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Summary. We present an exactly solvable model describing the
interaction between a two-level system and the electromagnetic field.
For long interaction times we evidence some purely quantum-mechanical
effects, such as the destruetion of coherence of radiation and the Gaussian
envelope of the transition probability.

1. — Introduction.

In this article we discuss an exactly solvable model which describes the
interaction between isolated atoms and the radiation field.

For a rarefied gas the interaction between the atoms can be neglected.
In this case we show that if only transitions induced by the radiation field
between a finite number of atomic levels oceur, then after a sufficiently long
time the coherence of the initial beam is destroyed. This is a consequence of
saturation of the transitions between the atomic levels.

To observe such effects one can imagine the following experiment. An
atom placed in a Perot-Fabry interferometer is irradiated by an electromag-
netic field. The energy radiated by the atom into the eigenmodes of the Perot-
Fabry is approximately equal to the energy radiated isotropically by the same
atom in free space. The corrections become very small for highly reflect-
ing mirrors (*). The behaviour of the system is studied by analysing the weak
outgoing waves.

(1) A. KastLER: Appl. Opt., 1, 17 (1962).
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A large number of atoms interacting with a common radiation field can be
treated to a good approximation as a species of harmonic oscillator (23). In
this case, for linear interaction between the radiation and the oscillator, an
initially coherent state remaing coherent (4).

For an isolated atom with a finite number of excitable levels, however, this
statement remains approximately true for a short interaction time only.

To describe the behaviour of the system for long interaction times a per-
turbative treatment is no longer adequate; we therefore discuss a model which
is a caricature of the real system, but which allows an exact solution. Such
a model may give some indieations about how coherence is destroyed in a real
system.

The model Hamiltonian is presented in Sect. 2. Its eigenstates and eigen-
energies are discussed. In Sect. 3 we discuss the behaviour of atomic observables
for various initial conditions of the radiation field. In particular, if the in-
cident mode is initially in a coherent state [« >, the Rabi flipping is shown
to have a Gaussian envelope which is independent of |a, | for |u, [*p~t > 10,
p being the number of modes of the field. This effect is a purely quantum-
mechanical one and cannot be explained by semi-classical arguments. Scaling
properties between the monomode and multimode cases are discussed, and
conditions under which the statistical properties of the field do not play a prom-
inent role are evidenced. Section 4 is devoted to the study of the evolution
of the radiation field. For this purpose we analyse the time behaviour of the
photon statistics of the cavity eigenmodes. It is clearly evident that, for long
interaction times, the coherence properties of the field are strongly modified.

2. — The model.

The ideal experiment sketched in the Introduction is described by the
following model. The atom is taken as a two-level system, o being the energy
separation between its ground level |A) and its excited level |B).

1 0
If we choose a representation where [A) = (O and |B) = ( 1) and denote

the Pauli matrices by I, I, and I,, the atomic Hamiltonian reads
1) H,=3(—ol.—0).

Defining I, =I.4-4I,, one has the relations I_|4>= |B}, I,[B)= [4) and
I,|A>=1I_|B>=0.

() R. H. DickE: Phys. Rev., 93, 99 (1954).

(®*) R. Bonrracio, D. M. Kim and M. O. ScurLy: Phys. Rev. A, 1, 441 (1969).

*) R. J. GrauvBer: Phys. Leti., 21, 650 (1966); Rendiconti S.I.F., Course XLII,
edited by R. J. GLavBer (New York, N. Y., and London, 1969).
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We assume the scattering of radiation on the atom to be elastic, and thus
the modes of same frequency w of the electromagnetic field are relevant. The
Hamiltonian describing the radiation reads

kﬂ
(2) H,= > #wblb, .

k=ky

b: and b, are Bose creation and annihilation operators for the mode k, where k,
corresponds to the incident mode, and k= £k, ... k, corresponds to the Perot-
Fabry eigenmodes of frequency w.

We assume the two-level system and the radiation field to be coupled by
a dipole interaction. This interaction reads

(3) Hy—= 3 Mlbet NI, + 1),

where 1, are (real) coupling constants.

The radiation wavelength being assumed to be much larger than the atomic
dimensions, the spatial dependence is neglected in H, ,.
Near the resonance %o = o and for small coupling constants (1 < fiw)

the rotating-wave approximation can be performed (57), and H,, reduces to
(4) Hy,=3 b I_+bi1,).
k

A further approximation consists in assuming the isotropy of the coupling
constant in k-space:

(5) A= A= const .
This assumption is not needed in order to diagonalize the model Hamil-

tonian, but it allows us to simplify the notations. The model Hamiltonian
we shall consider reads

kp
(6) H=1(—ol,— o)+ XHhowblb,+ 13 (b, I_+biI,).

’=Fk; 3

2'1. Eigenstates and eigenenergies of H. — The eigenstates and eigenenergies
of the model Hamiltonian (6) are known (8).

(®) P. L. Kntgur and L. ALLEN: Phys. Leti., 38 A, 99 (1972).
(¢ P. L. KnigaT and L. ALLen: Phys. Rev. A, 7, 368 (1973).
(") D. F. WarLs: Phys. Leit., 42 A, 217 (1972).

(®) A. QUATTROPANI: Phys. Kondens. Materie, 5, 318 (1966).
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Let us consider the operator

(7) Azzkibk,

T=F;

p — 1 being the number of modes of frequency w of the eavity.
Let us denote by {|¢>} the complete set of eigenvectors of the operator A74.
The expectation value (¢|4*4|¢> being nonnegative, there exists a smallest
eigenvalue y, of A'A, corresponding to the eigenstate |p,>, which is defined by

(8) Alpey=0.
An orthogonal set of eigenstates of A*A can be constructed from |@,>:

N Y 1
(9) 162> = (AN e e 190

These states |¢,> are normalized if {@,|§,> =1. The solution of eq. (8) is not
unique; there exist p vectors [¢}>, I=1, 2, ..., p, verifying this equation. One
of them is the tensorial product of the vacuum states |y, ,> of the modes
ﬁwb*

(10) 65 =TT I »

k=%,

and the other solutions |¢}>, 1= 2,..., p, can be generated by the operators
(11 Bl=3ub},

k
(12) 60> = Blé)

where the u; are complex numbers.
The states |¢2> are solutions of (8) if

(13) [4,Bl=43ul=0.
k

A being given, eq. (13) has p — 1 linearly independent solutions. The complete
set of eigenfunctions of 474 is

. By (A
(14) ¢{ }> _H\/—- [H/' pl ,L]% l¢0

The eigenstates of the model Hamiltonian H are obtained from {|¢®">} and read

(15) (> = rim LA g + v B I8
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with s= 41,
(16) i )2=1—|rfd, |2 =

_ Arnp
222np + § (ho — 0)? + s(fio — 0)[} (Fiw — 0)* + A*mp]t~

The corresponding eigenenergies are

17) 28 =1 (fiw — o) + ﬁw(n —14 iv,) + [} (Feo — o)+ A2mp]E.

1=2

The eigenstate corresponding to n — 0 is
(18) > = 141657 -

At the resonance #iw =g the eigenstates and eigenenergies simplify considerably:

(9 = b= 1
and
(20) W= fo(n—14 3v)+ s2v/.

=2

3. — Atomic observables.

We evaluate the evolution of atomic observables from different initial
conditions, assuming at time ¢ = 0 no correlation between the atom, the cavity
modes and the incident mode.

3'1. Iwitial conditions for the two-level system. — In this article we shall always
congsider that the atom is initially in its ground state |4)>. This condition is
well fulfilled if the energy separation ¢ between the two atomic states is much
larger than kT:

(21) ou(0) = |4><{4].

3°2. Initial conditions for the radiation field. — The radiation field is composed
of two parts, namely the incident mode and the cavity eigenmodes. We shall
admit that these cavity modes are not excited when the interaction is switched on

(22) eca,vlty(o) - I{qu}> <{0k(} I *
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Various initial conditions will be used for the incident radiation mode:
1) Chaotic state. In the P-representation GLAUBER (*) has shown that

the density matrix describing a chaotic field reads ()

1
24

(23) 05,(0) = fexp [— lotng | 2/ <ty Tty Coty 200,

In the basis of the eigenstates {|n, »} of the harmonic oscillator, this density
matrix reads

1 ( <nk,>

g,
1 + <,”/k \) |n7v1> <nk1| .

{my > is the average number of photons in the incident mode. The radiation
emitted by a spectral lamp is often described (in the monomode case) by such
a density matrix, which corresponds to a maximum entropy, for a given average
of photons.

ii) Coherent state. A Glauber coherent state |o, > is defined by the equation
(25) B et = ot Joa> -

Such a state deseribes the radiation emitted by a laser well above threshold
or a microwave field with fixed phase.

iii) Unphased coherent state. Such a radiation mode is described in
P-representation by the density matrix

2%
(26) 0:,(0) = [ 49 L($) o, oxD i8] {en, exp [ig],
Q
where £(¢) is the phase distribution of the field. For a coherent state with

random phase

(27) L($) = 2m)~".

(®) R. J. GLaUBER: Phys. Rev., 131, 2766 (1963).

(%) For convenience, we shall use the P- or the {|n)}-representation, depending on
the cage. For a detailed discussion of the P-representation, see ref. (*-13).

(1) R. J. GLAUBER: in Optique et électronique gquantiques, Les Houches, 1964, edited
by B. pE WirT et al. (New York, N.Y., 1965).

(**) K. E. CauirL and R. J. GuauBer: Phys. Rev., 177, 1857 (1969).

(33) K. E. CaHiLL and R. J. GLAUBER: Phys. Rev., 177, 1882 (1969).
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In {|n, >}-representation this radiation is described by the density matrix

e
S IRTCMP
K

z]z

ﬂkl

(28) 01y (0) = exp [— |az,

iv) Pigenstates of the incident mode

(29) 0, (0) = [ne > <y |

This density matrix does not correspond to a realizable state of the radiation,
but in some cases it can be used instead of the previous, more realistic, initial
condition.

Thus the initial condition for the total system reads

I

(30) 0(0) = |45 <A|® 4 (0) ® [{Ox}> <{0x}], 1=2,.0s P

where g, (0) is one of the previously discussed states.

3°3. Probability of no transition. — Starting from the initial econdition (30),
we calculate the probability of finding the two-level system in its ground state
|4> at time .

This probability depends only on the diagonal terms of the initial density
matrix for the incident mode, expressed in {[n, >}-representation (™).

We first discuss the case where the initial state of the incident mode is an
eigenstate (29) of the harmonic oscillator.

The probability of no transition P4 ,{oki}(t) is given by

Amg,

(31) P e oy = Tr {(|4> CA| @ )T (1) 0(0) U ()}

where 1 is the identity operator in the Hilbert space of the electromagnetic
field (incident mode and cavity eigenmodes).

U(t) is the evolution operator.

With (15), (31) becomes

it
(82)  Plaoah)= Y @i, AU eO)lED ¢f)* exp [%zizfz] :
e {ni}.m.s
Introducing the completeness relation

(33) Sy =1,

m’{n'}s'

{14y P. MEYsTRE: Thése EPF-L (1974), unpublished.
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1 being the identity operator for the complete system atom -+ radiation, and
taking into account the initial condition, we obtain

1
58 Phaiog(O)= 5 60 ns, (0n)) P bl ox [ 02— A2

v1},m,8,8

Use of (16) and (17) allows us in principle to obtain the exact form of the
probability of no transition.

For simplicity, we present explicitly the resonant case #w = p only.

With (19) and (20), (34) reads

35) Pl o)== [1+cos2wmp ]|<¢{w>1nk.,{0k.}>|2.

< {n}m

The matrix elements [<¢%%|n, , {0,}>[* are given by (*4)

6(m+ ivl—nkl)n—k‘ﬂ .

{36) [K@Li |t , {On}) |* = .
= m! 7!
=2

The Kronecker symbols é(m+ ¥ » —n;) yield the energy conservation.
If we introduce (36), the probability of no transition (35) reads

1 A 4 n ! T,
(37) P o) =53 [1+ co8 2A/Tp ;5] S L
" m+‘z.";l,}=n,¢l m!l—[ 7!
=2

Taking into aceount the multinomial theorem, we have
1 p—n,
(38) Q= UL

{ni} =
mtZvpem, ML T 3!
l=2

—_ nkl — Ny — Rp,—M
—(m)p (p — 1),

Thus the probability of no transition reads

1 % k
(39) Pln t0u(To) = 3 > ( ‘) A/p)™1 —1/p)™™[1 + c08 24/ T,]
with
(40) 1, = A

This result will be discussed later on.
Let us consider now the case of an incident radiation initially in a coherent
state (25).
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A derivation completely analogous to the preceding one gives for the prob-
ability of no transition

—

(41) P ford(t) = 5 ;} [1 +- cos 2A4/mp -;—J [<¢$;;ﬂ|ock‘, o).

This form differs from (35) only through the matrix element

K ocs, , {0832,

which takes the form (%)

I Z(Mzﬂz)p—('ﬂﬂ—zvt)

]_Z[vl!m!
1=2

(42) [<@&|otz, , {01} > = exp [— |as, |2

Introducing (42) in (41) we obtain

. 2 am

(43) Pj.akl.{oki}(t): ﬁ[_zldk,l [p] z [1_}_ cos 21 \/Mp ] ch‘,l .

m=0 P

Introducing (40) in (43) and defining
(44) &kl == ‘xkl/'\/cy
we obtain
1
45)  Phaou(r) = pexpl— B S 21 4 cosaymn].
=0

3'4. Discussion. — In the monomode case the probabilities of no transition
(39) and (45) read respectively

exp [— [—

(46) Piu7)= [1—]— COS 224/ T] ,

(47) Pio(t) =4(1+ cos24/MT) .

Contrary to P4 .(7), P{,(7) is not periodic in time (*%).

The envelopes of P4,(t) and P4 ,(7) are plotted in Fig. 1.

For |x[?>9, the envelope of P4,(7) is independent of the intensity |«|?
of the incident mode.

(%) A. Farst, E. GENEUX, P. MEYSTRE and A. QUATTROPANI: Helv. Phys. Acta, 45,
956 (1972). (In this reference, cos (A4/7it/%) should read cos (2A4/Rt[%).)

34 — Il Nuovo Cimento B.
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Evidently, no damping process was introduced in our model. Accordingly,
the occupation probability contains a Poincaré cycle. Therefore, the behaviour
of real physical systems can be described by P4 ,(7) as given by (46) only for

1.0

05} b) a)

0 1 2 3 A T 5

Fig. 1. — Monomode case: envelopes of a) P4,(7) (for |¢2>10) and b) Pi.(7)
(for n> 0). © = At/A.

times small compared to their damping times. In the limit ¢ < |a|#/4, P%,(7)
reads (1)

(48) Py (7)==~ {1+ cos (2|x|r) exp [— 7/2]} .

The comparison of expressions (45) and (46) shows that a simple time scaling
relates the probability of no transition in the multimode and monomode cases
if initially the incident mode is in a coherent state. The envelope of the prob-
ability of no transition in the monomode and multimode cases is Gaussian
and reaches a quasi-stationary value } for

(49) Tpo= Npth~m.

The scaling property mentioned above, which is also verified for the evolution
of the atomic dipole moment, depends drastically on the photon statistics of
the incident mode at = 0.

(**) P. MEYSTRE, A. QUATTROPANI and H. P. Bartes: Phys. Lett., 49 A, 85 (1974).
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One easily verifies that no time scaling transformation relates (39) to (47).

A useful simplification arises from the comparison of the probability of no
transition (39) and (45) evaluaﬁned respectively with the initial conditions
0:,(0) = | > <my, | and g (0) = oty > {or, | The time-independent coefficients of
(39) and (45) are given respectlvely by a binomial distribution

(50) B(m) = (ffn) (Lp)m(L —1jp)ym

and by a Poisson distribution

a'( |Zm

(51) Plm) = exp[— [, 12,

In the limit n, — oo, p — oo and n, [p= &, |* (finite), H(m)— P(m)— 0.

Numerically, one shows that #(m) and #(m) differ by less than 10 °} for
p=>5 and n =5.

In the above limit the probabilities of no transitions (39) and (45) coincide,
although the statistical properties of the incident mode are essentially dif-
ferent. The evolution of the probability of no transition depends mainly on
the initially unexcited modes of the Perot-Fabry cavity.

Obviously, this simplifieation is not possible for the evaluation of observables
which depend explicitly on the electric field of the incident mode, as for instance
the atomic dipole moment.

3'5. Atomic dipole moment. — In the above Subsection we have studied the
effect of the statistical nature of radiation on an atomic observable diagonal
in the atomic eigenstates.

Let us now analyse a nondiagonal atomic observable. As we shall see, the
effects of the statistical nature of the incident mode are more important for
such observables.

We consider here the atomic dipole moment 9. (B|2|A) = u is the atomiec-
dipole-moment matrix element between the atomic states |4) and |B). Its
numerical value y depends on the considered atom. We assume that the atom
has no permanent dipole moment, i.e. <{A|Z|4>= (B|Z|B>=0.

We shall not detail the evaluation of (2)(t)= Tr Zp(t), the calculations
being completely analogous to the previous ones:

(62) <22t = 2 yRlDIid) idle(0)lyid exp [,ﬁ (Zfﬁ,‘s}—lfvf"fz')]-

{i’z}
{n’ }.m ,s

We first discuss the case where the nondiagonal terms of the density matrix
for the incident mode are initially equal to zero in the {)nk}}—representation.
Assuming that the atom is initially in its ground state [4), and the cavity
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modes unexcited, one shows easily that

(53) (D) =0.

This result is not surprising, for the initial incident radiation mode has
a vanishing average electric fleld and no dipole moment can be induced. A
nonzero-averaging dipole moment can appear only if the radiation field con-
tains a « minimal coherence » such that the average electric field does not vanish.
Let us now discuss the cage of an incident mode initially in a eoherent state.
At the resonance fio = p we obtain (*)

2m4-1

I&kl

(54) {Z’ (1,) = exp[— |ay,

‘]mgo \/m!(m—{—l)!.

-cos (Vmt,) sin (Vm 4 17,) {exp[i(wt — p(&,) + 7/2)] + c.c.},

where
(40) 7, = AVptlh,
(55) B, — |8, | exp [ip(&,)] .

As for the probability of no transition, the monomode (p = 1) and multimode
cases are related by a simple time scaling.

{D>(t,) and Pj.ah_{ok‘}(r,,) are reported in Fig. 2 for |& [>= |& [*p7'=9
as a funetion of 7,= AVpifk.

The saturation of the atomic transition occurs for ¢ z/Avp and can be
geen from the quasi-stationary value of Pi.a,,,,{ok‘}("w)‘

The dipole moment still varies for ¢ m/Avp. Such an effect is known
from the « coherence resonances » in optical pumping experiments (18-20) and
may be understood as the time evolution of the relative phase between the
two atomic states |A> and |B).

We shall now demonstrate that this effect disappears for |&, [*— oo, i.e.
that the slow variation of (2)>(tr,} vanishes in this limit.

Let us consider the time-dependent part of (Z)(t,) in expression (54)

(56) cos (Vmt,)sin (Vm -+ 17,) =
= sin [(Vm + 1 —Vm)z,]+ sin [(Vm+1+Vm)7,] .

(1) P. MEYSTRE, E. GENEUX, A. Farst and A. QUATTROPANI: Lelt. Nuovo Cimento,
6, 287 (1973). (In this reference expression (4) should be corrected cos /7 x>
—c08 2 vAaw. The scale of the upper part of Fig. 2 should be modified accordingly.)
(¥) E. B. ALexaxDprov, O. B. ConstanTINOV, B. I. PERELLI and B. A. KHODOVOY:
So». Phys. JETP, 45, 503 (1963).

(*) C. J. Favee and E. GENEUX: Phys. Leti., 8, 190 (1964).

(29) C. ConEN-TanvouDJsi and N. Poronsgy: Compt. Rend., 260, 5231 (1965).
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< @>(1)

—05 { ! | 1 L | 1 1 1 1
0 2 4 6 8 10

Fig. 2. - Monomode case: comparison of the dipole momentum {2)(z) with the prob-
ability of no transition P4,(1). ©=4i/h, [«2=9.

In (54) the oscillating terms are multiplied by a Poisson-like distribution
which gives important contributions only for m ~ [&, [*. As in the case of the
probability of no trangition, the rapidly oscillating term

sin[(Vm+ 1 -++vm)z,]

2, the slowly oscillating term reads

averages to zero for v, » n. For large [&,
sin [(Vm+ 1 —Vm)7,] ~sin (7,/2Vm) .

This term contributes only if the interaction time is of the order of |&, |%/4,
which is generally outside the experimental limits.

4. — Photon statistics.

In this Section we shall analyse the dynamics of the radiation field. The
photon statistics pnk‘(z) is defined as the probability of finding n; photons
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in the mode k,. It is explicitly given by

(57) P ()= T {00}

We assume that at time ¢ = 0, the incident mode is in a coherent state, when
the cavity eigenmodes are unexcited and the atom is in its ground state.

The detailed calculations leading to the explicit form of p, (t) are presented
in ref. (4).

In the general p-mode case we obtain

68 pa= 3 T[wrm o expl o

LR nk E=lty

» (v, Zvlk)(; N — 2‘: (v 1) — Zw,k)nk!
. E"g':"k v, !(znk—zvl)!

-exp [pr({ve})] cos = \/ an——zi’z

+ z ﬂ(p °(nk+2;)| wl™ exp [_ l“ Iz]

T, Ty, k=k;

12 (vivw) (g Ny — Z (viim) — Ez: "’Zk)”k!
Rl

-exp [igu({vii})] sm— 8V znk—i— 1 _Z”l

’

where the prime in the sums excludes the summation over n, and (v,!v;) and
(m:m,) are multinomial coefficients (2!). The @,({r.;}) are phase factors aris-
ing from the produets on k=ky,..., k, and 1=2,..., p of the coefficients
(ug)"t*.

These coefficients »; may be calculated explicitly for a given number of
modes and are chosen as ul= p~* exp [ip,,].

In the two-mode cagse (p = 2) we have calculated numerically the photon
statistics p, (f) of the initially unexcited cavity mode (**). Unfortunately, the
capacity of the computer (CDC 6600) does not allow us to evaluate p, (f) for
7y, > 18.

In Fig. 3 p, is plotted as a function of 7= A/# for |a,[*=

(21) Handbook of Mathematical Functions, edited by H. ABrRaAMowITz and I. A. STEGUN
(Washigton, D. C., 1964).

(22) E. GENEUX, P. MEYSTRE, A. Fa1sT and A. QUATTROPANI: Helv. Phys. Acta, 46,
457 (1973).
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Since a real laser contains an average number of photons {n)~ 1019, this
Figure is only of qualitative interest. It shows that the photon statistics p,(?)
can be fitted neither by a Gaussian nor by a Poisson-like distribution for ¢ += 0.

Fig. 3. — Two-mode case: photon statistics of the initially empty mode. ¢(0)=
= |4, oy, Os> (A, 0y, Oy|, T=At[E, |og]2=9.

Thig result is to be compared with those of SCHAEFER and BERNE (3?) and
ScHAEFER and PUSEY (2%). These authors have evidenced experimentally that
the light scattered by a very small number of macromolecules ((N)~1) is
not Gaussian.

Let us now consider the monomode case. Here, and for initially coherent
radiation, the photon statistics are given by (V)

2n 2n+1 — e
(59) Pa(t) = exp [— |a|?] {% cos? (A vV tlh) + (1|:—|{——1)! sin? (4 Vo +1 t/ﬁ)} )

For very short times the term sin? (24/n + 1t¢/#) is small compared to
cos? (Avntfk), and can be omitted.

Consequently, the photon statistics are very weakly perturbed by the inter-
action with the two-level system, and remain Poisson-like. For long times,

() D. W. ScHAEFER and B. J. BErNE: Phys. Rev. Lett., 28, 475 (1972).
(%) D. W. ScHAEFER and P. N. Pusexy: Phys. Rev. Lett., 29, 843 (1973).
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however, the statistics are drastically modified by the interaction, as illustrated
in Fig. 4. The atom acts as a «nonlinear filter » on the coherence properties
of the field. An analogous result was obtained by CuMMINGS (25), who studied
the correlation functions of a harmonic oscillator coupled to a two-level system.

coh

N 20

Fig. 4. — Monomode case: photon statistics of an initially coherent state [u.
T = Atfh, |x|2=9.

Finally, let us note that the photon statistics for different p (p = number
of modes) are not related by a simple scaling, contrary to what occurred for
atomic observables.

5. — Conclusion.

The analysis of the long-time behaviour of a two-level system interacting
with an electromagnetic field exhibits the importance of the statistical nature
of radiation.

A remarkable result is the Gaussian envelope occurring in the probability
of no transition of the two-level system interacting with an initially eoherent
incident mode. We would like to emphasize that this envelope is independent
of the intensity |a, [ of the field. This effect is a purely quantum-mechanical
one, and eannot be obtained in the frame of a semi-classical description of the
system. It brings out the fact that quantum effects are by no means limited
to the range of weak intensities, but may well occur even for very intense fields.

(%) F. W. CommiNGgs: Phys. Eev., 140, A 1051 (1965).
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Another important result is the destruction of coherence of the electromag-
netic field through interaction with the two-level system. As noticed in the
foregoing Section, the atom acts as a «nonlinear filter » on the coherence prop-
erties of light.

The relation between the monomode and multimode cases is quite different,
aceording as we consider atomic or field observables. For an initially coherent
incident mode, a simple scaling relates the behaviour of atomie observables
for different numbers of modes. However, for field observables there exists
no simple sealing. Although it is possible to calculate the dynamics of the
photon statistics for any initial conditions and any (countable) number of modes,
the analytic form of the result is generally not very clear. Nevertheless,
we show that the cavity modes are excited neither chaotically nor coherently
through the seattering process. This result is in accordance with those of
SCHAEFER et al., who showed that the light scattered by a very small number
of centres is not Gaussian.

Finally, we point out that, for some observables, a detailed description of the
statistical nature of radiation is not necessary. This is the ease for atomic-
population observables, as transition probabilities.

* 3k ok

We are very indebted to Profs. C. ConeEN-TANNOUDJI, H. P. BALTES and
J. DurponT-Roc for illuminating remarks on this subject.

® RIASSUNTO (%)

8i espone un modello esattamente solubile per descrivere 'interazione fra un sistema
a due livelli e il campo magnetico. Si mettono in luce, per lunghi tempi di interazione,
certi effetti puramente quantistici, come la distruzione della coerenza di radiazione e
I'inviluppo gaussiano della probabilitd delle transizioni.

(*y Traduzione a cura della Redazione.

TloBenenne NBYXYPOBHEBOH CHCTEMbI, B3aHMOJEHCTBYIOIEH C JEKTPOMATHHTHLIM HOJIEM,
npH GoNbLUMX BPeMEHAX.

Pestome (*). — MBI npennaragM TOYHO peIlaeMyi0 MOJEilb, ONHCHIBAIOIIYIO B3aUMO-
ZefiCTBHE MEXIy OBYXypOBHEBOM CHCTEMOMN H 3JICKTPOMATHUTHBIM moJeM. [ Gomnbimx
BPEMEH B3aMMOIEHCTBUA MBI IOATBEPKIAEM HEKOTOpBIe YHCTO KBAHTOBOMEXaHHYECKHE
3ddekTs], TaKHe KAK HApyLIEHME KOI€PECHTHOCTH H3JWYEHMs M IaycCOBy (GOpMy oru-
Garomieii BepOATHOCTH MEPEXona.

(*) Ilepesederno pedaxyueii.



