  into a physical ly equivalent  state.  
Fu r the rmore ,  the (( c o m m u t a t o r  )~ of the inversions I~ and I2 defined b y  
I~I~ I ~ I ~  ~ should also be a mul t ip l iea t ive  operator .  

I t  is easy to ver i fy  this with the definitions given for the inversions in (1), (2), 

(3). I n  par t icular  

(7a) C 2 :  i , 

(7b) P ~ :  (TF, 

(7e) T ~ : F ,  

Here  1 is the  ident i ty  operator ,  and F and q are mul t ip l icat ive  operators  
defined b y  

( 8 )  Gcf m~-l---- (m) ~ 

for any  field, fermion or boson 

(9) 
]/~Vm F - I  -- - -  V-~' , 

for boson fields,  

for fermion fields.  

2~ will be recognized as the opera tor  ( - - 1 ) %  where ~ r  is the to ta l  n u m b e r  
of fermions.  I t  is also the  opera tor  of ro ta t ion  through 360 ° abou t  any  axis, 
and  so will comm ut e  with  the Hami l ton ian  in any  theory  invar iant  under  
proper  Lorentz  t ransformat ions .  :Note t ha t  F 2 : 1. 

I t  should be  stressed t ha t  eqs. (Ta) and (7c) are t rue  for all choices of the  
phase  factor  nm,° nm~ whereas by  (8), the fo rm of p2 depends on n~.P 

H the  inversions P ( T )  com m ut e  with g for some par t icular  theory,  then 
so will their  squares FG(F),  and  the  theory  will a t  least  contain these as mul- 
t ipl icat ive s y m m e t r y  operators .  

I f  a theory  is invar ian t  under  all three inversions it  will in general process 

an addit ional  mul t ip l ica t ive  s y m m e t r y  E. To see this, consider the opera tor  
C P T .  

C P T c f ~ ( X )  ( C P T ) - '  P c r : n m n m n ~ c f . ~ ( 9 " v X ) ,  

(10) C P T c f ~ m ( X  ) ( C P T )  -1 = ~ c • , nm n,~ n . ~ q ~ , ~ ( ~ v X )  

C P Ty~.~(X)  ( C P T )  -~ "- P n~ ~ r  ~ tr = - -  m , ,  .,~ ,o 75 ~.~ (~TX)  . 
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If  C, P and T each commute  with H then  so will this product ,  where the  
phases n P, n °, n r are the same ones tha t  make the separate inversions commute.  

In  the  proof of the T C P  theorem (D, it  is shown t h a t  the  produc t  0 of the  
operat ions of strong reflections and hermit ian conjugation, defined by:  

11) 

Oq~,.(x) o -~=  9,.(~7:x) 

0 q~, . (x )o  -~ = o~q;u,.(oTx) 

O ~ . , ( X )  0 -~  " ~" ~" =- - -  ~YsP~ ( Q v X )  . 

will always comm ute with H for a local, Lorentz  invar iant  theory  with the 
usual connection be tween  spin and statistics. Comparing this with the defi- 
ni t ion of C P T ,  we conclude tha t  for theories where the T C P  theorem is true,  
if T, C and P separ ately commute  with H,  then  the mult ipl icat ive operator  E 
defined by  

(12) E~,,~E_I t. o r 
- - - :  n m n m n m ~  m , 

P o T will commute  with H where rim, n,~, n,~ are any phases for which the sepa- 
ra te  inversions commute with H . 

3. - Ambiguities due to physically equivalent Hamiltonians.  

I t  is been recognized by  PAVLI (8), and others, tha t  the relation between 
observable quanti t ies such as t ransi t ion probabilities, and the interact ion 
Hamil toniau,  is in general  not  one to one, bu t  ra ther  one to many.  In  par- 
ticular, there  m ay  be m a n y  different interact ion Hamil tonians involving the 
same particles, which lead to identical transit ion probabilities between any 
two states. 

A theorem expressing this possibility can be s ta ted as follows (3): Le t  U 
be a un i ta ry  t ransformat ion which leaves invar iant  (up to  a mult ipl icat ive 
phase factor) the initial and final states for some process. Then the  two inter- 
action Hamil tonians  H and U H U  -1 lead to the same transition probabilit ies 
for  the process. 

In  particular,  if a t ransformat ion U multiplies all free part icle states 
((( in ~) states) by  a rb i t ra ry  phase factors (which ma y  va ry  from state to state) 
then  the physical consequences (as expressed by  transit ion probabilities) of 

(2) G. Li3D~s: Ann .  Phys.,  2, 1 (1957). 
(a) W. PAOLI: Nuovo Cimento, 6, 204 (1957). 

6, 266 (1957). 
See also D. PURSEY: Nuovo Cimento, 
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the  theories in which / /  o r  ~ f H ~ f  -1 are the  interact ions,  are identical.  :Note 
t h a t  we are not  s imply  expressing the  un i t a r y  equivalence of the  two theories, 
which is tr ivial .  The t rans i t ion p robab i l i ty  is to be compu ted  be tween  the 
same s ta tes  for each I t ami l ton ian ,  r a the r  t h a n  be tween uni tar i ly  t r ans fo rmed  

states.  
The mul t ip l ica t ive  t r ans format ions  U defined in the  previous section are 

examples  of such t ransformat ions .  This is because  the  <~ in ~ s ta tes  are defined 
as eigenstates of the free par t ic le  g a m i l t o n i a n ,  wi th  q u a n t u m  numbers  given 

b y  the  free part icle  observables.  B u t  the  mul t ip l ica t ive  operators  commute  

with the free par t ic le  H a m i l t o n i a n  and  all the  free part icle observables.  I t  

therefore follows t h a t  for any  ~ in ~> s ta te  I~>, and any  mul t ip l ica t ive  oper- 

a tor  U, 

(13) UI~ > = nv(U)I~>, 

where ln~i : 1 and in general  depends on the  s ta te  IV>, as well as on U. 
We will now demons t r a t e  the  above  s t a t ed  theorem for the  operators  U. 

Consider the two in terac t ion  I t ami l ton ians  H and  H'-~ U H U  -1. The S-matrices 
calculated f rom H and H r are clearly re la ted  by  

S ' :  U S U  -1 . 

Then if [a> and I b> are any  two (~in ~) states,  it follows tha t  

(14) 

B u t  b y  the  above,  

<aIS'lb > = <a[USU-'Ib >. 

U-11b) =n~lb>, 

(alS'lb > = n~n~(alSIb>. 

I t  follows f rom this t h a t  the  two t ransi t ion probabil i t ies  

(]6) 
Poo= I <~ Is,rb> I ~ , 

P:o I<~lstb>l ~, 

are equal  for any  s tates  la>, b}, which is Pau l i ' s  theorem in this case. The 

g a m i l t o n i a n s  H and H '  therefore  describe the  same physical  sys tem,  and so 

can be used in te rehangeably  wi thou t  any  change  in the  states.  Two such 
Hami l ton ians  will be  called equivalent .  

This holds for s ta tes  which contain fixed number s  of particles of each type.  
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States which are superpositions of such states, such as: 

V~ [nzt+> -}- exp [i2]v'~lpu°> 

o r  

I K°> + exp [i2] }~o>, 

where 2 is any real number ,  will not  be t ransformed into themselves by  ar- 
b i t ra ry  mult ipl icat ive t ransformat ions (4) bu t  ra ther  into states with different 
values of 2. This does not  cont radic t  our contention tha t  the Hamil tonians H 
and UHU -1 are physically indistinguishable. This is because there  are no 
exper iments  which direct ly determine the mixing phases 2 for states like the 
above. To see this, we note  tha t  the mat r ix  elements of all the free part icle 
observables are independent  of 2. Indeed,  one can regard the in t roduct ion 
of the superposit ion states as merely a mathemat ica l  convenience. Only after  
a par t icular  interact ion Hamil tonian  is chosen is it possible to distinguish 
be tween  states with different mixing phases. Bu t  for a given choice of ~, the 
propert ies  of the  state  will depend on which of the equivalent  t tamil tonians  
is chosen, and so in the absence of an independent  way of distinguishing 
between the different values of 2, this cannot  be used to de te rmine  which of 
the equivalent  Hamil tonian  is correct.  

For  example,  the  eigenstates of to ta l  isotopic spin are superpositions of 
the above type.  However ,  the isotopic spin operator  can be specified only 
af ter  choosing a part icular  set of coupling constants in the interact ion Hamil-  
tonian.  When  one t ransforms to an equivalent  t tamil tonian,  the isotopic spin 
operator ,  I ,  will also change to UI U -1, unlike the free field observables. The 
U-transformed isotopic spin states will be eigenstates of the t ransformed iso- 
topic spin operator.  This implies tha t  transit ion probabilities between states 
of definite isotopic spin are also unchanged by  the mult ipl icat ive transfor- 
mations.  I t  m a y  therefore be seen tha t  the use of isotopic spin as an observable 
does not  allow one to distinguish between equivalent  Hamiltonians.  

For  comparison, instead of a mult ipl icat ive t ransformat ion consider an 
operator  like P .  The interact ions H and P H P  -1 are not  equivalent  unless P 
commutes  with H,  because some free particle observables, such as momentum,  
are not  invar iant  under  P ,  and therefore H and P H P  -1, give different tran- 
sition probabili t ies for states of fixed momentum,  which is an observable dis- 
t inction. For  example,  if a I Iami l tonian  contains a spinor field always in the 

(4) This was pointed out to the authors by Dr. G. C. WICK. We thank Dr. WICK 
for very helpful discussions of this and many other points in this paper. 
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fo rm (lq-ys)~,  so t h a t  only le f t -handed part icles interact~ then  PHP -~ will 
contain ( 1 -  Ys)~ and  here only r ight -handed part icles interact .  

In  general  U will not  c o m m u t e  with  H, and so H and H '  will be different 
functions of the field operators .  I n  particular~ the phase  factors  of cer tain 
coupling constants  m a y  be al tered af ter  t r ans forming  with  U. A corollary 

of this t heo rem is therefore  t h a t  the ubsolute phase  of the coupling constants  
for interact ions which involve a complex field l inearly is unobservable ,  since it 

can always be changed b y  t ransforming  the  Hanf i l tonian  with  a mul t ip l ica t ive  

opera tor  wi thout  changing the  physical  con ten t  of the theory.  Of course, the 

relat ive phase  of coupling constants  for several  interact ions involving the same 

fields m a y  be measureable .  
Suppose now t h a t  some Hami l ton ian  H is invar ian t  under  any  inversion I ,  

satisfying IU=-UtI (e.g., C, T, CP, PT), with a par t icular  set of phase  factors 

for the fields ~,, involved in H.  This will m e a n  tha t  the  coupling constants  n m 

appear ing  in H will sat isfy certain rea l i ty  conditions, involving also the  
phase  n~.~ We can const ruct  a Hami l ton ian ,  equivalent  in the  sense defined 
previously,  which is invar ian t  under  a new inversion in which the  phase  factors  
for all complex  fields are + 1  or any  other  n u m b e r  we choose, whereas the 

phase  factors  for real  fields are unchanged.  

To do this define a mul t ip l ica t ive  opera to r  U1 b y  

(17) 

I = nm(Vl)Vm, 
nm(U1) : V / ~  for ~,, any  (( complex ,) f ield,  

I nm(U,) ~ v:l for ~,~ any  <( real )) f ield.  

E i ther  square  root  m a y  be chosen for each m. The definition of nm(U~) for ~ 
real is forced upon us by  the condition tha t  [71 be uni tary ,  as discussed in 

Section 2. 
By  hypothes i s  [I, H] = O. Therefore 

(is) 

so t h a t  I '=  UIIU ~ would be a suitable opera tor  to represent  the  inversion with 

UIHU ~ as the  Hami l ton ian .  Bu t  UIHU ~ is equivalent  to H, and so we could 

adopt  it as t he  Hami l t on i an  wi thout  changing the result  of any  experiment .  

I t  follows f rom eqs. (6) t ha t  the  t r ans formed  inversion opera tor  is 

(19) 

This ope ra to r  will have  all phase  factors  ÷ 1  for  complex fields. To see this 
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in the  case of C for example ,  one has for a spinless field 

c,q~c,-l= ~ c ~ c - , ( ~ ; , )  ~ 

(20) = n ~  ~,(~;1)~ 

so the  phase  is ÷ 1 .  Clearly, any  other  phase  fac tor  can be obta ined  for any  
2 complex  field b y  choice of U 1. On the  other  hand,  for real  fields, U I :  1 so 

t h a t  I ' ~  I which means  t h a t  the  inversion is unchanged.  

Since the  resul ts  of exper iments  are invar ian t  under  t rans format ions  which 

change the  phase  fac tors  in these  inversions in an a rb i t r a ry  way,  the  phase  
factors  for complex fields m u s t  be unobservable ,  ei ther  absolute ly  or re la t ive  
to each other.  This is not  so for  real  fields as we have  se(:n. In  par t icular  the  
phases for the photon  field n ~ - - - - 1 ,  n P : l ,  n T = - - l ,  which make  the  

e lec t romagnet ic  in teract ion invar ian t ,  cannot  be  changed b y  such transfor-  

mat ions ,  and thus  can be  de t e rmined  b y  exper iment .  

Whi le  the  phases appear ing  in C, T, CP,  T P  are unobservable  they  cannot  
be  s imul taneous ly  changed in a n  a rb i t r a ry  way.  This is because such inver- 

sions as P, C T  and P C T  c o m m u t e  with  mul t ip l ica t ive  operators ,  and there- 

fore the  phases  for these inversions will be  unal te red  b y  the  t rans format ion  

to an equivalent  Hami l ton ian .  T h a t  is, for the  equivalent  Hami l ton i an  UH U -~, 
the  pa r i t y  opera tor  is 

UPU-1 ~ P ,  
and 

UCTU -1 ~- C T .  

These phase  factors  are then  in principle measurable .  The restrictions on 

measu remen t s  of such phases  will be  discussed in the  nex t  section. 

The  above  resul ts  show t h a t  i t  is meaningless  to  ask for the  relat ive n ~ 

even for part icles like Z ° and A ° which can decay into each other  b y  inter- 

actions which conserve C. Similar ly ,  the  relat ive n ~ of the  neu t ron  and A ° 

is not  measurab le  even if the  decay  A ° - ~ n ~ :  ° conserves T. Expe r imen t s  

to measure  these quant i t ies  therefore  can not  be  devised. 

4. - Ambiguit ies  due to conservat ion laws .  

I n  this Section we consider those  inversion phases which are the  same for 

all equivalent  t t ami l ton ians .  These include the  phases in P, C,T and P C T  

for any  field, since these inversions c o m m u t e  with  mul t ip l ica t ive  t ransfor-  

mat ions ,  and  all inversion phases  for real  fields. 
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I f  I is any  inversion t h a t  commutes  wi th  the  Hami l ton ian ,  and  U is any  
mult ip l icat ive  s y m m e t r y  of the theory,  then  IU also is an inversion t h a t  
t ransforms the (( in ,) and  (( out  ~) s ta tes  in the  way  required by  physica l  consi- 
derations,  and  which commutes  wi th  H.  Fur thermore ,  the  inversions I and  
IU  will differ only in their  phase  factor,  according to 

( 2 ~ )  n m  = • 

I t  is not  possible to distinguish by  exper iment  between the choice of I or IU  
to represent  the inversion. The physical  reason for this is t h a t  the ma t r ix  

elements  of these operators  be tween two states  differ only when  the  states 

t rans form differently under  the mul t ip l iea t ive  s y m m e t r y  U, and transi t ions,  

ei ther real or vir tual ,  be tween such states are forbidden b y  the  conservat ion 
of U. This fact  was first po in ted  out  b y  W I c ~  WIG~TMA~ and WIG~NER (5). 

The converse of this resul t  also holds for these inversions. Tha t  is, if a 
par t icular  Hamf l ton ian  commutes  wi th  two inversions I and I ' ,  bo th  of which 
t rans form the free part icle observables in the same way,  then the Hami l -  
tonian also commutes  wi th  the quot ient  operat ion I-1I r, which is a multipli-  
ca t ive  operat ion,  and  so the  theory  contains a t  least  one mul t ip l ica t ive  sym- 

me t ry .  This leads direct ly to the ma in  prob lem of this Section, which is the 

question of wha t  phases can arise in a physical  theory,  and wha t  propert ies  in 

the  theory  allow for the  use of (~ unconvent ional  ~) phases. 

We will i l lustrate  the discussion b y  referr ing to the pa r i ty  operation,  which 

is the mos t  famil iar  and mos t  often discussed ¢). According to eqs. (7), (8), (9), 
if a theory  is invar ian t  under  space reflection~ it will be invar ian t  under  the 
mul t ip l ica t ive  opera tor  P~ = (TF. I t  has sometimes been argued (e) t ha t  since 
p2 is the opera tor  represent ing double reflection, it mus t  be the  ident i ty  ope- 
r a to r  for bosons, and  either the  ident i ty  opera tor  or F for fermions. This is 
based  on a principle t ha t  observable  quant i t ies  should be  unchanged b y  double 

reflection. I t  was poin ted  out in the  fundamen ta l  paper  by  WICK, WIGI{T- 
MA~ and WIG~ER tha t  such a principle cannot  be used wi thout  some way  of 
specifying wha t  quant i t ies  are observable.  These authors  have  given examples  

of some hermi t ian  operators  which occur in field theories and y e t  cannot  be 

measured  if the theory  contains certain symmetr ies .  A detai led analysis of 

which quanti t ies  hppear ing in field theories are observable  would be difficult, 

a l though quite interesting. However ,  i t  appears  reasonable t ha t  only such 

(5) G. C. WICK, A. WIGHTMAN ~nd ]~. P. WIGN:Et¢: Phys. Rev., 88, 101 (1952). 
This will be referred to as WWW. 

(6) See ref. (6), and also C. N. YANG and J. TIOMNO: Phys. Rev., 79, 495 (1950); 
P. T. ~IATTH]~WS: NUOVO Cimento, 6, 642 {1957). 
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quantities that  are invariant under all of the multiplicative symmetries of a 
theory can be observed. Since the field operators themselves are not in ge- 
neral invariant under multiplieative transformations, they will not  be obser- 
vables in theories containing such symmetries. Quantities such as the mo- 
mentum, spin and charge, which are constructed from the free particle Lagran- 
gian, are invariant under all multiplicative transformations, since they involve 
products like ~q0~. Thus, for these quanities the principle that  observable 
quantities should be invariant under double reflection therefore does not re- 
strict the operator p2 at all, and such restrictions can only be obtained by 
examining the interactions. But these will only require that  the phases be chosen 
to give invariance of the ttamfltonian, and we will show below examples of 
interactions which require arbitrary phases to give invariance. We conclude 
that  no a priori restrictions on the phases for space reflection, etc., can be 
admitted. 

Suppose that  the Hamiltonian commutes with a parity operator P for 
In general, since P~ va 1, the operator P will have some choice of phases n~. 

complex eigenvalues. Thus with this choice of phases, the (( intrinsic parities ~ 
of the particles created by the fields ~ ,  ~f., will be complex numbers of mo- 
dulus one. We examine the circumstances under which these complex intrinsic 
parities can be eliminated by a redefinition of the parity operator. 

Since P commutes with H, and P2val,  the theory necessarily contains at 
least one multiplicative symmetry P ~ -  GF. We consider theories invariant 
under rotation, which also have the multiplicative symmetry F. The general 
condition under which intrinsic parities may be chosen real is tha t  ~v/G+F 
should commute with the Hamiltonian (7). For if this happens, it is possible 
to define a new parity operator P ' :  v/G~-F/), which satisfies 

(22) p:2 == ( ~ + F p  2 = ~ :  ' ( ~  = 1 

and thus has real eigenvalues. Furthermore, P '  commutes with H, since it 
is the product of operators which commute with H. Conversely, the condition 

is a necessary one, because if there exists a conserved parity operator P '  
satisfying p,2 = 1, then P'  = UP, where U is a multiplicative symmetry oper- 
ator, and U2= (TtF. Therefore, having once found a parity operator which 
commutes with ~r, involving complex phases, it is possible to test whether the 

use of such phases is essential by seeing whether for the (/ defined by these 
phases, % / ~  is a symmetry of the theory. There are three general cases 

to be considered. 

1) All of the multiplicative symmetries of the theory, including F, are 
parts of continuous gauge groups. This is believed to be the case in the present 

(7) Here ~ / ~  refers to any of the square roots defined above. 
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theory  of e lementa ry  particles, assuming tha t  strangeness is an addi t ive q u a n t u m  
number  for s trong interactions,  ra ther  than  a mult ipl icat ive one (s). For  such 

theories, since (TtF( p-2) is a number  of a gauge group which commutes  
with the I tami l ton ian ,  ~JG~F is also a m em b er  of the gauge group and so also 
eommutes  wi th  the  Hami l ton ian .  i t  is then  always possible to make  the 
intrinsic par i ty  of fermions and bosons real in theories satisfying assumption 1. 

As indicated,  this is p robab ly  the case in the present  theory  of e lementa ry  

t)articles. 

2) The theory  contains apar t  f rom gauge t ransformat ions  the addit ional  

invar iance F, such tha t  ~ / F  is not  a mul t ip l icat ive  symmet ry .  In  such theories 

there is no addi t ive  conservat ion of fermions,  or else ~ / F  would be pa r t  of 

the fermion gauge group, i f  there is pa r i t y  conservat ion with p 2 =  GF then  

since G commutes  with H,  there are two possibilities for G. Ei ther  

a) G a gauge t ransformat ion ,  y, so tha t  P - ' =  )~/v, 

o r  

b) G =  yF,  so tha t  P" y. 

I n  case a), the conserved opera tor  P ' =  v / ~ P  satisfies 

p / 2  _ ~ ?  . 

Thus  up to a gauge t ransformat ion ,  the intrinsic parit ies of all bosons are real, 

and of all fermions are imaginary  in this case. An example  of such a theory  

is given by  the interact ion 

(23) 

Here  ~. is a real boson field and ~o a complex fermion field. I t  is easy to see 
tha t  for invar iance under  P,  % ± 1, h e =  1, so t ha t  G - - l ,  P~ = F or the 
intrinsic pa r i ty  of the fermion is imaginary,  while t ha t  of the boson is real. 

Since this theory  has no gauge invariances,  there is no f reedom in choosing 
these parities, except  t ha t  coming f rom F, which accounts  for the ± sign in 

n,  and makes  the relat ive pa r i t y  of the boson and fermion unobservable .  

Theories containing real fermion fields and  satisfying assumpt ion  2 mus t  

fall under  case a) if they  conserve par i ty ,  since according to Section 2, p2 = F 

for such fields. 

(s) The possibility that strangeness conservation might be multiplicative was sug- 
gested by W. HEISENBERG and ~V. PAULI (preprint). See also K. M. CASE, R. KAI~PLUS 
and C. N. YAnG: Phys. Rev., 101, 874 (1956). 

3 S  o l l  Nuovo Cimento. 
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In  case b)~ the par i ty  operator  can again be redefined as P ' =  7~P,  and  
p,2=_ 1, so tha t  up to a gauge t ransformation,  all parities, fermion or bosonr 
are real. 

A Hamfl tonian  giving such a theory  is 

(24) Hi.  t = ~° ~o~o ± ~7o~o~o -~ h. c. 

with the same symbols as before. Now n~ = ± i, n~ = - -  1, so tha t  6---F~ P ~ = I .  

I t  should be emphasized tha t  if assumption 2a is satisfied, then all fermions 
have imaginary par i ty ,  whereas if 2b is satisfied, all have real parity~ modulo  
gauge transformations.  This type  of theory  does not  have enough s y m m e t r y  
to allow some fermion to have i r removably  real par i ty  while others have  ir- 
removably  imaginary par i ty .  This is because the only non-gauge multipli- 
cative invariance we have allowed is F, which does not  distinguish between 
fermions. 

3) The theory  contains mult ipl icat ive symmetries U, other  gauge trans- 
formations and F,  such tha t  v / ~  and ~ do not  commute  with H.  In 
this case, ff there is par i ty  conservation with ( / =  U, then it is impossible to  
find a pa r i ty  operator  which commutes with H and satisfies P~ ~1 ,  or p2 = F .  
Then we expect  t ha t  the intrinsic parities of bosons and fermions might  be 
a rb i t ra ry  complex numbers~ providing tha t  the theory  has sufficiently com- 
plicated mult ipl icat ive symmetries.  I t  is clear t ha t  the existence of (( discrete ~ 
mult ipl icat ive symmetries is only a necessary condition tha t  use of complex n e 
should be unavoidable in a theory,  ra ther  than sufficient. This is because there 
is never  a conservation law for intrinsic parities alone, wi thout  specification 
of the orbital  states involved. This is i l lustrated by  the interactions (23) 
and (24) which have the same mult ipl ieat ive symmet ry  ~.  

We continue the discussion by  reference to a part icular  example. Consider 
the interact ion of a fermion field ?p with a complex boson field ~, given b y  

(25) H = ~ O ~  2 + ~O?p~ ~' (O = 7 ,0*  7,)- 

We wish to consider two cases 

(a) 0 = 7 5 .  

Here  the  theory  is invar iant  under  space reflection t ransformations with the  

following phases 

n~- -  e any phase f ac to r ,  

P - - ± i  ~tep-- 
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Thus 

(26) 
{ G~G_I p 2 = _ _  ( % )  ~ , 

G~vG-1 = __ ~, . 

Fur thermore,  the theory possesses the following multiplicative invariances: 

(27) B~v2B~ ~ = exp[i~tJ~p , for all real ), 

a gauge transfornmtion on the spinor field, and 

U(v U -1 = - -  q~ 

a discrete t ransformat ion on the boson field. 

i t  is clear tha t  the phase factor in the t ransformation of the spinor field 

is only conventional,  and can be removed by  a redefinition of the par i ty  ope- 

rator. However, the phase factor ± i for ~0 cannot  be removed. This is 

because the operator ~ / U  ~, defined by 

does not  commute  with the Hamiltonian,  so tha t  ~ / U ~ P  is not  a conserved 

operator. The existence of the phase factor ± i is essential in the physical 

interpretat ion of the theory.  The interaction (25) involves, among other pro- 

cesses, the annihilation of two S wave ~0 quanta  together with a transit ion 

of the fermion from an S state to a P state. Such process cannot  be consistent 

with invariance under space reflection unless the intrinsic par i ty  of the ~ quanta  
is ~ i. This follows immediately  from the conservation law 

b) Consider next  O - - 1 .  The t tamil tonian has the same multiplicative 

invariances as before, bu t  now it is invariant  under space reflections with 

n e = any complex n u m b e r ,  

_+_1 

and so here by a suitable redefinition of the par i ty  operator the intrinsic pari- 

ties can be made real. This indicates as stated tha t  the existence of discrete 

multiplicative symmetries only allows the possibility of i rremovably complex 
intrinsic parities, wi thout  requiring them. 
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=Next we construct  ~ Humi l ton ian  requir ing v / i  for the  space reflection of 
fermion field. To do this, consider a complex spinor fi41d ~p interact ing with 

a real  boson field ~0. 

(29) Hi~  t : g ~ l , ~  ± h~°~cy~ T + h. c. 

F r o m  the  definition of ~a, i t  is easy to see t ha t  

_ p ~ o p _ 1  = _ inPv Y4Y~-e . 

The in teract ion (29) is invar iant  under  space reflection with 

±Vq. (30) n~ = - -  1 ,  n~ = 

I t  is also invar ian t  under  the  mul t ip l icat ive  t ransformat ions  ~ and  

W± ~oW~= 1 =  ± iyJ . 

However ,  i t  is not  invar ian t  under  ~ ,  and therefore the factors  ± ~ / i  in 

the  space reflection of ~p are not  removable .  
F r o m  these examples,  it m a y  be seen t h a t  one can construct  Hami l ton ians  

which require  any  n- th  root  of 1 as ~ phase  fac tor  in the  t r ans fo rmat ion  of 
complex  fields under  space reflection. These t t ami l ton ians  will be character ized 
b y  the  existence of discrete mul t ip l icat ive  invariances,  whose square roots 
are not  invariances of the  theory.  I t  is also possible to wri te  ~( interact ions ~) 
which require  other  complex phase  factors,  bu t  these will involve i r ra t ional  

operat ions,  on the  field operators,  whose meaning  is questionable.  
I n  the  l ight  of our discussion, we can conclude the  following abou t  the  four  

classes of spinors in t roduced b y  YA~G and TIOMNO (~), and used b y  m a n y  

other  authors .  In  any  theory  invar ian t  under  space rotat ions,  F = ( - - 1 ) ~  is 

a muIt ip l ica t ive  symmet ry .  Any such theory  could possibly be  invar ian t  

under  a pa r i t y  operat ion in which P ~ =  F.  As we have  stressed, this would 

m e a n  t h a t  all fermions have  pa r i t y  ± i. However ,  the  invar iance under  F 

does not  b y  itself allow the  relat ive pa r i t y  of two fermions to be  imaginary .  
Such a possibil i ty is connected with  the  existence of other  discrete multipli-  

ca t ive  symmetr ies ,  which do n o t  act  the  same way  on all fermion fields. 

I t  m a y  b e  fu r the r  no ted  t h a t  the  use of discrete mul t ip l iea t ive  symmet r ies  

or  of space reflection invar iance to forbid unwan ted  processes as is somet imes 

done involves the  difficulty t ha t  these can only give conservat ion laws (~ too- 
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d ulo n ,> and not  the  absolute  conservat ion laws associated with gauge groups (9). 
i f  one accepts the usual conservat ion laws as absolute (conservation of charge, 

baryons,  leptons,  and  strangeness in s t rong interactions) the use of phases 
i for some fields is unnecessary,  and can be removed  by  a redefinit ion of 

the pa r i t y  operator .  On the  other  hand,  if strangeness conservat ion only held 

modulo  4, for instance,  it migh t  be  necessary ~o use complex phase  factors  
for s t range particles.  This would happen ,  e.g., if four A ° in S s ta tes  could 

go into three S s ta te  neutrons  and one P s ta te  neutron.  
We conclude this discussion with some comments  about  the conditions 

under  which the relat ive pa r i t y  of two states is measurable .  Our conclusions 

here are in essential  agreement  with those of W W W .  The general result  m a y  

be s ta ted  as follows 

The relat ive p~r i ty  of two s ta tes  is measurab le  only if the s ta tes  t rans-  

form the same way  under  all the mul t ip l icat ive  s y m m e t r y  operat ions of the 

theory.  
These is because, if £P is a conserved pa r i t y  operator ,  then so is UP. where 

U is uny mult ip l icat ive  s y m m e t r y  operator .  
eigenstates of _P, with 

(3J) 

Then 

(32) 

where 

But  if ]~> and [ ~  :~re two 

~ - P  [~02> - -  82n2(U)1~2> , 

Then unless nl (U) = n.., (U) for all U, the two pur i ty  operators,  which according 
to our previous r emarks  are physical ly indstinguishable,  will have  different 
relat ive eigenvalues for the  two states.  

EquivMent ly ,  the  phase  factor  in the  inversion of a field, or a product  

of fields, is me~surable  only if the field or p roduc t  of fields is inv~r iant  under  
all mul t ip l ica t ive  symmetr ies  of the theory.  

As an example  of this, we note t ha t  the quan t i ty  which is meusur~ble is 

the relat ive pa r i ty  of a ~,-p) sys tem compared  to a 2 A ° system, ra ther  th~n 

the relat ive pa r i ty  of = and nucleon. I f  strangeness is an addi t ive q u a n t m n  

(9) This is true unless one assumes in addition specific forms for the interaction, 
such as Yukawa couplings. If the latter is done, the discrete multiplicative invariance 
of H may imply a continuous gauge invariance. 
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number ,  then  the intrinsic pa r i ty  of the A m a y  be chosen real  b y  convention,  
und then  there is no difference in the  two s ta tements .  However ,  if s trange- 
ness were mult ipl icat ive,  the  s t a t ements  are not  equivalent .  

The  above  discussion of pa r i t y  can also be appl ied to C T ,  C P T  and all 
inversions of real fields, which commute  with all mul t ip l ica t ive  t ransformat ions .  

5 .  - P r o d u c t s  o f  i n v e r s i o n s .  

I n  th is  Section we discuss some of the  relat ions among  products  of the 

inversions,  and the mult ipl ieat ive operators  E,  F ,  G. We consider a theory  

invar ian t  under  C, P and T simultaneously.  Then  according to Section 2, 

i t  will be  invar ian t  under  E ,  F and (7. The following results for the products  

of inversions can easily be demons t ra ted .  

(a) 

(b) 

(c) 

(~) 

(e) 
(33) 

(/) 

(g) 

(h) 

(~) 

(i) 

As an example ,  we derive 

(1), (3) 

P~ = F~7 , 

C 2 = 1 ,  

T" - F ,  

( C P )  ~ = ( P C )  ~ - F ,  

(TP)  2 -  ( P T )  ~ = F ,  

( C T )  ~ : ( T C ) - 2 =  F G E - 2  

C P  = P C G  , 

T P  z P T F G  , 

C T  ~ T C G E  -2 , 

( T C P )  2 = F E  ~ , 

the  relat ion C T - ~  T C G E  -~ for a spinor field. F r o m  

C T ~ p T - 1 C - I =  nonrysVp ~ , 

C T y J C - 1 T - 1  * • _ r  ~- n(Tnr?5~ p , 

C T ~ T - 1 C  -1 = n~ n~ T C ~  C -1 T -~ 

= r c n ~  ~ u~* ~ c-~ T-1 

= T C G E - ~ y ~ ( G E - ~ ) - ~ C - I T - I  

C T  ~ T C G E  -~ . 
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Because of the relations (6) be tween C, T and mul t ip l ica t ive  operators ,  the 
relat ions (b) ,  (c), (d), (e) cannot  be changed b y  redefinit ion of C, P or T. 

Since E commutes  with H,  one can redefine P b y  

p , =  E-1 p 

and  obta in  a conserved pa r i ty  operator  for which 

(33a) 

(3.3]) 

(33g) 

,(33h) 

(33i) 

(33j) 

( C T )  2 = F G '  , 

C P '  = P C G ' ,  

T P '  - -  P ' T F G '  , 

C T  T C G '  , 

( T C P ' ) 2  = F . 

This is the general  resul t  in a theory  containing some discrete mult ipl icat ive 
invariances.  If,  however,  ~ is a s y m m e t r y  of the theory,  then  it is pos- 
sible to again redefine P and C so t ha t  other  relat ions becomes simplified, 

and  we drop primes. 

(33a") 

(33/") 

(33h") 

(33g") 

(33i) 

(33j") 

P" : ~ / G * ' F P ' ,  

C' = ~ /G¢'F C 

Then P,  C still commute  with H and 

p2 1 , 

( C T )  '~ : 1 ,  

T P  - P T  , 

C P  -~ P C F  , 

C T  - -  T C F ,  

( T C P )  ~ == F .  

It  is also possible, by  omi t t ing  the  ~ /E  in the definition of P " ,  to remove  

the  factor  F f rom the relat ions g, i at  the price of restoring it to the others. 

The form used here is t ha t  usual ly adopted,  while the la t te r  is used in the 
3I~jorana neutr ino theory,  where C is a mul t ip l iea t ive  operator .  
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The  au thors  would  l ike to t h a n k  Professor  T. D. LEE~ Professor  G. C. W~cIG 

Professor  C. N. ¥A~G, a n d  Professor  B. ZLTMI~O for he lpfu l  discussions.  T h e y  

also t h a n k  Professor  P.  T. ~fATT~rEWS for a c o m m u n i c a t i o n  r ega rd ing  his work ,  

Note added in proof .  

We have been informed by Dr. G. Li3DE~S that  problems similar to those treated in 
our Section 4 were discussed by him at the Summer School in Varenna in July 1959. 

R I A S S U N T O  (*) 

Si discutono i fattori di fase ebb possono eomparire nella definizione delle inver- 
sioni C, P ,  T, e i loro prodotti. Si dimostra che, a causa dell'esistenza di Hamiltoniane 
(c fisieamente equivalenti ~), 18 fasi in <~, CP, T e T P  non sono misurabili per eampi 
complessi. Per le restanti  inversioni si possono costruire del]e interazioni che richiedano 
fasi pifl generali delle usuali ~=1, ~=i per i campi complessi; ci6 ~ possibfle se, e solo 
se, la teoria contiene certe discrete simmetrie moltiplicative. Si danno esempi di tali  
interazioni. 

(*) T r a d u z i o n e  a cura della Redazlone.  


