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S u m m a r y .  - -  The phase diagram in the coupling constant in QED and its 
connection with the spontaneous chiral symmetry breaking are discussed. 
The mechanism of such a breaking connected with the collapse phenomenon 
is considered and a simple physical interpretation of the recent results 
of the computer simulations in lattice QED is given. The problem of the 
existence of the nontrivial continuum QED is analysed and, as a result, 
the following hypothesis is considered: in the Landau-Pomeranehuk- 
Fradkin (~ zero-charge ,) situation (the renormalization constant Z 8 ~ 0) 
the S-matrix of continuum QED with a fixed bare coupling constant, 
g(0)- ~o~ 1, is nontrivial. The physical content of such a hypothetical 
continuum theory is revealed. 

PACS. 11.30. - Symmetry and conservation laws. 

1.  - I n t r o d u c t i o n .  

Recently,  the results concerning spontaneous chiral symmet ry  breaking in 

quan tum eleetrodynamics have been obtained by  the computer  simulation 

methods in lattice noncompaet  QED (1). The aim of the present paper  is to 

represent a simple physical interpretat ion of these results and to discuss, f rom 

(*) To speed up publication, the author of this paper has agreed to not receive the 
proofs for correction. 
(1) J. BARTHOLOMEW, J. KOGUT, S. H. SH:ENKER, J. SLOAN, M. STONE, H. W. WYLD, 
J. SHIG~ETSU and D. K. SINCLAIR: Nucl. Phys. B, 230, 222 (1984). 
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the viewpoint of this interpretation, the old problem of the existence of the 
nontrivial  cont inuum limit (ultraviolet cut-off A - ~  c~) in QED. 

In  1954 GEL~-MA~N and Low (2) indicated thet  the nontrivial  cont inuum 
QED can exist only if the bare coupling constant  a(0) is determined by  an 
ultraviolet stable zero of the renormalization group fi-function, 

( 1 )  #Q~.~ = a `°)  1n/% l n A  

where /% is the renormalization group parameter  and  Z ~  is the renormaliza- 
t ion constant  of the photon propagator.  The question of the existence of such 
a zero became especially important  since the papers of Landau  and Pome- 
ranchuck (3) and Fradldn  (4)~ appeared, where it was argued tha t  in the  con- 
t inuum limit  QED is t ransformed into a free-field theory;  more precisely, in 
the l imit  A -~ oo for any  value of the bare coupling constant  ~(o) the vacuum 
polarization effects lead to a zero value for the running coupling constant  
~(r) a t  all nonzero distances: ~ ( r ) ~  0 at  r > 0 and ~ ( 0 ) ~  ~(o) (the ~ zero- 
charge ~ situation, Z ~  = 0). La te r  the possibility of the existence of a non- 
trivial zero of the fl-function was studied in the framework of t h e ,  finite 
Q E D ,  program (5). However, no definite answer has been obtained there. 
Moreover, recently new arguments have been given in favour of the impos- 
sibility of the existence of a nontrivial  zero of the fl-funetion (1) (6). 

The problem is closely connected with the  charge renormalization. In  the 
papers (2,5) the  relation 

(2) % = Z,~,o~(°~(A) 

(which is equivalent to eq. (1)) was used. This relation is proved to be valid 
in every order of perturbation theory,  hence its val idi ty in the exact theo- 
ry  also seems to be predetermined. However, as has been pointed out  in 
ref. (7), a t  a sufficiently large bare coupling constant  the renormalization rela- 
tions of nonasymptot ieal ly  flee theories can be essentially changed owing to 
the dynamics of particle mass generation. This conception has been introduced 
by  exploiting the  mechanism of the spontaneous ehiral symmet ry  breaking 

(~) ]K. Gv, T.T.-MA~ and F. Low: Phys. Bey., 95, 1300 (1954). 
(3) L.D.  L~NDAV and I. YA. POMERA~CHUK: Dobl. Abad. Nauk SSSR, 102, 489 (1955); 
L.D.  LANDAU: in ~iels Bohr and the Development o] Phys~s, edited by W. P~w.I 
(Pergamon Press, London, 1955). 
(4) E.S. FRADKI~: ~. ~kSp. Teov. ~iz., 28, 750 (1955). 
(b) K. JOHnSOn, l~I. B A ~  and R. WILL, Y: Phys. l~ev. B, 136, 1111 (1964); S.L. 
ADLV.R: Phys. Bey. D, 5, 3021 (1972). 
(e) N.V. K~AS~ZXOV" Phys. LeU. B, 126, 483 (1983); Y. ~¢LkTSUBARA, T. SUZ]~KI and 
I. YOTSU~rAWAGI: preprint DPKU-8304, Kanazawa (1983). 
(v) V.A. MIRA~SKY: Phys. 25ett. B, 91, 421 (1980); preprint ITP-81-22E, Kiev (1981). 
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in massless QED suggested earlier in the papers (8.9) (for a review see ref. (10); 
note  also tha t  recently this mechanism has been discussed in ref. (11)). The 
mechanism leads to an additional mass divergence at the supercritieal (a(°((A) > 
> ~o~ 1) values of the bare coupling constant  (for details see sect. 2). F ro m 
the viewpoint  of the renormalization group the critical value ~c, separating 
the massless and the massive phases, is an ultraviolet  stable fixed point.  
However ,  it is determined not  by  a zero of the fl-function (1) related to the 
subcritical (~(o) < ~o) phase, bu t  by  a zero of the  fi-function of the supercritical 
phase. The value a(o)_ ~¢ determines a cont inuum theory.  

:Note tha t  ve ry  recent ly  a similar phenomenon has been also found in 
(2 ~- n-1)-dimensional, n > l ,  ~4~+~ models (13) (at the classical level these mod- 
els are scale invar iant ) .  

Below we will show tha t  the principal results of the computer  simulations 
in lat t ice QED can be easily understood from the point  of view of this dy- 
namical mechanism. Besides, we discuss to what  extent  the improvement  of 
the quenched approximation,  used in ref. (1)~ can influence the  results. As a 
consequence of this discussion, the following, apparent ly  unexpected,  possi- 
bil i ty is revealed: in the ~( zero-charge ~) si tuation (Za~ = 0) the S-matr ix  of 
cont inuum QED with a fixed bare coupling constaut  ~c0)= ~ can be non- 
trivial. The characteristic feature  of such a cont inuum theory  is the appear- 
ance of the new, induced, Yukawa- type  interact ion of fermions, antifermions 
and eomposed pseudoscalar bosons. 

The paper  is organized in the following way. In  sect. 2 we describe the  
essential feature  of the mechanism of the spontaneous ehiral symmet ry  breaking 
in QED. In  sect. 3 we discuss the pecularities of the dynamics of the chiral 
sym m et ry  breaking in QED connected with subtleties of the transit ion to the 
cont inuum limit. This point  is impor tan t  since anomalies of different kinds 
can, in principle, essentially influence the dynamics of sy mme t ry  breaking. 
In  sect. 4 we in terpre t  the results of the computer  simulations in latt ice QED 
from the viewpoint  of this particle mass generation mechanism and discuss 
the possibility of the existence of the nontr ivial  cont inuum limit in QED. 

2. - The mechanism of  spontaneous chiral symmetry breaking in QED. 

The mechanism of spontaneous chiral symmet ry  breaking in QED con- 
sidered in ref. (7.10) is based on the analogy between this phenomenon and 

(~) P. I .  FOMIN and V.A. MIRANS:KY: Phys. Lett. B, 64, 166 (1976). 
(9) P . I .  FOMIN, V.P. GVSYNIN and V.A. MIRANSKY: Phys. Lett. B, 78, 136 (1978). 
(lO) p . I .  ~OMIN, V.P.  GUSYNIN, V.A. MIRANSKY and Yu. A. SITENKO: l~iv. NUOVO 
Cimento, 6, No. 5 (1983). 
(ll) G.J .  NI: 2~ucl. Phys. B, 211, 414 (1983). 
(13) W.A. BA~D~E~, M. IV~OS~E and M. BANDER: Phys. Rev. Lett., 32, 1188 (1984); 
hi. B. HALPER~: Phys. Lett. B, 137, 382 (1984). 
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t h a t  of the  e lec t ron-pos i t ron  pa i r  c rea t ion  in the  superer i t ical  Coulomb field. 

As is k n o w n  (~3), w h e n  Z > Zo _~ 137 (~ ---- Ze~/4z  > 1), the  Dirae  ope ra to r  

wi th  the  Coulomb poten t iM V ( r ) - = -  Ze2/4~r is no t  defined, and  therefore  

i t  is necessary  to  comple te  its definit ion b y  i n t roduc ing  a cut-off  a t  smal l  

d is tance  (*). 

F o r  example ,  

O(r°--rll (3) V(r )  = Ze~ . V(r )  - -  Ze~ ro) + _ . . 
4~r  4~ ro J 

To exhib i t  the  role of the  cut-off  p a r a m e t e r  A --~ r~ ~ in this p rob lem,  we quo te  

the  express ion for  the  ene rgy  e (~) of the  qzS½-1evels in the  case of t he  l ight  

(when m ~ le(~)l) e lec t ron (8): 

m ~2 
( 4 )  ~('~ ~ ~ ( : ' - -  - - -  i - - -  

- 2 5ot ':' I ' 

where  the  e n e r g y  e(o "~ of the  massless e lec t ron is 

( 5 )  

('~ aA(s in  i c o s ~ ) e x p [  - - ~ n  ] 

a ~ 0 . 4 ,  ~ = _ 2 e t g h ~  N - - ~ - - . 1  00~ _ _  - -  ~ * . 

n = 1 , 2 , . . . ,  

Accord ing  to  the  conven t ionM i n t e rp r e t a t i on  of the  levels wi th  Re  e < 0, t he  

level  e (~) de termines  the  pos i t ron  s ta te  ene rgy  

-~) = - -  s (~) ~e%~ ~'~ > 0 ,  I m  e~ "~ < 0 

(*) In  other words, in the relativistic theory the (( fall into the centre ~> (collapse) 
phenomenon (1~,1~) takes place for this potential and such a system has no ground 
state. The formal (mathematical) reason for this phenomenon is connected with the 
fact that  such a Hamiltonian is a Hermitian but  not a self-adjoint operator, and it 
should be extended (defined completely) to become a self-ad~oint one (15). The physical 
reason is connected with the fact that  the properties of the system depend on the way 
used to define completely the Hamiltonian at small distances. 
(la) YA. B. ZEL'DOVICH and V. S. Po~ov:  Usp. Yiz.  Nauk,  105, 403 (1971); J. RAF~LSXI, 
L. F t m C H ~  and A. KLein:  Phys. t~ep., 38, 229 (1978). 
(la) L . D .  LA~DAV and E.M. LIFSHITS: Ouantum Mechanics (Nanka, Moscow, 1974), 
Chapt. 35. 
(15) M. R ~ ] )  and B. SI~o~ : Methods o/Modern Mathematical Physics (Academic Press, 
New York, N.Y. ,  1975), Vol. 2. 
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corresponding to the outgoing positron wave (*). I n  the limit A--> c~ the 

energy a(~) diverges, which reflects the collapse situation. 
I n  ref. (s) it was hypothesized tha t  a similar phenomenon takes place in 

QED with a sufficiently large bare coupling constant  which results in the 
spontaneous chiral symmet ry  breaking (**). This hypothesis was reMized (in 

the ladder approximation) in ref. (0) (for more details see the review (10)). 

For  the sake of completeness the equations for the fermion dynamical  mass 

function md(q~ ) = Bd(q2)/A(q~ ) (the fermion propagator  S ( q ) =  ( - -~A(q  2) ~- 
-~- Bd(q2))-i ) and for the wave functions of Goldstone bosons are considered 

in appendix A (***). Here we state the main results (the chiral group is 

S U , . , ~ x S U ~ , ~  K is the number  of the fermion flavours). 

For  the supercriticM values a (°) > % = z/3 the dynamical  mass m d is deter- 

mined by  a relation of the form 

(6) m d = A t ( ~ ( ° ) ) ,  

where for the near-criticM values ~(o)(~(o)_% <<%) the function /(~(0)) is 

(7) /(a (°)) ~ 4 exp [-- 7~/2y], Y = :2 t ~ o  

The Bethe-SMpeter wave function of the Goldstone bosons in the Euclidean 

region reads 

(8) Z" = C'~'~sz(q 2) )~(q2) = (q2 - F m  8~-1~11 , ~, ~ .  ~ ÷ iy, 1 _ iy, 2; - -  q2/m~), 

(*) The appearance of such quasi-stationary levels is interpreted as instability with 
respect to the spontaneous creation of electron-positron pairs from the vacuum (13). 
The created electron is coupled to the centre thus shielding the charge of the latter 
while the positron goes to infinity; the process is repeated until the charge of the centre 
is reduced to a suberitical value. 
(**) The role of the fermion mass in the problem of the supercritical Coulomb field can 
be seen from eqs. (4) and (5). The imaginary part of the energy Im e(~) decreases (i.e. 
stability of the system increases) with increasing mass. Thus there are in principle two 
possibilities for the system with the supercritical charge to become stable: to shield 
spontaneously the charge or to generate spontaneously the fermion mass. In the problem 
of the Coulomb centre the first possibility can be only realized (which is already due 
to the formulation of the problem as a one-particle one). It  has been suggested in 
ref. (s) that the second possibility--dynamical generation of the fermion mass--is 
realized in QED. 
(***) The equations are considered in the Landau gauge. This choice is not accidental 
and is dictated by the following reasons. The correct statement of the problem of 
spontaneous symmetry breaking in a given approximation is only possible when this 
approximation is consistent with the Ward identities corresponding to the symmetry 
investigated. As is shown in appendix A, this selects the Landau gauge in the ladder 
approximation as the most preferable one. 
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where ~' are K 2 -  1 matrices of the fundamenta l  representat ion of the S U~ 
algebra~ q is the  relat ive fermion-ant ifermion momen tum, /~  is a hypergeometr ie  
funct ion and the normalizat ion constant  ~ can in principle be determined 
f rom the normalizat ion condition for the wave function Z ~. 

Le t  us consider, following ref. (7), the  renormalizations in this problem. 

In  the cont inuum limit A -+ 0% ~(o) = eonst > ~o, the mass m d diverges. This 
is connected with the following fact.  Using the asymptot ic  expansion for 
hypergeometr ic  functions (~s) we find tha t  in the limit q2 _+ oo the funct ion 
z(q 2) takes the form 

] /q2\-~/ etgh75~ \½. [ ~__~, ) 

where 

2(?)  --~ arg L/~s (½ -f- iT)J '  

F is the  Euler  gamma-function.  Therefore,  in the cont inuum limit (A = oo) 
and  for any finite value of m, the  wave funct ion 2(~ 2) has an infinite number  of 
zeroes. This is a typical  manifestat ion of the  collapse (, fall into the  centre ~)) 
phenomenon (14) when the energy of the  ground state  is not  bounded f rom 
below and therefore the energy (mass) gap is infinite. 

To remove this divergence, a renormalization must  be performed. Per- 
forming a renormalizat ion means making the bare parameters  (in our case eto), 
there  is no mass t e rm in the chiral invaxiant Lagrangian) depend on A in 
such a way tha t  the physical parameters  (the mass m d in our case) remain 
finite in the  limit A - +  oo. As it  follows f rom eqs. (6) and (7), in the limit 
A - ~  0 the mass m d remains finite if the coupling constant  is fixed: 

(10) 
758 ~o 75 

~(°)(A) = eo -F ln~ (4A]ma) ,1~--~ ao = -g" 

Fro m  the  viewpoint  of the renormalizat ion group the  critical value ~o =- ~/3, 
separating the  massless and the  massive phases, is an ul traviolet  stable fixed 
point.  The appearance of such a point  in the  ladder approximat ion is caused 

by  the dynamics which cannot  be obtained in per turba t ion  theory.  
We also emphasize tha t  the origin of the mass divergence (6) is different 

f rom tha t  of the loop divergences of per turbat ion  theory.  The la t ter  are due 
to processes in which the particle number  is not  conserved, while divergence (6) 
is connected with a singular character  (at small distances) of the exchange 

(16) H. BA~r~AN and A. ERD~.LYI: Higher TransvendentaZ/FuncNons, Vol. 1 (McGraw- 
Hill, New York, N.Y.,  1953). 
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interact ion which conserves the part icle number.  Since such divergences occur 
already in quan tum mechanics (see, for example,  eq. (5)), i t  is na tura l  to 
name such divergences as quantum-mechanical  ones. 

We also indicate the two following characterist ic facts: 

1) Since in the ladder  approximat ion  the renormalizat ion constant  of 
the pho ton  propagator  Z ~  is equal to uni ty ,  the renormalizat ion (10) destroys 
the renormalizat ion relation (2). 

2) In  the cont inuum limit (10) the wave funct ion 

(J~) z(q ~) = (q~ ÷ m~)- F/~,\ ~, 2; . . . .  m~/,L~.~ ~q~ \ ~ l  ~ '  

and therefore the renormalizat ion (10) changes the form of the wave func- 
t ion, in part icular ,  the  oscillations disappear (compare with eq. (9)). We remind 
tha t  for the s tandard  renormalizations of per turba t ion  theory  the following 
relations between renormalized (G c~)) and nonrenormalized (G ~A)) Green's func- 
tions take  place: 

G(~')( {q} , d~,) : Z (  A ,  o~,t G(A'( (q~ , ~(° ' (A))÷ small power correct ions.  
V x / 

Therefore,  in this case, up to small power corrections ix/A, q/A, etc., the form 
of renormalized and nonrenormalized Green's functions as the functions of the 
momenta  (q} is the same. The violat ion of this p roper ty  by  the  renormaliza- 
t ion (10) is easily unders tood:  removing the cut-off and making the mass m d 
finite we get r id of the collapse and, as a result, of its manifestat ion,  oscilla- 
tions. 

In  the considered approximat ion the phase diagram of the chiral invariant  
QED is as follows: for all subcritical values z¢ (°) ~ ac ~ ~r/3 the fi-function 
equals zero (there are no ul traviolet  divergences), and all these values a(o) 
form the  line of the fixed points;  in the massive phase with ~(o)(A) > ~¢ the 
additional renormalizat ion of the charge takes place which leads to the ultra- 
violet stable fixed point  a(o~ : ~ .  The form of the phase diagram of the 
exact  theory  depends also on other  divergences. In  ref. (~) the following 
hypothesis  has been pu t  forward:  for sufficiently small values of the bare 
coupling constant ,  due to the argument  of ref. (3,4), the (~ zero-charge )) situa- 
t ion takes place in QED (i.e. the cont inuum limit QED degenerates in a free 
theory),  however,  in the supercritical phases in the cont inuum limit a non- 
trivial field theory  arises at  the fixed value ~(o) - -  ~o. 

We shall discuss the physical content  of such a cont inuum theory  in 
sect. 4. Here  we would like to note  the following. I t  is essential t ha t  the 
vacuum rear rangement  considered above is connected with the (( fall into the 
supercritical Coulomb centre )) phenomenon,  the existence of which in rela- 
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tivistic quan tum mechanics follows directly f rom the uncer ta in ty  principle (*). 
Moreover,  the similar, collaps% phenomenon at  supercritical values of coupling 
constant  takes place in some two-dimensional models (7)--in the latt ice massless 
Thirr ing model (~7) and in the sine-Gordon model (18) (this model is considered 
in appendix B). All these facts make sure tha t  this phenomenon is not  an 
accidental  ar t i fact  of the ladder approximation.  We shall re turn  to this point  
in sect. 4, bu t  before, in the next  section, we shall discuss peculiarities of the 
dynamics of the chiral symmet ry  breaking in QED connected with subtleties 
of the transi t ion to the cont inuum limit. 

3. - Continuum limit and the character of  the chiral-symmetry breakdown 

in QED. 

In  field theories anomalies can essentially influence the dynamics of sym- 
m e t ry  breaking. The known example is the Adler-Bell-Juckiw (ABJ) anomaly  
of the singlet axial-vector current  (~9). Still before the discovery of this anomaly  
i t  w~s known (from the analysis of the Johnson-Baker-Wil ley solution (5) in 
QED) tha t  the  vanishing of the bare  mass does not  ensure the conservation of 
the  ~xial-vector currents in cont inuum theories (~,~o) (in the l i terature this 
circumstance is sometimes called the Johnson-Pagels  anomaly).  In  the present  
section we will show tha t  this anomaly,  unlike the  A B J  one, can be removed 
if one uses a suitable transit ion to the cont inuum limit in the equations of 
QED. We shall also show tha t  in this way the old Goldstein problem (2~) 

can be solved. 
Le t  us consider QED with K fermion flavours. In  the cont inuum limit 

the  K ~ -  1 anomaly-free axial-vector currents 

s~tisfy the  equat ion 

J~, ---- ~,~ 7, ~" ~ ,  r---- 1, 2~ ..., K 2 - 1  , 

(12) O~'J~, = lira m(°)(A)((p?~'v2).4, 
A--~¢o 

(*) Indeed, in relativistic theory the kinetic energy E~= (q~-m2)½--mq_T--- ~ q. 

Therefore, the energy E = m ÷ E~--~/r  ~ 1 -  ~/r (due to the uncertainty prin- 
}'--> O 

eiple, the momentum q ~  I/r), and the collapse phenomenon happens at c¢ >1. 
(1~) B.M. McCoY and T.T.  Wu: Phys. ~ett., 87, 50 (1979). 
(is) S. COLemAn: Phys. t~ev. D, l l ,  2088 (1975). 
(19) S.L. ADLer: Phys. l~ev., 177, 2426 (1969); J .S.  B~LL and R. JAeKIw: Nuovo 
Cimento A, 60, 47 (1969). 
(~o) TH. A. J. lVIA~IS, G. JACOB and B. LIBv.~MAN: NUOVO Cimento A, 52, 116 (1967); 
H. PAG~LS: Phys. Bey. D, 7, 3689 (1973). 
(21) S. GOL~)ST]~I~: Phys. l~ev., 91, 1516 (1953). 
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where m(o)(A) is the bare  fermion mass. I t  is essential tha t  the operator  
(~ysX'F)A is composite and depends on the cut-off parameter :  

(~3) 

where # is a subtract ion point  and, as is well known (~2), the renormalizat ion 
constant  Z coincides with the renormalizat ion constant  of the operator  
(~o)A ((~Sy))A = Z~(vpy~)~). F rom eqs. (12) and (13) we obtain the condition 
which ensures the conservation of the anomaly-free axial-vector currents in 
the cont inuum theory:  

(14) l im m~°~(A)ZT~ = 0 .  
A->co 

I t  can be shown (see appendix C) tha t  in the ladder approximat ion the 
renormalizat ion constant  

(15) Z~t , ~ (#~]A2) t-: ' ,  7' = i 7 = ~ 1 - -  

at  subcritical values of the coupling constant~ ~(o)~ a _ - - ~ / 3 ,  and 

(16) Z,,~, "~ # / A  

at  supercritical values of ~(o). F rom here and condition (14) we see tha t  the 
vanishing of the bare mass in the cont inuum limit, m (o) = lira m(°)(A) ~ O, 

Zl--~ ¢o 

does not  ensure the conservation of the axial-vector currents.  To ensure this, 
one must  require a rapid enough (as o ( Z s ) )  decrease of the bare  mass at  
A - >  ~ .  In  part icular,  this condition is satisfied if one chooses m(o) (A)~  O, 
i.e. if the  Lagrangian of the theory  with cut-off is already chosen to be ehiral 
invar iant  and the cont inuum theory  is considered as the limit of this one (just 
such a way was used in sect. 2). 

Le t  us demonstra te  this conclusion s tudying directly the equation for the 
fermion mass funct ion (see eq. (C.4) of appendix C): 

(17) 

A a 

3~(o) I" 
m(q~) = m(°)(A) + 4~ Jdk  

0 

~ + k- ~ ~ O(q~- k s) + o(k~- q~) 

(when m(°)(A) ~ O, the  mass m coincides with the dynamical  mass rod). The 
solution of this equat ion has the same form as tha t  one of the equation with 
m(o)(A) ~ 0 (m(q 2) ~ C_F(½ ~- y',  ~ -  y',  2; --q2/m2), where the normalizat ion 

constant  C :  ~m, ~ is a numerical  constant) ,  however  it  satisfies a somewhat 

(~) S.L. ADLE~ and W.A. BAtCDEEN: Phys. Rev. D, 4, 3045 (1971). 
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different boundary  condition at  q2__ A S (see appendix C): 

(18) ( q~dm(q~)dq ~ + m(q2)) ~,_z = m(°~(A)" 

Using the asymptot ic  expansion for the hypergeometric function at  
m2/A~ << 1 (is), we find from eq. (18) the following relations: 

/~(27') ,-~v m(°~(A) (19) m~ F~(½ _~ y,) -- 

at  the suberitieal values ~(o)< ~r/3, and 

[ ] (20) m~ (ctgh ~y~+ sin 7 In ~-~ + X(y) = A m<o,(A ) 
\ vr~, / m ' 

X(7)-~ arg (_/"(1 + 2iy)/F2({ + iv)), at  the supercritieal values of a (°). 
Taking into account condition (14) and eq. (15), we find from eq. (19) 

tha t  there are no solutions corresponding to the spontaneous chiral symmet ry  
breaking at  subcritical values a (°) < n/3. On the other hand,  from eqs. (14) 
and (16) we find tha t  in the limit A -+ c~ the relation (20) is reduced to tha t  
one with m<°)(A) = 0 and therefore we return to the picture with the ultra- 
violet stable fixed point ao = n/3 discussed in sect. 2. 

Note t ha t  since for all values a (°) the function m(q 2) = m~F(½ + y', ½ --  y',  2 ; 
q~/m ~) satisfies the boundary  condition (18) (and therefore eq. (17)) at  
A = c~ and m(°)(A)]a=~ = O, not  all solutions of the equation without  cut-off 
and with zero fermion bare mass corresponding to the spontaneous ehiral 
symmet ry  breaking. This point is sufficiently general and is characteristic 
for the problem of dynamical  symmet ry  breaking in continuum theories (*). 
In  particular,  i t  is closely connected with the so-called Goldstein problem (~). 
In  the paper (~) the BS equation (in the ladder approximation) for the mass- 
less pseudoscalar fermion-antifermion bound states (i.e. in fact, for Goldstone 
bosons) was investigated in QED. With  the substi tution 

x(q ~) + (q~ + m~)-i m(q~) 

this equation coincides with eq. (17) in the limit A --> cx~ and m(°)(A)LI.~ = O. 

(*) Note that taking into account condition (14) in the ease of quantum chromo- 
dynamics it is possible to determine uniquely the ultraviolet asymptoties of the dy- 
namical quark mass function directly from the equations for Green's functions without 
using the assumption of the validity of operator product expansion (33). 
(33) V.A. ~¢[II~A~SK~: Yad..Fiz., 38, 468 (1983). 
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Formally, at all values of ~(o) the function 

z(q ~) = (q~ + m ~ ) - ' f ' ( ~  + ~,', ½ - ),', 2; - -  q~/m~) 

is the solution of this equation. A paradoxical situation occurs: the massless 
parapositronium exists at arbitrary small coupling in QED. tIowever, if the 
subtleties of the transition to the limit A --> co are taken into account, one 
shall come to the picture with the ultraviolet stable fixed point considered 
in sect. 2. 

4. - The phase diagram in coupling constant and continuum limit in QED. 

In this section we discuss the results of the computer simulations in non- 
compact lattice QED (1) from the viewpoint of the dynamical picture con- 
sidered above. ~Vforeover, we consider the form of the QED phase diagram in 
coupling constant and discuss the possibility of the existence of the nontrivial 
continuum limit in this theory. 

The principal results of the computer simulations (1) realized in the quenched 
,~pproximation are as follows: 

1) In massless QED the order parameter (01(~)AI0 } is nonzero (i.e. 
spontaneous chiral symmetry breaking takes place) for all coupling constant 
a(o) greater than the critical value ~c ~ 0.3. The value (0[(t~v)a]0} is sensi- 
tive to the short-distance dynamics of QED. 

2) Computer simulations on asymmetric lattices do not reveal any signi- 
ficant temperature dependence in the chiral-symmetry-breaking dynamics. 

The first point qualitatively agrees with the dynamical picture of the 
spontaneous ehiral symmetry in QED corresponding to the collapse ((( fall 
into the supercritical Coulomb centre >>) phenomenon. Since the value of the 
critical coupling constant (opposite to critical indices) is strongly influenced 
by the form of the ultraviolet regularization, the direct comparison of the 
lattice critical coupling and the critical coupling of the ladder approximation 
theory with cut-off in momentum space does not allow one to estimate the 
significance of nonladder diagrams. However, the qualitative agreement of the 
results of the computer simulations with those of the ladder approximation 
evidences that  the ladder approximation reproduces the characteristic features 
of the dynamics of the spontaneous chiral symmetry breaking in QED and 
therefore this approximation can be used as a plausible model for the study 
of this phenomenon. 

For what concerns the second point, it can be easily understood if one 
takes into account that  the value of the critical temperature To, at which a 

n - I I  Nuovo Gimento A.  
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symmetry is restored, is ordinarily expressed through those distances, r, 
where the dynamics of symmetry breaking is on the whole formed, To-~ r -1. 
In the collapse situation such distances are small, r . ~ A  -1, and therefore 
only at very large values, T . ~ A ,  temperature can influence the dynamics 
of the spontaneous ehiral symmetry breaking. 

Let us discuss now the problem of the existence of the continuum limit 
in QED. First of all we will show the validity of the following general state- 
ment; if in masslcss QED with ultraviolet cut-off the second-order phase 
transition, connected with spontaneous chiral symmetry breaking, takes place 
at the value of the bare coupling constant ~co~ = ~¢ > 0, then the continuum 
QED with the fixed value of the bare coupling constant a (°) ~ at has a non- 
trivial S-matrix. 

By the assumption, at the supercritical values a(0) > ~ the fermion dynam- 
ical mass m a appears. Since A is the only dimensional parameter of the theory, 
this mass has the form 

(21) ~n~ = AI(.(o>), 

where ] is some function. The equation 

(22) ](~(°)) : 0 

has a positive root which coincides with the critical value ~o separating the mass- 
less and the massive phase. In the continuum limit, mJA = ](~°~)A~---> O, 
this value of the coupling constant determines the continuum theory with the 
nontrivial S-matrix: the Bethe-Salpeter wave function of the pseudoscalar 
Goldstone bosons (corresponding to the spontaneous chiral symmetry breaking) 
determines the effective interaction vertex of a goldstonion with a fermion 
and an antifermion, and therefore there must be the pole, corresponding to 
the Goldstone boson, in the ~q-matrix of the fermion-antifermion scattering. 
The appearance of a sufficiently small bare fermion mass (I)CAC situation) 
should not significantly influence this picture. 

Thus in order to prove the existence of a nontrivial continuum QED, it 
is sufficient to show that  the spontaneous chiral symmetry breaking takes 
place at large values ~(o) in the theory ~vith cut-oil. 

The computer simulations in ref. (1) have been realized in the quenched 
approximation. To determine the phase diagram in coupling constant of the 
exact theory, it is necessary to know to what extent the improvement of the 
quenched approximation, and, first of all, the inclusion of the vacuum po- 
larization effects, can influence the results. Below we will argue Chat the 
spontaneous chiral symmetry breaking is realized in QED with sufficiently 
large coupling a(0~ even in the case in which the Landau-1)omeranchuk-Fradkin 
(~ zero-charge ~ picture (3.~) for the vacuum polarization effects Cakes place there. 
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The analysis of the ladder and of the quenched approximations indicates 
tha t  the dynamics of the spontaneous chiral symmet ry  breaking in QED with 
cut-off should be formed in the  region in which the  running  coupling cons tant  
5(r) ~ ~ o ~ 1 .  On the other  hand,  due to the arguments  of Landau  and 
Pomeranchuk  (3) the relation 

~(o) 
(23) ~( r )  = 

1 ~- (2K~(°)/3~) h (At)' 

where K is the  number  of fermion flavours, remains qual i ta t ively  correct  a t  
large values of aco) too. Due to this relation, a t  any  sufficiently large bare  coup- 
ling constant  ~(o) the  vacuum polarizat ion effects reduce the  value of the  running 
coupling 5(r) to a value of the  order of un i ty  a l ready at  the  distance r= Q/A, 
where the  pa ramete r  ~ is larger t han  un i ty  (also, due to  eq. (23), it  is not  
too large, ~ < 10 at K----3) .  Therefore,  these effects can be imi ta ted  b y  
introducing the infra-red cut-off 6 ~ A/~. Since the quali tat ive picture of 
the spontaneous chiral s y m m e t r y  breaking in QED is similar in the ladder 
and in the quenched approximations,  one can suppose tha t  the role of the 
infra-red cut-off is already correctly represented by  the equations of the ladder 
approximation.  The coupling constant  in these equations should considered 
as some averaged value of the running coupling 5(r) in the region 1/A 
< r< e/A. 

As has already been noted, in the ladder approximat ion the Bethe-Salpeter  
equat ion with the infra-red cut-off ~ for Goldstone bosons was studied (for 
other  purposes) in ref. (~4). F rom this paper  it follows tha t  the value of the 
critical coupling ~° is determined from the relation (compare with eq. (21)) 

(24) ?~ In ~- are tg  ~ 2 = ----¢ 1 4 

;For our purpose i t  is impor tan t  t ha t  a t  6 = A/~ the  value ~¢(~) determined 
by  eq. (24) remains finite for any  value ~ > 1 (c~(~)--~ c~ when ~ - ~ 1 ) .  
Besides, since at 5 = A/~ the  parameter  A disappears f rom relation (24), 
then  (despite the switching off the interact ion at  all nonzero, r > 0, distances 
in the limit A->c~:  A-*~lim Ar ~ l i r a  ( e - - 1 )  A-~ = 0) the spontaneous chiral sym- 

m e t ry  breaking takes place at at0)> ~o(~) in the cont inuum limit too. However ,  
and it  is important ,  the  dynamical  mass 

m a = A/(a~o), ~) 

remains finite in this limit only at the fixed value a (o) = a~(~) (compare with 
eq. (6)). 

(34) V.A. MIRANSKY, V.P. CTUSYNIN and Yu. A. SIT~KO: Phys. Lett. B, 100, 157 
(1981). 
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Thus this analysis leads us to  the  following hypothesis.  In  the (~ zero- 
charge ~ si tuation cont inuum QED can be nontr ivial  theory:  the residual ~-like 
(4(0) = ~o and ~(r) = 0 at  r > 0) potent ia l  of the fermion-antifermion inter- 
action is able to form the composed Goldstone boson and, as a consequence, the 
induced fermion-antifermion-boson interact ion ver tex  appears. 

In  such a si tuation the phase diagram in coupling constant  takes the fol- 
lowing form:  there  is only one tr ivial  infra-red stable fixed point,  au 

5(/~ -1) ~ O, in the subcritical phase with ~(o) < ao and, therefore,  at  all these 
values a (°) a free theory  arises in the cont inuum limit (the conventional  (( zero- 
charge ~> pic ture  (8.,)) ; in the  supercritical phase there  is the ul traviolet  stable 
fixed point ,  a(o) _-- no, determining the interact ing cont inuum theory  with the 
Yukawa- type  coupling of fermions, antifermions and pseudoscalar composed 
Goldstone bosons. The appearance of a sufficiently small bare fermion mass 
(PCAC situation) should not  significantly influence the phase diagram (*). 

I t  would be interest ing to examine this dynamical  picture b y  computer  

s imulat ion methods.  

5 .  - C o n c l u s i o n s .  

Thus the collapse phenomenon in quan tum field theory  ma y  essentially 
influence (and in some two-dimensional models (see appendix B) does influence) 
the  renormalizat ion s tructure,  i.e. the  s t ructure  of the  phase diagram of a theory.  

The analysis of QED with the chiral invariant  Lagrangian indicates the 
existence of the  critical coupling constant  ~ ~ 1 separating the massless and 
the  massive phases. This critical coupling is an analogue of the critical coupling 
constant  Zo e2/4~ ~ 1 in the  problem of the  Dirac equation with the Coulomb 
potential .  F r o m  the renormalizat ion group viewpoint  the value ~o is an ultra- 
violet  stable fixed point.  We have  argued tha t  this value determines a non- 

t r iv ia l  cont inuum theory.  
I t  is essential t ha t  this dynamical  picture allows one to represent  a simple 

physical  in terpre ta t ion of the recent  results of computer  simulations in QED (1). 

Besides, the  hypothesis  about  the existence (even in the  case of the (( zero- 
charge )) situation) of nontr ivial  cont inuum QED can in principle be examined 

by  the computer  simulation methods in the near future.  
I n  conclusion we would like to note  the following. At  present  there  exist 

(*) Real QED (i.e. phenomenological theory with ultraviolet cut-off describing the 
low-energy interaction of leptons and photon) apparently relates to the subcritical 
phase. Indeed, there are no candidates for the Goldstone (or (~ almost )> Goldstone) 
bosons composed of leprous. Besides, if QED is a part of GUT, then the electrodynamical 
running coupling constant 5(v) should be small at all distances (for example, in SUs 
theory ~(r) ~ 0.02). 
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problems for which the mechanism of scale symmetry breaking is primarily 
important (finite supersymmetric theories (2a), gravitation (for a review see, 
for example, the general discussion in ref. (2¢))). I t  would be interesting to 
examine the possibility of the realization of the scale symmetry breaking 
mechanism connected with the collapse phenomenon there. 

The author is thankful to P. I. FomN, V. P. GUSYNIN and D. V. V0~KOV 
for useful discussions. 

APPENDIX A 

In this appendix we consider the equations in the ladder approximation 
for the dynamical fermion muss function and for the Bethe-Salpeter (BS) wave 
functions of pseudosealar Goldstone bosons. 

First of all we will show that  from the viewpoint of the Ward identities 
the Landau gauge is the most preferable one in the ladder approximation. 

When the spontaneous breakdown of the SU~.,¢ X SUa,~ chiral symmetry 
takes place in massless QED, the structure of the fermion propagator has the 
following form: 

(_A_.I) ,%(q) = <j(-- ~A(q ~) + B~(q~)) -~, 

i, j = 1, 2, ..., K. In the approximation with the bare photon propagator and 
with the bare fermion-antifermion-photon vertex 

the Schwinger-Dyson equations for the fermion propagator in a covariant 
gauge with the gauge parameter d~ takes the form (in the Euclidean region) 

(A.3) 

(A.~) 

A 2 

A(q ~) --  ] = d~ -~  J k k~A~A~(I~))--B~(k~) ~ O(q ~ --  k ~) + O(k 2 - -  q~) , 
0 

A 2 
~(o) ~ [k 2 l 

Bd(q 2) = (3 Jr d~) ~ Jdk  B,(k~) k~A2(k,) ~- B~(k2) -~ O(q ~ -  k,) + O(k 2 -  q,) . 
0 

(25) S. MANDELSTAM: 2~Cl. Phys. B, 213, 149 (1983); L. BRINK, 0. LINORXN and B. 
NILSSON: Phys. Lett. B, 123, 323 (1983); P. HowE, K. S. STELLE and P. TOWNSEND: 
Nucl. Phys. B, 214, 519 (1983); S. FUBI~I and E. RABINOVlCI: preprint TH. 3825- 
CERN (1984). 
(26) In Proceedings of the X V I I I  Solvay Conference on Physics, edited by L. VAN HOVE, 
Phys. t~ep., 104, 201 (1984). 
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In  the Landau  gauge (d~ = 0) the  function A(q ~) equals uni ty .  Moreover, in 
this  gauge eqs. (A.3) and  (AA) are not  changed if the  vertex/ '~v;~ is chosen 
in the  form 

(A.5) Q~,;,~(q~, q,) = ~'~,(~,~ + ~-~ , 9 ,  

where P~ = q~- -q I~ ,  9 is an  arbi t rary  Lorentz-invariant  function. I f  ~---= 
_ B  2 B ~ --  ( q ~ ) -  (q~), the ver tex (A.5) satisfies the Ward  ident i ty  

(~.6) 

which follows from the  conservation of the electromagnetic current. 
Le t  us consider now the  Ward  ident i ty  for the ver tex/ 'g~ of the a, xial- 

vector  current  J~, ---- ¢7~75)l~, r ----- 1, 2, ..., ~ - - 1 :  

(A.7) 

Under  spontaneous breaking of chiral symmet ry  the v e r t e x / ' ~ ,  has a pole at  
zero in the  variable/)3 = (q~ _ ql)~; the residue at  this pole is expressed through 
the  ES wave funct ion of the Goldstone boson {27): 

(A.8) F~(_P, q)Ip,.~o ~_ S-~(q2) Z'(.P, q)S-~(q~), 

where q = ql + q2[2 and the  parameter  ] is determined by the equation 

IP, r> is the  s ta te  vector of the Goldstone boson and X'(P, q) is the  BS wave 
function.  Subst i tu t ing the  expression (A.8) into eq. (A.7) and going over to 
the  l imit  P ~ - *  0, we obtain the relation 

(A.9) 
{ z~(q) = xqP, q)[~-o = ~/~'~x(q~), 

75z(q ~) = 2i]-~S(q)?/sBa(q2)S(q).  

In  the  ladder approximation in the  Euclidean region the  function 

(A.]o) 
Ba(q ~) 

x(q ~) = 2q-~ q~ + m~ ' 

and the  BS equat ion for x(q') takes the following form in the Landau  gauge: 

A t 

(.A..ll) (q' + m~)z(q ~1 ---- - ~  . - -  + ~ ] 

0 

(37) V. DE ALFAI~O, S. FI~BINI, G. F~RLAI~ and C. ROSSETTI: C~rrents in Hadron Physics 
(North-Holland, Amsterdam, 1973). 
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Comparing eqs. (A.3), (A.4) and (A.11) and taking into account the relation 
(A.10), we find that  in the Landau gauge the ladder approximation corresponds 
to the linear version of eq. (A.4) when in the denominator the function B~ is 
replaced by m~. Equation (A.11) can be solved in the following way. Differ- 
entiating it in q~, we obtain the differential equation 

(A.]2) 
d { d4__ } 3a(°)q~ ~_ 

dq ~ q dq ~[(q24-m~)Z] 4 - ~  Z 0 

and two boundary conditions: 

{d } (A.13) q4 ~ [(q~ 4- m~)z] = 0 ,  
qS= 0 

dq ~ [(q~ 4- m~) Z] 4- (q' 4- m~) Z = 0 .  
qR~Aa 

The general solution to eq. (AA2) has the form 

(A.~5) Bd(q2) ~'~i (q2 4- m~)g(q2) = C~B~(q~) 4- C2B~(q~) 

(see eq. (A.10)), where 

I 
B~ = F(½ 4- i t ,  ½- - i~ ,  ~; - - x ~ ) ,  

(A.16) B~= x-~-~':'F(½ 4- i T , - - 1 4 -  i~ ,14-  2i~,; --x2) 4- 

4- x-~+~r~(½ --  i7, - -  ½ --  i t ,  1 - -  2i t ;  - -  x ~) 

y ~ ½(3~(0)/~- 1)½, x 2 ~ q~/m~, F is a hypergeometrie function. From eq. (A.13) 
we find that  C2/C~ ~-0 and, therefore, 

(A.~7) Ba(q 2) : OF(½ 4- iy, ½ - - iy ,  2; - -x~) ,  

the normalization parameter C has the form C ~-- ~ma, where 8 is a numerical 
constant, and it can in principle be determined from the normalization con- 
dition for the Bethe-Salpeter wave function. The second boundary condition 
(A.14) determines the mass spectrum of the equation. The analytical answer 
can be obtained in the case of m~/A2<< ~. Using the asymptotic expansion 
of hypergeomctric functions (16), in this case we get the following equation 
from eq. (A.14): 

(A.18) sin ), in m--~ 4- X(y) = 0,  

where Z(~) : arg [F(14- 2i~)//'2(14- i~)]. Equation (A.18) 
spectrum in the form 

yields the mass 

[-- z~s 4. 2:(7)] ~ 4A exp --  z~s (A.19) m~" ~ A exp [ ~ ~<<~ [ ~ - ] ,  s = ] , 2 ,  .... 
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One can show (io) that only the maximum value, m(~ ~, corresponds to the 
stable vacuum. 

APPENDIX B 

In  this appendix we show that  the phenomenon of the rearrangement of 
the renormalization structure at  supercritical values of coupling constant takes 
place in the two-dimensional sine-Gordon model. 

The Hamiltonian density of the sine-Gordon model has the form 

1 z ~g 

where ~ is the canonical momentum, £V~ is the symbol of the normal-ordering 
operation with the contraction function 

I f dkl exp [-- ik~x,]. (13.2/ A(x~, m) = ~ ~/k~ -{- m S 

- - t : O  

One can easily verify that  (due to the two-dimensionality of space-time) 
the normal-ordering operation 5V~ removes all ultraviolet divergences in any 
order of perturbation theory. On the other hand, as has been indicated by 
COLEMAN (ls), this models has no ground state at supercritieal values g2 > 8~. 
We shall show below tha t  this phenomenon appears dne to the presence of 
additional ultraviolet divergences in the supercritieal phase with g2 > 8~; these 
divergences are similar to those which arise in the ((fall into the centre ~ 
(collapse) situation. To remove them, an additional renormalization of the 
parameters g~ and ~ should be performed. 

Let us introduce the cut-off A in the contraction function (B.2): 

(]3.3) 

+A 

1 f dkl _exp[--iklxl], A~'~'(x~, m) = ~ Vk~ + m ~ 
--A 

(B.4) A,A~(0 ' m) = ! l n  A + V ~ - ~ -  ~* 

Since the spatial component of momentmn, kl, is bounded, such a cut-off 
corresponds to the anisotropic lattice in the Euclidean domain (the time axis 
is continuous). In connection with this we recall that  the character of a phase 
diagram is independent of the lattice form (the property of universality of 
phase transitions). 

Following ref. (is), we choose the vacuum appropriate to a free field of 
mass /~ as our trial vacuum state: 

(]3.5) ~-(x , ,  g)lo, g> = ~ ( X l ,  g)lo, g> = o .  
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Using the  cont rac t ion  funct ion (B.3), we find 

(B.6) H = N ,  

+ ~-1 A ( V ~  + ~ - V ~  + .~)  . 

Therefor% the  energy densi ty  of the  vacuum is equal to 

(B.7) s~(A) = <0, ~IHI0, g> - -  

-- y , . :  (A + = ~ A(,/:~. + ~ : -  , / ~  + ~.)-=_,. 
t ]  + 

When the  cut-off is removed,  the  energy densi ty (B.7) is tu rned  into the  ex- 
pression of ref. (~s): 

(B.8) 

At g2 > 8z  the last  expression is 1rebounded from below as/~ goes to infinity. 
Therefore,  if g 2 >  8~, the  cont inuum theory  has no ground s ta te  {collapse). 
On the  other  hand,  as i t  follows f rom eq. (B.7), no collapse happens in the 
theory  with cut-off. 

To unders tand  the  si tuat ion bet ter ,  let  us find the  ex t rema of the energhT 
densi ty  sv(A) : 

dev(A) 1 
(B.9) - -  (1 4- #~IA~) -~. 

d/~ ~ 8~ 

"[ 1-4~' m'~-~-(#' ~'-1 (1\m--2, -p- V'I-t-/~./_A_.-)-.i.] = 0 , v ~ g ~ / 8 ~ .  

We obtuin from eq. (B.9): 

1) v < 1: there  is the  absolute min imum at the  value 

(B.IO) #2 ,~ ~ \ x ] ; 

2) v > ] : i n  this ease the vMue # 2 ~  x(m~/z)~/~-i becomes the maximum,  
and the  absolute min imum is 

(B.11) #2 _ 4,z  + O(A ~, A~(*-I)). 

As it  follows from eq. (B.]I) ,  there  is the  addit ional  mass divergence in the 
supercritieM phase with g 2 >  8z  (v > 1). Le t  us show t h a t  this divergence 
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can be removed  by  performing a renormalizat ion of the  parameters  n and g*. 
Equa t ion  (B.9) implies t ha t  

(B.]2) ~, = In (#~- i ) / ln  [2/~m-~(1 -F V~I -F #~/A~)-~] • 

In  the  l imit  A --> co, # < co the  condit ion d ~ e v ( A ) / d ( # * )  ~ > 0 guaranteeing t h a t  
an e x t r e m u m  is a min imum takes the  form 

(]3.13) v - -  ] < 2A 2 . 

Therefore,  in the  supercritical phase (v > 1) this l imit exists provided tha t  
the  condit ion 

(B.14) 
1 "" i n  (ran-t) -~ # ~ / 4 A  ~ . 2 

0 < ~ - -  _ ~ : ~  2 ~ ,  

holds. F r o m  here we find t ha t  the  mass pa ramete r  # remains finite in the  
con t inuum l imit  if the  values of ~ and g~ are fixed: 

(]3.15) ~ ---> m S , ~ - ~  g~/8~r ---> 1 .  

The  renormal izat ion (B.15) mus t  be performed along a t ra jec tory  in the  
(~, g2)-plane on which condit ion (]3.14) is satisfied. 

The meaning of relat ion (B.15) becomes clear if one notes t h a t  in the  
cont inuum l imit  A--> oo the  energy densi ty is independent  of # a t  (x, g~) = 
= (m ~, 8~) : 

(B.16) ev(c~) 1(~'~')=('*"8'~) = 8~" 

Therefore,  the  pa ramete r  # is a rb i t r a ry  in this l imit a t  (x, g~)=  ( m  ~, 8s). 
Thus,  a t  g~>  8~r the  rea r rangement  of the  vacuum takes place (the ex- 

pression for the  minimum of the  energy densi ty (]3.10) is replaced b y  ex- 
pression (B.] ] ) ) ,  which manifests itself in the appearance of the  mass diver- 
gence t h a t  can be removed  by  an addit ional  renormalizat ion of the  parame-  
ters  s and g~. F r o m  the  point  of view of the  renormalizat ion group this situ- 
at ion reflects the  existence of the  ul traviolet  stable fixed point  (~:, g~) = ( m  ~, 8~r). 

APPENDIX C 

I n  this  appendix  we calculate in the  ladder approximat ion  the  renorma- 
l ization cons tant  Z~s of the  composed operator  (~P)A: 

# is a subt rac t ion  point.  
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For  this purpose we use the relat ion (22) 

(c .2)  m(o)(A) (fF)A = m~(v~yJ),, 

where m(°)(A) is the  bare  £ermion mass, m~ is the  renormalized fermion current  
mass connected with the  subtract ion point/~.  We emphasize tha t  both  these 
masses lead to the  explicit  chiral symmet ry  breaking (eq. (C.2) reflects the 
fac t  tha t  the  combinat ion m~(~5~0)~ is renormahzat ion  group invariant ,  i.e. 
independent  of #).  F rom eq. (C.2) i t  follows tha t  

(0.3) Z ~ ,  = m(°)(A)/m~. 

To determine m(O)(A)/m~ we use the equat ion for the  mass funct ion m(q ~) = 
-~ B(q~)/A(q2). In  the  ladder approximat ion in the Landau  gauge (A(q  2) ~ 1 )  
this equation,  in the  case in which m(O)(A) :/: 0, takes the  form (compare with 
eq. (A.4)) 

A 2 

O(q~ - -  7~) + o(k~ - q~) (C.4) re(q2) = mC°)(A) + 4~ k~ k2 + m~ Lq 
o 

where in the  chiral limit,  m(o)(A) -> O, the  mass m coincides with the dynam- 
ical mass rod. The analysis of this equat ion can be developed in complete 
analogy with t ha t  of eq. (A.11). The solution of eq. (C.4) is the funct ion 
(compare with eq. (A.17)) 

(c .5 )  m(q ~) -~ ~mF(½ 4- @, ½ - -  @, 2; - -  q~lm ~) 

(y _~ ½ (3aco)/z--1)t, ~ is a numerical  constant)  satisfying the  following bound- 
a ry  condit ion:  

(C.6) (q~ dm(q~) . m(q~)l  = m~o)(A) . 
dq 2 / I q , = A  ~ 

At first let  us consider the  case of subcritical values a(0)< ~/3. In  this case 
the  spontaneous chiral  symmet ry  breaking does not  take  place and the value 
m = m(q 2) ]~,_.m~ coincides with the current  fermion mass corresponding to the 
subt rac t ion  point  # = m. Using the asympto t i c  expansion of the hypergee-  
metr ic  funct ion at  A~/m 2 >>1 (~6) one finds from eqs. (C.5) and (C.6): 

F r o m  here, in turn ,  we find t h a t  for # >>m the  normalizat ion constant  

Le t  us consider now the  case of supercrit ical values ~(o)> ~/3. In  this case 
the spontaneous chiral symmet ry  breaking takes place and the value m 

m(q2)l~=m~ is equM to md-~  m c, where the current  mass m ° -  m ~ l ~  (for 
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our purpose it is sufficient to consider the PCAC situation when m~<< m~). 
:From eqs. (C.5) and (C.6) we find in this case, in the limit m/A << I, the relation 

(C.9) ~ - -  \ ~ ?  / m + Z ( 7 )  : m(°)(A)~ S(7) : a rgP2(½ + i 7 ) "  

F r o m  here  i t  follows t h a t  a t  me<< m t h e  r e n o r m a l i z a t i o n  c o n s t a n t  

(C.10) Z~ - -  Z~z[z=~ = m~°)(A)/m ° ~ 25 (7  c tgh  ~?~t md ,~ 2~md 

:From here ,  i n  t u r n  i t  follows t h a t  a t  /, >> md t h e  r e n o r m M i z a t i o n  c o n s t a n t  

(0.11) Z,. .  ~ I~/A. 

• RIASSUNT0 (*) 

Si diseutono il diagramma di fase nclla eostante di aeeoppiamento in QED e la sun 
connessione con la rot tura di simmetria chirale spontanea. Si considera il meccanismo 
di ques~a rot tura  connesso con il fenomeno di eollasso e si fornisee ann  sempliee inter- 
pretazione fisica dei risultati  reeenti delle simulazioni con il ealeolatore nel QED del 
reticolo. Si analizza il problema dell'esistenza della QED non banale nel continue e, 
come risultato, si eonsidera l'ipotesi seguente: nella situazione (~ a carica zero ~ di Landau- 
Pomeranehuk-Fradkin (la costante eli rinormalizzazione Z 3 = O) la matriee S della QED 
nel continue con una eostante di aeeoppiamento nuda fissata, a (°) = a s ~ 1 ~ non banale. 
Si rivela il eontenuto fisico di questa teoria ipotetiea nel eontinuo. 

(*) Traduzione a vu~'a della Jgedazione. 

J~HHaM1H(a ClIOHTaHHOFO Hapymemm [¢HpaJmHOfi CUMMeTp~m a Henpepbmnofi npe~e:~ n 

I(BaHTOBO~ 3ae~cTpo~-HaMmce. 

PeamMe (*). - -  O6cy~aeTc~ ~a3oBaff ~uarpaMMa no KOHCTaHTe CB~t3H B KBaHTOBO~i 
3JIeKTpO~IHaMBKe H O~ CBH3b CO CIIOHTaHm, IM HapyllIeH~IeM KHpaamHO~ CB_MMeTpmI. 
PaccMaTpHBaeTCg MeXaHH3M TaKOFO HapymeHm% CB~3amtbl~ c RBJIeHIIeM KoaiHalIca. 
IIpe~IJIaraeTc~ IIpOCTa~ ~)H3HqCCKa~ ItHTepnpeTatl~ He/IaBHHX po3yamTaTOB Mo~eJmpo- 
BaHnn Ha OBM B paMxax KBaHTOBO~[ 3HeKTpO2atHalV~I~ Ha pellleTKe. AHama3npyeTca 
npo6~eMa cymeCTBOBaHH~ HOTpBBHa.rIBHOI~I HenpepsmKo~i KBaHTOBOI~ 3JIeKTpo~Ha.M~. 
PaccMaTprmaeTc~ c~e~vloma~ rHnoTe3a: B cny~lae << Hynenoro 3apa~a >> .rIaH~ay-IIoMe- 
pan~yKa-(I)pa~KnHa (rIOeTOrIHHaa nepeHOpMnpOSKI~ Za= 0) ~q-MaTpHIIa Henpepl, maofi ~aH-  
TOBO~ 3neKTpO~HHaMHKH C dpHKcHpoBaHHOfI ronofi nOCTOa~HOfi CBff3H, 0c ( ° )~  gc ~ I ,  
ffBJ-LqeTC~I HeTpHBHaTIBHO~. AHaJ/H3HpycTCg qbH3HtIeCKHI~ CMBICJI TaKOI~ FHIIOTeTIIHeCKO~ 

HelIpepb/BHOl~ Teoprm. 

(*) Hepesebeno peOarque~. 


