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Summary. - -  A reformulation of quantum mechanics is introduced, 
which describes the ~ s ta tes ,  of an ensemble of quantum systems by 
means of positive real functionals on the Hilbert space of the systems. 
This reformulation allows us to generalize quantum mechanics in such a 
way as to induce the transition from second- to first-kind mixtures, which 
has boon suggested to occur by various authors in order to eliminate 
the EPR paradox. We explicitly build up a dynamical equation for the 
functionals, which reduces to the SchrSdinger equation when the sub- 
systems of a composite quantum system are close together, and gives 
rise, altering the quantum-mechanical evolution, to a transition to a 
first-kind mixture when the component subsystems are far apart. This 
transition is such that, at any time, the predictions concerning measure- 
ments of observables referring to one of the subsystems coincide with 
those which would follow from the pure Sehr~dinger evolution. The 
deviations from the standard theory affect, therefore, only the correla- 
tions between the subsystems. 

1. - Introduction. 

The nonseparab i l i ty  of the  subsys tems  of a composi te  qua n t um  sys tem 

is a t  the  origin of the  conceptua l  difficulties of q u a n t u m  mechanics  which are 

ev iden t i a ted ,  for instance,  by  the  so-called E P R  pa radox .  A way  to overcome 

such a deadlock  is to assume t h a t  s t a n d a r d  q ua n t um  mechanics  holds when 

the  subsys tems are  close together ,  bu t  t h a t ,  when they  are far  apa r t ,  each 

ind iv idua l  subsys tem regains definite phys ica l  proper t ies .  In  the  quan tum-  

mechanica l  language this  means  t ha t ,  when the  subsys tems  are  far  apar t ,  the  

7 - N N u o v o  O ~ m c n t o  B. 97 



9 8  G . C .  GHIRARDI~ A. RIMINI  and T. W E B E R  

second-kind mix ture  associated to a nonfactorizable pure s ta te  of the  com- 
posite sys tem changes into a first-kind mixture~ i.e. a stat is t ical  mix ture  of 
factorized states. Such a possibility has been considered by  BOH~ and 
AHA]~ON0V (~) and by  other  authors  (3), and has also been the object of some 
exper imenta l  investigations (~). The fact  t ha t  there  exists a definite difference 
between the quantum predict ions given by  a pure nonfactorizable s ta te  and  
those deriving from any  mix ture  of factorized states, as implied by  Bell 's 
inequal i ty  (4.2), has made  i t  possible to  discuss for a long t ime on the  above- 
ment ioned hypothesis,  wi thout  a n y  investigation of its formal  imphcations and 
without  a ny  a t t e m p t  to  build a dynamical  model for it. In  a recent  paper  (5) 
it has been proved tha t  the  usual description of ensembles of quan tum systems 
based on the  densi ty operator  formalism does not  allo~" one to describe a t ran-  
sition of the considered type.  In  fact~ such a t ransi t ion would necessarily lead 
from (different) statistical ensembles corresponding to the  same density operator  
to statistical ensembles corresponding to different density operators.  There- 
fore, to describe such a t ransi t ion,  it  is necessary to deal direct ly with ensembles 
and to take  into account  thei r  detailed composition. In  turn ,  this means  to as- 
cribe a weight to  each s ta te  of the  Hi lber t  space of the  considered system and  
to describe the t ime evolution of the  sys tem b y  the  evolution of such weights. 
In  o ther  words, an ensemble is character ized by  a numerically valued real and 
positive functional ,  defined on the rays of the  Hi lber t  space of the  system, and  
the  t ime evolution is a t ime-dependent  mapping of functionals into functionals.  

The main purpose of this paper  is to reformulate  quan tum mechanics in 
terms of functionals on Hi lber t  rays,  and to show how it is possible to  modify 
the law of t ime evolution in such a way as to include the  description of the  
above-considered t ransi t ion from second- to first-kind mixtures.  In  sect. 2 
and 3 we develop the formalism of densi ty functionals and we express in terms 
of it  the  SchrSdinger evolution. In  sect. 4 we explicit ly determine the density 
functionals for  some par t icular  cases which will be useful in what  follows. 
Section $ is devoted to  deriving the  general  condition tha t  a densi ty funct ional  
mus t  satisfy in order  to  describe a mix ture  of factorized states. Section 6 deals 
with the  problem of determining densi ty  functionals for composed systems by  
s tar t ing f rom those for the  component  subsystems. In  sect. 7 we define a gen- 
eral class of mappings among densi ty  functionals for composite systems leading 
to densi ty  functionals corresponding to a first-kind mixture.  Using the results 
of theP preceding sections, we derive in sect. 8 the dynamical  equation gen- 

(1) D. BOOM and Y. AHXRONOV: Phys. Re,;., 108, 1070 (1957). 
(~) J .M.  JA~CH: .gendiconti S.I.P., Course IL (New York, N. Y., and London, 1971). 
(s) L. R. KASDAY, J. D. ULI~AN and C. S. Wu: 2r (Timento, 25 B, 633 (1975), 
and references quoted therein. 
(4) J. S. B~LL: Phyaies, 4, 195 (1964). 
(~) G. C. GHI:aARDI, A. RI~[INI and T. W~BER: 2~uavo Gimento, 31 B, 177 (1976). 
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eralizing the Schr6dinger equat ion and  account ing for the  evolut ion which 
leads, under  the proper  conditions, to a f irst-kind mixture .  I n  sect. 9 we m a k e  
some conclusive r emarks  and  we point  out some problems which deserve fur ther  
invest igation.  We have  confined in the appendix  the  densi ty  funct ional  de- 
scription of the  reduct ion of the  wave packe t  due to  measurements .  

2. - The dens i ty  funct iona l  f o r m a l i s m .  

As s ta ted  in the  introduct ion,  we will describe the  (~ s t a t e ,  of a q u a n t u m  
sys tem by  means  of a funct ional  defined on the  rays  of the  Hi lbe r t  space of 
the sys tem,  the  value of the  funct ional  represent ing  the  weight  with which 
the  s ta te  associated to the r ay  enters  the ensemble.  I n  practice,  we shall use 
functionals  p(~), defined on the  vectors  v 2 of the  Hi lber t  space, such t ha t  

(2.1) p(cv2) = p(v2) , e complex # O. 

Owing to its meaning,  p(v2) mus t  be a real,  nonnegat ive  numerical  function, 
which we shall call densi ty  functional .  The densi ty  funct ional  p(~) m a y  be 
different f rom zero on a single s ta te  (pure case), on a finite or countable  set 
of states,  or even on a cont inuous set of states.  The la t t e r  case is a descript ion 
of a mix tu re  for which the  only informat ion  we have  abou t  the  s ta tes  of the  
sys tems of the  ensemble  is t h a t  these s ta tes  lie in a cer ta in  region of the  Hi lber t  
space. Fo r  example ,  i t  is of ten considered (') the  so-called isotropic mix tu re  
of spin-�89 part icles,  in which the  part icles are polarized along uni formly  dis- 
t r ibu ted  directions in the  phys ica l  space. 

I n  order to normalize a cont inuous dens i ty  funct ional  p(v2) , or to compare  
the  (statistical) weights corresponding to different regions in the  space of states,  
i t  is necessary to define the  in tegral  of p(~V) over  a region of such a space. To 
this purpose,  we l imit  ourselves to the case in which the  space of the  s ta te  vec- 
tors of the sys tem is finite dimensional.  This is the  ease, e . g ,  when only the  spin 
degrees of f reedom are considered. The integral  over  a region of the  (complex 
N-dimensional)  Hi]ber t  space ~r even though it  makes  reference to a specific 
o r thonormal  basis in the  space, mus t  be invar ian t  wi th  respect  to un i t a ry  
t ransformat ions  of the  basis.  We s ta r t  by  considering the  e lement  of vo lume 

(2.2) 

where 

(2.3) 

d ~  - -  dxl dyl dx2 dy2 ... dxzr d y , ,  

el, e , , . . . ,  eN being a complete  o r thonormal  basis in iF.  The invar iance  of dg~ 
under  un i t a ry  t ransformat ions  follows f rom the fact  t h a t  any  un i t a ry  t rans-  
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formation in a complex _hr-dimensional linear vector space induces an orthogonal 
transformation in the corresponding real 2hr-dimensional linear vector space. 
We shall use polar co-ordinates in each (~,  yk)-plane, so that  

(2.4) 

where 

(2.5) 

d ~  = Q1 do1 dOt Os d~a dO2 ... ~u d~u dO~,, 

The requirement (2.1) implies that  p(~) does not depend on the square 
N 

norm ~ 0~. Furthermore, in the space of the angles 0k, p(~) is a constant 
k--I ~V 

along the hnes orthogonal to thehyperp lane  ~ 0k = 0. Finally, p(~) must 

take the same value on those of the above-said lines for which any of the 
angles 0z is changed by an integer multiple of 2m I t  follows that,  if we consider 
a hypereube having edges parallel to the 0-axes of length 2~, all rays of the Hil- 
bert space cross the hypereube, and the sum of the lenghts of the portions inside 
the hypercube of the lines corresponding to the same ray is 2~ / ' f f .  To in- 
tegrate over the rays, we shall use the element of volume 

(2.6) 
M 

I 1 

and, for/(~2) satisfying (2.1), we shall write 

(2.7) 

0 0 0 0 

The 8-function in (2.6) and (2.7) restricts the integration to the normalized 
~2's. The invariance of the integral (2.7) under a change of the Hilbert-space 

M 

basis follows from the invariance of dJ~' and ~ ~ and from the fact that  all 
k--1 

the above-described hypereubes are equivalent. We normalize the density 
functional by requiring 

(2.8) [p(~) d~ = 1. 
J 

The expression for the mean value of an observable A is now obviously 
given by 

(2.9) (A)  ----fd~p(~) <~lAl~), 

and the density matrix for the ensemble characterized by p(vJ) is 

(2.10) e ----fd~p(~)l~) <~[. 
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I t  is trivial to verify that  

(2.11) (A) = Tr (A~). 

I01 

3. - The Schr~llnger equation. 

To express the time evolution given by the SchrSdinger equation in the 
language of the density functionals, one needs to define the Hilbert-space gra- 
dient of a functional. We denote such an operation by the symbol grad and 
define it through 

l a p  .~p (3.1) <e, lgrad,> = ~ (~-~ + .  ~ )  �9 

I t  is easy to show that  the components of grad p defined by (3.1) actually 
transform~ under unitary transformations of the basis~ like the components of 
a vector. 

The SchrSdinger evolution of 13(~ t) is characterized by the fact that  p ( ~  t) 
must take at time t the same value on the state exp [-- iHt] q~ that  p ( ~  0) had 
on the state ~. Then we write 

(3.2) 

which implies 

(3.3) 

Putting 

(3.4) 

we have 

(3.5) 

p(exp [ -  im] ~, t) =p(~. o). 

dp(exp [-- ~m]~, t) = O. 

If  we take into account that  p is real and express ap/Ox~ and Op/~y~ in terms 
of the components of grad p~ eq. (3.5) becomes 

(3.6) ap + (gradp[y)) -{- (~b[gradp) ---- 0 
Ot 

Using r =- iHv, we get for p(V, t) the evolution equation 

~P = 2 Im (~]H g r a d p ) ,  (3.7) ~t 



102 o . c .  GHIRARDI ,  A. R I M I N I  a I l d  T. W E B E R  

which is equivalent  to the  Sehr6dinger equation.  I f  we write symbolically 

(3.s) ap o---i=~p , 

it is easily verified tha t  the mapping among functionals denoted by  S is l inear 
with respect to the  field of real  numbers .  

Equation (3.7), being equivalent  to the  Schr6dinger equation,  does not  
change the s t ructure  of the set of states of 9~ on which p(~) is different f rom 
zero; in particular,  a p(v/, 0), which corresponds to a pure  state,  evolves into a 
p(v2, t), which again describes a pure  state. This equation,  however,  can be 
generalized, by  adding new terms at  the  r ight-hand side, to describe a t ransi t ion 
from a p(~) which is different f rom zero only on one ray  of ~ to one which 
takes nonzero values over  several rays.  The obta ined formulat ion of the 
standard quantum evolution is, therefore~ par t icular ly  suitable for general;. 
zations which can describe the  t ransi t ion from second- to  first-kind mixtures  
which we are in teres ted in. 

4. - Examples  o f  density functionals .  

In this section we build explicit ly the  densi ty functionals for some par t icular  
cases which shall be useful in what  follows. 

Let  us s tar t  with the  densi ty funct ional  p~(~o) corresponding to  the pure 
state ~. Using the variables Qk and Ok defined by  (2.3) and (2.5), we introduce 
the ray variables 

(4.1a) ak = ~k 0 ' 

(4.1b) ~k ---- 04--  0 , ,  

k : 2, 3, ..., N ,  

k ---- 2, 3, ..., ~ ,  

and analogous variables ~ ,  ~k for the s ta te  ~. 
be writ ten as 

(4.2) 

where 

+ ~  

(4.3) ~(~k- ,h) = ~ 0(vk- ~k-  2j~) 

Then the funct ional  p~(~) can 

2s  
p~(~o) = ~ l e I  [~(~- ~) g(,7~- ~)1,  

k--ll 

is a periodic S-function having the  p roper ty  tha t  its integral  over any  interval  
of length 2~ is 1. Equat ion  (4.2) gives the  normalized densi ty funct ional  cor- 
responding to the pure s ta te  described by  the  vector  ~. F r o m  (4.2) one sees 
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tha t  p~(~) is a ray function for the dependence both on ~ and on ~. !Koreover, 
p~(~) has the following formal property of a 0-function for ray functionals:  

fd~/(v~)p~(y~) = / ( ~ ) ,  provided /(rap) = 1(~), (4.4) 

which shows tha t  any  real positive ray  functional can be expressed as a linear 
combination of the basic density functionals p~(~). 

Another density functional, which will be useful in what  follows and will 
be denoted by p~(v2) , is the one corresponding to a uniform mixture of the 
states of a given m-dimensional linear manifold ~gt'. By  uniform mixture  we 
denote the mixture in which all vectors of Mr appear with equal weight. Let  
us introduce a basis {ek}, k = i l ,  ..., IV~ in ~ ,  whose first m elements span the 
linear manifold ~ .  According to the above characterization of the uniform 
mixture  we can write 

(4.5) ( m - -  1 ) !  _ " 2 

In calculating the normalization constant,  use has been made of the fact tha t  

(4 .6 )  

o 

In eq. (4.5) the 0-functions appearing under the integral sign guarantee tha t  
no state which does not  belong to dr' contributes to p~(~).  An equivalent 
way of constructing p~(~) would have been to integrate p~(yJ) over the linear 
manifold Jr'. In  so doing one would have obtained essentially the same 
result (4.5) with only the formal complication of an irrelevant dependence on 
the angles 0~ associated to vanishing ~ 's .  I t  is immediately seen tha t  
p.~(cv)--- p.~(y~) (c complex ~: 0). I t  is also immediate  to check tha t  the density 
operator ~ corresponding to the  density functional (4.5) is 

i.e. it  is a multiple of the projection operator on the considered manifold ~ .  

5 .  - F a c t o r i z e d  s t a t e s  a n d  m i x t u r e s .  

In  this section we shall consider composite quantum systems, i.e. systems 
associated to state vectors belonging to a Hilbert  space ~ a . ~  which is t h e  

direct product  of the ~ i lber t  spaces ~ " )  and  ~ associated with the corn-  
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ponen t  subsystems. In this ease, as discussed in the introduct ion,  the  fac- 
tor ized  states play a very  impor tan t  role, since they  are the  only states for 
which individual properties can be a t t r ibu ted  to the component  subsystems. 
I t  is then useful to characterize within ~fc~.,) the set of factorized states and 
to derive the condition tha t  a densi ty  funct ional  p(~), with yJ e ~f(~2), must  
satisfy in order t ha t  it corresponds to a mixture  of factorized states. 

Here  we briefly recall a t  heorem due to vo~  N E U ~ A ~  (~), which will be useful 
in what  follows. Le t  j~ ,~v_- -~f~)@j~,~  and consider a normalized state  
~eJff(~,~). Von 5Teumann's theorem states tha t  one can write 

1 

where (1~(1))~ and (Ig,(2))~ are or thonormal  sets in fit ~(~) and J~'(e, respec- 
tively, and the  2j are positive real numbers.  The expansion (5.1) is unique,  
provided the eigenvalues Jlj are all different among themselves. Considering 
the densi ty operator  associated with 

(5.2) e = I~) (~1, 
and defining 

(5.3a) 0 m ----- Tr(V 9 ,  

(5.3b) 9 (t) ~ Trey 0 ,  

one can see tha t  0 (1~ and 0r have  the same set of nonzero eigenvalues 2~, the  
corresponding eigenveetors being ]r and 1Zj(2)), respectively. In  (5.3a, b) 
Tr ~ and Tr c1~ denote part ial  t racing over ~(2) and ~cu ,  respectively.  

By means of the above theorem it is then easy to prove t h a t  the  neces- 
sary and sufficient condition for y~ to be factorized can be wri t ten as 

(5.4) ~'"[(Tr'2' l~)  <~l)'] = 1 .  

The necessity is obvious. To prove the sufficiency we observe tha t  (5.4), owing 
to (5.1), can be wri t ten  

(5.5) ~ ~ = 1 .  
J 

Since Tr 9 = ~ 2~ = 1, eq. (5.5) can be satisfied if and only if there  is only 
t 

one eigenvalue different from zero, and i t  equals 1. F rom (5.1) there  follows 

(6) J. YON NEu ~ANN: Mathematical Foundations ol Q ~ m t ~  Mechanics (Princeton 
N.J. ,  1955), p. 429. 
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then tha t  ~ is factorized. In  the ease in which v 2 is not  normalized, condit ion 
(5.4) reads 

(5.6) Trm[(Tr")tY)><VI)']----IJy~' 

Let  us express condition (5.6) in an arb i t rary  factorized basis of ~,(~.% 
we write 

- ( I )x  

If  

eq. (5.6) becomes 

(5.8) 
t~k| t~rkz 

Because of the ident i ty  

(5.9) Y. ~,~r = Z Iz,.l' 1~,,I ~ -  �89 5 I~,,~,,- ~,,~,,i', 
t l k l  (Jkl ~Ikl 

eq. (5.8) is equivalent  to 

(5.10) �9 ~h~l~ -~- ' ,~id~jk. 

Suppose tha t  the Hi lber t  spaces j~,m and $~,(m) be n- and m-dimensional, respec- 
tively. The n •  relations (5.10), which are necessary and sufficient for the 
factorizabil i ty of the state  (5.7), are not  all independent.  I t  is easily proved 
tha t  only ( n - - 1 ) •  among the n •  relations (5.10) are independent.  
If  we arrange the z~/s in a rectangular  matr ix ,  the  independent  relations can 
be obtained,  for  instance, by  imposing the vanishing of all the  2 •  determi- 
nants  buil t  with 4 contiguous elements of the mat r ix  z,j, or, provided z n ~ 0, 
buil t  with the elements zn, r~, z , ,  z,,. I f  one iexpresses condition (5.6) as 

(5.11) F(~o) ---- 0 ,  

th'e condition t ha t  a density functional  p(~) corresponds to a mixture  of fac- 
torized states can be wri t ten  as 

(5.12) F(~)p(~) - -  o .  

If  one wants to  modify quan tum mechanics to eliminate the disturb- 
ing features connected with the E P R  paradox,  one has to require that ,  
when the component  subsystems are far apar t  f rom each other,  the system 
must  be described by  density funetionals satisfying (5.12). Condition (5.12) 
amounts  to the s ta tement  that ,  in order to be a mixture  of factorized states, 
the density functional  must  contain &factors expressing tha t  (5.10) is satisfied. 
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Using, instead of the z, 's ,  the  variables ~ ,  and ~ ,  defined by  relations anal- 
ogous to (4.1a) and (4.1b), we can express (5.10) by  requiring tha t  p(y~) con- 
tains the following product  of ~-factors: 

(5./3) 

where an is not  an independent  variable,  bu t  is defined by  

(5.14) o"11 = 1 - -  ~ 4 "  
~ I , I  

6. - Ensembles  o f  composi te  quantum systems.  

In  this section we shall construct  the densi ty  funct ional  for an  ensemble 
of composite quan tum systems s ---- el -}- ss f rom the densi ty funetionals io(~(~) 
and p~)(v2~ } for the subsystems s~ and s~, respectively, when par t icular  require- 
ments about  the way of associating states of s~ and s2 are given. The Hi lber t  
space on which p(~) is defined is the direct product  of the  Hi lber t  spaces ~ m  
and ~ )  of 8~ and s~, which are assumed to be n- and m-dimensional, respec- 
tively. 

To begin with, we ca, n consider the  c~se in which both  s~ and ~ are in the  
pure states ~ and ~,, respectively.  The composite system is then  described 
by the density functional  (see eq. (4.2)) 

2nm 
(6./) ~ . ( v )  = 5~,1-[.1[~(~, - ~,) ~(~, , -  q , ) ] ,  

where the variables ~ ,  and ~ ,  are defined in the usual way in terms of the  
variables 

(6.2) ~,, - -  ~ , ~ , ,  ~,, = ~, + ~,. 

By means of a ra ther  e~mbersome calculation one can prove tha t  eq. (6.1) can 
also be writ ten as 

(6.3) (t) (e) 
p~,~.(~) = g(~l, ~.) I I  [~ (~, ~1 - ~1 ~,,) ~(~,,- ~,1 - ~,,)] p~, (~1) p~. (~,), 

~1 

[z) pe~(~vl) and p~(%) being the pure-state density funetionals given by eq. (4.2) 
for systems sl and s2, respectively. The funct ion g(~2z, YJ2) turns  out  to be 

(0.4) g(~, ,  ~,) = 2c.-1,c.~1,~ (r (oT~)~-i ,  
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' is given by  eq. (5.14) and where a n 

(6.5} ~ "  = 1 -  ~ a~ ~)' , a = 1, 2. 

When the  systems sl and s, are not  in pure states, bu t  are described through 
a rb i t ra ry  densi ty  functionals pm(w ) and pc~(W)~ we can write 

(6.6) p(v) = g( l, v,) I I  - p"(vl)p'=(v,) �9 
~ 1  

To unders tand  the meaning of eq. (6.6), let  us consider two regions Vx and V. 
in the  Hi lber t  spaces ~rEm and ~f~2~, respectively,  and a region V in ~fc,,,~_-- 

~ c u  | ~ci)  such tha t  the  only factorized vectors of V are the vectors W W 
with ~, e 171, W e 172. I t  can be proved t h a t  

(6.7) f p ( v )  d~ = f p(1)(w) dvA. f p(~(w) d w . 
F V 1 Ft 

This equat ion shows t ha t  the  funct ional  p(v2) defined by  eq. (6.6) describes 
a mixture  of systems s ~ sl + s2, such t ha t  the  system s is always in a fac- 
torized s ta te  and tha t  to each state  of the sybsys tem 8~ are associated for 8# 
(~, fl ---- 1, 2 ; ~ V: fl) all states of ~fr with weights Pr We shall cad this 
mixture  the  f~ctorized mixture  associated to p(X~(~l) and pc2~(~2). I t  can be 
checked t h a t  the  corresponding densi ty  operator  is the  direct product  of the 
densi ty  operators corresponding to pC~(Vl) and  p(2~(W): 

(6.s) fp(v) lv:> <VldV =fP'(V,)Iv,> <v, law <v, tOv.- 

7. - Mappings from second- to first-kind mix~ares.  

Now we are in a position of s tudying  some specific mappings of densi ty  
functionals which correspond to  physically interest ing processes. One could, 
for example,  consider the mapping on P(V) induced by  a measurement  of an 
observable L of the system. Since such a mapping can also be described within 
the densi ty ope ator  formalism, we have confined its s tudy  in the language of 
densi ty functionals to the appendix.  In  this section we shall consider mappings 
which account  for a t ransi t ion from a second- to a first-kind mix ture  satisfying 
suitable requirements .  Such mappings will then  be considered, in the nex t  
section, as e lementary  processes whose i terat ion leads to the  explicit  construc- 
t ion of an equation describing the  mechanism considered by  BOH~ and 
~A~,ONOV (i) and discussed in the  introduct ion.  
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Let p(~) be an arbitrary density functional in the Hilbert space ~,~.v of 
a composite quantum system s = s~ ~-s,, and let P#(~2) be the image of p(~) 
under a mapping B which leads, for any P(~2), to a mixture of factorized states. 
Since this type of mappings will be used to account for the transition considered 
by BoB:~ and AI~IR01~0V, one has to require that  the results of all possible 
measurements of observables of each subsytem coincide for the two ensembles, 
which implies 

(7.1) T r  r ~, = Tr ~" ~#, ~ = 1, 2, 

and Q# being the density operators corresponding to p(~) and p#(~), respec- 
tively. We start by considering the case in which p(~) corresponds to a pure 
state ~ for the composite system. Making use of the yon ~eumann ex- 
pansion (5.1) for ~, we write 

1 | 

(5.1) ]~> = ~ V~,]~(1)>IZ~(2)> , ~ ~t~ ---- 1. 
/r ]L'.-I 

For the sake of definiteness we suppose that  the 2~'s have been ordered ac- 
cording to 

(7.2) 2, ~ 1~+1. 

Let us consider the density functional p~,x~(~2) corresponding to the pure state 
~(1) Z~(2). A possible choice for p~(~) could be 

(7.3) 

I t  is easily seen that  

(7.~) 

so that  (7.1) is satisfied. However, (7.3) is undefined when two t~'s become 
equal, since (5.1) does not uniquely determine the corresponding ~(1), X~(2). 
To overcome this difficulty, one could, in the degenerate case, replace the 
unidentified pure states ~k(1), ;~k(2) by the uniform mixture on the degenerate 
manifolds. Such a procedure can be easily developed, but then one would have 
a sudden change in p~(~) when two t~'s become equal, so that  the mapping 
pv(v2)-+p~(~) would not be continuous. Then we proceed in the following 
way. Let p~,(~) be the factorized mixture associated to the uniform mixtures 
for the subsystems s~ and s, ,  built on the linear manifolds spanned by the vectors 
~(1), ~,(1), ..., ~j(1) and Xx(9), Xj(2), ..., Xj(2), respectively. The density func- 
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t ional p~(v2) is not  defined when 2k ~ ~+1 or 2~ ~ 2~+1. Then we take 

(7.5) p~(~) = ~ k ( ~ - -  ~+,) j (~ , - -  ~,+,)P*,(V'). 
kt 

I t  is easily checked tha t  p~(~0) satisfies the normalization condition (2.8). ~o t e  
t ha t  tile undefinedp~(~) do not  appear in (7.5). I f  we take into account eqs. (4.7) 
and (6.8), the density operator corresponding to Pk~(~) turns out to be 

1 k 1 t  
(7.6) e , , - -  51 | Iz,(2)> <z,(2)l �9 

Therefore, the density operator corresponding to p~(~o) turns out to be 

| 

(7.7) ~ --~ Z k(2k-- 2~+1)j(2,-- 2~+1) ek, = Tr '"  Iv~> | mr,'> I~> <r 
k$--1 

so tha t  (7.1) is satisfied. The mapping 

(7.8) p$(v  2) = Bp~(v2) 

is continuous. In fact, it can be proved tha t  for any  given e >  0 there exists 
an ~/> 0 such tha t  ]]~-- ~'[] <~/ implies ]p~(yJ)--p~(~)l<:s.  We note that ,  
when ~ is factorized, p~(y) )=  p~(v2). 

Up to now we have only defined the mapping for density functionals cor- 
responding to pure states. Now we extend the mapping to all funetionals by 
linearity, i.e., given an arbi t rary density functional p(yJ), owing to (4.4) we 
define 

(7.9) p#(v2) = Bp(y~) : f d~2p(E2)p$(v2) . 

Any extension of the mapping (7.8) other t han  (7.9) would violate the obvious 
physical requirement tha t  the transit ion transforms the union of two statistical 
ensembles into the union of the t ransformed ensembles. I t  is easily seen tha t  
the density operator 0# associated to p#(v2) is given by 

(7.10) 

We note t ha t  ~# does not  coincide with the density operator 

(7.11) ~ ' ~  TrOll 0 Q Tr(ll 0" 

To unders tand the physical meaning of (7.10), one has to consider the corre- 
lations between the subsystems s~ and s~ of s. The correspondence ~-> ~' 
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given by  (7.11) would imply t ha t  all correlations existing between sl and s~, 
when the ensemble is associated to the densi ty operator  ~, disappear for Q'. 
On the contrary ,  the correspondence given by  (7.10) entails t ha t  only the cor- 
relations implied by  each state  ~ of the  ensemble are destroyed,  while memory  
remains of the fact  t ha t  the couples of subsystems sl and s~ were associated 
in certain definite ways in the original ensemble. For  example,  let us consider 
an initial ensemble E of systems s of two nucleons s~ and s2 in the singlet spin 
state,  E being composed of two subensembles E '  and E" such tha t  s~ and s2 
are both  neutrons in E '  and both  protons in E". Then both  densi ty operators 
(7.10) and (7.11) correspond to a final ensemble in which the spin correlations 
inherent  to the  singlet state arc destroyed.  However,  (7.10) implies tha t  when- 
ever sl is a neut ron  (proton), s~ is a neu t ron  (proton) too, while (7.11) would 
allow systems s composed of a neut ron  and a proton.  

We note  tha t  the choice (7.5) for the  desired mapping is not  the only pos- 
sible one. Another  possibility would be 

(7.12) pv@(~o) • ~ k(~t~-- ~+I)P~(YJ) �9 
k 

I f  (7.12) is adopted,  (7.10) is no longer valid, but  (7.1), as well as the cont inui ty  
of the  mapping, remains true.  

As we shall discuss in the  conclusive section, the mapping (7.5), when used 
to build a dynamical  equation,  gives rise to unwanted  consequences, so t h a t  
the above-said arbitrariness can be ve ry  important .  

8. - General izat ions o f  the Schriidinger equation.  

Tow we are in a position to generalize the SchrSdinger t ime evolution 
equat ion (3.7) along the lines sketched in the introduct ion.  Let  us consider the 
mapping among densi ty  functionals 

(8.1) p ( ~ )  -~  B p ( ~ )  , 

where B is defined by  eqs. (7.9) and (7.5), and  suppose tha t  the ensemble we 
are considering, besides evolving according to  the  SchrSdinger equation, is 
repeatedly subjected, with mean f requency 2, to random e lementary  processes, 
whose action on p(~) is described by  (8.1). If  we denote by S the generator  of 
t ime translat ions for the pure SchrSdinger evolution, as in (3.8), the  change 
of p(v2, t) during an infinitesimal t ime interval  dt is given by  

(8.2) p(~p, t + dr) = (1--).dt)[?(~,,  t) + Sp(w, t)dt] + 2dtBp(~, t), 
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since 2dr is the probabil i ty of occurrence of an e lementary  act  (8.1) in dt. 
From (8.2) we immediately get 

(8.3) 
c~p(~, t) 

~t - Sp(y~, t ) -  ),(1 - B)p(y,, t ) .  

This equation consti tutes a generalization of the SchrSdinger equation. :Even 
though we have derived it as describing the occurrence of repeated sudden 
processes, eq. (8.3) can also be interpreted as describing a.n inherent ly  con- 
t inuous process. I t  is impor tan t  to remark  tha t  eq. (8.3), provided B satisfies 
eq. (7.1), implies tha t  the density ol)erators for the subsystems s~ and 82 (ob- 
tained, as usual, by  par t ia l  tracing) coincide at  any  t ime with the densi ty op- 
erators whic]I wouhl be obta ined by  the SchrSdinger evolution alone. There- 
fore, the differences between the evolution given by (8.3) and the s tandard  
SehrSdJnger evolution manifest  only in the correlations between the two sub- 
systems st and 82 and cannot  be evident ia ted by  measurements  involving only 
one of the two subsystems. 

To discuss eq. (8.3), it is convenient  to define a new funct ional  ~(y~, t), ac- 
cording to  

(8.4) p(v2, t) ----exp [St] ~)(v?, t ) ,  

so tha t  eq. (8.3) becomes 

(s.,~) 
a~(~,, t) 

~t -- 215(~, t) + 2 exp [-- St]B exp [St]~(~, t ) .  

Now w., .suppose tha t  the SchrSdinger evolution operator  commutes  with B. 
This certainly happens if the two subsystems st and 82 do not  interact .  In  fact,  
in such a case, the yon 5;eumann decomposition (5.1) for the vector  ~(t) is 

l 
!~(t)} = ~ V ~  exp [-- iH,  t] I~k(1)} exp [-- iHzt] I)&(2)}. 

There follows tha t ,  by applying B to pe, t,(~p), the  only change in eq. (7.5) is t h a t  
the factorized mixture  pkj(v2) is now defined on two linear ma.nifolds, which 
are the t ime-evolved ones of those at  t ime t ~ 0. On the other  hand,  by  ap- 
plying tile Sehr6dinger evolution operator  to p~o)(V2) given by  (7.5) amounts  
simply to let t ing the two linear manifolds on which p~(~) is defined evolve with 
time. Under such conditions, eq. (8.5) becomes 

a~(~,, t) 
(8.6) ~t - - -  ~. (1-  B)~(~, 0 .  



1 1 2  G . C .  GHIRARDI,  A. RIMINI  and T. WEBER 

The initial condition for eq. (8.6) is ~(~, 0 ) ~ p ( ~ ,  0). We write p(~, 0) as 
the sum of two terms:  

(8.7) p(~, 0) =p , (~ )  + p..(~),  

the  first one being different f rom zero only oi1 the  factorized states, the  second 
one only on the  nonfaetorized states. Sincc B does not  affect the  factorized 
states, we have 

(8.8) Bp:(~o) = p,(~o) . 

We t ry  to solve eq. (8.6) by  pu t t ing  

(8.9) ~(~o, t) ~--p~(v2) -~ a(t)p~,(~o) + [ 1 -  at(t)] Bpo,(~o), 

the  initial condition for a(t) being 

(8.10) a{0) = 1.  

I f  we take  into account  t ha t  B~--  - B, eq. (8.6) gives 

da(t) 
(8.11) dt [ P " ( ~ ) -  B p . , ( ~ ) ]  = - -  2 a ( t )  [P-.(W) - -  B p . , ( ~ ) ] .  

Since the density functionals appearing on both  sides of eq. (8.11) cannot  be 
zero, this equat ion gives 

(8.12) doJ_) _--_ ),z(t) 
dt 

i.e. 

(8.13) a(t) = exp [-- )~t]. 

Therefore, under  the hypothesis  t ha t  the Sehr6dinger t ime evolution operator  
commutes  with the operator  B,  we have 

(8.14) p(~o, t) ~-- exp [St]pt(~o ) ~- 

-~ exp [-- )2] exp [S$] p,,(~) + (1 -- exp [-- ~t]) B exp [S$]p,~(~o). 

All terms in eq. (8.14) are subjected to the SchrSdinger evolution. In  addition, 
the pa r t  of the initial density functional  corresponding to nonfactorized states 
is gradually t ransformed into a mixture  of factorized states. 

According to (8.14) an ensemble associated to any  initial s ta te  ~o is t rans-  
formed, af ter  a sufficient t ime r into a mixture  of factorized states. This shows 
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t ha t  eq. (8.3) cannot  be assumed as a basic dynamical  equat ion for all com- 
posite quan tum systems, since it  would be incompatible with the propert ies 
of stable composite quan tum systems. Actually,  as has a l ready been repeat-  
edly stated,  one wants  t ha t  the t ransi t ion from second- to first-kind mixtures  
takes place only when the two subsystems sl and s2 are widely separated in 
space f rom each other.  We have then  to modify  the mapping B to take  into 
account  this fact  (*). To this purpose, let us define the project ion operator  
P> such t ha t  

0 ,  when [ r x - -  r~[ < a,  

(8.15) P> v/(rx, r,) = ~v(rx, ra),  when [rx-- r2[ > a,  

where r , ,  r ,  are the  space co-ordinates of subsystems S 1 and s2, respectively.  
Now we define a new mapping B>: 

(8.16) B>p(W) + <~PlP<I~>Pv(~o)]P(~)dV, 

where P < =  l - -P>,  p~(v2) is given by  (7.5), and p~ (v/) is, as usual, the  densi ty 
funct ional  corresponding to the  pure s ta te  v 7. I t  is easy to check tha t  p*(~v) 
satisfies the normalizat ion condition. The mapping B> has the following prop- 
e r ty :  

(8.17) B>p(~v) = 

Bp(v), 

p(~o) , 

p*(~), 

when p(~v) is such t h a t  (v/IP<[~v)i~(~v)=0 , 

when p(~v)is such tha t  (~lP>lv2)p(~v)=0,  

otherwise.  

I f  we use B> in place of B, the evolution equations (8.5) becomes 

(8.18) 8~(~, t) = _ 2~(~, t) + 2 exp [-- St] B> exp [St] ~(~v, t). 
85 

I t  is easily shown t h a t  

(8.19) exp [-- St] B> exp [St] p(~) = 

= f [ ; ~ l  exp [ iHt] P> exp [-- iHt] l~)p~,t_~a,m(exp [-- iHt] ~v) + 

+ (~l exp [iHt] P< exp [-- iHt] I~)p~(~v)]p(~) d ~ .  

(*) The  modi f i ca t ion  of t he  m a p p i n g  B wh ich  we are  going  to cons ider  requ i res  to  t a k e  
into account the space co-ordinates of the subsystems. Therefore, in this case the 
Hilbert space on which the density functionals are defined is infinite dimensional. 
We do not want to discuss here the mathematical complications which could arise in 
our 'formalism due to the occurrence of infinite dimensions. The following develop- 
ments would therefore require a more accurate mathematical treatment to be made 
completely rigorous. 

8 - 1"l N u o v o  O i m e n t o  B .  
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Furthermore,  for any  I~(~) nonvanishing only for ~'s such tha t  exp [ - - iHt ]  V' 
describes a state in which subsystems 81 and 82 are outside their  range of inter- 
action in the whole in terval  (0, t), eq. (8.19) becomes 

(8.20) exp [-- St] B> exp [St] p(v2) =fE< l exp [~m] ~> exp E- + 

-~ (~[ exp [ittt] P< exp [-- iHtJ I~)pv(v/)]p(~) d ~ .  

In order to give an example of the evolution given by  eq. (8.18), we consider 
a decaying state of the  composite sys tem 81 + 82. We assume tha t  the distance 
a appearing in the  definition of B> is definitely larger than  the  range r0 of the  
interaction between 81 and 82. The initial wave funct ion is a normalized non- 
factorized pure state  %, localized within the  range of the interaction.  Then,  
for such a state,  the  relations 

(8.21) { <%1 exp [iHt] P> exp [-- iHt] ]%> = O, 

<%] exp [iHt] P< exp [-- iH$] ]~> = 1 

hold up to t imes in which the  two fragments  are no more interacting,  b u t  
still within the distance a f rom each other.  Therefore,  for such times, B> is 
the identity,  and the evolution is the Schr6dinger one. ~ o w  let us assume, 
for simplicity, t ha t  the  two fragments,  outside the range of interaction~ are 
still well localized in space and  are propagat ing in such a way tha t  the  relat ive 
wave function crosses the distance a in a t ime which is much smaller t han  1/2. 
We can then assume tha t  suddenly~ instead of (8.21), the following relations hold: 

(8.22) 
<XJ exp [iHt] P> e x p [ - -  iHt] I)~> = 1, 

<%1 exp [iHt] P< exp [-- iHt] I%> ---- 0 .  

In such a case B > ~  B~ so t ha t  the  evolution eq. (8.18) reduces to (8.5). The 
evolution of p(~, t) is then  given by  (8.14), which has already been shown to 
lead to a mixture  of factorized states in a t ime interval  large with respect  to 1/~t. 
We stress again tha t  the densi ty operators for the  subsystems 81 and 82 coincide~ 
during the whole process, with those which would be obta ined by  tal~ing into 
account only the  SehrSdinger evolution. Finally,  we note  tha t  the process 
leading from the  initial nonfactorized state  to the  final mixture  of factorized 
states is quant i ta t ive ly  governed by two parameters ,  the  length a and the  
time 1/2. 
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9.  - R e m a r k s  a n d  c o n c l u s i o n s .  

The formalism of the  density functionals which we have in t roduced and  
discussed in this paper  has been shown, in the  last section, to allow the intro- 
duct ion of a consistent dynamical  equation, generalizing the Schr6dinger 
equation,  which accounts for the desired transi t ion from second- to first-kind 
mixtures,  and which eliminates the E P R  paradox.  Obviously, the generalized 
equation violates quan tum mechanics for large separation of the subsystems. 
However,  the dynamics has been chosen in such a way tha t  only the correlations 
between the subsystems tu rn  out  to be different f rom those involved by  the  
s tandard  evolution equation. An impor tan t  remark,  however,  has to be made. 
So far we have taci t ly assumed tha t  the mapping (7.5), in terms of which B 
and B> have been defined, acts in a similar way on the in ternal  and on the 
t ranslat ional  degrees of freedom of the component  subsystems. F rom the point  
of view of overcoming the E P R  paradox,  however,  the in ternal  and trans-  
lat ional degrees of freedom do not  play identical  roles. This has already been 
discussed in ref. (1). The use of (7.5) for bo th  the  in ternal  and the t ranslat ional  
degrees of freedom can give rise to ra the r  dramat ic  effects. This is due to the 
fac t  t ha t  the  na ture  of the considered mapping is such tha t  the correlations 
between the  subsystems are completely dest royed (compare eq. (7.7)). As a 
consequence, if one considers, for example,  a composite system decaying into 
two fragments  in a relat ive E-wave, the considered mapping would allow the 
two fragments  to  be found both  in the same space region, instead of being in 
opposite regions with respect to the centre of mass. Analogous considerations 
hold for the correlations between the linear momenta  of the fragments.  While 
the complete decorrelation among the in ternal  variables can be accepted, since 
it  has not  been clearly disproved by  experiments,  it is hard  to believe tha t  the  
same absence of correlations for the external  variables would not  have already 
been seen, if really existing. This shows tha t  some modifications of the map- 
ping (7.5) can be necessary. 

Using the formalism of the density functionals, one could, for example,  
define a mapping leading to  mixtures  of factorized states of the  kind considered 
in the appendix of ref. (1), avoiding in this way the above-said unpleasant  
consequences. 

We observe also tha t  the hypothesis  of a t ransi t ion from second- to first- 
kind mixtures  necessarily implies some heterodox consequences about  con- 
servat ion laws. To see this, we can, for instance, consider the case of two spin-~ 
particles in the singlet state.  Since the expectat ion value of the  to ta l  spin S 2 
in the singlet s tate  is zero, while all factorized states have nonzero projection 
on the  t r iplet  manifold, any  mechanism leading to  a mixture  of factorized 
states implies tha t  the  expectat ion value of S 2 changes during the  process. 
However ,  the expectat ion values of the  components  E~ of the to ta l  spin do 
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not  change during the process. In  fact ,  if we evaluate the densi ty funct ional  
T~(v/), where ~, is the singiet state,  according to (7.7), Q~ turns  out  to be t I ,  
so tha t  

(9.1) (5',) = Tr  (S, ~ )  = 0 .  

The transition from the singlet s ta te  to the  factorized mixture  takes then  
place in such a way t ha t  ( ~ )  ----0 at  any  t ime. This means  tha t  the ~2__ 1 
states which necessarily appear  in the mix ture  have spin orientat ions uniformly 
distributed in space, so tha t  the isotropy of the  initial s i tuation is preserved. 

Concluding, even though fur ther  investigations about  the  specific struc- 
ture  of the mapping appearing in eq. (8.16) are necessary, we have in t roduced 
in this paper  a description of quan tum states and a dynamical  equat ion which 
constitute a generalization of quan tum mechanics and provide a na tura l  f lame-  
work to describe processes eliminating the nonseparabi l i ty  of quan tum systems 
which are far apar t  f rom each other.  

A P P E N D I X  

In  this appendix we want  to show how one can express the effect of a 
measurement  on a quan tum ensemble in terms of the  densi ty  funct ional  for- 
malism. We have confined this point  here  since, in this case, the  whole process 
can be expressed also in te rms of the  densi ty  operator  language and its con- 
sideration has therefore  only an i l lustrat ive purpose.  

Let  us suppose t ha t  we subject  an  ensemble of quan tum systems to a 
measurement  of a complete set of commut ing  observables, which will be 
denoted by  Z. Le t  e~ be the eigenvectors of L. Suppose now tha t ,  before the  
measurement,  the  ensemble is associated to  the  state  vec tor  v~, or, which is 
the same, t ha t  it  is described by  the  densi ty  funct ional  p~(~) given b y  (4.2). 
I f  we write 

(A.1) = 
t 

the effect of the  measurement  of L (reduction of the  wave packet)  t ransforms 
p~(v~) into a new functional ,  denoted  by  la~(~), which is obviously given by  

(A.2) p (v) = Z 

where Pos(V) is the densi ty  funct ional  associated to  the  pure  state  e~. Le t  us 
denote the mapping (A.2) by  M~, so t h a t  we wri te  

(A.3) = 
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In the general case in which, before the measurement, the ensemble is described 
by the arbitrary density functional p(~), we can use (4.4) and the fact that  Me 
is obviously a linear mapping. Then we have 

(~.4) p~(v') = M~p(V,)=fd,pp(~,).M+p~(v,)= ~p.,(v,)f ]<e,l~,>l'p(~)dV,, 

where, in the last step, use has been made of (A.2). 
When L is not a complete set of commuting observables, but the measure- 

ment is <~ mora l ,  (~), introducing the projection operators /'~ associated to 
the eigenmanifolds of L, we have, in place of (A.4), 

(A.5) 

As already remarked, the effect of the measurement can be expressed also 
in terms of density operators. We can establish the general property that  a 
mapping ~ among density functionals has to satisfy in order tha t  it can also 
be expressed in terms of density operators. Obviously, such a mapping must 
transform density functionals corresponding to the same density operators in- 
to density functionals which again correspond to the same density operator. 
Recalling the expression (2.10), we see that,  in order that  Jr' has the desired 
property, the equation 

(h.6) 

must imply 

(A.7) fdv.' I,p> <~1 E.~p l (~) -  ,,~p.(~)] = o.  

When L is a complete set of commuting observables, since 

(A.S) M+p~(W) -- ~op,(~) = ~p+,(~) <e, Ifd~ IV> <~1 [P,(W)-- P,(~)] I*,>, 

equation (A.6) implies ~l~i~z(~ ) -  MoID~(y) ---- 0, so that  (A.7) is satisfied. 
When L is not a complete set of commuting observables, but the measure- 
ment is << moral ,, we have 

(A.9) 

=fd~  IV> <V+ ~ fd~ p,,~(~)<rIP, IV> m,(V)- P,(~)l �9 

By using the fact that  p~(~)~p,(~) and equation (4.4), equation (A.9) 
becomes 

(7) B.  D'EsPAO~AT: Conceptual Foundations o] Quantum Mechanics (Menlo Park, 
Cal., 1971). 
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so t h a t  e q u a t i o n  (A.6) imp l i e s  t h a t  (A.7) ho lds ,  l~ow, ff one  w r i t e s  a n  e q u a t i o n  
l i ke  (8.3) i d e n t i f y i n g  t h e  m a p p i n g  B a p p e a r i n g  t h e r e  w i th  Me o r  M. .  de f ined  
in  (A.4) or  (A.5), one  o b t a i n s  t h e  e v o l u t i o n  e q u a t i o n  for  a n  e n s e m b l e  of q u a n t u m  
s y s t e m s  in t h e  p r e s e n c e  of a m e a s u r i n g  a p p a r a t u s ,  wh ich  h a s  b e e n  d e r i v e d  in  
a r e c e n t  p a p e r  (8) u s i n g  t h e  l a n g u a g e  of t h e  d e n s i t y  o p e r a t o r  a n d  t h e  q u a n t u m -  
d y n a m i c a l  s e m i g r o u p  f o r m a l i s m .  

(s) G. C. GHIRARDI, A. RI~INI and T. WEBER: .N'ch0~O C ~ e ~ 0 ,  30 B, 133 (1975). 

�9 RIASSUNTO 

8i introduce una riformulazione della meceanica quantist ica nella quale gli , s t a t i ,  di 
un ensemble di sistemi quantistici sono deseritt i  per mezzo di funzionali reali  posit ivi  
definiti sullo spazio di Hilbert  dei sistemi. Per questa via si giunge ad una generalizza- 
zione della meccanica quantistica the  permette  di descrivcre la transizione da una miscela 
di seconda specie a miscele di pr ima specie ipotizzata da vari  autori  per  elimlnare il 
paradosso di Einstein, Podolsky e Rosen. Si ottiene ei6 costruendo per i funzionali  
un'equazione dinamica che si riduce aU'equazione di Schr6dinger quando i sottosistemi 
del sistema quantistieo eomposto sen t  vieini e d t t  luogo alla transizione ad una miscela 
di  pr ima specie quando eesi sono ]ontani. La  transizionc ~ tale ehe i r i sul ta t i  di qualsiasi 
misura su uric dei due sottosistemi sono gli  stessi che si avrebbero con la pura  evoluzione 
di Schr6dinger. Le deviazioni dalla tceria  usualc si possono quindi rilcvarc solo con 
misure di correlazione t ra  i sottosistemi. 

H o s a a  r X BO3MO~gEla~I MO,~O~mcau~tu [r Mexanmcu 

n E P R  napa~mce. 

Pe3mMe ( ' ) .  - -  BBOI~HTCR HOnaa r KBattTOBO~ Mexam~cn, KOTOpaa OHHCM- 

Baer  << coc ' roaaa •  >> a a c a M 6 n a  KSaHTOm,LX CHCTeM C HOMOIIlbIO IIOJ'IO)KHTeTIbHblX BCLIIeCT- 

S~HHb~X ~y~r~o~anon n FHY~b6epTOBOM HpocTpaHCTBe CBCTeM. 3 T a  HOBa~ qbopMy~H- 

ponKa  II03BOJI~IeT O6061I~HTb KBaHTOByIO MeXaHHKy TaKHM o6pa3oM,  qTO6b[ HHRyUHpOBaTb 

~ e p c x o ~  o r  CMeC~ n T o p o r o  p o ~ a  z CMeCH n e p n o r o  p o n e ,  KOTOpId~, B COOTI~TCTBHH C 

itpe~ffono~ceHHeM pa3flB~HbIX a n T o p o n ,  HOYlXeH HMeTb MeCTO HYl~ HCK,r[IOtleHH~{ E P R  

n~tpa~oKca. MM B RBHOM BH~e BbIBO~ICM ~HHaMHtI~KOe ypaBHeHHC ~YI~[ ~byHKI~HOHaJIOB, 

KoTOpOC CBO~HTCg g ypaBHeHHIO IHpeam~rcpa, K o r e a  rrO~CHCTeMH COCTaBHO~ KBaHTOB01~ 

C~CTeMb~ 6 a ~ Z ~  ~ p y r  K ~ p y r y ,  ~ IIpHBO~HT, H3MeHa~I KBaHTOBOMeXaHIO/~KyIO 3BOYIIOHH~, 

K n c p c x o ~ y  B CMeCb I IepBoro  po~a, Korea COCTaBYI~IIOI~He IIO~CHCTeMIK ~aYlCKH ~pyr OT 

npyra.  ~TOT Hcpexo~  oKa3bIBaeTC~I TaKHM, ~ITO B J'IIO60~ BpeMa Hpc~cga3aHH~, xa-  

caloI~i~c~! H3McpeHH~ Ha6.rIIO~(aCMbIX BeY/HtIHH, OTHOC~IIHHXC~I g O~HO~ H3 IIO~CHCTeM, 

comia~a ioT  c II[~CKa3aHHRMH, gOTOpb~e cne~ly~oT HeHOCpe~CTB~HHO H3 3BOYIIOIIMH IIIp~- 

~ H r e p a .  CneROBaTenbHO, OTgnOHeHHS OT CTaHRapTHO~ ToopIIH BM3BaHM TO~IbKO g o p -  

pe~IRL~B~IMH Meig(~y HO~CHCTeMaM1;I. 

(*) llepeoeOeno pec)mc~uef~. 


