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Within the frame of the general discussion on the principles and physical content
of quantum mechanics (QM) one the most interesting branches since 1952 deals with
the possible stochastie nature of its associated statisties. An increasing set of results (1-%)
have now established striking formal similarities with classical models of stochastic
theory such as Markov processcs (¥3).

Two basic obstacles remain however, which have prevented untilnow the completion
of the main statistical interpretation of QM in terms of real physical stochastic motions.

The first obstacle is the existence of a wrong sign (from the classical point of view)
in the stochastic version of Newton’s second law: a sign which is clearly necessary to
derive Schrodinger-type wave equations. For example in the notations of de la Pefia
and Cetto (®) Newton’s law takes the form

(1) m{D,v+ D)= I+
for Brownian motion: in contrast with the form given by NELSoN (2) t.e.
(2) m{D v — Dyu) = F+,

from which he has deduced (combined with the continuity equation) a remarkable
derivation of Schrédinger’s equation.

The second obstacle is the relativistic generalization of these stochastic models.
Indeed Haxim (%) has shown that it is not enough to write a relativistic generalization
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of (2) since if A{— 0 the only value for the diffusion constant v, (in (dz)®~ 2y,dt)
compatible with relativistic invariance is »,= 0. As a consequence LEHR and Parxk (7)
have been led to add to eq. (2) two supplementary axioms¢.e. a) the discretization of time
in the stochastic model; b) the attribution of the speed oflight ¢ to the stochastic particle
between interactions with the thermostat. Under these conditions they do indeed
recover the Klein-Gordon equation provided antiparticles are considered as particles
moving backward in time.

The aim of the present letter is to derive Nelson’s equation and quantum statistics
from a relativistic generalization of the hydrodynamical model of QM developed by
MADELUNG (8), TAEABAYAST (°) and extended to spinning particles by various authors (9).

This eclassical relativistic model generalizes the nonrelativistic stochastic hydro-
dynamical model of QM of Bohm and Vigier on terms of a fluid with irregular
fluctuations (*). ¥t contains three new physical features.

I) the fluid elements (and the particles) which follow the lines of flow of the
fluid with irregular fluctuations are built from extended elements in the sense discussed
by Bohm (**) and Souriau (*?).

I1) The stochastic fluctuations occur at the velocity of light.

ITI) The fluid is a mixture of extended particles (and antiparticles): the latter
being mathematically equivalent to particles moving backward in time (1%11).

The existence of such fluctuations (which induce in the particle a Markov type of
Brownian motion) hag been shown (!} to lead any initial distribution of the particles
in the fluid into a limiting equilibrium distribution const-o(w,(v)} proportional to the
fluid's average conserved drift density o(xu(r)). This means that the fluctuations of
our Madelung fluid induce on our particles stochastic jumps at the velocity of light
(from one line of flow to another) and that such jumps can be decomposed into the
regular drift motion v, plus an apparent spacelike random part u, with v, = day{z)/dr,
7 representing the proper time along the drift lines: so that vy-vy= —c%

Indeed any velocity w represented by a point P (with w,w, = 0) of the light cone
can be decomposged into the sum of two four-velocities v, and u, i.e. w = v,+ u, with
u, -u,> 0. Since the three indeprendent components of w determine the four com-
ponents of z,. As a consequence if one considers a particle of the preceding type it
undergoes two independent types of motions: @) regular motions along the fluid’s drift
lines of flow with the fluids own velocity v, &) stochastic jumps in any direction with
the veloeity of light with a four velocity w satisfying w-w = 0.

To establish (a)) let us first recall that a particle or a regular fluid element (which
can be compared with the stochastic particle and the thermostat’s elements in the
usual Brownian motion) are now represented in four dimensional space-time by time like
hypertubes instead of timelike lines. These hypertubes can be naturally assumed to
have a minimum spacelike radius 7/2 which yields the minimum distance # which
separates two continuous particles in any spacelike section passing through their centre
of mass. Independently of the stochastic jumps our drifting fluid is thus comparable

(") W. Leur and J. Parxk: Journ. Math. Phys., 18, 1235 (19717).

{3) K. MADELUNG: Zeifs. Phys., 40, 332 (1926).

(*) T. TAEABATYASIL: Prog. Theor. Phys. (Japan), 8, 143 (1952); 9, 187 (1953).

(1%) Summarized in F. HALBwWAcHS: Theorie des fluides & spin (Paris, 1960).

(11) D. Boam and J. P. Vicier: Phys. Rev., 109, 882 (19538).

(*3) F. HaLBwaAcHS. J. M. Souriavu and J. P. ViGler: Journ. Phys. Radium, 22, 26 (1961).
(1?) M, Fraro, G. RipEau and J. P. VIGIiER: Nudl. Phys., 61, 250 (1965).

(**) Ya. P. TERLETSKI and J. P. Vicigr: Zurn. Eksp. Teor. Fiz., 13, 356 (1961).



MODEL OF QUANTUM STATISTICS IN TERMS OF A FLUID ETC. 267

with @ timelike set of extended fibers and the minimum time needed to pass from one
of these hypertubes to the next is thus r/¢ = At since the jumps oceur at the vel-
ocity of light. Thisimplies that the proper-time variable which corresponds to adjacent
events in our stochastic model have nonzero minimum temporal separation A7

The second step is just to generalize to our relativistic model the average velocities
utilized by de la Pefia and Cetto (3) to discuss the nonrelativistic theory of classieal
and gquantum-mechanical systems. Let us start (fig. 1) from a four dimensgional volume
limited on the side by the fluid's regular lines of flow and, at both extremities, by two
spacelike constant phase surfaces (*%) 8§, and §,;. If the domain is small enough such
surfaces are separated by an interval 2Ar: an interval 4+ Ar separating &, and S,
from a median section §,. Of course [Ar|>Ax.

Fig. 1.

As a consequence of the assumed stochastic equilibrium we can treat on the same
footing the fluid behaviour and an ensemble of similarly prepared particles character-
ized by the density o(x, 7) in configuration space where x represents a point in four
dimensional space-time.

We shall now establish that the preceding model leads to the correct quantum-
mechanical statistics (governed in our simplified case by the Klein-Gordon equation)
in the simple case of a charged scalar particle. The simplification is justified since the
introduction of spin complicates, but does not modify significantly, the various steps
of our demonstration.

We can describe the average loeal motions of the elements of the ensemble by the
selection of all particles that at proper time v =17, are contained in a small four-
dimensional velume element around the point r = r, with co-ordinates (r,),. This is
necessary in our model, since if one starts from a particle in its local drift rest frame
{¢.e. the frame in which the neighbouring fluid element is practically at rest) its stochastic
jumps along the light cone can bring it into any neighbouring line of flow: both in the
forward and backward proper time direction. As a consequence our general stochastic
nmodel implies the use of a four-dimensional stochastic space-time volume element to
recover all possible stochastic jumps of each drifting particle. We have thus made the
new theoretical step of introducing along with the average space positions the new
concept of an average time in a four dimensional volume element.

In order to describe the global motion of this element we select the particles that
ab proper time 7, are contained on a small geetion (space-volume element) of §, limited
by the hypertubes beundary. According to our modelit is possible to distinguish two dif-
ferent kinds of motion of this volume element during a short interval Ar. Besides its
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motion as a whole in the hypertube (which preserves the fluid’s scalar density g) the
element will suffer variations of g due to the stochastic jumps which move matter
from one line of flow to another and will bring fluid across the hyperiubes’ boundary.
Generalizing de la Pefia and Cetto (?)’s ideas we can obtain a simplified description in
terms of two quasilocal statistical velocities. If we take any one of the particles of our
volume element and call r; and r, ity average mean position at v, = 7,— Ar and
7, = 7,+ Avr we ean calculate the average of ry—r, over the subensemble defined by
the particles which belong to our small volume element. We call these average values
the mean and denote them with { ». We thus write

(3) r,—r,={ry—ry>+38,r and ry,—ri=<y—r>+8r.

Since one must assume (in our model) the homogeneity, isotropy and time independ-
ence of our stochastic mechanism the change variable 3.»; must satisfy ((3,r,)> =
= {{8_r,)> so what we can omit the indexes from such expressions and write in gen-

eral {3r,> = 0.
We ean now derive from (3) two different velocities 1.e.

b, (2)=({ry,—ry)/Ar) and b_(2)= ((ry,—r)/AT),
whose mean values
v (2)= ’\b+(2)> = <((r3——r2)‘/A1:)> and v_(2)=b_(2)> = <((r2—r1)/AT)>

are the relativistic gencralization of the mean forward and backward velocities. From
these one can derive the regular fluid’s velocity v, and a stochastic belocity z, through
the relations

(4) v4(2) = <((r3— r)/2 AT) = ${v.+v.)
(5) u,(2) = {(ry—r;) — (ro—1)]/247) = {(v, —wv_)
T:T1 T'la
&y Oir O3t 3R
— -~ -— .
— - I
Ny n. n_| —_— Ny
— .
— ~—
—— —a
—-
- —_—
X=Xy =Xy g =X =X =¥3r
'l':'[1 T:T3

Fig. 2. — x;p (%) is the average posilion of the n.(n-) particles at 7y =7, — A7 and xzg(xqy) is the
average position of the same particle at 73 =7, + At grlog) being the densities of particles to the
left (right) of x ==x,.

Now the stochastic velocity u, can be delermined in any spacelike direction by
caleulating the flow between 1, and 7; of all elements which cross a drift timelike plane
passing through r, and orthogonal fo a spacelike direction z. Indeed let us consider
(see fig. 2) an ensemble of fluid elements (particles) which are at 7, in the neighbourhood
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of . If g, (0.g) then represents the scalar densities in the neighbourcod of x (x5} at
=1, we see that these densities are related to », and n_ through

= (Fyg~— %) 0 = (Fa— F1p) @11, and = (Typ — &) @n = (B — F31) Q1. -
This yields

2y + g — 2wy =

= {1/(n.+ n_) M=o, — #11)% + 01p(@in — @)%+ Qan{®ar — %2)* — Qap(Ta — ar)*]

which can be averaged over the ensemble. Since each of the parentheses then become
{(3x)?> we can write to the first approximation (with n. 4 n_= 20(z,)Ax):

(6) u,— <oy + 23— 2my) _ <(8-”)“>ng _ DYQ ,
2Ar 2AT p e

if we define as usual the diffusion coefficient as D = {(8r,)*>/2 Av and neglect higher-
order terms in Av. D iz always > 0 since our gquantum jumps are spacelike.

This is exactly the relativistic generalization of Einstein’s definition (1)) of the
stochastic velocity in Brownian motion. We have further v, = v,+ u, which con-
nect out forward (particle) and backward (antiparticle) velocities with the fluids regular
drift velocity v, and its stochastic velocity u,.

The second step is to associate the two velocities needed to describe our motion to
four accelerations required to deseribe the forward and backward changes of these
velocities. To do this we require the existence of our minimnm proper time interval Az
which allows us to define the four accelerations

b.(3)—b.(2)=al +35.b,,
b_(3)—b_(2)=a" +8,b_,
b.2)—b,(l)=a; +35.b,,
b_(2)—b_(1)=a-+ 5_b_,

M

which evidently lead to systematic drift and stochastic derivative operators. Indeed
if we define as Dy and D, the following operations on a general funection f(r) of the
stochastic variable r, i.e.

Daflry) = [f{rs) —f(r)]/287>  and D f(ry) = {[f(ry) + fir)—2f(ry)]/2 473,

which are evidently related with the forward (D*) and backward (D7) derivative oper-
ators through the relation: DEf= Dy D, we see they thus correspond to scalar
(proper time type) derivatives in timelike and spacelike directions... and yield the
drift and stochastic velocities through vq= D,r and w,= D,r: where the dummy
index 2 has been omitted. This generalizes v, = duay/dr and lead to the preceding
mean accelerations through the expressions af = Do, and az = D v,.

(*°y A. BINSTEIN: Investigations on the Theory of Brownian Movement (New York, N. Y., 1956).
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Moreover a development in Taylor series yields

(8) d _‘5’;—'_(”:1 )f are s
D,f=(u,-V)f+DV-V)j+ ...,

where the diffusion cocffieient D is given as before by the relation
81,87, /2 A7) = D3,

in the drift rest frame: diffusion in time representing, as before, particle-amtiparticle
fransition: 37; and 8, denoting any pair of Cartesian components of S.r ... which are
assumed to be statistically independent if ¢ 5= 4.

The third (essential) step is to derive the covariant generalization of Nelson’s
equation, in our medel. To do that we recall that any detailed description must start
from the general equation

mr = fy+fo-

where f; represents the drift spacelike forces and f the purely random effects the
denoting proper-time derivatives. The corresponding statistical theory must, according
to our model, start from the ensemble of particles which at any proper time 7, lie in
the neighbourhood of r,. The mean of the preceding relation thus becomes

(9) wiry=F,+ F,=F, where F;={fy with F,={f>=0.

Since the mean value of 7 is taken over the same ensemble utilized to define our
average velocities and accelerations in the preceding steps, it must be expressed as a
linear combination of af. To determine these combinations, we remark that <'t:> and
“f> can be split into two parts é.e. a part {r)+ (or <f»>*) which is invariant under proper
time reversal i.e. T,—7,—>7,—7, and a part (r>” (or {f;>") that changes sign under
this discrete symmetry which changes v, but conserves u,. Comhining equation (9)
with its counterpart obtained through a proper-time reversal operation we obtain the
new set of equations

(10) mryt = Ff.

We now make the final step in our demonstration of Nelson’s equation (2) by
examijning the implications of eq. (10). The first implication is the importance of the
proper-time relation m<F>" = FJ which evidently represents the stochastic generaliza-
tion of Newton's law for our model. Indeed the usual four-dimensional acceleration x
of a classical point x satisfies xx = 0 (since x-x=—¢?) and is invariant under
proper-time reversal. The same holds for our stochastic case since: a) the drift accel-
eration o, is orthogonal to v4; b) the stochastic spacelike velocity u, is locally ortho-
gonal to v, so that the corresponding stochastic accelerations (which vanish on the
average since <F,> = 0) are thus always orthogonal to v,.

The second implication is that (¥)*+ must be expressed by just the linear combina-
tion of relations (7) which are proper-time—inversion invariant i.e. (X -+ a3) or (el + aZ)
or a linear combination therefrom.
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The third implication is that a mean acceleration {which corresponds mathematically
to second-order proper-time derivatives) should be defined physically only by the motions
of fluid elements surrounding r, 4.6. enclosed within the four-dimensional volume element
limited by 3, and §; utilized to define mean guantities. We deduce therefrom and from
the explicit form of the a’s given in eq. (13), that the only quantity of this type in-
varjiant under v— —7 is (aX + a3). Indeed the definition of (af + a) implies knowl-
edge of the behaviour of fluid elements which lie outside our volume since it contains
four-velocities of elements which are crossing §, and §; in the backward and forward
directions i.e. are leaving this volume. Moreover one sees that the combination
(r> = (at + a7) evidently represents the relativistic definition of the sum of the mean
accelerations of antiparticles (a*) and particles (aj) passing through r, at v=17,:

As a consequence we must write relation (10) in the form

{11} tmiaet + al) = F*,

which is exactly the relativistic generalization of the form given by de la Pefia and
Cetto (®) to Nelson’s equation. Clearly eq. (11} contains particle-antiparticle symmetry.

The same argument applies to the — part of (10). Indeed the ounly combinations
of af that change sign under proper-time reversal are (al—aZ) and (et —a7) and
the second only is exclusively defined by the motion of finid elements between 8, and S;.
We thus have im(e”—aj)= F~ which satisfies the continuity equation and is
compatible with the introduction of the Lorentz force for charged fluid elements.
Moreover thege relations can be rewritten with the help of the definitions of Dy and D,
into the form

(12a) m{Dyvy— Dou,) = F+
and
(125) m(Dyu, + Dywg) = F~.

In eq. {12b) both sides tend (as they should) to zero in the nonstochastic limit.

The last step of our demonstration is, of course, the derivation of the integrated
stochastic equations which result from (11) and (12). This can evidently be done in
two ways. The first is to start from the drift rest frame at r, and define as usual Smolu-
chowski’s densities ¢ and P,. The interested reader can then check immediately that
gince we have demonstrated a) and Nelson’s equation (11) one can just follow Lehr’s
and Park’s demonstration (7) to recover Klein-Gordon’s equation.

The second way (which we will choose instead since it throws some interesting new
light on the physies of the problem) is so complete the relativistic generalization of
de la Pefla’s work (3).

In order to integrate (12a¢) and (128) we define the gquantities

(13) D,=Dy+eD,, vy=v,+su, and F,=F+4| F

with ¢ = + 1.

Relations (12a) and (120) can thus be combined into the complex eqgs. (14) i.e.
mD, v, = F, which can be integrated if one assumes that F, is just the general Lorentz
force applied to our fluid of spinless charged particles Z.e.

(F'u= (efe}(Budy— auAu)("q)u
with V-A=2,4,=0.
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Indeed if we then write therelation (15) i.e. v = ¢D -V & —(e/mo} 4, where D = #/2m,
V and A4 deuoting the four-vectors @, and A, and S, = const representing the surfaces
orthogonal to the four velocity »,. If we then utilize the Taylor developments (8) and
substitute (15) and (16) into (14) we obtain the general relation

(16) V{(2emDS + tmv v+ emDV-p) = 0,
which admits as first integral eq. (17) i.e.
— 2emS, = 2e2m D[V S, VS + V-V81— 2:D(efc) A- V8, —eD(e/e) VA + (e2/2me?) 4-A .
Introducing further the wave function ¢(r, v) = exp [emc?t/2A]p(r) i.e.
p(r, T) = exp [emciv/2A] ¥ (r) exp [e8,(r)],

we obtain from (7) the usual relativistic generalization of the Schrédinger equation, 4.e.
(18) 2mDe@) = (1/m)[2mDsV — (efc) A2 g ,
which reduces to the Klein-Gordon equation
(19) (8 —e(efe) du)2p — (m2e2/hi2)p = 0 .

Relation (19) yields (*3) the relations

(20) dojdr—¢—0 and d(Mvy)/dr = —V(Me?)
with
Me= {m*— R/} IR/R)}, w¥y=DR* and o= (M/m)R%.

ko sk

The author wants to oxpress his thanks to Profs. L. pE Broerie, D. Borm and
M. Frarto for long and helpful past discussions stressing the possible importance of
Einstein’s views on Brownian motion in the interpretation of QM. He is especially
grateful to Prof. Luis DE LA PENA-AUERBACH and A. M. CETTo not only for crucial
suggestions but also for help in the preparation of this work. Without this help, it
would not have been completed.



