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As is well known some soliton equations admit the surface-geometric interpretation.
Two oldest examples (dating back to the middle of the 19th century) are the sine-
Gordon and the Liouville equations. The Gauss-Mainardi-Codazzi (GMC) system of
differential geometry of surfaces in E? when applied to any pseudospherical surface
endowed with the so-called asymptotic co-ordinates is reducible to the sine-Gordon
equation (1'%). Likewise, the same GMC system applied to any minimal surface in the
go-called curvature co-ordinates is reducible to the Liouville equation (4). A well-known
Pohlmeyer-Lund-Regge-Getmanov system (5) can be written as the GMC system as
well (8).

An idea of the path leading from surfaces to solitons originated in the Lund-Regge
work (%) has been subsequently developed by LunDp (%). See also (7). The Lund-Regge
approach is in a sense a surface-geometric way to generate soliton systems (8).

The GMC system of differential geometry of surfaces in K3 (»%) can be generalized
for the case of n-dimensional manifold embedded into N-dimemsional flat space (19).
In the sequel the term «surface» means any 2-dimensional manifold embedded into
N-dimensional flat space.
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In the context of the Lund-Regge approach two obvious questions arise. Suppose
we are given any 2-dimensional (nondiscrete) soliton system with the corresponding
linear problem.

A) First question: is it always possible to put the soliton system in a form of the
‘GMC system for some surfaces? In other words, can any soliton system be reached in
the Lund-Regge framework?

In (1) we proved that the answer to this question is positive, provided that a Lie
.algebra g of the associated linear problem is semi-simple. Moreover, the resulting sur-
faces are mebedded into g equipped with the Killing-Cartan form (or scalar product)
<converting g (dim g = N) into Euclidean (or pscudo-Euclidean) N-dimensional flat space.
‘The resulting surfaces will be called soliton surfaces.

B) Second question: what is a general description of all possible soliton surfaces?

This question remains still open. One may conjecture that the answer to this question
will be of some importance in a possible unifying approach to solitons.

In this paper we discuss general properties of soliton surfaces. As an example we
«consider a class of soliton equations with §U,—linear problem in the ZS-AKNS gauge (12).
Finally, we present a generalization of the so-called Bianchi-Lie transformation for any
2-dimensional (nondiscrete) soliton system. Originally, the Bianchi-Lie transforma-
tion (1*14) has been introduced as a surface-geometric analog of the Bicklund trans-
formation for the sine-Gordon equation.

The paper is based upon the following results: 1) the 19th century differential geom-
-etry (»®1) with the special stress on the Italian School (G. Mainardi, D. Codazzi, E. Bel-
trami, U. Dini, L. Bianchi), 2) the Killing-Cartan form (!§), 3) the Pohlmeyer transfor-
mation (>1%) known in the chiral context.

We begin with a construction of soliton surfaces. Concerning details see (1!). Here
we use the following conventions: & = (x!, #?) (two real variables) and ou/oz# = u , ete.
Let us consider any 2-dimensional (nondiscrete) soliton system. It is a system of non-
linear partial differential equations for real fields ¢(x), y(x), ... that admits the follow-
ing representation:

{1) Gi,2— 921+ [91, 921 = 0,

where g, (u = 1, 2) are functions of x (through ¢, v, ...; 9,4, ...} and some real (called
spectral) parameter { taking values in a fixed (d X d)-matrix Lie algebra ¢ (dim ¢ = N)

(2) Gu = g#((p, Y,y .o ‘P,u’ “ees :) .

Equation (1) is a necessary and sufficient condition (undcr some general conditions
imposed on g,) for a global existence and uniqueness of the single-valued solution @
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39%6 A. 3YM
to the following system called a linear problem of the inverse method (1%17):
(3) Du=gu?d,

where @ = @(z, ) is assumed to be a (d X d)-matrix—valued function (columns of which
form a bagis of Jost functions in the scattering problem terminology (1#17%)). Assuming
&(z,, {) € G (Lie group of g) as an initial condition gives & € G everywhere (*8), In the
sequel we assume P e G.

The G-valued function R(x, ) = @(z, &)1 B(w, £) (L,-fixed) is known in the chiral
context as the Pohlmeyer transformation (%!¢). Equation (3) yields

(4) B = Oz, L) Mu,t(, Lo)(E — o) + . 1P(=, L) B .

One of the consequences of the integrability conditions of eq. (4) (R 4= R,) is
(3) (P7¢1,0P)s= (P75, P),1 -

Equation (5) implies there exists a g-valued function r = r(z, {) such that

(6) ru= Py, .

Equation (6) can be easily integrated (?)

(7 r= @1P, + const,

where consteg. We put const = 0 (29) ,
The equation

(8) gar =r(x{) = &Yz, ) Pz, {)

is interpreted as a co-ordinate representation of the -family of surfaces embedded into the
N-dimensional affine space g: the independent variables in the original soliton system (1)
z = (a', 2%) turn out to be co-ordinates upon resulting surfaces, the real spectral par-
ameter { enumerates copies of {-family and the function r = ®-1@, is a position vector
of the resulting surfaces. Moreover, the affine space ¢ is equipped with a nondegenerate
scalar product (the Killing-Cartan form of the semi-simple Lie algebra g) that converts ¢
into a flat space.

Thus, for any solution ¢, y, ... of the soliton system (1), there exists a {-family of
surfaces (8) with tangent vectors given by (6).

These surfaces are called soliton surfaces (corresponding to the solution ¢, ¥, ...).

The main properties of soliton surfaces are listed below.

a) The GMC system when applied to any soliton surface is reducible to the original
soliton system (1) (11). This result shows that soliton systems can always be interpreted
in a surface-geometric fashion,
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b) Soliton surfaces are invariant with respect to {-independent gauge- transforma-
tions (317:18:21) performed on the soliton system (1).

¢) The metric tensor g, of soliton surfaces (induced by the surrounding flat
space ¢) is given by

9 guww=Tradg, adg,c,
where Tr = trace and «ad » is the adjoint representation of g (*5). Hence, all intrinsic
(metric) properties of soliton surfaces can be calculated explicitly.

d) For g-compact the corresponding soliton surfaces are embedded into E¥, whereas
for g-noncompact the corresponding soliton surfaces are embedded into N-dimensional
pseudo-Euclidean space (15).

Consider as an example a class of soliton systems with SU,-linear problem in the
ZS-AKNS gauge (1?). Since 8T, is a 3-dimensional compact Lie algebra the correspond-
ing soliton surfaces are embedded into k3. Thus, in this case we are in a position to make
use of the rich harvest of the 19-th century differential geometry (294). Two well-
known soliton equations belonging to the discussed class are

(10) igy+ ¢+ 1/2{q)2¢ =0 (nonlinear Schrodinger equation),
(11) @,12= Sin ¢ (sine-Gordon equation) .
According to the classical Bonnet theorem (°) any surface in B? is implicitly defined

(modulo position) by its two (I and II) fundamental quadratic forms. These are defined
as follows:

(12) 1 = gudzrdar,
(13) II = dy,dzrdar,
where g,y and duy are the metric and the second fundamental tensor of a surface, respect-

ively (»®). Without entering into technical details, we present the forms I and II in
the case of our interest (§U,-linear problem in the ZS-AKNS gauge).

(14) I = (da')*—2Trog,;da'da? + detg, (da?)?,
(18) I = — det ¥, g, ]1{Tr [0, ¢;1(0, 5, dzY)? + 2 Tr [0, ][0, s, 1 do’ da? +
+ £ Tr([gz,¢5 92] + 92,2)0, gz,C](dxz)z} s

where ¢ = — i/20; (g, i8 the Pauli matrix). These formulae may be also used in verifying
directly that soliton systems are equivalent to the GMC system. To this purpose, we
need an especially convenient form of the GMC system. For surfaces in E3 it consists
of the Gauss equation and two Mainardi-Codazzi (MC) equations (2%14), Geometers
of the 19-th contury have discovered many forms of the Gauss equation. To our know-
ledge the most useful form for soliton purposes is the Liouville-Beltrami formula (22)

(16) 2 \/aét—g;,K = [dett guy(— go s + 912!];11911,2)],1 +
+ [det gu(2¢15,1 — G110 — 91291-11911,1)],2 ’
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where K = det dy,/det g, is the Gaussian curvature. Putting K = 0 (the so-called
developable surfaces (29), for instance plane), one sees that the Gauss equation (16) is.
in the form of the conservation law so characteristic for one-field soliton equations.
Indeed, for instance the modified Korteweg-de Vries equation can be associated with
a plane (''). The most convenient form of the MC equations has been found by
BiaxcHr:

(17a)  (dettguydy,), — (det~d guydy,) » + det—+ g,,,(f';gdu— 2T ;dyy + Thdy,) = 0,
(178) (det guydyy),— (det—t gypd,,),, - det g,‘,(ffgdn—- 2rfzd1z + Ifidy,) =0,
where I'}; are the Christoffel symbols of the metric g,y.

The I and II forms (14), (15) for the nonlinear Schrodinger equation (10) become
(18) I = (da')? 4 8{datda? - (16(2 + g?)(dx?)?,
(19) 1@ = p(da")® + (4o — 2¢9,)) da'da® + (4% — 4lep,1 + 1/2¢° — opy,)(da?)?,
where ¢ = ¢ exp [ip]. Inserting g,y and d,y of (18) and (19) into the Gauss equation (16),.
one sees that the Gauss equation becomes the real part of the nonlinear Schrédinger
equation, Likewise, ingerting the same g,, and d,, into the MC equation (17) gives that.

both MC equations become the imaginary part of the nonlinear Schrédinger equation.
The I and IT forms (14), (15) for the sine-Gordon equation (11) become

(20) I = (dal)2+ 1/2;-2cos@dxlda?4- {416~ (dx?)?,
(21) II = — {'sinpdartda?.
In this case the Gaussian curvature K is constant and negative: K = — 4{? and the:

soliton surfaces for the sine-Gordon equation are pseudospherical surfaces. One can seo
the real spectral parameter { has a direct geometric meaning. Hence, the above-intro-
duced concept of soliton surfaces is a far-reaching generalization of pseudospherical
surfaces.

The second example concerns soliton systems with SU, ,-lincar problem. In this
case corresponding soliton surfaces are embedded into SU, ;= M3+ +—)—3-
dimensional Minkowski space. The most important example of a soliton system of this
clags is the Ernst equation of general relativity (23-25). Hence, all well-known exact
solutions of the Ernst equation (like the Schwarzschild solution, the Kerr solution, the
Weyl solution, the Tomimatsu-Sato family of solutions etc.) (2%) may be interpreted as
some surfaces in M3(+ + —). These are, of course, the soliton surfaces corresponding
to the above-listed solutions.

The explicit co-ordinate representation (8) for multisoliton solutions can in principle
be found by means of the so-called Zakharov-Shabat (or dressing) method (17). 1-soliton
surfaces, however, can be calculated in a purely geometric way. These are the so-
called helicoids. A helicoid is a surface generated by a plane curve which is uniformly
rotated about a fixed axis, and simultaneously uniformly translated in the axis direction.
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For instance, the 1-soliton surface of the nonlinear Schrédinger equation is shown in
fig. 1. The 1-kink surface of the sine-Gordon equation (11) is the so-called Dini pseudo-
spherical surface with the tractrix (%) as a generator.

Fig. 1. — 1-soliton surface of the nonlinear Schrddinger equation (10) is generated by a semi-cirele.

The above-presented surface-geometric setting allows us to interpret Bicklund
transformations (1:3,21:26.27) a8 g passage from an «old» soliton surface (defined by an «old»
solution) to a « new » soliton surface (defined by a « new » solution) and the connection
between the «old» and the « new » solution is a conventional (expressed by a first-
order differential equation) Bicklund transformation. This kind of passage (trans-
formation) is a generalization of the mentioned at the beginning Bianchi-Lie trans-
formation (1*14) for any 2-dimensional (nondiscrete) soliton system. More specifically,
consider two solutions ¢, v, ... and ¢’, ¢/, ... to the soliton system (1). & and @’ are
corresponding solutions to the linear problem (2). G-valued function @' @-2= D is
called sometimes a Darboux matrix. Any Darboux matrix satisfies the following first-
order differential equation:

(22) Du=gu(@s ¥ .5 ) D — Dgu(@, 9> .5 )

Fig. 2. — Bédcklund transformation as a generalized Blanchi-Lie transformation.
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Equation (22) is a conventional Bicklund transformation (1:2¢) rewritten in a matrix
form (%2327), Thus, any Bicklund transformation is defined by its Darboux matrix.
‘'The same Darboux matrix ean be used in the explicit expression of the above-described
generalized Bianchi-Lie transformation. See fig. 2. Observe that D-*D;eg and
P1DD Peg as well (P acts as an inner automorphism of g (1)).
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