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Summary. — The phase diagram in the coupling constant in QED and its
connection with the spontaneous chiral symmetry breaking are discussed.
The mechanism of such a breaking connected with the collapse phenomenon
is considered and a simple physical interpretation of the recent results
of the computer simulations in lattice QED is given. The problem of the
exigtence of the nontrivial continuum QED is analysed and, as a result,
the following hypothesis is considered: in the Landau-Pomeranchuk-
Fradkin « zero-charge » situation (the renormalization constant Z,== 0)
the S-matrix of continuum QED with a fixed bare coupling constant,
o® = ¢ ~ 1, is nontrivial. The physical content of such a hypothetical
continuum theory is revealed.

PACS. 11.80. — Symmetry and conservation laws.

1. — Introduction.

Recently, the results concerning spontaneous chiral symmetry breaking in
quantum electrodynamics have been obtained by the computer simulation
methods in lattice noncompact QED (). The aim of the present paper is to
represent a simple physical interpretation of these results and to discuss, from

(*) To speed up publication, the author of this paper has agreed to not receive the
proofs for correction.

(*) J. BartHoLoMEW, J. Kogur, 8. H. SHENKER, J. SLoaN, M. Stoxe, H. W. WyLD,
J. SutemETsu and D. K. SiNcLAIR: Nuel. Phys. B, 230, 222 (1984).
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the viewpoint of this interpretation, the old problem of the existence of the
nontrivial continuum limit (ultraviolet cut-off A — oo) in QED.

In 1954 GELL-MANN and Low (2) indicated thet the nontrivial continuum
QED can exist only if the bare coupling constant «® is determined by an
ultraviolet stable zero of the renormalization group p-function,

° o

— g0 ~ _ g0
@) Pan = & s Zw =~ " 510 4

Z8u9

where y is the renormalization group parameter and Z,, is the renormaliza-
tion constant of the photon propagator. The question of the existence of such
a zero became especially important since the papers of Landau and Pome-
ranchuck (3) and Fradkin (%), appeared, where it was argued that in the con-
tinuum limit QED is transformed into a free-field theory; more precisely, in
the limit 4 — co for any value of the bare coupling constant «® the vacuum
polarization effects lead to a zero value for the running coupling constant
&(r) at all nonzero distances: &(r) =0 at r> 0 and &(0) = «® (the « zero-
charge » situation, Z,, = 0). Latber the possibility of the existence of a non-
trivial zero of the [-function was studied in the framework of the « finite
QED » program (°). However, no definite answer has been obtained there.
Moreover, recently new arguments have been given in favour of the impos-
sibility of the existence of a nontrivial zero of the fS-function (1) (%).

The problem is closely connected with the charge renormalization. In the
papers (%) the relation

@) o, = Zy,o(A)

(which is equivalent to eq. (1)) was used. This relation is proved to be valid
in every order of perturbation theory, hence its validity in the exact theo-
ry also seems to be predetermined. However, as has been pointed out in
ref. ("), at a sufficiently large bare coupling constant the renormalization rela-
tions of nonasymptotically free theories can be essentially changed owing %o
the dynamics of particle mass generation. This conception has been introduced
by exploiting the mechanism of the spontaneous chiral symmetry breaking

(3) M. Gerr-Maxy and F. Low: Phys. Rev., 95, 1300 (1954).

(®) L.D.Laxpav and I. Ya. POMERANCHUK : Dokl. Akad. Nauk SSSE, 102, 489 (1955);
L.D. LANDAT: in Niels Bohr and the Development of Physics, edited by W. PAuLi
(Pergamon Press, London, 1955).

() E.S. FravriN: Z. Fksp. Teor. Fiz., 28, 750 (1955).

() K. Jomnsow, M. Baker and R. WiLLEY: Phys. Eev. B, 136, 1111 (1964); 8. L.
Aprer: Phys. Rev. D, 5, 3021 (1972).

(&) N.V. Krasnixov: Phys. Lett. B, 126, 483 (1983); Y. MaTSUBARA, T. SUzUK1 and
I. Yorsuvanaci: preprint DPKU-8304, Kanazawa (1983).

(") V.A. Miransky: Phys. Leit. B, 91, 421 (1980); preprint ITP-81-22E, Kiev (1981).
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in massless QED suggested earlier in the papers (5®) (for a review see ref. (19);
note also that recently this mechanism has been discussed in ref. ()). The
mechanism leads to an additional mass divergence at the supercritical (a®/(A1) >
> a,~1) values of the bare coupling constant (for details see sect. 2). From
the viewpoint of the renormalization group the critical value «,, separating
the massless and the massive phases, is an ultraviolet stable fixed point.
However, it iy determined not by a zero of the §-function (1) related to the
suberitical («” < « ) phase, but by a zero of the f-function of the supereritical
phase. The value «® = «  determines & continuum theory.

Note that very recently a similar phenomenon has been also found in
(2 4+ n-1)-dimensional, n>1, ¢***+2 models (?) (at the classical level these mod-
els are scale invariant).

Below we will show that the principal results of the computer simulations
in lattice QED can be easily understood from the point of view of this dy-
namical mechanism. Besides, we discuss to what extent the improvement of
the quenched approximation, used in ref. (), can influence the results. As a
consequence of this discussion, the following, apparently unexpected, possi-
bility is revealed: in the «zero-charge» situation (Z,, = 0} the S-matrix of
continnum QED with a fixed bare coupling constant «® = &, can be non-
trivial. The characteristic feature of such a continuum theory is the appear-
ance of the new, induced, Yukawa-type interaction of fermions, antifermions
and composed pseudoscalar bosons.

The paper is organized in the following way. In sect. 2 we describe the
esgential feature of the mechanism of the spontaneous chiral symmetry breaking
in QED. In sect. 3 we discuss the pecularities of the dynamics of the chiral
symmetry breaking in QED connected with subtleties of the transition to the
continuum limit. This point is important since anomalies of different kinds
can, in principle, essentially influence the dynamiecs of symmetry breaking.
In sect. 4 we interpret the results of the computer simulations in lattice QED
from the viewpoint of this particle mass generation mechanism and discuss
the possibility of the existence of the nontrivial continuum limit in QED.

2. — The mechanism of spontaneous chiral symmetry breaking in QED.

The mechanism of spontaneous chiral symmetry breaking in QED con-
sidered in ref. (*-1°) iy based on the analogy between this phenomenon and

(3) P.I. FomiN and V. A. MIRaNSKY: Phys. Leit. B, 64, 166 (1976).

() P.I. Tomin, V.P. GusyNIN and V. A. MIRANSKY: Phys. Lett. B, 78, 136 (1978).
(% P.I. Fomin, V.P. GusyNIN, V. A. MiraxNskY and YU. A. SiTENKO: Riv. Nuovo
Cimento, 6, No. 5 (1983).

(**) G.J. Ni: Nucl. Phys. B, 211, 414 (1983).

(1) W.A. BarDEEN, M. MosHE and M. BANDER: Phys. Rev. Leit., 52, 1188 (1984);
M. B. HaLPERN: Phys. Lett. B, 137, 382 (1984).
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that of the electron-positron pair creation in the supercritical Coulomb field.
Ag is known (%), when Z > Z, ~ 137 (x = Ze*/4n > 1), the Dirac operator
with the Coulomb potential V(r) = — Ze*/4nr is not defined, and therefore
it is necessary to complete its definition by introducing a cut-off at small
distance (*).

For example,

(3) V(T):—f—;:‘—)V(T): Zez[ﬁ('r—ro)_*_ﬁ(ro——r)]‘

4n 7 To

To exhibit the role of the cut-off parameter /1 = r;* in this problem, we quote
the expression for the energy &™ of the nS;-levels in the case of the light
(when m < |e™]) electron (%):

m m2

(n (n :
(4) 8)§80)—5—@W|’

where the energy ™ of the massless electron is

£ = aA(sin g — i €08 @) exp [—ﬂ], n=1,2,..;
Ver—1
(5) " "
a~0.4, ¢:—§ctghn:—§-1.004.

According to the conventional interpretation of the levels with Re e <0, the
level ¢ determines the positron state energy

(n) __ (n) (n) (n)
g =—e", Reg’ >0, Imer<oO

(*) In other words, in the relativistic theory the «fall into the centre» (collapse)
phenomenon (1%14) takes place for this potential and such a system has no ground
state. The formal (mathematical) reason for this phenomenon is connected with the
fact that such a Hamiltonian is a Hermitian but not a self-adjoint operator, and it
should be extended (defined completely) to become a self-adjoint one (*5). The physical
reason is connected with the fact that the properties of the system depend on the way
used to define completely the Hamiltonian at small distances.

(*%) Ya.B.Zer'Dovice and V. 8. Porov: Usp. Fiz. Nauk, 105, 403 (1971); J. RAFELSKI,
L. Forourr and A. Kusin: Phys. Rep., 38, 229 (1978).

(1) L.D. Laxpav and E. M. Lirsuirs: Quanium Mechawics (Nauka, Moscow, 1974),
Chapt. 35.

() M. REED and B. Simon: Methods of Modern Mathematical Physics (Academic Press,
New York, N.Y., 1975), Vol. 2.
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corresponding to the outgoing positron wave (*). In the limit 4 — oo the
energy ¢ diverges, which reflects the collapse situation.

In ref. (%) it was hypothesized that a similar phenomenon takes place in
QED with a sufficiently large bare coupling constant which results in the
spontaneous chiral symmetry breaking (**). This hypothesis was realized (in
the ladder approximation) in ref. (°) (for more details see the review (1°)).
For the sake of completeness the equations for the fermion dynamical mass
function m,(¢?) = B,(¢°)/A(g®) (the fermion propagator S(q) = (— dA(¢®) +
-t Bd(g2))—1) and for the wave functions of Goldstone bosons are congidered
in appendix A (***). Here we state the main results (the chiral group is
88U, x8Uy,,, K is the number of the fermion flavours).

For the supereritical values o® > a = 7/3 the dynamical mass m, is deter-
mined by a relation of the form

(6) my = Af(a®)
where for the near-critical values o (o®— o, < e,) the function f(o®) is

11/a9
(™ flao) = sexpl—af2y], y=j |/>—1.

The Bethe-Salpeter wave function of the Goldstone bosons in the Euclidean
region reads

@)  xr=0kysx(®), 200 =(+m)FG +dy, F—iy,2; —g*/m}),

(*) The appearance of such quasi-stationary levels is interpreted as instability with
respect to the spontaneous creation of electron-positron pairs from the vacuum (13).
The created electron is coupled to the centre thus shielding the charge of the latter
while the positron goes to infinity; the process is repeated until the charge of the centre
iy reduced to a subcritical value.

(**) The role of the fermion mass in the problem of the supercritical Coulomb field can
be seen from eqs. (4) and (5). The imaginary part of the energy Im ™ decreases (i.e.
stability of the system increases) with increasing mass. Thus there are in principle two
possibilities for the system with the supercritical charge to become stable: to shield
spontaneously the charge or to generate spontaneously the fermion mass. In the problem
of the Coulomb centre the first possibility can be only realized (which is already due
to the formulation of the problem as a one-particle one). It has been suggested in
ref. (8) that the second possibility—dynamical generation of the fermion mass—is
realized in QED.

(***) The equations are considered in the Landau gauge. This choice is not accidental
and is dictated by the following reasons. The correct statement of the problem of
spontaneous symmetry breaking in a given approximation is only possible when this
approximation is consistent with the Ward identities corresponding to the symmetry
investigated. As is shown in appendix A, this selects the Landau gauge in the ladder
approximation as the most preferable one.



154 V. A. MIRANSKY

where A7 are K2—1 mafrices of the fundamental representation of the SUg
algebra, ¢ is the relative fermion-antifermion momentum, F is a hypergeometric
function and the normalization constant ¢ can in principle be determined
from the normalization condition for the wave function y2.

Let us consider, following ref. (*), the renormalizations in this problem.
In the continuum limit A — oo, «® = const > «,, the mass m, diverges. This
is connected with the following fact. Using the asymptotic expansion for
hypergeometric functions () we find that in the limit ¢2 - co the funection
%(q?) takes the form

5y o~ L (LY ( Cighay Yo e _
(9) 2 &2, e (mﬁ) (ny(y2 n %)) sin (y In p arctg 29 —1—2:'(7)),
where
o I'(14-2iy)
= = vt [y i)

I' i the Euler gamma-funetion. Therefore, in the continuum limit (A = o)
and for any finite value of m, the wave function y(¢?) has an infinite number of
zeroes. This is a typical manifestation of the collapse («fall into the centre »)
phenomenon (14) when the energy of the ground state is not bounded from
below and therefore the energy (mass) gap is infinite.

To remove this divergence, a renormalization must be performed. Per-
forming a renormalization means making the bare parameters (in our case o,
there ig no mass term in the chiral invariant Lagrangian) depend on A in
such a way that the physical parameters (the mass m, in our case) remain
finite in the limit 4 — co. As it follows from eqs. (6) and (7), in the limit
A — 0 the mass m, remains finite if the coupling constant is fixed:

mea, A

(10) oA = &, + fn® (@A Jmy) o %= 3

From the viewpoint of the renormalization group the critical value x,= 7/3,
separating the massless and the massive phases, is an ultraviolet stable fixed
point. The appearance of such a point in the ladder approximation is caused
by the dynamics which cannot be obtained in perturbation theory.

We also emphasize that the origin of the mass divergence (6) is different
from that of the loop divergences of perturbation theory. The latter are due
to processes in which the particle number is not conserved, while divergence (6)
is connected with a singular character (at small distances) of the exchange

(1) H. BatemaN and A. Ervtrvi: Higher Transcendental Functions, Vol. 1 (McGraw-
Hill, New York, N. Y., 1953).
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interaction which conserves the particle number. Since such divergences occur
already in quantum mechanics (see, for example, eq. (5)), it is natural to
name such divergences as quantum-mechanical ones.

‘We also indicate the two following characteristic facts:

1) Since in the ladder approximation the renormalization constant of
the photon propagator Z,, is equal to unity, the renormalization (10) destroys
the renormalization relation (2).

2) In the continuum limit (10) the wave function

_ 11 . qZ ~ 2 q2 —% qZ
(11) 2(¢?) = (¢ + my) 11;’(5’5,2, —~E21)qs:my—v—q2(ﬁi) lnﬁzi,

and therefore the renormalization (10) changes the form of the wave func-
tion, in particular, the oscillations disappear (compare with eq. (9)). We remind
that for the standard renormalizations of perturbation theory the following
relations between renormalized (') and nonrenormalized (G@“Y) Green’s func-
tions take place:

a9 ({g}, d,) = Z (il, ocu) G“({q}, (A)) + small power corrections .
u

Therefore, in this case, up to small power corrections u/A4, g/4, ete., the form
of renormalized and nonrenormalized Green’s functions as the functions of the
momenta {g} is the same. The violation of this property by the renormaliza-
tion (10) is easily understood: removing the cut-off and making the mass m,
finite we get rid of the collapse and, as a result, of its manifestation, oscilla-
tions.

In the considered approximation the phase diagram of the chiral invariant
QED is as follows: for all subcritical values o® < a, = 7/3 the S-function
equals zero (there are no ultraviolet divergences), and all these values o®
form the line of the fixed points; in the massive phase with a®(A) > o, the
additional renormalization of the charge takes place which leads to the ultra-
violet stable fixed point o = « . The form of the phase diagram of the
exact theory depends also on other divergences. In ref. (*) the following
hypothesis has been put forward: for sufficiently small values of the bare
coupling constant, due to the argument of ref. (3¢), the « zero-charge » situa-
tion takes place in QED (i.e. the continuum limit QED degenerates in a free
theory), however, in the supercritical phases in the continuum limit a non-
trivial field theory arises at the fixed value o = o .

We shall discuss the physical content of such a continuum theory in
gect. 4. Here we would like to note the following. It is essential that the
vacuum rearrangement considered above is connected with the «fall into the
supercritical Coulomb centre» phenomenon, the existence of which in rela-
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tivistic quantum mechanies follows directly from the uncertainty principle (*).
Moreover, the similar, collapse, phenomenon at supercritical values of coupling
congtant takes place in some two-dimensional models (?)-—in the lattice massless
Thirring model (17) and in the sine-Gordon model (8) (this model is considered
in appendix B). All these facts make sure that this phenomenon is not an
accidental artifact of the ladder approximation. We shall return to this point
in sect. 4, but before, in the next section, we shall discuss peculiarities of the
dynamics of the chiral symmetry breaking in QED connected with subtleties
of the transition to the continuum limit.

3. — Continuum limit and the character of the chiral-symmetry breakdown
in QED.

In field theories anomalies can essentially influence the dynamics of sym-
metry breaking. The known example is the Adler-Bell-Jackiw (ABJ) anomaly
of the singlet axial-vector current (1°). Still before the discovery of this anomaly
it was known (from the analysis of the Johnson-Baker-Willey solution (°) in
QED) that the vanishing of the bare mass does not ensure the conservation of
the axial-vector currents in continuum theories (»20) (in the literature this
circumstance is sometimes called the Johnson-Pagels anomaly). In the present
section we will show that this anomaly, unlike the ABJ one, can be removed
if one uses a suitable transition to the continuum limit in the equations of
QED. We shall also show that in this way the old Goldstein problem (%)
can be solved.

Let us consider QED with K fermion flavours. In the continuum limit
the K>-—1 anomaly-free axial-vector currents

o= Pyuysiy, r=1,2,..,K—1,
satisfy the equation
(12) o*Jg, = }11_1:}010 mOA) (Pys A p)a,

(*) Indeed, in relativistic theory the Kkinetic energy H,= (¢%+ m%)i—m Lt

Therefore, the energy E = m + Ey— «fr = 1— a/r (due to the uncertainty prin-
ciple, the momentum ¢~ 1/r), and the collapse phenomenon happens at « >1.

(1) B.M. McCoy and T.T. Wu: Phys. Lett., 87, 50 (1979).

(38) 8. CoLeMaN: Phys. Rev. D, 11, 2088 (1975).

(**) 8.L. ApLER: Phys. Rev., 177, 2426 (1969); J.S. BELL and R. Jackrw: Nuove
Cimento 4, 60, 47 (1969).

(%) Ta. A.J. Maris, G. Jacos and B. LiBERMAN: Nuove Cimento A, 52, 116 (1967);
H. PageLs: Phys. Rev. D, 7, 3689 (1973).

(?1) 8. GorpsteIN: Phys. Rev., 91, 1516 (1953).
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where m©(A) is the bare fermion mass. It is essential that the operator
(Pys A p)a is composite and depends on the cut-off parameter:

(13) (95 Aypla= Z;z}z('@)/skw)u )

where u is a subtraction point and, as is well known (?2), the renormalization
constant Z  coincides with the renormalization constant of the operator
(Fp)a (Py)a = Z,.(Py),). From egs. (12) and (13) we obtain the condition
which ensures the conservation of the anomaly-free axial-vector currents in
the continuum theory:

(14) Lim m (M) Zy;, = 0 .

A—>©

It can be shown (see appendix C) that in the ladder approximation the
renormalization constant

1 3a(\}
(15) L2 (A2, V’:=%/::"(1_”%)

ab subcritical values of the coupling constant, «©< «_ = n/3, and
(16) Z = pfA

at supercritical values of «©@. From here and condition (14) we see that the
vanigshing of the bare mass in the continuum limit, m® = /111_1)1010 mo(A) = 0,

does not ensure the conservation of the axial-vector currents. To ensure this,
one must require a rapid enough (as o(Zmﬂ)) decrease of the bare mass at
A — oo, In particular, this condition is satisfied if one chooses m@(A) = 0,
¢.6. if the Lagrangian of the theory with cut-off is already chosen to be chiral
invariant and the continuum theory is considered as the limit of this one (just
such a way was used in sect. 2).

Let us demonstrate this conclusion studying directly the equation for the
fermion mass function (see eq. (C.4) of appendix C):

A3

300 m(k?) [k
2} — 4,0 o 2 2T B(g? — k2 2__ 42
a1 mig) =mOd) + - fdk s [qz (@ — 1) + 8" — g )]
0
(when m®©(A) = 0, the mass m coincides with the dynamical mass m,). The
solution of this equation has the same form as that one of the equation with
mO(A) =0 (m(g®)=CF( + v, +—7', 2; —q*/m?), where the normalization
constant €= &m, £ is a numerical constant), however it satisfies a somewhat

(#%) S.L. ApLErR and W. A. BARDEEN: Phys. Rev. D, 4, 3045 (1971).
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different boundary condition at ¢* = A2 (see appendix C):

d 2
(18) (258 + mign)

= m(A).

o=A

Using the asymptotic expansion for the hypergeometric function at
m2jA? <1 (%), we find from eq. (18) the following relations:

rey -3y’

at the subcritical values a®< x/3, and
ctgh my\t . Az A

Z(y) = arg (I'"(L + 2iy)/I"*(} + iy)), at the supercritical values of o,

Taking into account condition (14) and eq. (15), we find from eq. (19)
that there are no solutions corresponding to the spontaneous chiral symmetry
breaking at subcritical values «® < z/3. On the other hand, from eqs. (14)
and (16) we find that in the limit A — co the relation (20) is reduced to that
one with m®(A) = 0 and therefore we return to the picture with the ultra-
violet stable fixed point a, == /3 discussed in sect. 2.

Note that since for all values «® the function m(q?) = méF (3 + v/, 3 —9', 2;
q*/m?) satisfies the boundary condition (18) (and therefore eq. (17)) at
A = co and m@(A)],_, = 0, not all solutions of the equation without cut-off
and with zero fermion bare mass corresponding to the spontaneous chiral
symmetry breaking. This point is sufficiently general and is characteristic
for the problem of dynamical symmetry breaking in continuum theories (*).
In particular, it is closely connected with the so-called Goldstein problem ().
In the paper (*1) the BS equation (in the ladder approximation) for the mass-
less pseudoscalar fermion-antifermion bound states (i.e. in fact, for Goldstone
bosons) was investigated in QED. With the substitution

x(q?) — (¢* + m*) " m(q*)

this equation coincides with eq. (17) in the limit A — oo and m@(4)| ., = 0.

(*) Note that taking into account condition (14) in the case of quantum chromo-
dynamics it is possible to determine uniquely the ultraviolet asymptotics of the dy-
namical quark mass function directly from the equations for Green’s functions without
using the assumption of the validity of operator product expansion ().

(2*) V.A. Miransgy: Yad. Fiz., 38, 468 (1983).
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Formally, at all values of «® the function
2(¢®) = (¢ + m) PG 4y, F—y', 25 — 2fm?)

is the solution of this equation. A paradoxical situation occurs: the massless
parapositronium exists at arbitrary small coupling in QED. However, if the
subtleties of the transition to the limit 4 — oo are taken into account, one
shall come to the picture with the ultraviolet stable fixed point considered
in sect. 2.

4. — The phase diagram in coupling constant and continuum limit in QED.

In this section we discuss the results of the computer simulations in non-
compact lattice QED () from the viewpoint of the dynamical picture con-
sidered above. Moreover, we consider the form of the QED phase diagram in
coupling constant and discuss the possibility of the existence of the nontrivial
continuum limit in this theory.

The principal results of the computer simulations () realized in the quenched
approximation are as follows:

1) In massless QED the order parameter {0/(9y)4]0) is monzero (i.e.
spontaneous chiral symmetry breaking takes place) for all coupling constant
«® greater than the critical value o, ~ 0.3. The value <{0|(9y)4]|0) i3 sensi-
tive to the short-distance dynamics of QED.

2) Computer simulations on asymmetric lattices do not reveal any signi-
ficant temperature dependence in the chiral-symmetry-breaking dynamies.

The first point qualitatively agrees with the dynamical picture of the
spontaneous chiral symmetry in QED corresponding to the collapse («fall
into the supereritical Coulomb centre ») phenomenon. Since the value of the
critical coupling constant (opposite to critical indices) is strongly influenced
by the form of the ultraviolet regularization, the direct comparison of the
lattice critical coupling and the critical coupling of the ladder approximation
theory with cut-off in momentum space does not allow one to estimate the
significance of nonladder diagrams. However, the qualitative agreement of the
results of the computer simulations with those of the ladder approximation
evidences that the ladder approximation reproduces the characteristic features
of the dynamies of the sponfaneouns chiral symmetry breaking in QED and
therefore this approximation can be used as a plausible model for the study
of this phenomenon.

For what concerns the second point, it can be easily understood if one
takes into account that the value of the critical temperature T, at which a

11 - Il Nuovo Cimenio A.
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symmetry is restored, is ordinarily expressed through those distances, r,
where the dynamics of symmetry breaking is on the whole formed, 7 ~ r.
In the collapse situation such distances are small, r~ A%, and therefore
only at very large values, T ~ A, temperature can influence the dynamics
of the spontaneous chiral symmetry breaking.

Let us discuss now the problem of the existence of the continuum limit
in QED. First of all we will show the validity of the following general state-
ment; if in massless QED with ultraviolet cut-off the second-order phase
transition, connected with spontaneous chiral symmetry breaking, takes place
at the value of the bare coupling constant «® = « > 0, then the continuum
QED with the fixed value of the bare coupling constant «® = «, has a non-
trivial S-matrix.

By the assumption, at the supercritical values a® > o« the fermion dynam-
ical mass m, appears. Since A is the only dimensional parameter of the theory,
this mass has the form

(21) m, = Af(o®)
where f is some function. The equation
(22) foa®) = 0

has a positive root which coincides with the critical value «_separating the mass-
less and the massive phase. In the continuum limit, m,/4 = f(a®),,, — 0,
this value of the coupling constant determines the continuum theory with the
nontrivial S-matrix: the Bethe-Salpeter wave function of the pseudosecalar
Goldstone bosons (corresponding to the spontaneous chiral symmetry breaking)
determines the effective interaction vertex of a goldstonion with a fermion
and an antifermion, and therefore there must be the pole, corresponding to
the Goldstone boson, in the S-matrix of the fermion-antifermion scattering.
The appearance of a sufficiently small bare fermion mass (PCAC situation)
should not significantly influence this picture.

Thus in order to prove the existence of a nonfrivial eontinuum QED, it
is sufficient to show that the spontaneous chiral symmetry breaking takes
place at large values «@ in the theory with cut-off.

The computer simulations in ref. (*) have been realized in the quenched
approximation. To determine the phase diagram in coupling constant of the
exact theory, it is necessary to know to what extent the improvement of the
quenched approximation, and, first of all, the inclusion of the vacuum po-
larization effects, can influence the results. Below we will argue that the
spontaneous chiral symmetry breaking is realized in QED with sufficiently
large coupling o« even in the case in which the Landau-Pomeranchuk-Fradkin
« zero-charge » picture (%) for the vacuum polarization effects takes place there,
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The analysis of the ladder and of the quenched approximations indicates
that the dynamiecs of the spontaneous chiral symmetry breaking in QED with
cut-off should be formed in the region in which the running coupling constant
&(r) ® a,~1. On the other hand, due to the arguments of Landau and
Pomeranchuk (?) the relation

o0

~ 1+ (2K«3m) In (Ar)’

(23) &(r)

where K is the number of fermion flavours, remains qualitatively correct at
large values of a® too. Due to this relation, at any sufficiently large bare coup-
ling constant «® the vacoum polarization effects reduce the value of the running
coupling &(r) to a value of the order of unity already at the distance r= p/A,
where the parameter ¢ is larger than unity (also, due to eq. (23), it is not
too large, o <10 at K = 3). Therefore, these effects can be imitated by
introducing the infra-red cut-off § = A/p. Since the qualitative picture of
the spontaneous chiral symmetry breaking in QED is similar in the ladder
and in the quenched approximations, one can suppose that the role of the
infra-red cut-off is already correctly represented by the equations of the ladder
approximation. The coupling constant in these equations should considered
as some averaged value of the running coupling &(r) in the region 1/4 <
<r< g/

As has already been noted, in the ladder approximation the Bethe-Salpeter
equation with the infra-red cut-off § for Goldstone bosons was studied (for
other purposes) in ref. (3*). From this paper it follows that the value of the
critical coupling «, is determined from the relation (compare with eq. (21))

1
(24) y.In (—54) + aretg 2y°:§, ye= % (3:"—1) .
For our purpose it is important that at 6 = Afp the value « (g) determined
by eq. (24) remains finite for any value ¢ > 1 (x(g) > co when o —1).
Besides, since at 6 = Afp the parameter A disappears from relation (24),
then (despite the switching off the interaction at all nonzero, r > 0, distances
in the limit 4—>oco: Jim Ar = lim (o —1)A = 0) the spontaneous chiral sym-
metry breaking takes place at a®>« (p) in the continuum limit too. However,
and it is important, the dynamical mass

my = Af («, o)

remains finite in this limit only at the fixed value a® = o (o) (compare with
eq. (6)).

(*) V. A. Miransky, V.P. GusyniN and Yu.A. SiteNko: Phys. Lett. B, 100, 157
(1981).
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Thus this analysis leads us to the following hypothesis. In the «zero-
charge » situation continuum QED can be nontrivial theory: the residual J-like
(&(0) = a, and &(r) = 0 at r> 0) potential of the fermion-antifermion inter-
action is able to form the composed Goldstone boson and, as a consequence, the
induced fermion-antifermion-boson interaction vertex appears.

In such a situation the phase diagram in coupling constant takes the fol-
lowing form: there is only one trivial infra-red stable fixed point, o, =
=d&(u*) =0, in the suberitical phase with «® < «, and, therefore, at all these
values o a free theory arises in the continuum limit (the conventional « zero-
charge » picture (>4)); in the supercritical phase there is the ultraviolet stable
fixed point, o® = «,, determining the interacting continuum theory with the
Yukawa-type coupling of fermions, antifermions and pseudoscalar composed
Goldstone bosons. The appearance of a sufficiently small bare fermion mass
(PCAC situation) should not significantly influence the phase diagram ().

It would be interesting to examine this dynamical picture by computer
gsimulation methods.

5. — Conclusions.

Thus the collapse phenomenon in quantum field theory may essentially
influence (and in some two-dimensional models (see appendix B) does influence)
the renormalization structure, i.e. the structure of the phase diagram of a theory.

The analysis of QED with the chiral invariant Lagrangian indicates the
existence of the critical coupling constant «, ~ 1 separating the massless and
the massive phases. This eritical coupling is an analogue of the critical coupling
constant Z_ e*/4w ~1 in the problem of the Dirac equation with the Coulomb
potential. From the renormalization group viewpoint the value ¢, is an ultra-
violet stable fixed point. We have argued that this value determines a non-
trivial continuum theory.

It is essential that this dynamical picture allows one to represent a simple
physical interpretation of the recent results of computer simulations in QED (?).
Besides, the hypothesis about the existence (even in the case of the « zero-
charge » situation) of nontrivial continuum QED can in principle be examined
by the computer simulation methods in the near future.

In conclusion we would like to note the following. At present there exist

(*) Real QED (i.e. phenomenological theory with ultraviolet cut-off describing the
low-energy interaction of leptons and photon) apparently relates to the subecritical
phase. Indeed, there are no candidates for the Goldstone (or « almost» Goldstone)
bosons composed of leptons. Besides, if QED is a part of GUT, then the electrodynamical
Tunning coupling ‘constant &(r) should be small at all distances (for example, in ST;
theory &(r)= 0.02).
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problems for which the mechanism of scale symmetry breaking is primarily
important (ﬁnite supersymmetric theories (**), gravitation (for a review see,
for example, the general discussion in ref. (2“))). It would be interesting to
examine the possibility of the realization of the scale symmetry breaking
mechanism connected with the collapse phenomenon there.

& %k ok

The author is thankful to P. I. Fomin, V. P. GusyNIN and D. V. VoLKOV
for useful discussions.

APPENDIX A

In this appendix we congider the equations in the ladder approximation
for the dynamical fermion mass function and for the Bethe-Salpeter (BS) wave
funections of pseudoscalar Goldstone bosons.

First of all we will show that from the viewpoint of the Ward identities
the Landau gauge is the most preferable one in the ladder approximation.

When the spontaneous breakdown of the SUp gz X SUgy chiral symmetry
takes place in massless QED, the structure of the fermion propagator has the
following form:

(A1) Si(q) = 61’7’(_ dA(q*) -+ Bd(qz))_l7

4, =1,2,..., K. In the approximation with the bare photon propagator and
with the bare fermion-antifermion-photon vertex

(A.2) Iy psi5= Yu0ss
the Schwinger-Dyson equations for the fermion propagator in a covariant

gange with the gauge parameter d, takes the form (in the Euclidean region)

2

A3 A(q? G d
—_ = — 2
(A3)  A(gh)—1 dlmfkkm(

0

A(k?) [k4

k) Bae) |ga 010 T R O 92)] ,

Aﬂ
2) g‘_(i) 2 __pd(_l_”i) T 2 __ T.2 2 2
W) Bl = 5+ a5 [are gt O ot — ) 00— 1)

0

(*) 8. MaxpELSTAM: Nucl. Phys. B, 213, 149 (1983); L. Bring, O. LINGREN and B.
NiLssox: Phys. Lett. B, 123, 323 (1983); P. Howe, K. S. STELLE and P. TOWNSEND:
Nucl. Phys. B, 214, 519 (1983); S. Fusint and E. RaBinovicr: preprint TH. 3825-
CERN (1984).

(28) In Proceedings of the XVIII Solvay Conference on Physics, edited by L. Vanx Hove,
Phys. Rep., 104, 201 (1984).
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In the Landau gauge (d, = 0) the function A(q?) equals unity. Moreover, in
this gauge eqs. (A.3) and (A.4) are not changed if the vertex I3, is chosen
in the form

P
(A.5) Pm;u((lz; ) = ’}’u‘sy + ?ﬁz 049,

where Py = ¢yu— q1u, @ 18 an arbitrary Lorentz-invariant function. If ¢ =
= B(q}) — B(q;), the vertex (A.5) satisfies the Ward identity

(A.6) P“Pm;il(%; ¢1) = 8;11(91) — S;}l(%) ’
which follows from the conservation of the electromagnetic current.

Let us consider now the Ward identity for the vertex Iy, of the axial-
vector current J3, = PyuysAty, r=1,2,.., K2—1:

(A7) PrI5,(qs, @) = — 7sA"87Yq1) — 87X(ga) ys A7
Under spontaneous breaking of chiral symmetry the vertex I, has a pole at
zero in the variable P2 = (¢, — ¢,)?; the residue at this pole is expressed through

the ES wave function of the Goldstone boson (?7):

P
oo 870 1P, )8,

(A.8) 1“5',,(}?, Q) |preso =

where ¢ = ¢, + ¢./2 and the parameter f is determined by the equation
<OIJ;['JIP7 ’I'> = iarr'fPﬂ 9
|P, r> is the state vector of the Goldstone boson and y7(P,q) is the BS wave

function. Substituting the expression (A.8) into eq. (A.7) and going over to
the limit P,->0, we obtain the relation

(A.9) {X'(Q) = 4"(Py q)|p=o = A5 %(q%) ,
' sx(g®) = 2if8(q)7s Balg*)8(q) -
In the ladder approximation in the Huclidean region the function
., Balg?)
2y — 9441 4
(A.10) Hat) =20 25,

and the BS equation for y(¢Z) takes the following form in the Landau gauge:

A’
3 6(a: —k2)  B(k2—q?
A1) (b mte) = [ane [P B

0

(2" V. DE ALFARO, S. FuBINI, G. FurLaN and C. RosserTi: Currents in Hadron Physics
(North-Holland, Amsterdam, 1973).
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Comparing eqs. (A.3), (A.4) and (A.11) and taking into account the relation
(A.10), we find that in the Landau gauge the ladder approximation corresponds
to the linear version of eq. (A.4) when in the denominator the function B? is
replaced by mji. Equation (A.11) ean be solved in the following way. Differ-
entiating it in ¢2, we obtain the differential equation

d d . . 3o
(A12) i {q4dq (q —l—md)x]}%”gq 1=20

and two boundary conditions:

d

A3 2 =0,
(A.13) { i (¢ +m)x}}q=o

a
(A.14) {q2 qoe L@+ mi) x] + (g% 4 mi) x} =0.

q *=A?
The general solution to eq. (A.12) has the form
(a15) B¢ =L (a2 + mde) = 0.B@?) + C.Bue

(see eq. (A.10)), where
By = F(§ + iy, 5 —iy, 25 —a#),
(A.16) By = a7 F(} + iy, — § + iy, 1+ 20p; —a?) +
+am B (f — iy, — §— iy, 1— 2iy; —a?)

y = §(3a@/n — 1)}, ? = ¢*/m3, F is a hypergeometric function. From eq. (A.13)
we find that C,/C; = 0 and, thercfore,

(A.17) By(q*) = CF(} + iy, 3 — 1y, 25 —7),

the normalization parameter ¢ has the form € = &m,, where £ is a numerical
constant, and it can in prineciple be determined from the normalization con-
dition for the Bethe-Salpeter wave function. The second boundary condition
(A.14) determines the mass spectrum of the equation. The analytical answer
can be obtained in the case of mj/A* < 1. Using the asymptotic expansion
of hypergeometric functions (*¢), in this case we get the following equation
from eq. (A.14):

(A.18) sin (y In %—: + Z'(y)) -

where 2(y) = arg [I'(1+ 24y)/I'*(1+ iy)]. Equation (A.18) yields the mass
spectrum in the form

. 7s - 2(y) — 78 .
(A19) mP = A exp [ 2;—«l] ~ 4/ exp [??;—], s=1,2,...
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One can show () that only the maximum value, m{, corresponds to the
stable vacuum.

APPENDIX B

In this appendix we show that the phenomenon of the rearrangement of
the renormalization structure at supercritical values of coupling constant takes
place in the two-dimensional sine-Gordon model.

The Hamiltonian density of the sine-Gordon model has the form

1 .. 1 %
(B.1) H=N,, [57; + 3 (Bltp)f*—!—]—2 eosg<p],

where 7 is the canonieal momentum, N, is the symbol of the normal-ordering
operation with the contraction function

(B.2) A(xy, m =i f \/k2 exp[ ik 2,] .

Oue can easily verify that (due to the two-dimensionality of space-time)
the normal-ordering operation N, removes all ultraviolet divergences in any
order of perturbation theory. On the other hand, as has been indicated by
CoLEMAN (18), this models has no ground state at supercritical values g2 > &m.
‘We shall show below that this phenomenon appears due to the presence of
additional ultraviolet divergences in the supercritical phase with g2 > 8z; these
divergences are similar to those which arise in the «fall into the centre»
(collapse) situation. To remove them, an additional renormalization of the
parameters g% and » should be performed.

Let us introduce the cut-off A in the contraction funetion (B.2):

(B.3) AD(x,, m) = yo f \/kz exp[ ka1,

(B.4) ADO, m) = = 1n 4+—‘/‘:;i1”—2 :

Since the spatial component of momentum, k,, is bounded, such a cut-off
corresponds to the anisotropie lattice in the Euclidean domam (the time axis
is continuous). In connection with this we recall that the character of a phase
diagram is independent of the lattice form (the property of universality of
phage transitions).

Tollowing ref. (®), we choose the vacuum appropriate to a free field of
mass u a8 our trial vacuum state:

(B.5) @ (1, @)|0, > = (@1, p)|0, > = 0.
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Using the contraction function (B.3), we find

A VA g

m2

, 1.1 2\esa (A | VA2 | me\ e
(B.6) H=N, 5n2+§(al¢)2_§%(ﬂ_) (ﬁJF +m) (3osg<p]—f—

i SR -
+ EA(\//P + = VA me).
Therefore, the energy density of the vacuum is equal to

(B.7) ev(A) = <0, plH|0, uy =

1 e - % (p2\osn (A VAR L mRY
= L AW A A z__(ﬂ_) ( ) .
AV o T mw\m) i vaT e

When the cut-off is removed, the energy density (B.7) is turned into the ex-
pression of ref. (18):

) 2 \g?/8n

At g% > 8s the last expression is unbounded from below as u goes to infinity.
Therefore, if g% > 8n, the continuum theory has no ground state (collapse).
On the other hand, as it follows from eq. (B.7), no collapse happens in the
theory with cut-off.

To understand the situation better, let us find the extrema of the energy
density ep(A):

deV(/l)__ 1 2 Aot
(B.9) L é‘ﬁ(l+” [A%)-%

i PP 1 1+ w2iAz)2v] — = g?
[1 4m2(m2) (1 + V14 p2/Az) ]_0, v = g*/8m.

We obtain from eq. (B.9):

1) »<<1: there is the absolute minimum at the value

2\ »/y—1
(B.10) W= (%—) ;

2) »>1:1in this case the value u?~~ x(m?/x)**~* becomes the maximum,
and the absolute minimum is

A\2y
(B.11) == Ay (ﬁ) + 0(A2, A29-v),

As it follows from eq. (B.11), there is the additional mass divergence in the
sapercritical phase with g2 > 8z (v >1). Let us show that this divergence
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can be removed by performing a renormalization of the parameters » and g2.
Equation (B.9) implies that

(B.12) » = In () [In [2um—(1 4 ‘/m)‘l] )

In the limit A — oo, 4 < co the condition d2e,(A)/d(u?)2 > 0 guaranteeing that
an extremum is a minimum takes the form

uty
(B.13) y—1< 1.

Therefore, in the supercritical phase (» > 1) this limit exists provided that
the condition
In () 4 p2fad®

(B.14) 0<v—1zln(ﬂm_1)—M2/4A2<va

holds. From here we find that the mass parameter u remains finite in the
continunm limit if the values of » and g% are fixed:

(B.15) x->m?, v=g8m—>1.

The renormalization (B.15) must be performed along a trajectory in the
(%, g*)-plane or. which condition (B.14) is satisfied.

The meaning of relation (B.15) becomes clear if one notes that in the
continuum limit A — oo the energy density is independent of u at (x, g%) =
= (m?, 87):

m2

(B‘16) 8V(°°)l(u,9’)=(m’,87x) == g_; .

Therefore, the parameter x is arbitrary in this limit at (x, ¢2) = (m?2, 8x).
Thus, at g* > 8x the rearrangement of the vacuum takes place (the ex-
pregsion for the minimum of the energy density (B.10) is replaced by ex-
pression (B.11)), which manifests itself in the appearance of the mass diver-
gence that can be removed by an additional renormalization of the parame-
ters » and g2. From the point of view of the renormalization group this situ-
ation reflects the existence of the ultraviolet stable fixed point (x, g2) = (m?2, 8x).

APPENDIX C

In this appendix we calculate in the ladder approximation the renorma-
lization constant Z,,, of the composed operator ({Py)a:

(C.1) (F)a = ZoL (G

4 is a subtraction point.
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For this purpose we use the relation (22)

(C.2) mO(A)(Fy)a = M FP)u 5

where m©®(A) is the bare fermion mass, m;, is the renormalized fermion current
mass connected with the subtraction point u. We emphasize that both these
masses lead to the explicit chiral symmetry breaking (eq. (C.2) reflects the
fact that the combination m(¢y), is renormalization group invariant, i.e.
independent of u). From eq. (C.2) it follows that

(0.3) Zy = mO(A)jms, .

To determine m@(A4)/m!, we use the equation for the mass function m(¢q?) =
= B(¢*)/A(¢?). In the ladder approximation in the Landau gauge (A4(g%) ~1)
this equation, in the case in which m®(A) +# 0, takes the form (compare with
eq. (A.4))

3O k2 ke
) i) = mot) + 5 [aie S T g — 1) 4 00— ),

0

where in the chiral limit, m@(A) — 0, the mass m coincides with the dynam-
ical mass m,. The analysis of this equation can be developed in complete
analogy with that of eq. (A.11). The solution of eq. (C.4) is the function
(compare with eq. (A.17))

(C.5) m(g?) = EmF(} 4 iy, § —iy, 2; — ¢*/m?)

(y = $(3a®[x —1)}, £ is a numerical constant) satisfying the following bound-
ary condition:

d 2
(C.6) (q2 e’

dg?

— m(o)(/l) .

E=A2

n m(qZ))

At first let us consider the case of subcritical values «® < /3. In this case
the spontaneous chiral symmetry breaking does not take place and the value
m = M(q?)|p-p: coincides with the current fermion mags corresponding to the
subtraction point yu = m. Using the asymptotic expansion of the hypergec-
metric function at A2/m2>>1 (%) one finds from eqs. (C.5) and (C.6):

= mlo)(/l)/m ~ M (m)l_zy,; y/: ’L‘)/.

C.7 Z,=Z bt
(-0 g+ )\

mﬂ|u=m

From here, in turn, we find that for u > m the normalization constant
1-29'
(0.8) Dy (%) )

Let us consider now the case of supercritical values «® > 7/3. In this case
the spontaneous chiral symmetry breaking takes place and the value m =
= M(q%)|g=m: 15 equal to m, - m°, where the current mass m°= m;|,_, (for
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our purpose it is sufficient to consider the PCAC situation when m°< m).
From eqs. (C.5) and (C.6) we find in this case, in the limit m/A4 <« 1, the relation

gm? (ctgh wy\} 4 o ' . I'(1+4 2iy)
(C.9) T (7) sin [27/ In p -+ Z(y)] =mod); Xy = argm .

From here it follows that at mec< m the renormalization constant

]
(C.10) Zn= Dy = MO(A) e ~ 2 (V ctgh ny) mg _, 26mg

7 A v<1 gd ”
From here, in turn it follows that at u >m, the renormalization constant

(0.11) Do = pij A

® RIASSUNTO (%

8i discutono il diagramma di fase nella costante di accoppiamento in QED e la sua
connessione con la rottura di simmetria chirale spontanea. Si considera il meccanismo
di questa rottura connesso con il fenomeno di collasso e si fornisce una semplice inter-
pretazione fisica del risultati recenti delle simulazioni con il calcolatore nel QED del
reticolo. Si analizza il problema dell’esistenza della QED non banale nel continuo e,
come risultato, si considera 'ipotesi seguente: nella situazione « a carica zero » di Landau-
Pomeranchuk-Fradkin (la costante di rinormalizzazione Z; = 0) la matrice S della QED
nel continuo con una costante di accoppiamento nuda fissata, «® = «,~ 1 & non banale.
Si rivela il contenuto fisico di questa teoria ipotetica nel continuo.

(*) Traduzione a cura della Redazione.

JIMHAMHKA CIIONTAHHOrO HAPYIICHHS KHMPANLHOH CUMMETDHH M HenmpephIBHOH npenes B
KBaHTOBOH JIEKTPOMHAMHKE,

Pe3rome (*). — O6cyxmaerca ¢daszoBasd AuarpaMMa MO KOHCTAaHTE CBA3H B KBAHTOBOM
3JIEKTPOJMHAMHKE M €€ CBA3b CO CIOOHTAHHBIM HapyHmICHHEM KUPAIBHOH CHMMETPHH,
PaccmaTpuBaeTcsi MEXaHH3M TAakKOTO HADYIICHHS, CBA3aHHBI C SBICHWEM KOIUIAICA.
IIpepnaraercs mpocTas ¢Gm3WvYecKas WHTEPOPETALHS HEJABHHX PE3ylIbTaTOB MOJECIAPO-
BanuA Ha OBM B paMxax KBaHTOBOH 3JE€KTPOJHHAMHUKH HA PEIIeTKe. AHAIM3UPYETCH
npoblieMa CYIMIECTBOBAHHS HCTPHBHANLHON HETPEPHBHON KBAHTOBOM 3IEKTPOIAHAMUKH.
PaccMaTpuBaeTcs cieiyrolias IMIOTE3a: B cliydae « HyneBoro 3apspga» Jlammay-TTome-
panudyka-®panxuna (TOCTOSAHAS TEPEHOPMUPOBKY Z;=0) S-MaTpHIa HEOPEPHIBHON KBaH-
TOBOH 37EKTPOAMHAMEKE ¢ (DEKCHPOBAHHOM TIOJOH NOCTOAHHOM CBA3M, V= o~ 1,
ABIIETCA HETPUBHAJLHON. AHAIM3MPYeTCs (U3MYECKUii CMBICT TakOM THIIOTETHYECKOM
HENPEPBIBHON TEOPHH.

(*) IIepesedeno pedaryueii.



