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Summary. — A reformulation of quantum mechanics is introduced,
which describes the «states » of an ensemble of quantum systems by
means of positive real functionals on the Hilbert space of the systems.
This reformulation allows us to generalize quantum mechanics in such a
way as to induce the transition from second- to first-kind mixtures, which
has been suggested to occur by various authors in order to eliminate
the EPR paradox. We explicitly build up a dynamical equation for the
funoctionals, which reduces to the Schrodinger equation when the sub-
systems of a composite quantum system are close together, and gives
rise, altering the quantum-mechanical evolution, to a transition to a
first-kind mixture when the component subsystems are far apart. This
transition is such that, at any time, the predictions concerning measure-
ments of observables referring to one of the subsystems coineide with
those which would follow from the pure Schridinger evolution. The
deviations from the standard theory affect, therefore, only the correla-
tions between the subsystems.

1. — Introdaction.

The nonseparability of the subsystems of a composite quantum system
is at the origin of the conceptual difficulties of quantum mechanics which are
evidentiated, for instance, by the so-called EPR paradox. A way to overcome
such a deadlock is to assume that standard quantum mechanics holds when
the subsystems are close together, but that, when they are far apart, each
individual subsystem regains definite physical properties. In the quantum-
mechanical language this means that, when the subsystems are far apart, the
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second-kind mixture associated to a nonfactorizable pure state of the com-
posite system changes into a first-kind mixture, ¢.e. a statistical mixture of
factorized states. Such a possibility has been considered by BoumM and
AHARONOV () and by other authors (?), and has also been the object of some
experimental investigations (®). The fact that there exists a definite difference
between the quantum predictions given by a pure nonfactorizable state and
those deriving from any mixture of factorized states, as implied by Bell’s
inequality (%2), has made it possible to discuss for a long time on the above-
mentioned hypothesis, without any investigation of its formal implications and
without any attempt to build a dynamical model for it. In a recent paper (%)
it has been proved that the usual description of ensembles of quantum systems
based on the density operator formalism does not allow one to describe a tran-
sition of the considered type. In fact, such a transition would necessarily lead
from (different) statistical ensembles corresponding to the same density operator
to statistical ensembles corresponding to different density operators. There-
fore, to describe such a transition, it is necessary to deal directly with ensembles
and to take into account their detailed composition. In turn, this means to as-
cribe a weight to each state of the Hilbert space of the considered system and
to describe the time evolution of the system by the evolution of such weights.
In other words, an ensemble is characterized by a numerically valued real and
positive funetional, defined on the rays of the Hilbert space of the system, and
the time evolution is a time-dependent mapping of functionals into funetionals.

The main purpose of this paper is to reformulate quantum mechanics in
terms of functionals on Hilbert rays, and to show how it is possible to modify
the law of time evolution in such a way as to include the description of the
above-considered transition from gecond- to first-kind mixtures. In sect. 2
and 3 we develop the formalism of density functionals and we express in terms
of it the Schriodinger evolution. In sect. 4 we explicitly determine the density
funetionals for some particular cases which will be useful in what follows.
Section 5 is devoted to deriving the general eondition that a density functional
must satisfy in order to describe a mixture of factorized states. Section 6 deals
with the problem of determining density funefionals for composed systems by
starting from those for the component subsystems. In gect. 7 we define a gen-
eral class of mappings among density functionals for composite systems leading
to density functionals corresponding to a first-kind mixture. Using the results
of the preceding sections, we derive in sect. 8 the dynamical equation gen-

(1 D. BouMm and Y. AHARONOV: Phys, Rev., 108, 1070 (19857).

3y J. M. JavcH: Bendiconti 8.1.F., Course 1L (New York, N. Y., and London, 1971).
(3 L. R. Kaspay, J. D. Urrvax and C. 8. Wu: Nuove Cimenlo, 25 B, 633 (1975),
and references quoted therein.

(*) J. 8. BELL: Physics, 4, 195 (1964).

¢) G. C. Guirarpi, A. Rimint and T. WEBER: Nuove Cimenio, 31 B, 177 (1976).
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eralizing the Schrodinger equation and accounting for the evolution which
leads, under the proper conditions, to a first-kind mixture. In sect. 9 we make
some conclusive remarks and we point out some problems which deserve further
investigation. We have confined in the appendix the density functional de-
seription of the reduction of the wave packet due to measurements.

2. — The density functional formalism.

As stated in the introduction, we will describe the «state » of a quantum
system by means of a functional defined on the rays of the Hilbert space of
the system, the value of the functional representing the weight with which
the state associated to the ray enters the ensemble. In practice, we shall use
functionals p(y), defined on the vectors ¢ of the Hilbert space, such that

(2.1) pley) =p(y), o complex #0.

Owing to its meaning, p(yp) must be a real, nonnegative numerical function,
which we shall call density functional. The density functional p{y) may be
different from zero on a single state (pure case), on a finite or countable set
of states, or even on a continuous set of states. The latter case is a deseription
of a mixture for which the only information we have about the states of the
systems of the ensemble is that these states lie in a certain region of the Hilbert
space. For example, it is often considered (®) the so-called isotropic mixture
of spin-} particles, in which the particles are polarized along uniformly dis-
tributed directions in the physical space.

In order to normalize a continuous density functional p(y), or to compare
the (statistical) weights corresponding to different regions in the space of states,
it is necessary to define the integral of p(yp) over a region of such a space. To
this purpose, we limit ourselves to the case in which the space of the state vec-
tors of the system is finite dimensional. This is the case, ¢.g., when only the spin
degrees of freedom are considered. The integral over a region of the (complex
N-dimensional) Hilbert space J#, even though it makes reference to a specific
orthonormal basis in the space, must be invariant with respect to unitary
transformations of the basis. We start by considering the element of volume

(2.2) do# = do, dy, dz, dy, ... dzydyy,
where
(2.3) T+ 1y = 2 = {&|p),

€, €,..., ey being a complete orthonormal basis in #. The invariance of d#
under unitary transformations follows from the fact that any unitary trans-
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formation in a complex N-dimensional linear vector space induces an orthogonal
transformation in the corresponding real 2N-dimensional linear vector space.
We shall use polar co-ordinates in each (z, y,)-plane, so that

(2.4) d#z 91 dgl dol g’dgg de, X QNdQN dBN ]
where
(2.5) ox exp [16,] = 2.

The requirement (2.1) implies that p(y) does not depend on the square
N

norm Y ¢}. Furthermore, in the space of the angles 0, p(y) is a constant
k=1 N
along the lines orthogonal to the hyperplane > 6,=0. Finally, p(y) must
k=1
take the same value on those of the above-said lines for which any of the
angles 0, is changed by an integer multiple of 27. It follows that, if we consider
a hypercube having edges parallel to the 6-axes of length 2, all rays of the Hil-
bert space cross the hypercube, and the sum of the lenghts of the portionsinside
the hypercube of the lines corresponding to the same ray is 2zv/N. To in-
tegrate over the rays, we shall use the element of volume

(2.6) dw=a(iez—1)w,

k=1
and, for f(y) satisfying (2.1), we shall write

© @ 8 2n

(2.7) ff(zp) dy =, dp, ...fgﬂdgyfdol ...fdoya(f; 0l — 1) F(01, -+es Oy Oy orvy Ox) .
1] 1] [

k=1
0

The d-function in (2.6) and (2.7) restricts the integration to the normalized

y’s. The invariance of the integral (2.7) under a change of the Hilbert-space
N

bagis follows from the invariance of d# and Y g; and from the fact that all

k=1
the above-described hypercubes are equivalent. We normalize the density

functional by requiring
(2.8) fp('P) dy=1.

The expression for the mean value of an observable A is now obviously
given by

(2.9) <4y =[ayp(y) <ylAly>,

and the density matrix for the ensemble characterized by p(y) is

(2.10) o= f dyp(y)|p><{yl.
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It is trivial to verify that

(2.11) CA) =Tr(Ap).

3. — The Scbridinger equation.

To express the time evolution given by the Schrodinger equation in the
language of the density functionals, one needs to define the Hilbert-space gra-
dient of a functional. We denote such an operation by the symbol grad and
define it through

3.1) {e:|grad p)> = % (ga% ’gg%) .
It is easy to show that the components of grad p defined by (3.1) actually
transform, under unitary transformations of the basis, like the components of
a vector.

The Schridinger evolution of p(y, ¢) is characterized by the fact that p(y, ?)
must take at time ¢ the same value on the state exp [— iH{] ¢ that p(y, 0) had
on the state ¢. Then we write

(3.2) p(exp [— iHt] y, ) = p(y, 0),
which implies
(3.3) (%p(exp [— iHtly, 1) =0.
Putting
(3.4) eclexp [— iHE] p) = {a|y(t)) = () = 2:(t) + i9:(t)
we have
o & (% .  dp..\_
(3.5) §+.§(a‘a?.“'+%?")‘°‘

If we take into account that p is real and express op/ox; and 0p/dy, in terms
of the components of grad p, eq. (3.5) becomes

) . .
(3.6) 2 + <grad pip> + <plgrad p> = 0.
Using 9 = — iHy, we get for p(y,t) the evolution equation

o)
(8.7) a—f =2 Im {y|H grad p,
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which is equivalent to the Schrodinger equation. If we write symbolically

op
(3.8) i Sp,

it is easily verified that the mapping among functionals denoted by § is linear
with respect to the field of real numbers.

Equation (3.7), being equivalent to the Schrddinger equation, does not
change the structure of the set of states of # on which p(y) is different from
zero; in particular, a p(y, 0), which corresponds to a pure state, evolves into a
p(y, 1), which again describes a pure state. This equation, however, can be
generalized, by adding new ferms at the right-hand side, to describe a transition
from a p(y) which is different from zero only on one ray of s to one which
takes nonzero values over several rays. The obtained formulation of the
standard quantwm evolution is, therefore, particularly suitable for generali-
zations which can describe the transition from second- to first-kind mixtures
which we are interested in.

4. — Examples of density functionals.

In this section we build explicitly the density functionals for some particular
cases which shall be useful in what follows.

Let us start with the density functional p‘;(w) corresponding to the pure
state . Using the variables g, and 0, defined by (2.3) and (2.5), we introduce
the ray variables

N
(4.1a) ak=@,,/ 3ot k=2,3,..,N,

j=1

(4.1b) Ne=0,— 0y, k=2,8,.., N,

and analogous variables &, 7. for the state . Then the functional P,(y) can
be written as

2N N
(4.2) P{y) = %;11 [0(0% — &%) S(ne— 7)1
where
+o
(4.3) 8(me— i) = 3, 8(m— 7 — 24m)

is a periodic d-function having the property that its integral over any interval
of length 2z is 1. Equation (4.2) gives the normalized density functional cor-
responding to the pure state described by the vector . From (4.2) one sees
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that p;(tp) is a ray function for the dependence both on y and on . Moreover,
P;(p) bas the following formal property of a dé-function for ray functionals:

(4.4) [ap1@) p5w) = v}, provided  fioy) = (),

which shows that any real positive ray functional can be expressed as a linear
combination of the basic density functionals p_(y).

Another density functional, which will be useful in what follows and will
be denoted by p ,(y), is the one corresponding to a uniform mixture of the
states of a given m-dimensional linear manifold . By uniform mixture we
denote the mixture in which all vectors of .# appear with equal weight. Let
us introduce a basis {e.}, k=:1, «..; N, in 5, whose first m elements span the
linear manifold .#. According to the above characterization of the uniform
mixture we can write

_(m=1! 2 [256n] = =D 21 [2 500
@n  paty) =" (apnn TT [2ae] =22 1T [2s)].

k=m+1

In calculating the normalization constant, use has been made of the fact that

(4.6) fedeé(e‘) =1.

In eq. (4.5) the d-functions appearing under the integral sign guarantee that
no state which does not belong to .# contributes to p ,(y). An equivalent
way of constructing p ,(y) would have been to integrate p;(y)) over the linear
manifold 4. In so doing one would have obtained essentially the same
result (4.5) with only the formal complication of an irrelevant dependence on
the angles 0, associated to vanishing g,s. It is immediately seen that
P4lep)=D 4(y) (¢ complex % 0). It is also immediate to check that the density
operator g, corresponding to the density functional (4.5) is

(4.7) e,=;1';illek><exl,

i.e. it is a multiple of the projection operator on the considered manifold 4.

5. — Factorized states and mixtures.

In this section we shall consider composite quantum systems, ¢.e. systems
asgoeciated to state vectors belonging to a Hilbert space 5%, which is the
direct product of the Hilbert spaces ™ and P associated with the com-
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ponent subsystems. In this case, as discussed in the introduction, the fac-
torized states play a very important role, since they are the only states for
which individual properties can be attributed to the component subsystems.
It is then useful to characterize within s#.2 the set of factorized states and
to derive the condition that a density functional p(y), with y € %9, must
satisfy in order that it corresponds to a mixture of factorized states.

Here we briefly recall at heorem due to voN NEUMANN (*), which will be useful
in what follows. Let #0¥ =0 R = and consider s normalized state
yeH . Von Neumann’s theorem states that one can write

(5.1) [¥> = SV 1pd1))|2:(2)) »

where {|g,(1)>} and {|x,(2)>} are orthonormal sets in #® and J#®, respec-
tively, and the 4; are positive real numbers. The expansion (5.1) is unique,
provided the eigenvalues A, are all different among themselves. Considering
the density operator associated with ¢

(5.2) o= |p><yl,
and defining

(5.3a) oW =Tr%p,
(6.3b) 0¥ ="TrYo,

one can see that oV and o® have the same set of nonzero cigenvalues 4,, the
corresponding eigenvectors being |g;(1)> and |y,(2)), respectively. In (5.3a, b)
Tr® and Tr® denote partial tracing over #® and Y, respectively.

By means of the above theorem it is then easy to prove that the neces-
sary and sufficient condition for y to be factorized can be written as

(6.4) Tro[(Tr@ [y {p|)?] = 1.
The necessity is obvious. To prove the sufficiency we observe that (5.4), owing
to (5.1), can be written

(5.5) TE=1.

B

Since Tro= > 4,=1, eq. (5.5) can be satisfied if and only if there is only

)
one eigenvalue different from zero, and it equals 1. From (5.1) there follows

(°®) J. voN NEUMANN: Mathematical Foundations of Quanium Mechanics (Princeton
N.J., 1955), p. 429.



A REFORMULATION AND A POSSIBLE MODIFICATION ETC. 105

then that v is factorized. In the case in which y is not normalized, condition
(5.4) reads

(5.6) Tro[ (Trdlyd<y])*] = Jp]*.

Let us express condition (5.6) in an arbitrary factorized basis of »#.3. If
we write

(5.7) lv> = 2,166,
o

eq. (b6.6) becomes
(6.8) E Za% %, = Z [2al 2,10 .
9kt

14kt

Because of the identity

(5.9) 2 ztkz:lzﬂz;k = 2 |22 [2a]*— % z (2251 — ZaZul?,

[$723 ikl 15kl
eq. (5.8) is equivalent to

(5.10) z‘,,z',; = z"z’k .

Suppose that the Hilbert spaces s and 5™ be »n- and m-dimensional, respec-
tively. The » xm relations (5.10), which are necessary and sufficient for the
factorizability of the state (5.7), are not all independent. It is easily proved
that only (n—1)x(m— 1) among the n xm relatiens (5.10) are independent.
If we arrange the z,’s in a rectangular matrix, the independent relations can
be obtained, for instance, by imposing the vanishing of all the 2 X2 determi-
nants built with 4 contiguous elements of the matrix z,, or, provided z,, #0,
built with the elements 2y, #,, 24, #,. If one :expresses condition (5.6) as

(5.11) F(y)=0,

th% condition that a density functional p(y) corresponds to a mixture of fac-
torized states can be written as

(5.12) F(yp)p(p)=0.

If one wants to modify quantum mechanics to eliminate the disturb-
ing features connected with the EPR paradox, one has to require that,
when the component subsystems are far apart from each other, the system
must be described by density functionals satisfying (5.12). Condition (5.12)
amounts to the statement that, in order to be a mixture of factorized states,
the density functional must contain §-factors expressing that (5.10) is satisfied.
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Using, instead of the 2,,’s, the variables o, and 2,, defined by relations anal-
ogous to (4.1a) and (4.1b), we can express (5.10) by requiring that p(y) con-
tains the following product of §-factors:

(6.13) H [6(‘72;‘7:1 - 0':1 0':,) 5(17“— Nia— Mgl
14

il
Jh1

where ¢y, is not an independent variable, but is defined by

(5.14) on=1—3a.

$4A1,1

6. — Ensembles of composite quantum systems.

In this section we shall construct the density functional for an ensemble
of composite quantum systems s = s, 4 g, from the density functionals p(yp,)
and p'¥(y,) for the subsystems s, and s,, respectively, when particular require-
ments about the way of associating states of s, and s, are given. The Hilbert
space on which p(y) is defined is the direct product of the Hilbert spaces s#V
and #® of s, and s,, which are assumed to be n- and m-dimensional, respec-
tively.

To begin with, we can consider the case in which both &, and 8, are in the
pure states ¢, and ¢;, respectively. The composite system is then described
by the density functional (see eq. (4.2))

2um
(6.1) Pow(¥) = gul'l[l[a (ats— 525) 85— 71u)]

where the variables &, and 7, are defined in the usual way in terms of the
variables

(6-2) §u = §iél ) 64: = 64 + 6: .

By means of a rather ewmbersome calculation one can prove that eq. (6.1) can
algo be written as

(6.3) p;,.‘w,('l)) =g(y1, Vo) H [6(0': 0':1 - o'fx 0“;’,) 5("741_ /e 771;)]?(1,)(1/)1)1’%.)('/)2) ’
¢

t#1
A1

(2)

Py (y,) and pg)(y,) being the pure-state density functionals given by eq. (4.2)
for systems &, and s,, respectively. The function g(y,, y,) turns out to be

(6.4) 491, ) = 2oz (SLITTD
(@)1 (o)
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where o}, is given by eq. (5.14) and

6.5 ¢ =1~ Y, a=1,2.
) 1 s
1

When the systems s, and s, are not in pure states, but are described through
arbitrary density functionals p'V(y,) and p®(yp,), We can write

(6.6)  p(w) = glyr, va) I [8(0}, 63, — 04, 07,) 8(ny;— 1y — 1)1 D¥(w1) PP() -
14

(L0
$9h1

To understand the meaning of eq. (6.6), let us consider two regions ¥V, and V,
in the Hilbert spaces sV and #'¥, respectively, and a region V in #L¥ =
= H#W R H#'? guch that the only factorized vectors of V are the vectors y;y,
with ¢, €V,, ,€V,. It can be proved that

(6.7) fp(w) dy = f PO (1) dy, f PP(y)dys.

This equation shows that the functional p(y) defined by eq. (6.6) describes
a mixture of systems s =g, -+ s,, such that the system s is always in a fac-
torized state and that to each state of the sybsystem s, are associated for s,
(@ B=1,2; x5 p) all states of #® with weights p*(y;). We shall call this
mixture the factorized mixture associated to p(y,) and p®(y,). It can be
checked that the corresponding density operator is the direct product of the
density operators corresponding to p'"(y,) and p‘®(y,):

(6.8) f p(p)ly) (yldy = f P0) [y <yu | Ay @ | p2(ws) [we) yaldys .

7. — Mappings from second- to first-kind mixtures.

Now we are in a position of studying some specific mappings of density
functionals which correspond to physically interesting processes. One could,
for example, consider the mapping on p(y) induced by a measurement of an
observable L of the system. Since such a mapping can also be described within
the density ope ator formalism, we have confined its study in the language of
density functionals to the appendix. In this section we shall consider mappings
which account for a transition from a second- to a first-kind mixture satisfying
suitable requirements. Such mappings will then be considered, in the next
section, as elementary processes whose iteration leads to the explicit construc-
tion of an equation describing the mechanism considered by Bomm and
AHARONOV (?) and discussed in the introduection.
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Let p(y) be an arbitrary density functional in the Hilbert space »#.® of
a composite quantum system s = g, | &, and let p¥*(y) be the image of p(y)
under a mapping B which leads, for any p(y), to 2 mixture of factorized states.
Since this type of mappings will be used to account for the transition considered
by BorM and AHARONOV, one has to require that the results of all possible
measurements of observables of each subsytem coincide for the two ensembles,
which implies

(7.1) Tr'® p = Tr' o¥, x=1,2,

o and ¢¥ being the density operators corresponding to p(yp) and p¥*(yp), respec-
tively. We start by considering the case in which p(y) corresponds to a pure
state ¢ for the composite system. Making use of the von Neumann ex-
pansion (5.1) for ¢, we write

(6.1) P = El\/z;lfpa(l))lxx(z)}, 2 Ah=1.

For the sake of definiteness we suppose that the A,’s have been ordered ac-
eording to

(7.2) Ia> Apya -

Let us consider the density functional Py, (V) corresponding to the pure state
(1) 2,(2). A possible choice for pi¥(y) could be

(7.3) P30 = 2 4 AP, (v) -
1.2
It is easily seen that
(1.4) o = Tr 3| (p| ® Tr?|g) <l

so that (7.1) is satisfied. However, (7.3) is undefined when two 2,’s become
equal, since (5.1) does not uniquely determine the corresponding (1), x«(2).
To overcome this difficulty, one could, in the degenerate case, replace the
unidentified pure states @.(1), x:(2) by the uniform mixture on the degenerate
manifolds. Such a procedure can be easily developed, but then one would have
a sudden change in p;*(zp) when two 1,’s become equal, so that the mapping
Pyly) — p,*;(;u) would not be continuous. Then we proceed in the following
way. Let p,,(y) be the factorized mixture associated to the uniform mixtures
for the subsystems 8, and 8,, built on the linear manifolds spanned by the vectors
@1(1), @a(l)y oy (1) and xi(2), a(2), ..., xs(2), Tespectively. The density func-



A REFORMULATION AND A POSSIBLE MODIFICATION ETC. 109

tional ps,(y) is not defined when A,= A.,, or 4,=4,,,. Then we take

(1.5) PFW) = 3 k(A — Aepn) j(h— diya) Pas(y) -
k¥

It ig easily checked that p;*(tp) satisfies the normalization condition (2.8). Note
that the undefined p;,(y) do not appearin (7.5). If we take into account eqgs. (4.7)
and (6.8), the density operator corresponding to p,,(y) turns out to be

1:x 1
(7.6) eu=7 3 P> @1OF 3 (2> (1)

Therefore, the density operator corresponding to p;*(w) turns out to be

(1.7) 0¥ = T (A~ D) §(hi— Asta) 06, = Tr? ) (| @ Tr [ <9l

kj=1

8o that (7.1) is satisfied. The mapping

(7.8) ¥ (y) = Bpyly)

is continuous. In fact, it can be proved that for any given &> 0 there exists
an > 0 such that || — 9’| <% implies |p;‘:(lp)—_p§f(1p)l<8. We note that,
when ¢ is factorized, pf(zp) = Py(p).

Up to now we have only defined the mapping for density functionals cor-
responding to pure states. Now we extend the mapping to all functionals by
linearity, i.e., given an arbitrary density functional p(y), owing to (4.4) we
define

(7.9) 2*(v) = Bply) = [a5p(P)pE (W) -
Any extension of the mapping (7.8) other than (7.9) would violate the obvious
physical requirement that the transition transforms the union of two statistical

ensembles into the union of the transformed ensembles. It is easily seen that
the density operator o¥* associated to p¥(y) is given by

(7.10) o* =[aFp(7) T 5> (| @ Tr > 7.
We note that 9# does not coincide with the density operator
(7.11) '=Tr¥o@TrVp,

To understand the physical meaning of (7.10), one has to consider the corre-
lations between the subsystems 8, and s, of s. The correspondence g — o’
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given by (7.11) would imply that all correlations existing between s, and s,,
when the ensemble is associated to the density operator p, disappear for g'.
On the contrary, the correspondence given by (7.10) entails that only the cor-
relations implied by each state ¢ of the ensemble are destroyed, while memory
remains of the fact that the couples of subsystems s, and s, were associated
in certain definite ways in the original ensemble. For example, let us consider
an initial ensemble E of systems s of two nucleons s; and 8, in the singlet spin
state, F being composed of two subensembles F’' and E” such that s, and s,
are both neutrons in E’ and both protons in E”. Then both density operators
(7.10) and (7.11) correspond to a final ensemble in which the spin correlations
inherent to the singlet state are destroyed. However, (7.10) implies that when-
ever § is a neutron (proton), s, is a neutron (proton) too, while (7.11) would
allow systems s composed of a neutron and a proton.

We note that the choice (7.5) for the desired mapping is not the only pos-
sible one. Another possibility would be

(7.12) PFW) = 3 k(A — Aeya) Prelp) .

If (7.12) is adopted, (7.10) is no longer valid, but (7.1), as well as the continuity
of the mapping, remains true.

As we shall disecuss in the conclusive section, the mapping (7.5), when used
to build a dynamical equation, gives rise to unwanted consequences, so that
the above-gsaid arbitrariness can be very important.

8. — Generalizations of the Schridinger equation.

Now we are in a position to generalize the Schridinger time evolution
equation (3.7) along the lines sketched in the introduction. Let us consider the
mapping among density functionals

(8.1) p(y) = Bp(y),

where B is defined by eqs. (7.9) and (7.5}, and suppose that the ensemble we
are considering, besides evolving according to the Schriédinger equation, is
repeatedly subjected, with mean frequency 4, to random elementary processes,
whose action on p(y) is described by (8.1). If we denote by 8 the generator of
time translations for the pure Schrédinger evolution, as in (3.8), the change
of p(y, t) during an infinitesimal time interval d¢ is given by

(8.2) p(y, ¢+ dt) = (1— Ad1)[p(y, 1) + Sp(y, 1) dt] 4- Adt Bp(y, 1),
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since Adt is the probability of occurrence of an elementary act (8.1) in dt.
From (8.2) we immediately get

op(y, 1)

(8.3) A

— Sp(y, 1) — M1 — B)p(p, 1) .

This equation constitutes a generalization of the Schrédinger equation. Even
though we have derived it as describing the occurrence of repeated sudden
processes, eq. (8.3) can also be interpreted as describing an inherently con-
tinuous process, It is important to remark that eq. (8.3), provided B satisfies
eq. (7.1), implies that the density operators for the subsystems s, and s, {ob-
tained, as usual, by partial tracing) coincide at any time with the density op-
erators which would be obtained by the Schrodinger evolution alone. There-
fore, the differences between the evolution given by (8.3) and the standard
Schrédinger evolution manifest only in the correlations between the two sub-
systems s, and s, and cannot be evidentiated by measurements involving only
one of the two subsystems.

To discuss eq. (8.3), it is convenient to define a new functional p(y, t), ac-
cording to

(3.4) Py, 1) = exp [S:]p(y, 1),
so that eq. (8.3) becomes

Sn(w, t _ _
(8.5) WD Zpin 1)+ Aexp [ 511 exp (8179, 1) -

Now we suppose that the Schrodinger evolution operator commutes with B.
This certainly happens if the two subsystems s, and s, do not interact. In fact,
in such a case, the von Neumann decomposition (5.1) for the vector () is

l§()) = i\/zexp (— H,t]pu(1)) exp [— iH, 2] |51 (2)) -

=1

There follows that, by applying B to py,,(y), the only change in eq. (7.5) is that
the factorized mixture p,,(y) i3 now defined on two linear manifolds, which
are the time-evolved ones of those at time ¢ = 0. On the other hand, by ap-
plying the Schrédinger evolution operator to pw#o,(zp) given by (7.5) amounts
simply to letting the two linear manifolds on which p,,(y) is defined evolve with
time. Under such conditions, eq. (8.5) becomes

.
(8.6) pg,:, S == 0= BB ).
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The initial condition for eq. (8.6) is P(y, 0) = p(y, 0). We write p(yp, 0) as
the sum of two terms:

(8.7) (v, 0) =pt('/’) + Pu(¥),

the first one being different from zero only on the factorized states, the second
one only on the nonfactorized states. Since B does not affect the factorized
states, we have

(8.8) Bp(y) = p,(v) .

We try to solve eq. (8.6) by putting

(8.9) By t) = py(y) + ) py(¥) + [1 — ()] Bp,,(v) ,
the initial condition for a«f?) being

(8.10) x(0)=1.

If we take into account that B?= B, eq. (8.6) gives

d
(8.11) %) (B(p) — Bl = — 1) [pusy) — Brup)]

Since the density functionals appearing on both sides of eq. (8.11) cannot be
zero, this equation gives

da

{8.12) @ = Aait) ,
1.e.
(8.13) a(t) = exp [— Af] .

Therefore, under the hypothesis that the Schrédinger time evolution operator
commutes with the operator B, we have

(8.14)  p(y,t) = exp [Slp,(v) +
-+ exp [— At] exp [8f] p,, () + (1 — exp [— A¢]) B exp [8t] p,(v) .

All terms in eq. (8.14) are subjected to the Schrédinger evolution. In addition,
the part of the initial density functional corresponding to nonfactorized states
is gradually transformed into a mixture of factorized states.

According to (8.14) an ensemble associated to any initial state y is trans-
formed, after a sufficient time, into a mixture of factorized states. This shows
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that eq. (8.3) cannot be assumed as a basic dynamical equation for all com-
posite quantum systems, since it would be incompatible with the properties
of stable composite quantum systems. Actually, as has already been repeat-
edly stated, one wants that the transition from second- to first-kind mixtures
takes place only when the two subsystems s, and s, are widely separated in
space from each other. We have then to modify the mapping B to take into
account this faet (*). To this purpose, let us define the projection operator
P_ such that

0, when |[r;— r,| < a,

(8.15) P, y(r, r) =
p(ry, ry), when |r,—ry|>a,

where r,, r, are the space co-ordinates of subsystems &, and s,, respectively.
Now we define a new mapping B, :

(8.16)  p*y) = B, p(v) = [[<FIPs 17 5§ (9) + <HIPLP>Pylv)] P(P) 47,

where P_=1—P,_, p?(w) is given by (7.5), and py () is, as usual, the density
functional corresponding to the pure state {. It is easy to check that p*(y)
satisfies the normalization condition. The mapping B, has the following prop-
erty:

Bp(y), when p(y) is such that (p|P |y} p(y)=0,

(8.17) B, p(y) =1 2(v), when p(p) is such that (y|P.|p>p(y)=0,
p*(y), otherwise.

If we use B, in place of B, the evolution equations (8.5) becomes

(8.18) % = — Ap(y, t) + A exp [— St] B> exp [St]P(y, 1) .

It is eagily shown that

(8.19) exp[— 8t] B, exp [St] p(y) =
= [[<3| exp [iHA] P, oxp [— iHi) | pltui-rmm(exp [— i1 y) +
+ <l exp [iHl] P exp [— iH1) 7> py(9)]P(P) 47 -

(*) The modification of the mapping B which we are going to consider requires to take
into account the space co-ordinates of the subsystems. Therefore, in this case the
Hilbert space on which the density functionals are defined is infinite dimensional.
‘We do not want to discuss here the mathematical complications which could arise in
our formalism due to the occurrence of infinite dimensions. The following develop-
ments would therefore require a more accurate mathematical treatment to be made
completely rigorous.

8 — Il Nuovo Cimento B.
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Furthermore, for any p(y) nonvanishing only for y’s such that exp [— ¢Ht] y
describes a state in which subsystems s, and s, are outside their range of inter-
action in the whole interval (0, {}, eq. (8.19) becomes

(8.20) exp[— 87 B, exp [8¢] p(y) =f[<17)l exp [iH{] P, exp [— <H{] 5> p(y) +

+ (9| exp [iH?] P_ exp [— iH1] [§) pyly) ] p(P) dp.

In order to give an example of the evolution given by eq. (8.18), we consider
a decaying state of the composite system s, + 8,. We assume that the distance
a appearing in the definition of B, is definitely larger than the range 7, of the
interaction between s, and 8,. The initial wave function is a normalized non-
factorized pure state y, localized within the range of the interaction. Then,
for such a state, the relations

x| exp [iH{] P, exp [— iH{] |y> =0,
8.21
&2 {xlexp [tH{] P_exp[—iHi] > =1

hold up to times in which the two fragments are no more interacting, but
still within the distance a from each other. Therefore, for such times, B, is
the identity, and the evolution is the Schrddinger one. Now let us assume,
for simplicity, that the two fragments, outside the range of interaction, are
still well localized in space and are propagating in such a way that the relative
wave function crosses the distance @ in a time which is much smaller than 1/A.
We can then assume that suddenly, instead of (8.21), the following relations hold:

{x|exp [iHt] P, exp[— iH{] |y>=1,

(8.22) . ,
(x| exp [iHt] P_exp[— iHf] |4>=0.

In such a case B,= B, so that the evolution eq. (8.18) reduces to (8.5). The
evolution of p(y,t) is then given by (8.14), which has already been shown to
lead to a mixture of factorized states in a time interval large with respect to 1/A.
We stress again that the density operators for the subsystems s, and s, coincide,
during the whole process, with those which would be obtained by taking into
account only the Schrodinger evolution. Finally, we note that the process
leading from the initial nonfactorized state to the final mixture of factorized
states is quantitatively governed by two parameters, the length a and the
time 1/A.
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9, — Remarks and conclusions.

The formalism of the density functionals which we have introduced and
discussed in this paper has been shown, in the last section, to allow the intro-
duction of a consistent dynamical equation, generalizing the Schrodinger
equation, which accounts for the desired transition from second- to first-kind
mixtures, and which eliminates the EPR paradox. Obviously, the generalized
equation violates quantum mechanics for large separation of the subsystems.
However, the dynamics has been chosen in such a way that only the correlations
between the subsystems turn out to be different from those involved by the
gtandard evolution equation. An important remark, however, has to be made.
So far we have tacitly assumed that the mapping (7.5), in terms of which B
and B, have been defined, acts in a similar way on the internal and on the
translational degrees of freedom of the component subsystems. From the point
of view of overcoming the EPR paradox, however, the internal and trans-
lational degrees of freedom do not play identical roles. This has already been
discussed in ref. (). The use of (7.5) for both the internal and the translational
degrees of freedom can give rise to rather dramatic effects. This is due to the
fact that the nature of the considered mapping is such that the correlations
between the subsystems are completely destroyed (compare eq. (7.7)). As a
consequence, if one considers, for example, a composite system decaying into
two fragments in a relative S-wave, the considered mapping would allow the
two fragments to be found both in the same space region, instead of being in
opposite regions with respect to the centre of mass. Analogous considerations
hold for the correlations between the linear momenta of the fragments. While
the complete decorrelation among the internal variables can be accepted, since
it has not been clearly disproved by experiments, it is hard to believe that the
same absence of correlations for the external variables would not have already
been seen, if really existing. This shows that some modifications of the map-
ping (7.5) can be necessary.

Using the formalism of the density functionals, one could, for example,
define 2 mapping leading to mixtures of factorized states of the kind considered
in the appendix of ref. (1), avoiding in this way the above-said unpleasant
consequences.

We observe also that the hypothesis of a transition from second- to first-
kind mixtures necessarily implies some heterodox consequences about con-
servation laws. To see this, we can, for instance, consider the case of two spin-}
particles in the singlet state. Since the expectation value of the total spin S2
in the singlet state is zero, while all factorized states have nonzero projection
on the triplet manifold, any mechanism leading to a mixture of factorized
states implies that the expectation value of S? changes during the process.
However, the expectation values of the components §; of the total spin do
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not change during the process. In fact, if we evaluate the density funectional
p;f(zp), where ¢, is the singlet state, according to (7.7), g;f turns out to be } I,
so that

(9.1) 8> =Tr (8, ¢5)) =0.

The transition from the singlet state to the factorized mixture takes then
place in such a way that {8,> =0 at any time. This means that the §2=1
states which necessarily appear in the mixture have spin orientations uniformly
distributed in space, so that the isotropy of the initial sitnation is preserved.

Concluding, even though further investigations about the specific strue-
ture of the mapping appearing in eq. (8.16) are necessary, we have introduced
in this paper a description of quantum states and a dynamical equation which
constitute a generalization of quantum mechanics and provide a natural frame-
work to describe processes eliminating the nonseparability of quantum systems
which are far apart from each other.

APPENDIX

In this appendix we want to show how one can express the effect of a
measurement on a quantum ensemble in terms of the density functional for-
malism. We have confined this point here since, in this case, the whole process
can be expressed also in terms of the density operator language and its con-
sideration has therefore only an illustrative purpose.

Let us suppose that we subject an ensemble of quantum systems to a
measurement of a complete set of commuting observables, which will be
denoted by L. Let ¢, be the eigenvectors of L. Suppose now that, before the
measurement, the ensemble is associated to the state vector ¢, or, which is
the same, that it is deseribed by the density functional p;(y) given by (4.2).
If we write

(A.1) gy = ;5,[60 ’

the effect of the measurement of L (reduction of the wave packet) transforms
?;(y) into a new functional, denoted by p%(tp), which is obviously given by

(A.2) p(Y) = 2 [Z)[*p.,(9)

H

where p,{y) is the density functional associated to the pure state ¢,. Let us
denote the mapping (A.2) by M., so that we write

(A.3) i) = M, p;(v) .
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In the general case in which, before the measurement, the ensemble is described
by the arbitrary density functional p(y), we can use (4.4) and the fact that M,
is obviously a linear mapping. Then we have

(A4) )= Moply) =[A5P(H) M.pgly) = S p.(0)[|<eIPD1'0(7) 47

where, in the last step, use has been made of (A.2).

When L is not a complete set of commuting observables, but the measure-
ment i «moral» (*), introducing the projection operators P, associated to
the eigenmanifolds of L, we have, in place of (A.4),

(A.5) () = Moply) = 5 [pen(y) PP, 2@ 09

As already remarked, the effect of the meagsurement can be expressed also
in terms of density operators. We can establish the general property that a
mapping # among density functionals has to satisfy in order that it can also
be expressed in terms of density operators. Obviously, such a mapping must
transform density functionals corresponding to the same density operators in-
to density funectionals which again correspond to the same density operator.
Recalling the expression (2.10), we see that, in order that .# has the desired
property, the equation

(A.6) Jav 1v> vl pde) — patpi) =0
must imply
(A7) [av > <yl LApity) — DLW = 0.

When L is a complete set of commuting observables, since

(A.8)  M.pi(p)— M.ps(y) = 3 p.,(p) e, l_fdtﬁ 19> <Pl [pa(w) — Pa(w)] l€s>

equation (A.6) implies M. p,(y)— M p.(y)=0, so that (A.7) is satisfied.
When L is not a complete set of commuting observables, but the measure-
ment is «moral s, we have

(A.9)  [ay Iy <Yl [Maprly)— Mapslp)] =
= [y 19> @I S [4F Days(p) CFIPAIP) [21($) — Pali)] -

By using the fact that py(y)=p,(§) and equation (4.4), equation (A.9)
becomes

(A.10) f Ay (9> <] [Mnp:(p) — Mnpa(y)]= ’ZP, [ fdt/') I¢><¢|{p1(¢)—p=(¢)}] P,

('} B. D’EspagNat: COonceptual Foundations of Quantum Mechanics (Menlo Park,
Cal., 1971).
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8o that equation (A.6) implies that (A.7) holds. Now, if one writes an equation
like (8.3) identifying the mapping B appearing there with M, or M,, defined
in (A.4) or (A.B), one obtains the evolution equation for an ensemble of quantum
systems in the presence of a measuring apparatus, which has been derived in
a recent paper (8) using the language of the density operator and the quantum-
dynamical semigroup formalism.

(®) G. C. GHirarDI, A. RmmiNt and T. WEBER: Nuove Cimenio, 30 B, 133 (1975).

® RIASSUNTO

8i introduce una riformulazione della meccanica quantistica nella quale gli «stati» di
un ensemble di sistemi quantistici sono descritti per mezzo di funzionali reali positivi
definiti sullo spazio di Hilbert dei sistemi. Per questa via si giunge ad una generalizza-
zione della meccanica quantistica che permette di descrivere la transizione da una miscela
di seconda specie a miscele di prima specie ipotizzata da vari autori per eliminare il
paradosso di Einstein, Podolsky e Rosen. Si ottiene ¢i6 costruendo per i funzionali
un’equazione dinamica che si riduce all’equazione di Schréodinger quando i sottosistemi
del sisterna quantistico composto sono vicini e d3 luogo alla transizione ad una miscela
di prima specie quando essi sono lontani. La transizione & tale ehe i risultati di qualsiasi
misura su uno dei due sottosistemi sono gli stessi che si avrebbero con la pura evoluzione
di Schrodinger. Le deviazioni dalla teoria usuale si possono quindi rilevare solo con
misure di correlazione tra i sottosistemi.

Hosas ¢opmyMpoBKa B BO3ZMOXKHAS MOJA(HKAINA KBAHTOBOH MEXABHKH
n EPR mapanoxe.

Pe3rove (*). — BBoxgurca HoBag GbopMYySIHPOBKa KBAHTOBOH MEXaHHKH, KOTOpas OIMCHI-
BaeT « COCTOAHHUA » AHCAMOIISL KBAHTOBLIX CUCTEM C MOMOIIBIO MOJIOXUTEIBHEIX BEILECT-
B2HHBIX (QYHKHHOHAJIOB B THILOEPTOBOM NPOCTPABCTBE CHCTEM. T4 HOBas GOpMyIH-
POBKa H03BOIsAET 0606LUHTL KBARTOBYIO MEXAHHKY TAKuM 0Opa3oM, YTOOH HHAYIUPOBATh
nepexos OT CMECH BTOPOTO poAa K CMECH HEPBOTO POAd, KOTOPEHIA, B COOTBETCTBUHM C
MPEANOJIONEHHEM pPa3/IMYHBIX aBTOPOB, HO/KEH HMETh MeCTO ans ucimoueHus EPR
nipagokca. MEl B IBHOM BHIE BHIBOAMM AMHAMHYECKOE YPaBHEHME s GYHKLHOHAJIOB,
KOoTopoe cBoauTcs K ypaBHeHmio UIpenmurepa, xorga moaCHCTEMEI COCTaBHOH KBaHTOBOM
CHCTEMBI OJIH3KU APYT K APYTY, X IPUBOAUT, H3IMEHSA KBAHTOBOMEXaHHYECKYIO IBOTIOLHIO,
K mepexony B CMeCh IEPBOr0 pona, KOrAa COCTABIIAIOIIUE MOACUCTEMBI NAJIEKU ApPYT OT
apyra. DTOT MEpeXoj OKa3bIBAaCTCS TaKMM, 4YTO B JH000e BpeMs IpeaCKa3aHms, Ka-
caronmuecss uiMepenult HaGIIOAaeMBIX BEIMMHH, OTHOCAIIAXCA K OJHOM M3 IOOCHCTEM,
COBMAJAIOT C MPEACKA3AHUAMHE, KOTOPbIE CIEAYIOT HENMOCPEACTBEHHO M3 3Bomouun lpe-
nuaurepa. CieqoBaTeNbHO, OTKJIOHEHUS OT CTaHAApPTHOR TEOPHH BBIIBAHLI TOJILKO KOD-
peNIANMAMA MeXAy IMOICACTEMaMH.

(*) 1Tepesedeno pedaryueii.



