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S u m m a r y .  - -  We present an exactly solvable model describing the 
interaction between a two-level system and the electromagnetic field. 
For long interaction times we evidence some purely qltantum-mechanical 
effects, such as the destruction of coherence of radiation and the Gaussian 
envelope of the transition probability. 

1 .  - I n t r o d u c t i o n .  

In  this article we discuss an exactly sob/able model which describes the 

interaction between isolated atoms and the radiation field. 
For  a rarefied gas the interaction between the atoms can be neglected. 

In  this case we show tha t  if only transitions induced by the radiat ion field 

between a finite number of atomic levels occur, then  after a sufficiently long 
t ime the coherence of the initial beam is destroyed. This is a consequence of 

saturation of the transitions between the atomic levels. 
To observe such effects one can imagine the following experiment. An 

a tom placed in a l~erot-Fabry interferometer is irradiated by  an electromag- 
netic field. The energy radiated by the a tom into the eigenmodes of the Perot-  

l~abry is approximately  equal to the energy radiated isotropically by the same 

a tom in free space. The corrections become very small for highly reflect- 
ing mirrors (1). The behaviour of the system is studied by  analysing the weak 
outgoing waves. 

(1) _A_. KASTLER: Appl.  Opt., l,  17 (1962). 
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A large numbe r  of a toms  interact ing with  a common  radia t ion field ca~ be 
t r e a t ed  to a good approx ima t ion  as a species of harmonic  oscillator (2.3). I n  
this case, for l inear in terac t ion  between the  rad ia t ion  and the oscillator, an  
ini t ia l ly  coherent  s tate  remains  coherent  (~). 

For  an  isolated a t o m  wi th  a finite number  of exci table levels, however ,  this 
s t a t e m e n t  remains  app rox ima te ly  t rue  for a short  in teract ion t ime  only. 

To describe the  behaviour  of the  sys tem for long interact ion t imes a per- 
t u r b a t i v e  t r e a t m e n t  is no longer adequate ;  we therefore  discuss a model  which 
is a car icature  of the real  system, bu t  which allows an  exact  solution. Such 
a model  m a y  give some indications about  how coherence is des t royed in a real  
sys tem.  

The  model  Hami l ton i an  is presented in Sect. 2. I t s  eigenstates and  eigen- 
energies are discussed. I n  Sect. 3 we discuss the  behav iour  of a tomic  observables 
for  various initial  conditions of the  radia t ion  field. I n  part icular ,  if the  in- 
c ident  mode  is init ial ly in a coherent  s ta te  I ~ } ,  the  t~abi flipping is shown 
to  have  a Gaussi~n envelope which is independent  of l~,l 2 for I~,I~p-~ > 10, 
p being the  number  of modes of the  field. This effect is a pure ly  quan tum-  
mechanica l  one and  cannot  be explained b y  semi-classical arguments .  Scaling 
proper t ies  be tween the  monomode  and mul t imode  cases are discussed, and 
conditions under  which the  stat is t ical  propert ies  of the  field do not  p lay  a prom-  
inent  role are evidenced. Section 4 is devoted to the  s tudy  of the  evolut ion 
of the  radia t ion  field. Fo r  this purpose we analyse  the  t ime  behaviour  of the 
pho ton  statist ics of the  cav i ty  eigenmodes. I t  is clearly evident  tha  L for long 
in terac t ion  times~ the  coherence propert ies  of the  field are s t rongly modified. 

2 .  - T h e  m o d e l .  

The ideal exper iment  sketched in the  In t roduc t ion  is described b y  the  
following model .  The a t o m  is t aken  as a two-level  system, @ being the  energy 
separa t ion  between its g round level ]A} and its  exci ted level ]B}. 

[ ~ \  

\ / \ / 

the  Paul i  matr ices  b y  Ix,  I~ and  I~, the a tomic  t t ami l ton i an  reads 

(~) H~= ~ ( -  eL-- @). 

Defining I+_----I~:j: iI~, one has the  relat ions I _ [ A } :  ]B}, I+  [B} ---- IA} and 
I +  IA} ~ - / _  ]B} ---- O. 

(2) R. I-I. DICKE: Phys. Rev., 93, 99 (1954). 
(3) R. BONIFACIO, D. ~[. KIM and M. O. SCULLY: Phys. Bey. A, 1, 441 (1969). 
(4) R. J. GL2LUBI~R: Phys..Lett., 21, 650 (1966); Rendiconti S.I..F., Course XLII ,  
edited by R. J. GLAL~B~I~ (New York, N.Y., and London, 1969). 



LONG-TIME BEHA.VIOUR OF ~ TWO-LEVEL SYSTEM ETC. ~ 2 ~  

We assume the  scat ter ing of radia t ion  on the a t o m  to be elastic, and  thus  
the  modes of same frequency (o of the  e lectromagnet ic  field are re levant .  The 
t tarni l tonian describing the  rad ia t ion  reads 

k ~ k  1 

b~ and bk are Bose creat ion and annihi la t ion operators  for the  mode  k, where k~ 
corresponds to the  incident mode,  and  k ~ k2 ... k~ corresponds to the  Perot-  

F a b r y  eigenmodes of f requency ~o. 
We assume the  two-level  sys tem and the  radia t ion  field to  be coupled b y  

dipole interact ion.  This in terac t ion  reads 

(3) H~=t= ~ ~k(bk-~- b~)(l+-~- I _ ) ,  

where ~ are (real) coupling constants .  
The rad ia t ion  wavelength  being assumed to be much  larger t h a n  the a tomic  

dimensions, the  spat ia l  dependence is neglected in H~  t. 
Near  the  resonance ~c,)~--@ and for small coupling constants  (A <<~(o) 

the  ro ta t ing-wave  approx imat ion  can be per formed (5-7), and  H ~  reduces to 

b~ I + ) .  

A fur ther  approx ima t ion  consists in assuming the  i so t ropy of the coupling 

cons tant  in k-space: 

(5) ~k ~ A--~ cons t .  

This a s sumpt ion  is not  needed in order to diagonalize the  model  Hami l -  
tonian,  but  it  allows us to s implify the  notat ions.  The model  Hami l ton ian  

we shall consider reads 

(6) H = ~ (-- 5Io -- 5) + ~ ~(ob~ b~ + ~ Z (b~ I_ + b~ I+) . 
k = k l  k 

2"1. Eigenstates and eigenenergies o/ H. - The eigenstates and  eigenenergies 

of the  model  t t ami l ton i an  (6) are known (s). 

(5) P. L. KNIGHT and L. ALLEN: Phys. Lett., 38A, 99 (1972). 
(G) P. L. KNIGHT and L. ALLEN: Phys. Rev. A, 7, 368 (1973). 
(~) D. F. WALLS: Phys. •ett., 42A, 217 (1972). 
(s) A. QU&TTI~OrANI: Phys. Kondens. Materie, 5, 318 (1966). 
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Let  us consider the operator  

p -  1 being the number  of modes of f requency ~o of the cavity.  
Le t  us denote by  {1r the  complete set of eigenvectors of the operator  A+A. 
The expectat ion value ( r  IAtA Ir being nonnegative,  there exists a smallest 

eigenvalue 70 of A*A, corresponding to the eigenstate I~o}, which is defined b y  

(8) A I~o) = o .  

An orthogonal set of eigenstates of A*A can be constructed f rom 1r 

1 
(9) lr = (A*) ~ In !(p)~)"]�89 lr �9 

These states lr are normalized if (r162 The solution of eq. (8) is not  
unique;  there exist p vectors Ir l :  1, 2, ...,p, verifying this equation. One 
of t h e m  is the tensoriM product  of the vacuum states I~Po.~) of the modes 
~obt~ b k 

k~ 

(~o) Ir = I I  l~o.~), 
k~/c z 

and the other  solutions Ir l :  2, ..., p, can be generated by  the operators. 

(11) t u ~ b r B z ~  ~ k k,  
k 

( 1 2 )  Ir * ' = B, leo>, 

$ where the u~ are complex numbers.  
The states ]r are solutions of (8) if 

(13) [A, B~J = ~ ~: ~i  = 0 .  

2 being given, eq. (13) has p -- i l inearly independent  solutions. The complete 
set of eigenfunetions of A*A is 

= l ' I  (B,')~, (A')  '~ Ir (]4) Ir ,~  ~ [n!(p2~p]~ . 

The eigenstatcs of the model t tami l tonian  H are obta ined from { Ir and read 

r n o $  I I . ~ , s  --2,~,$ I - - /  I T~P-~I /  
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with s : q-1 ,  

(16) 
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r {~z} = 1--r{'~} 2 _  
1 , n , s  ~--- 2 , n , $  - -  

22np 

- -  2~2np + �89 (?i~o - -  e) ~ ~- s(~w - -  e)[�88 (?ioJ - -  e) 2 + ~2np]�89 

The corresponding eigenenergies are 

0 7 )  t l , 8  

The eigenstate corresponding to n = O is 

- ( " ) )  = I A ) I r  �9 (18) Vo.1 

At the resonance ~r the eigenstates and eigenenergies simplify considerably: 

(19) {~} 2__ r{,} 12= 1 It1 . . . .  I - -~ . . . .  

and  

(20) {'}-- ~co(n l-q- ~ ~,1 q- s;t%/n. 
$--2 

3.  - A t o m i c  observables .  

We evaluate  the evolution of atomic observables f rom different initial 
conditions, assuming at t ime t---- 0 no correlation between the  atom, the cavi ty  
modes and the  incident mode. 

3"1. I n i t i a l  conditions ]or the two-level sys tem.  - In  this article we shall always 
consider t ha t  the  a tom is init ially in its ground s ta te  IA}. This condition is 
well fulfilled if the energy separation ~ between the two atomic states is much 

larger t han  k T :  

(21) e.~(0) ---- ]A} (A l . 

3"2. I n i t i a l  condi t ions /or  the radiat ion l i d &  - The radiat ion field is composed 
of two parts,  namely  the incident mode and the cavi ty  eigenmodes. We shall 
admit  tha t  these cavi ty  modes are not  excited when the interact ion is switched on 

( 2 2 )  qo . . , , , (o )  = I{O~,}) <{o~,} I. 
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Various initial conditions will be used for the  incident radiat ion mode:  

i) Chaotic state. I n  the  P-representa t ion GLAV]~El~ (~) has shown t h a t  
the densi ty  matr ix  describing a chaotic field reads (lO) 

(23) 

In  the basis of the eigenstates { Ink,>} of the harmonic  oscillator, this densi ty 
ma t r ix  reads 

(2~) 1 ( <nk,> ~"Ink>(nk 1 
Q k , ( O ) : ~ l + < n k , >  1 ~ - ~ , > 1  ' " . . . .  " 

<nk,> is the  average number  of photons in the  incident  mode. The rad ia t ion  
emi t ted  by  a spectral laznp is often described (in the  monomode case) b y  such 
a densi ty  matr ix,  which corresponds to a max imum entropy~ for a given average 

of photons.  

ii) Coherent state. A Glauber coherent  s ta te  link,) is defined by  the  equa t ion  

(25) bk, I~k,> ~ ~k, I~k,> �9 

Such a s ta te  describes the  radiat ion emit ted b y  a laser well above threshold  

or a microwave field with fixed phase. 

iii) Unphased coherent state. Such a radia t ion mode is described in 
/ ' - representa t ion  by  the  densi ty m~trix 

(26) 

2~ 

~,(0) : f d r  Lf(r exp [ir <a~, exp [ir I, 
0 

where ~f(r is the phase distr ibution of the field. For  a coherent  s tate  with 
r andom phase 

(27) ~e(r = (2~)-1. 

(9) R . J .  GLAUBER: Phys. l~ev., 131, 2766 (1963). 
(lo) For convenience, we shall use the P- or the {[n>}-representation, depending on 
the case. For a detailed discussion of the P-representation, see ref. (11.13). 
(11) R. J. GLAUB~R: in Optiq'~e et 61ectroniq'~e quantiques, Les Houches, 1964, edited 
by B. D~ WITT et al. (New York, N.Y.,  1965). 
(12) K. E. C~IILL and R. J. GLAV~ER: Phys. Rev., 177, 1857 (1969). 
(13) K. E. CAI~ILL and R. J. GLAVBv,~: Phys. Rev., 177, 1882 (1969). 
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In  {Ink,}}-representation this radiat ion is described by the density matr ix  

(28) ~,(0) ---- exp [-- la~,] ~ ~ nk,~ " 
nk 1 

iv) Eigenstates o] the incident mode 

(29) 0~,(0) = Ink,} <nk,1. 

This density matr ix  does not correspond to a realizable state of the radiation,  
but  in some cases it can be used instead of the previous, more realistic, initial 
condition. 

Thus the initial condition for the tota l  system reads 

(30) 0 (0)=  1A}<A]Qokl(O) Q]{Ok,}}<{Ok,}], i =  2 , . . . , p ,  

where 0k1(0 ) is one of the previously discussed states. 

3"3..Probability o] no transition. - Start ing from the initial condition (30), 
we calculate the probabili ty of finding the two-level system in its gwound state 
]A} at  t ime t. 

This probabil i ty depends only on the diagonal terms of the initial density 
matr ix  for the incident mode, expressed in { ]nk,}}-representation (14). 

We first discuss the case where the initial state of the incident mode is an 
eigenstate (29) of the harmonic oscillator. 

The probabil i ty of no transi t ion P~,%.{o~}(t) is given by 

(31) P~.,,,.(o~j(t) = Tr {( IA> <AI | 1) U(t) e(0) U*(t)}, 

where 1 is the ident i ty  operator in the Hilbert space of the electromagnetic 
field (incident mode and cavity eigenmodes). 

U(t) is the evolution operator. 
With  (15), (31) becomes 

( 3 2 )  .P~.,~,.~o~.~(t) = ~ < r  , , ~ ,  , , ~ . ~  , ~  . . . . .  . 

Introducing the completeness relation 

m',{vt'},s' 

(1~) p. ~r Th~se EPF-L (1974), unpublished. 



5 2 8  P.  M~YSTRE,  2 .  GENEUX~ A. QU&TTROPANI and ~ .  FAIST 

i being the ident i ty  operator  for the complete system atom Jr" radiation,  and 
taking  into account the  initial condition, we obtain 

P:..,.<:.,,(,): z ,,,,,,] 

Use of (16) and (17) allows us in principle to obtain the exact form of the  
probabi l i ty  of no transit ion.  

For  simplicity, we present  explicit ly the resonant  case ~o  ~ Q  only. 
Wi th  (19) and (20), (34) reads 

( 3 5 )  /~...~,.{o~,}(t)=~ ~ 1+  eos2~v/mpp KCk,}ink,, { O k , } > ]  2 . 

The mat r ix  elements I(r {Ok,})[2 are given by  (1,) 

( ~' )nk,!p .... 
.(36) ](r {Ok,})] 2-- ~ m~-  ~ - - n k ,  ~ �9 

~-2 m ! l - [ ~ !  

The Kroneeker  symbols ~ (m- [ -~vz- -nk , )  yield the energy conservation.  
I f  we introduce (36), the  probabi l i ty  of no t ransi t ion (35) reads 

[ ,) t] nk,!p -'~., 
P.~.%.{o~,}( ) 2 

,,,+Z,,--,, m ! l - I  v~ ! 
~ 2  

Taking into account  the  mult inomial  theorem,  we have 

(3S) 
{,,z} \ m /  

m ? H v~ T 

Thus the probabi l i ty  of no transit ion reads 

(1/p)~(1 - -  1/p)".,-~[1 + cos 2 t / ~ ]  
m~0 

(39) 

with 

(40) 

This result will be discussed later on. 
Le t  us consider now the case of an incident radia t ion init ially in a coherent  

s ta te  (25). 
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A derivat ion completely analogous to the  preceding one gives for the  prob- 
abil i ty of no t ransi t ion 

This form differs f rom (35) only through the ma t r ix  element 

i<r {o~,}> 12 , 

which takes the  form (~a) 

(42) [<r { ~,}- = exp [-- ]a~,l ~] 

1-I v , !m!  

In t roducing  (42) in (41) we obtain 

exp [ -  [.~12/p] (43) 1~.%,{o~,}(t) = _ 1 + cos 2Z ~/mpp . 
2 ~.~ m !p~ 

In t roduc ing  (40) in (43) and defining 

~. = % l v ~ ,  (44) 

we obtain 

(45) . ~ 1 ]ak']2" 2 v~m~] .  ,,,.~,..(o~.~(~) ~e~p [ -  lak, I ~] ~ [1 + cos 

3"4. Discussion. - In  the monomode case the probabili t ies of no t ransi t ion 
(39) and (45) read respectively 

(46) P~.a(T) -- exp [-- ]m]2] ~" ]~]~ [1 -}- cos 2~J-~T]  
2 ~ m !  

(47) ~ , . (T)  = �89 (1 + cos 2 V ~  3) .  

Contrary  to P].~(~), Paa~(~) is not periodic in t ime (~5). 
The envelopes of /~aa~(~) and Paa.~(v ) are plot ted in Fig. 1. 
For  Igloo9, the envelope of P~.~(T) is independent  of the  intensi ty [a[2 

of the incident  mode. 

(15) A. FAIST, E. G~z~EUX, P. MEYSTRE and A. QUATTROPANI: IYelv. Phys. Acta, 45, 
956 (1972). (In this reference, cos (),~/~t/h) should rcad cos (2~V-%t/h).) 

3 4  - I I  N a o v o  C i r a e n t o  B .  



Evident ly ,  no daznping process was in t roduced in our model. Accordingly,  
the  occupat ion probabi l i ty  contains a Poincar6 cycle. Therefore, the  behav iour  
of real  physical  systems curt be described b y  P].~(~) as given b y  (46) only  fo r  

1.0 

i 

0.5 

~ 3 0  P.  MEYSTRE, E. GENEUX, /~. QUzLTT!~OP&NI and A. FAIST 

0 '~ 2 3 ~ T 

Fig. 1. - Monomodo case: envelopes of a) Px~a(~) (for I~l~10) and b) P~.,(~) 
(for n > 0). ~ ~-),t/~. 

t imes  small  compared  to thei r  daznping t imes.  I n  the  l imit  t << I~1t~/~, P~,~(r) 
reads (i~) 

(48) P~.~(~) ~ �89 {1 + cos (2 I~ I~) exp [ -  ~=/2]}. 

The comparison of expressions (45) and (46) shows t h a t  a s imple t ime  scaling 
relates  the  probabi l i ty  of no t rans i t ion  in the  mu l t imode  and  monomode  cases 
if ini t ia l ly the  incident mode  is in a coherent  state.  The envelope of the  prob- 
abi l i ty  of no t ransi t ion in the  mouomode  and mul t imode  cases is Gaussian 
and  reaches a quas i -s ta t ionary  value 1 for 

(49) ~, , .  =-  ,~ V ~  to /~  ~ ~ . 

The scaling p rope r ty  ment ioned  above,  which is also verified for the evolut ion 
of the  a tomic  dipole momen t ,  depends drast ical ly on the photon  stat ist ics of 
the  incident  mode at  t = O. 

(16) p. MEYSTnE, A. QUATTROPANI and H. P. BALTES: Phys. Left., 49A, 85 (1974). 
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One easily verifies tha t  no t ime  scaling t r ans fo rmat ion  relates (39) to (47). 
A useful simplification arises f rom the comparison of the  p robabi l i ty  of no 

t ransi t ion (39) and  (45) eva lua ted  respect ively  wi th  the  initial  conditions 
@~,(0) --~ In~} <n~j and @~,(0) = r~k~} <~,l.  The t ime- independent  coefficients of 
(39) and (45) are given respect ive ly  b y  a binomial  d is t r ibut ion 

(50) ~ ( m ) =  ( ~ ' )  (1/p)'~(1 - 

and by  a Poisson distr ibution 

(51) 

:l l p ) . , , - ~  

~(m)  = e x p [ - - l ~ , l  2] m! 

I n  the  l imit  nk--~ c~, p --> c~ and  nk,/p= ]~,p (finite), ~ (m)  --  ~ (m)  --> 0. 
:Numerically, one shows t h a t  ~ (m)  and ~(m)  differ b y  less than  10 o/ for , 0  

p = 5  and n k , = 5 .  
I n  the  above  l imit  the  probabi l i t ies  of no t ransi t ions (39) and  (45) coincide, 

a l though the  stat is t ical  propert ies  of the  incident mode  are essentially dif- 
ferent. The evolut ion of the  p robab i l i ty  of no t rans i t ion depends ma in ly  on 
the  init ial ly unexci ted  modes of the  P e r o t - F a b r y  cavi ty .  

Obviously, this simplification is not possible for the evaluation of observables 

which depend explicitly on the electric field of the incident mode, as for instance 

the atomic dipole moment. 

3"5. Atomic dipole moment. - I n  the  above  Subsect ion we have  studied the 
effect of the  s tat is t ical  na ture  of radia t ion on an a tomic  observable diagonal  
in the a tomic  eigenstates.  

Let  us now analyse a nondiagonal  a tomic  observable.  As we shall see, the  
effects of the  s tat is t ical  na ture  of the  incident mode  are more  impor t an t  for 
such observables.  

We consider here the a tomic  dipole m o m e n t  9 .  <B t~tA} z / t  is the  atomic-  
d ipole-moment  ma t r i x  e lement  be tween the  a tomic  s ta tes  IA} and IB}. I t s  
numerical  value # depends on the  considered a tom.  We assume tha t  the  a t o m  
has no p e r m a n e n t  dipole m om en t ,  i.e. <AI~IA}~ <BI~IB}=O. 

We shall not  detail  the  eva lua t ion  of < ~ } ( t ) =  Tr~@(t), the  calculations 
being comple te ly  analogous to the  previous ones: 

(52) <~}(t)  ---- ~ ,/v {" } l~lv,  {'''} % ,/,, 0'='} -~0~ ,r (',}~, exp [ / t  (A{"!~}-- ; { " } / ]  \ r / /~ ,81  ITIR'.SS/ \ T ~ # , S ' ~ \  Jl'tltt.S" L ~  \ 1R, /~me,$'/j " 

{~z,}.m',8 s 

We first discuss the  ease where the  nondiagonal  t e rms  of the  densi ty ma t r ix  
for the  incident  mode  are ini t ial ly equal  to  zero in the  { In~,}}-representation. 
Assuming t h a t  the a tom is ini t ial ly in its ground s ta te  IA}, and the cav i ty  
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modes  unexci ted ,  one shows easi ly t h a t  

(53) <~>(t) ~ 0 .  

This  resul t  is no t  surpris ing,  for  the  ini t ia l  inc ident  r ad ia t ion  m o d e  has  
a v a n i s h i n g  average  electr ic field and  no dipole m o m e n t  can be induced.  A 

n o n z e r o - a v e r a g i n g  dipole m o m e n t  can appea r  on ly  if t he  r ad ia t ion  field con- 

ra ins  a (~ min ima l  coherence  ~> such t h a t  the  average  electric field does no t  vanish .  

L e t  us now discuss the  case of an  inc ident  m o d e  ini t ia l ly  in a coheren t  s tate.  
A t  t he  resonance  ~ho = ~  we ob ta in  (~') 

(5~) 
,.=o Vm!(m + ~)! 

�9 cos (v~mm~,) sin (V~m -4- 1~,){exp [ i ( (o t - -~v(~, ) -~  =/2)] @ c.c.},  

where  

(~o) ~, = ~V-~t l~,  

(55) ~k, = I~k, I exp [@(~k,)] �9 

As fo r  t he  p robab i l i t y  of  no  t rans i t ion ,  t he  m o n o m o d e  (p = 1) and  m u l t i m o d e  

cases are  re la ted  b y  a s imple  t ime  scaling. 

<~>(r~) and  P~.%.{%I(v~) are r epor ted  in Fig.  2 for  l ~ , p =  ]~k,i'~p-~= 9 
as a f u n c t i o n  of r ~ =  ~-p t /h .  

The  sa tu ra t ion  of the  a tomic  t r ans i t ion  occurs  for  t ~ 7~/2V~ and  can  be  

seen f r o m  the  quas i - s t a t iona ry  value  of P~.~,.(o~,}(~). 
The dipole m o m e n t  still varies  for  t ) ~ / 2 ~ / p .  Such an  effect is k n o w n  

f r o m  the  (~ coherence resonances  ~ in opt ica l  p u m p i n g  exper iments  (~s-zo) and  

m a y  be unde r s tood  as t he  t ime  evolu t ion  of t he  re la t ive  phase  be tween  the  
two  a t o m i c  s ta tes  IA> a nd  ]B>. 

W e  shall  now d e m o n s t r a t e  t h a t  this effect d isappears  for  1~]2--~ oo, i.e. 
t h a t  t h e  slow va r i a t ion  of <~>(v~) vanishes  in this  l imit .  

Le t  us consider  the  t i m e - d e p e n d e n t  p a r t  of <~>(v~) in expression (54) 

(56) cos (~/-~ T.) sin ( ~  1 T~) = 

---- sin [(~m--@ 1 - -  ~mm) ~ ]  + sin [ ( v ~  1 -/- V~m) ~ ]  . 

(17) p .  MI~YSTI~I!], ]~. GIgNlgUX, A. F~-IST and A. QUAT~I~OeANI: Lett. Nuovo Cimento, 
6, 287 (1973). (In this reference expression (4) should be corrected cos~/~x-+  
-+ cos 2 ~ x .  The scale of the upper part  of Fig. 2 should be modified accordingly.) 
(is) :E. B..A.L]~XANDROV, O. B. CONSTA.NTINOV, ]~. 1. P]~RELLI and B. A. KHODOVOY: 
Soy. -phys. JET.P, 45, 503 (1963). 
(19) C. J. F~VRE and E. GENEUX: -phys. Lett., 8, 190 (1964). 
(20) C. COHLN-TAN~'OUDJI and N. POLONSKY: Compt. t~end., 260, 5231 (1965). 
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Fig. 2. - Monomode case: comparison of the dipole momentum (~>(T) with the prob- 
ability of no transition P~.~(T). T --= 2t/h,  [al 2 = 9. 

In  (54) the  oscillating terms are multiplied by  a Poisson-like distr ibution 
which gives impor tan t  contr ibutions only for m_~ I~k~l 2. As in the case of the 
probabi l i ty  of no transit ion,  the  rapidly  oscillating t e rm 

sin + 1 + 

averages to zero for v~ ~ ~. For  large l~k, p, the slowly oscillating t e rm reads 

sin [(C-mm ~- 1 - -V~m)~]  ~ sin (~/2V~m).  

This t e rm contr ibutes  only if the  interact ion t ime is of the order of [~, []~/~, 
which is general ly outside the exper imental  limits. 

4 .  - P h o t o n  s t a t i s t i c s .  

In  this Section we shall analyse the dynamics of the  radiat ion field. The 
photon  statistics p % ( t )  is defined as the  probabi l i ty  of finding he, photons 
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in the  mode  k,. I t  is expl ici t ly  given b y  

(57) p,~,(t) = Tr  { ]n~,> <n~, I~(t)} �9 

We assume tha t  a t  t ime  ~ ~ 0, the incident mode  is in a coherent  s tate,  when 
the  cav i ty  eigenmodes are unexci ted  and the  a t o m  is in its ground state.  

The detailed calculations leading to the explicit  fo rm of p,,(t) are presented 
in ref. (~). 

I n  the  general p -mode  case we obtain 

(5s) p.k,(t ) = Z ! ~-~  (p)--2nlr I~ktlnklexp[__ ](Xktl2] . 

~ 2  y|k .$Bk 

~tt I "~ 

sv k t 

+ Z' , e x p  �9 

�9 ~tt [2 

where the  pr ime in the  sums excludes the  s u m m a t i o n  over  n~, and (vt :vt~) and 
(m:mk) are mul t inomia l  coefficients (21). The ~k~({Vkz}) are phase factors  aris- 
ing f rom the products  on k =  k l , . . . ,  k~ and  1---- 2, ..., p of the  coefficients 

These coefficients ~ m a y  be calculated expl ici t ly  for a given number  of 
modes  and  are chosen as u ~ : p  -�89 exp [ i ~ ] .  

I n  the  two-mode case (p ~ 2) we have  calculated numer ica l ly  the pho ton  
s tat is t ics  p~,(t) of the  ini t ia l ly  unexci ted  cav i ty  mode  (2~.). Unfor tuna te ly ,  the 
capac i ty  of the compute r  (CDC 6600) does not  allow us to evalua te  p,,(t) for 

n2 > ]8. 
I n  Fig. 3 p . ,  is p lo t ted  as a funct ion of ~ : ,~t/Ii for ]0~1] 2 :  9. 

(21) Handbook o/ Mathematical Functions, edited by H. AB~AMOWITZ and I. A. STEGUN 
(Wushigton, D. C., 1964). 
(22) E. GE~nUx, P. MnYSTnE, A. FAIST and A. QUATTROPANI: ttelv. Phys. Acta, 46, 
457 (1973). 
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Since a real laser contains an average number  of photons (n)_~ 101~ this 

Figure is only of qualitative interest. I t  shows that  the photon  statistics p,,(t) 
can be fitted neither by a Gaussian nor by  a Poisson-like distribution for t ~= 0. 

Pnk2 

5 lo nk2 
P i 

T 

Fig. 3 . -  Two-mod~ case: photon statistics of the initially empty mode. 
~- [A, ~1, 0 2 )  ( A ,  ~1, O2[, T --~ ~t/]~, [~1[ 2 : 9. 

q(0)= 

This result  is to  be compared with those of SCHAEFER and BERNE (~3) and 
SCH.~EFEa and PUSEY (34). These authors have evidenced experimentally tha t  

the light scattered by  a very  small number  of macromolecules ( (N)_~ 1) is 

not  Gaussian. 
Let us now consider the monomode ease. Here, and for initially coherent 

radiation, the photon statistics are given by (17) 

(59) sin  (4 i t/77)} p~(t) = exp [ c o s 2  - -  . 

For  very  short times the te rm sin ~ (2~/-n--~-lt/~) is small compared to 

cos 2 (2~r and can be omitted. 
Consequently, the photon statistics are very weakly per turbed by the inter- 

action with the two-level system, and remain Poisson-like. For  long times, 

(23) D. W. SCI:I_4.EF]~I:~ and B. J. BERNE: Phys. _~ev. Left., 28, 475 (1972). 
(34) D. W. SCHAEFER and P. N. PUSEY: Phys. Rev. Lett., 29, 843 (1973). 
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however ,  the  s tat is t ics  are drast ical ly  modified b y  the  interact ion,  as i l lus t ra ted 
in Fig.  4. The a t o m  acts as a (( nonlinear filter ~> on the  coherence proper t ies  
of the  field. An analogous resul t  was obta ined  b y  Cu~wI~Gs (~), who studied 
the  correlat ion functions of a harmonic  oscillator coupled to a two-level  sys tem.  

cob 
Pn 

2,0 n 

Fig. 4 : . -  l~onomode ease." photon statistics of an initially coherent state [e>. 
~ ------ , ~ t /g ,  (~l ~ = 9 .  

Final ly,  let us note  t h a t  the  photon  stat ist ics for different p (p = n u m b e r  
of modes) are not  re la ted  b y  a simple scaling, con t ra ry  to what  occurred for  
a tomic  observables.  

5 .  - C o n c l u s i o n .  

The analysis of the  long-t ime behaviour  of a two-level  sys tem in terac t ing  
wi th  an electromagnet ic  field exhibits  the  impor tance  of the stat is t ical  na ture  
of radiat ion.  

A remarkab le  result  is the  Gaussian envelope occurring in the  p robabi l i ty  
of no t ransi t ion of the  two-level  sys tem in terac t ing  with  an ini t ial ly coherent  
incident  mode. We would like to emphasize t h a t  this envelope is independent  
of the  in tens i ty  I~k,I 2 of the  field. This effect is a pure ly  quan tum-mechan ica l  
one, and  cannot  be  ob ta ined  in the f rame of a semi-classical descript ion of the  
system. I t  brings out  the  fact  tha t  q u a n t u m  effects are by  no means  l imited 
to  the  range of weak intensit ies,  bu t  m a y  well occur even for very  intense fields. 

(25) F .  W .  CUMMINGS: _Phys. Rev., 140, A 1051 (1965). 
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A n o t h e r  i m p o r t a n t  r e su l t  is t h e  d e s t r u c t i o n  of cohe rence  of t h e  e l e c t r o m a g -  

ne t i c  f ie ld t h r o u g h  i n t e r a c t i o n  w i t h  t h e  two- l eve l  sy s t e m.  As  n o t i c e d  in  t h e  

fo rego ing  Sec t ion ,  t h e  a t o m  ac t s  as  a (( n o n l i n e a r  f i l te r  ~) on t h e  cohe rence  p r o p -  

e r t ies  of l i gh t .  

The  r e l a t i o n  b e t w e e n  t h e  m o n o m o d e  a n d  m u l t i m o d e  cases  is qu i t e  d i f f e ren t ,  

a c c o r d i n g  as  we  cons ide r  a t o m i c  o r  f ie ld o b s e r v a b l e s .  F o r  ~n i n i t i a l l y  c o h e r e n t  

i n c i d e n t  m o d e ,  a s imple  sca l ing  r e l a t e s  t h e  b e h a v i o u r  of a t o m i c  o b s e r v a b l e s  

for  d i f fe ren t  n u m b e r s  of modes ,  t t o w e v e r ,  for  f ie ld o b s e r v a b l e s  t h e r e  ex i s t s  

no s imp le  seal ing.  A l t h o u g h  i t  is poss ib l e  to  c a l c u l a t e  t h e  d y n a m i c s  of t h e  

p h o t o n  s t a t i s t i c s  for  a n y  i n i t i a l  c o n d i t i o n s  a n d  a n y  ( coun tab le )  n u m b e r  of modes ,  

t h e  a n a l y t i c  f o r m  of t h e  r e su l t  is g e n e r a l l y  n o t  v e r y  c lear .  :Nevertheless ,  

we show t h a t  t h e  c a v i t y  modes  a r e  e x c i t e d  n e i t h e r  c h a o t i c a l l y  no r  c o h e r e n t l y  

t h r o u g h  t h e  s c a t t e r i n g  process .  This  r e su l t  is in  a c c o r d a n c e  w i t h  t h o s e  of  

SCHAEFER et al., who showed  t h a t  t h e  l igh t  s c a t t e r e d  b y  a v e r y  smal l  n u m b e r  

of cen t re s  is n o t  Gauss ian .  

F i n a l l y ,  we  p o i n t  ou t  t h a t ,  for  some  obse rvab le s ,  a d e t a i l e d  d e s c r i p t i o n  of t h e  

s t a t i s t i c a l  n a t u r e  of r a d i a t i o n  is n o t  necessa ry .  Th is  is t h e  case for  a t o m i c -  

p o p u l a t i o n  obse rvab le s ,  as t r a n s i t i o n  p r o b a b i l i t i e s .  

W e  a re  v e r y  i n d e b t e d  to  Profs .  C. COHEN-TA~NOUDJI, I=I. :P. :BAI.TES and_ 

J .  D E P o ~ - ] ~ o c  for  i l l u m i n a t i n g  r e m a r k s  on th i s  sub jec t .  

�9 R I A S S U N T 0  (*) 

Si espone un modello esat~amente solubile per  descrivere l ' in terazione fra un sis~em~, 
a due livelli  e il  campo magnetico. Si met tono in luce, per  lunghi t empi  di interazione, 
certi  effetti puramente  quantistici ,  come la distruzione della coerenza di radiazione e 
l ' invi luppo gaussiano delia probabil i t~ delle transizioni. 

(*) Traduzione a cura della Redazione. 

IIone~emie ~ByxypoBHeBO~ CHCTeMbl, B3aHM0~efiCTByIOlllefi c 3JIeKTpOMaFHHTHblM IIOHeM, 

npH 6om,umx npeMeHax. 

Pe3IoMe (*). - -  Mbi npe~:mraeM TOqUO pemaeMyto MO~eStb, om~c~mammym B3aHMO- 
~e~CTBHe Me~C~y ~ByxypoBneBo~ CrlCTeMO~ n 3J]eKTpOMaFHrITH/,IlVI nOHeM. ~JI,q 6OJIbmHx 
BpeMeH B3anMo~e~CTBrLq MBI rm~TBep~aeM neroTop~Ie nnCTO KBaUTOBOMexarmqecKrm 
3~qbeKTbI, TaKae KaK Hapytaerme KorepeRTHOCTH n3Jm~IeHrI~l H rayccoBy dpopMy orn-  
6aroate~ BepOaTHOCTrl nepexo~ta. 

(*) IIepeeec)eno pet)aKttuefi. 


