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Summary .  - -  We formulate anomalous chiral and related Ward-Taka- 
hashi identities in supersymmetric-gauge theories, by generalizing Fuji- 
kawa's functional-integral method to superspace. Our approach provides 
a manifestly supersymmetrie and gauge-covariant treatment of the super- 
space Abelian anomalies, and is applicable to chiral- as well as to left- 
right symmetric theories. Non-Abelian anomalies are also discussed 
briefly. Superspace Abelian anomalies imply that particular composite 
operators, i.e. those containing the associated U1 currents as a compo- 
nent, exhibit an anomalous supermultiplet structure. We discuss how 
this leads to various exact relations between scalar and gauge fermion 
condensates, thereby imposing strong constraints on possible chiral- 
symmetry realizations in supersymmetric-confining theories. 

PACS. 12.40. - Models of strong interactions. 

1. - I n t r o d u c t i o n .  

An interesing class of theories, which might  find an application in the 

construct ion of a realistic model  of particle physics at  mass scale above 

0(250 GeV), and whose dynamical  properties are not  ye t  fully explored, are 

supersymmetric gauge theories of strongly interact ing particles. Recent ly  a 
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considerable improvement  in our unders tanding of nonper turba t ive  dynamics 

in these theories w~s made  possible by  combining the  results of i) explici t  
calculation of ins tanton effects (~'~), ii) analyses of the  Uz and re la ted anom- 
alies (~-~), iii) studies on effective Lagrangians (9-n), and of iv) index analyses 
d la WITTEN (x~). The emerging pic ture  of chiral  sy mme t ry  realizations in super- 

symmetr ic  gauge theories (see, e.g., ref. (3) and sect. 5 below) bears quite  dif- 
fe rent  features as compared to what  one knows about  the  low-energy dynamics  
of convent ional  theories such as quan tum chromodynamics  (QCD). 

I t  is the  purpose of this paper  to  e laborate  on one of the  above-ment ioned  

studies:  chiral  and re la ted anomalies (~-~). In  the  first pa r t  (sect. 2-4), we for- 

mula te  the  anomalous chiral  Ward-Takahashi  (WT) identi t ies b y  use of a super- 
symmetr ic  generalization of Fuj ikawa's  funct ional- integral  me thod  (~). We 
present  the  der ivat ion for sypersymmetr ic  QCD (SQCD) first. The resul t  will 
t h en  be generalized to  ehiral  theories.  The case of the  Abelian anomalies which 
generalize the  well-known axial  U~ anomaly  (~) will be s tudied in detail .  

Impor tance  of the  par t icular  regularizat ion employed here  will be em- 

phasized, in connection with the  absence of non-Abelian gauge anomalies in 

chiral  theories.  
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The me thod  of this paper  can be used also in a more general  s tudy  of non- 
Abelian anomalies (15.17). In  this paper  we l imit  ourselves, however ,  to  a simple 

ease, namely  the  supersymmetr ic  generalization of Bardeen  anomaly  in SQCD 
with ex te rna l  vec tor  S Ur~ fields. 

There  has been a renewed interest  (~6) recent ly  in chiral  anomalies in gauge 
theories, pa r t ly  t r iggered by  the observat ion t h a t  anomalies,  though seen as 
short-distance effects in pe r tu rba t ion  theory ,  have a topological origin re la ted 
to the  global s t ruc ture  of gauge theories.  

On the  other  hand,  FuJrKAwA developed some t ime  ago an elegant me thod  (~3) 

for formulat ing chiral  anomalies within the  funct ional- integral  approach,  t h a t  
made the  topological origin of anomalies manifest .  

In  view of the impor t an t  role the  funct ional- integral  me t h o d  plays in general,  
and in par t icular  of the  systemat ic  manner  in which it  deals with anomalies,  

we feel it worthwhile to generalize this method  to superspace, and formulate  
some of earlier results in a manifes t ly  supersymmetr ic  way. 

The second par t  of the  paper  (sect. 5) is dedicated to  a discussion of those 
aspects of the  superspace U~ anomalies,  t h a t  are specific to  supersymmetr ic  
gauge theories.  In  fact ,  superspace U~ anomalies imply (6) anomalous super- 

symmet ry  commuta t ion  relations among the  components  of par t icular  com- 

posite vector  supermult iplets ,  the  ones containing the  re levant  U~ current  

operators  as a component .  

I t  will be shown how these anomalous commuta tors  can be used to  obtain 
rigorous relations involving various scalar and gauge-fermion condensates.  
They  are combined consequences of two symmetr ies :  anomalus chiral  U~ sym- 
m e t r y  and supersymmet ry .  

When  used toge ther  with dynamical  informat ion  such as about  ins tanton 
effects, these relations allow us to compute the  vacuum proper t ies  f rom the  
first principles, as in the  examples of SQCD (2,3), a chiral  SU5 model (5) and a 
chiral  2U6 model (is). In  sect. 5 we review and discuss this impor t an t  develop- 
ment ,  which is principal ly due to  the  authors  of ref. (2-~). 

Section 6 contains the  summary  and concluding remarks.  Several  technical  
details are grouped in appendices A-C. 
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2 .  - P r e l i m i n a r i e s .  

Xn this section we review briefly Fujikawa's functional-integral formulation 
of axial anomalies in conventional gauge theories (~). 

Let  us consider quantum eleetrodynamies. The matter  part  of the action 
is given by  

where ~ ) =  ~ " ( ~ -  ieA~,). The kinetic part  of eq. (2.1) is invariant under 
global axial transformations 

(2.2) W(x) -+  ~ ' ( x )  = e x p  [ia7~] W(x) • 

I~U~,_AWA observed that  the functional integral measure ~ ~ ,  properly 
defined, is not invariant under the axial transformations and showed how the 
correctly treated gacobian gives rise to the axial anomaly. 

In Euclidean space-time, JJ is a Hermitian operator, whose eigenfunetions 
~,(x) form a complete orthonormal set 

(2.3) 

By using the eigenmode expansion 

(2.4) v = ~ n.y.(x), ~ = Z ~.v~(~), 
n 

the functional measure ~ ~v~ can be defined as 

(2.5) ~ v -  YI da., ~¢  -- II d~.. 
n 

In the formulation of the axial U1 WT identities, one needs to consider 
local transformations, i.e. eq. (2.2) with a space-time dependent parameter 
a(x). The gaeobian of the infinitesimal transformation is found to be 

(2.6) exp [-- 2i fd'x a(x)2(x)] , 
(2.7) ~(x) - ~ ~ ( x )  n ~ . ( x )  . 

~(x) is an ill-defined conditionally convergent quantity: the crucial step is 
to regularize it by  suppressing the large eigenvalues of the operator 1) (which 
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does not  commute  wi th  75). Thus one finds 

(2.8) 9~ ~0. (x) : l im ~ ~,¢(x)ys~v(x) exp [-- ~ ]  ---- lim tr(xl75 exp [-- ~ / ~ ]  Ix} ~-- 

= (e~/16~) I~,~/~a,FQ~.  

The result  can, fur thermore ,  be shown to be independent  of the  par t icu lar  

(Gaussian in eq. (2.8)) cut-off employed.  This s tabi l i ty  of the  axial  anomaly  
is a reflection of its topological origin. Equa t ion  (2.7), in tegra ted  over  x is 
formal ly  equal  to  

(2.9) f d 4 x  ~.~(x) ~- n+ - -  n _  

where n + ( n )  is the  number  of the  zero eigenvalue modes of posi t ive (negative) 
ehirali ty.  The index of the  Dirac operator  ~ ,  n + -  n_ ,  is thus  re la ted  via 
Atiyah-Siuger  theorem (~9) to the topological charge densi ty,  (e~/32~) • 

3 . -  Functional-integral formulation of  anomalous chiral WT identities in 

supersymmetric gauge theories. 

In  this section we analyse the  chiral  anomalies in supersymmetr ic  gauge 

theories by  generalizing the  functional- integral  me thod  to  superspace. 
For  the  clar i ty  of presenta t ion,  we first t r ea t  the  specific case of the  U~ 

anomalies in supersymmetr ic  quan tum chromodynamics  (SQCD) in detail.  
Generalization to  non-Abelian anomalies in SQCD and U~ anomalies in ehiral  
theories,  and the  quest ion of the  non-Abelian gauge anomaly  cancellation in 
ehiral theories,  will be considered subsequent ly  (see af te r  eq. (3.18)). 

SQCD is a supersymmetr ic  version of QCD with  SUr~ gauge group. The 
m a t t e r  fields are ~V~ pairs (flavours) of chiral  superfields (~b~, X ~} (i = 1, ..., Nf) 
t ransforming as {No, N*} mult iplets  of the  colour group. The gauge fields 
are contained in the  vector  superfields V k (k ~ 1, ..., £V~- 1). 

The generat ing fuact ional  of SQCD is given by  

(3.1) 

where the  par t  of the  act iou containing the  ma t t e r  fields is of the  form (*) 

(~9) M. ATI~An and I. SINGWR: Ann. Math., 87, 484 (1968). 
(*) Our notation is that of ref. (20) except that we use the Bjorken-Drell metric. The 
supcrspace co-ordinate is denoted by z ~-- (x, 0, 0) and integration measures by dSz---- 
~- d4xd2Od20, d~z -~ d4xd~0, and d~ --~ d4xd~0. Also, D = (~/~0 ~) + i(~a0) ~ ; / ~  --~ 
~- -- (~/~0~) -- i(Oaa);, 0~,. Here and whenever possible, the colour and fiavour indices 
will be kept implicit. 
(n0) j .  W~ss and J. BAGGER: S~persymmetry and Supergravity (Princeton University 
Press, 1983). 
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(3.2) 

where 

(3.3) 

K .  K O N I S H I  a I l d  ]~. S H I Z U Y A  

,~m~.. =fd 'z  (~ exp [V] 4 +  X exp [ -  v]X)+fa~zXm¢+ h.c.+S. ...... , 

(T ~ ---- the SU~ generators appropriate for • fields). For convenience, we have 
introduced in eq. (3.2) source terms for eolour-singlet composite operators. 
For instance, they can be taken as 

( 3 . 4 )  s . . . . . . .  . . . .  

The action eq. (3.2) is invariant under the local SU~o (generalized) gauge 
transformations, 

(3.5) 

(*,  ~)  --> (exp [-- iA] 4,  • exp [i,4]), 

(X, X) -* (X exp [iA], exp [ -  iA] X ) ,  

exp [V] -* exp [ -  i.4 exp [V] exp [iA], 

where A----A~T ~ and A~'s are arbitrary chiral superfields. 
The global axial U1 transformation is defined as 

(3.6) (4, X) --> ex 1) [i~] (qS, X) ,  (~, X) -> exp [-- i~] (4, X) .  

Now, in order to derive the WT identities, one must consider a local version 
of eq. (3.6), 

{ (4, X) --> exp [iA(z)(~, X)] ,  

(3.7) (~b, X) --> exp [-- iA(z)(qS, X)],  

where A(z) is an arbitrary chiral superfield proportional to a unit matrix in the 
colour and flavour spaces. 

Instead of considering directly eq. (3.7), however, we shall proceed as follows. 
In  the functional-integral formahsm, ¢,  ~,  X and X are all independent integ- 
ration variables. Therefore, the effects of change of each variable can be 
and in fact will be studied separately, leading to four independent sets of WT 
identities. Of these four, two involve the U1 associated with ¢ ,  or U~.rt,h~, 
the other two the Ul,~ft related to the X fields. The axial U~ identities can be 
found by  taking an appropriate combination of the four (see sect. 4 below); 
the point, however, is that  each set of the identities contain independent infor- 
mation about  the theory and we wish to keep them all (see the applications 

discussed in sect. 5). 
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Also, the  real i ty  of the  matter-f ield content  plays no essential  role in this 
approach,  hence the  generalization of the results to chiral  models is straight-  

forward.  
Keeping these points in mind, let  us consider the following change of va- 

riables (*): 

(3.8) -> exp [iA(z) O(z)], ~ ,  X, .X inva r i an t ,  

in eq. (3.1). For  an infinitesimal A(z), the  act ion t ransforms as 

(3.9) 

On the  other  hand,  the  ffacobian of the  t rans format ion  is given by  

(3.~0) J(q~'l¢) = deto I = 

= det~ <z' I exp [iA] (-- = e x p  [tro {iA(--D~/4)}]. 

A co-ordinate representa t ion in superspace (~) has been in t roduced  above 

(Iz> = [x, 0, 0> is the  eigenstate  of the  co-ordinate opera tor ;  <z'Iz > = ~S(z'--z), 
etc.), and we have used the  fact  t h a t  

(3.11) s o , , / s o  = <z ' l ( -  Dq4)lz>, 

which acts as a del ta-funct ion in combinat ion with a chiral  measure dez. The 
subscript  c in eq. (3.10) means t ha t  the  sum (integrM) over  z is t aken  with the  
chiral  measure.  

The exponent  in eq. (3.10) is apparent ly  vanishing~ since <z[D21z> = O. 
This is, however,  analogous to the  naive result ,  t r  75 = 0r for the  exponent  of 
the  Jacobian  in the  QED case, eq. (2.7). There,  the  correct  Jacobian  is found 
by  regularizing the  large eigenvalues of the  operator / '~ ,  which does no t  com- 
mute  with ~5 (eq. (2.8)). 

We find tha t  an appropria te  supersymmetr ic  general izat ion of Fuj ikawa's  
procedure is provided by  the  regularizat ion 

(3.12) tr~e"{iA( - / )2 /4 )}  ~ l im tr~{iA exp [L/M~](--/)~/4)}, 
M2--~ ¢0 

(*) Of course, an analogous treatment is possible in the case of conventional theories, 
by considering the change of variables ~-+ exp [i~(1 + rs)] ~, v~ ~ 9. The Lagrangian 
must be taken in the Hermitian form, (i/2)~,~'~,~p, not i~7"D~, ~. However, in QED, 
no new information will be obtained by doing this. 
(~1) K. SmzvYA and Y. YAsvI: _Phys. t~ev. D, 29, 1160 (1984). 
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where 

(3.13) .5 ~ ~ exp [-- V] D 2 exp [V]/16. 

Indeed, Z is the simplest operator that  respects i) manifest supersymmetry, 
ii) chirality and iii) gauge covariance, and that  c o n t a i n s / ~  as a component. 
lqote that  -5 transforms as L -~ exp [-- iA] .5 exp [iA] under the gauge trans- 
formation, eq. (3.5). 

Computation of the matrix element appearing in eq. (3.12) is described in 
appendix A. The answer is 

(3.14) tr(~"')(iA(-- D'/4)} = i fd'  (g~]32~ ~) Tr{A(W = W~)}, 

where W ~ = -- ¼~= exp [-- V] D ~ exp [V], and Tr stands for a trace in the 
eolour space. 

The last step in obtaining the WT identities is to collect all variations under 
eq. (3.8). Beeause a change of (functional) variables does not modify the 
integral itself, we find finally the desired relations (') 

(3.15) o = ~zl¢ ~X(z) = 

where 8~. . . . . .  liSA is inferred from eq. (3.4). 
Up to now we studied the consequences of the invariance of the generating 

functional under the change of integration variable, eq. (3.8). In an analogous 
fashion, we obtain another set of WT identities 

(3.16) 
D2 2 

from the consideration of the change of variables, X -+ exp [(iA) X], all other 
fields remaining invariant. 

Furthermore, the study of change of variables, ~ - +  • exp [--i.~], and 
--> X exp [-- i.~] lead (by use of the regularization kernel -5 ---- (D = cxp [V]. 

• D=exp[ - -V] ) /16  in the computation of the Jacobian) to the Hermitian 
conjugates of cqs. (3.15) and (3.16), 

(3.17) o= ( - ¥  exp IV] + W + 

(*) We remind that the coupling constant g has been reinstated by the replacement 
Y-+ 2gV. 
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and 

(3.18) ° = < - 5 - X e ~ p [ - v ] X ÷ ¢ m x +  32~ g° TrW~ W~+ ~ i !  " 

Equations (3.15)-(3.18), altogether, represent the anomalous U~,I and non- 
anomalous Uv, ~ WT identities of SQCD, and their supersymmetrie partners. 
Xmq~ term is the usual soft breaking term, (g2/32~) Tr WW is the anomaly. 

These identities have first been obtained for supersymmetrie QED by 
CLAI~K, PIGLrET a n d  SIBOLD (7), w h o  worked with BPItZ renormalization 
scheme. For SQCD, eqs. (3.15)-(3.18) have been found in ref. (s) and ref. (e) 
by using the point-splitting method and Pauli-Villars regularization (in ref. (~), 
these methods were employed in the component formalism). For completeness 
we briefly describe these methods in appendix B. 

The WT identities of the uonanomalous SU,~xSU~ (namely, with no 
weak gauging of the flavour group), can be immediately found by taking A(z) 
as a matrix in the fluvour space, 

2¢~--1 
(3.19) A(z) = ~ A~(z)t o, 

a ~ l  

where ~'s are the generators of SUg~, in the ~nalysis made above. One finds 

(3.20) 0 -~ ~Z/~A . . . .  J~exp[V]t~q~-~ Xmt '~  ÷ i~A, / 

and there other sets of identities analogous to eqs. (3.16)-(3.18). The identities 
used in the derivation of Dashen's formul~ and its supersymmetrie generalization 
due to VENEZIAN0 (~2), for instance, can be readily found by taking the first 
derivatives of these with respect to Jr(z). 

Because our regularizution conserves the vector gauge invariance it can 
be used to find the supersymmetrie generalization of Bardeen anomaly (~5), 
in the presence of external SUv,~ fields (but with no external axial fields). 
One gets instead of eq. (3.20) an anomalous ~qU~t,~ identities, 

(3.21) 0 : <-- (~exp[V]t~qb~-Xmt~qS~-\32~2] ~ - ~ i ~ -  ] , 

where ~ and V~ refer to the external S Uv,~f vector superfields and tr  stands for 
a trace in the flavour space. Combined with three other identities, analogous 
to eqs. (3.16)-(3.18), eq. (3.21) leads to nonanomalous SUv,~ × Ur, 1 and anomalous 
SUA~f WT identities. Equation (3.21) agrees with ref. (17). 

(22) G. VE~EZIA~O: Phys. Lett. B, 128, 199 (1983); see also G. SHoR~: Natl. Phys. B, 
231, 139 (1984). 
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As has been already emphasized,  our me thod  does not  depend on the  rea l i ty  
of the  m a t t e r  fields with respect  to  the gauge group,  and as such, can be gen- 
eralized to chiral  theories in a s t ra ightforward manner .  Consider a generic 
theory  with a set of ma t t e r  ehiral  superfields {q}}, and wi th  a superpotent ia l  
~({q}}). Following the  example of SQCD, the  effect of the  change of funct ional  
variables can be studied separately for  each ma t t e r  field ¢~ (i denoting all the  
(( flavour ~> indices, in par t icular  specifying the  representa t ion of the  gauge 

group according to  which q~ transforms).  The associated gacobian can be 
computed  as in eqs. (3.10)-(3.12), with the  subst i tu t ion 

(3.22) V -+  V~ ~ ~_, VkT ~ 
k 

in L, where T ~ are the  gauge group generators appropr ia te  for ~P~. 
Wi th  this  regularizat ion,  we find the  following U~ WT identi t ies (no sum 

o v e r  i) (*) 

(3.23) 

where W~ = -- ~ D~ exp [-- V~] D ~ exp [V~]. Equa t ion  (3.22) generalizes eq. (3.15) 
of SQCD. Simplest  examples of eq. (3.23) have a l ready been considered 
in ref. (5) for a chiral SU5 model and subsequent ly  for  a chiral  SUe 
model  in ref. (~8). (See sect. 5.) In  ref. (~8), the  full WT identi t ies eq. (3.23) 
have  been t aken  into account  in a s tudy of low-energy effective actions,  within 
a general  class of supersymmetr ie  confining theories,  leading to  the  idea of the  

effective gauge symmet ry .  
Th a t  eqs. (3.12), (3.13) and (3.22) provide a correct  regular izat ion me thod  

in a chiral  theory ,  is by  no means a t r iv ia l  s ta tement .  A justification of this  
m e tho d  (hence of eq. (3.23)) comes f rom studies based on the  point-spl i t t ing 
regularizat ion (5,23,24). (See also appendix B.) 

A fu r the r  and crucial support  comes f rom the  following observat ion:  the  
regularizat ion based on eqs. (3.12), (3.13) and (3.22) is the  one t h a t  guarantees  
the  gauge iavar iance of the  theory .  Indeed,  by  using the  same regular izat ion 
and repeat ing the  analysis by  considering a gauge t ransformat ion,  i.e. with 
A(z) = ~ Ak(z)T~, where T~'s are the  generators of the  gauge group,  we get 

k 

the  gauge anomaly,  ((g2/32~2) t imes) 

(3.2~) ~ T r  T k ~ ~ z m ~,~W ~.  ( 
(~} {v} 

(*) Summation over colour indices is implicit in the second term in eq. (3.23). 
(2~) y .  M~u~c~: Ph.D.  Thesis, in preparation. 
(24) K. KO~ISHI: unpublished. 
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This, being proport ional  to the symmetr ic  trace of three generators,  can be 

cancelled among an appropriate  set of the ma t t e r  fields (such as between 5 

and 10" in SUs) in a usual  manner  (*). 
We conclude this section by  not ing tha t  the  same method  as presented 

here can be used in a more general s tudy of non-Abelian anomalies;  the precise 

form of the regulator kernel, cq. (3.13), however,  depends upon the constraints  

on the anomalies one wishes to impose. These constraints ,  in turn ,  will depend 

on the physics one chooses to study.  These issues, including the explicit com- 

putat ion of the  (( consistent )) anomalies, will be discussed in a for thcoming 

paper  (2~). 

4. - Axial U a ~ anomaly  in SQCD. 

In  this section we come back to the  specific case of SQCD and s tudy  ~s 

axial Ua, ~ identi ty.  I t  is not  difficult to  ext rac t  f rom eqs. (3.]5)-(3.18) the par t  

corresponding to it. Applying D 2 on eqs. (3.15) and (3.16) and D 2 on eqs. (3.17) 

and (3.18), and using the formula 

(4.]) [D 2, ~2] : _ i~ (D~r~D - -  D ~ D ) ,  

one finds (summing over flavours) 

0 : ( 3 " F ~ - - 2 i M - - a  + s) {J}, ( 4 . 2 )  

where 

(4.3) 

(~.4) 

(4.5) 

FJ = ( D a j 9  - - / 9 5 , D )  ( ~  exp [V] ~ + X exp [-- V] X ) / 4 ,  

~u = - { D ~ ( x , , + )  - D2(¢mX)}/a, 

2N~ig ~ . . . .  
a - -  ~ 2 ~ C  .'l'r~J)~ W ~ - -  D ~ W2) /4 ,  

and s is the contr ibut ion f rom the  source terms. 

(*) It  is seen that our regularization automatically leads to the ~ covariant ~ rather 
than ~( consistent ~> anomaly (2~). The same holds for the point-splitting method dis- 
cussed in appendix B. Note that (26) the criterion for the gauge anomaly cancellation 
is the same in the consistent form of the anomaly, although the explicit form of the 
latter obtained so far (N. K. NIELS~-< (17) and ref. (36)) is rather complicated. We 
thank S. F~nRA~A, E. GUADAGNINI and M. MINTCH~V for discussions on the anomaly 
cancellation in supersymmetrie theories. 
(25) W. A. BARDE~N and B. ZvMI~O: Nucl. Phys. B, 244, 421 (1984). 
(36) E .  GU.<DAGNINI, K .  KONISHI a n d  1V[. MINTCHEV: Phys. Lett. B, 157, 37 (1985); 
see also related works, O. PIGUET and K. SIBOLD: d~ucl. Phys. B, 247, 484 (1984); 
L. BONO~A, P. PASTI and M. TONIN: Phys. Lett. B, 156, 341 (1985); G. GIRARDI, 
R. G R I ~  and R. S~O~A: Phys. Lett. B, 156, 203 (1985). 
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Alternatively, eq. (4.2) can be obtained by  considering the axial transfor- 
mation, eq. (3.7), with (~(x) real) 

D 2 
(4.6) ~t(~) - D~ @ ~ ( x )  ) , ~(~) = - - -  ( o ~ ( x )  ) 

4 4 

and by  setting 8Z/$ot(x) : O. 

The lowest component of eq. (4.2) reduces to the standard axial Ua, ~ identity 
of SQCD, with 

(4.7) 
g2 

(2 is the four-component Majorana gauge fermions, ~ -= (~ ,  2~)~'). 
To make explicit the topological origin of the superspace axial anomaly, 

let us write the action cq. (3.2) in the form (for the use of the following notation, 
see ref. (,1)), 

(4.8) 5' = ~ * o O [ V ] o k  ~ ,  

[_ ml++ --  (D*[4) exp [V] 1 _] 
(4.9) ~2[V] = ¼/5* exp  [ - -  V] 1++ ~ 1 _  ' 

where T = (X, qi)t, and ~*  = (~, X) and  1__ = - -  ¼~*,  1++ = - -  ~D*. The 
dot o implies a summation over suporspace-co-ordinate labels using appropriate 
chiral or antichiral measures. In this notation, the chirality operator is a diag- 
onal matrix 

(4.10) /'5 = diag (1++, -- 1__), 

which satisfies the relation 

(4.11.) o o G  ÷ G o O  = 2 r a G .  

There is clear one-to-one correspondence between the superfield action 
eq. (3.2) and the QED Lagrangian eq. (2.1) expressed in terms of two-com- 
ponent spinors 

(4.12) ~ = @~, 

where ~ = (~, ~)t, and ¢ = (~ ,  ~) .  ya is diagonal in this basis, 

(4.14) Y5 = diag (6~, , 
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and obeys the relation 

(4.15) {rs, ]~} = _~o my~. 

To il), in particular, corresponds the superspace operator Y2(V; m ~ 0) 

(4.16) i.b[A] ¢ : ~ [ V ;  m = 0]. 

Similarly, to the squared operator /)~ corresponds the superspace operator 
-- f2o~9 (for m ---- 0): 

(4.17) b~[A] ~ -  

- -  diag ( L  D ~ cxp [V]D' 
\ J ,  

exp[- -V]l++,  
1 \ 

D2 exp [-- V]D ~ exp [V] l__/  f~ / 

This provides a simple way, in the specific case of SQCD, to obtain the regulator 
kernel eq. (3.13) and its antichiral partners. 

Noting the above correspondence, we use the operator f2 * to regularize 
the Jaeobian associated with the axial rotation eq. (4.6). Then the (regularized) 
integrated axial anomaly, appearing in the exponent of the Jacobian, is cast 
in the form 

(4.xs) fa~z a(x) 91(z) = limr_~o Tr[aFs°exp [~*(m = 0)]] 

in exact analogy with eqs. (2.6) and (2.8). Equation (4.18) may be formally 
interpreted as relating the superspace axial anomaly to the topological index 
of the operator Y2(V; m --~ 0), the superspace analogue of the Dirac operator iD. 

5. - A n o m a l o u s  supersymmetry commutators  and properties o f  vacua  in SQCD 
and in a chiral  S U 5 model .  

We turn in this section to the features more specific to supersymmetric 
theories, involved in the WT identities obtained in sect. 3. The operator equation 
(corresponding to eq. (3.15) of SQCD) 

(5.1) (~/4)  ~, exp [V] ¢ , - - X ' m , ¢ ~  + (g~/32n~) Tr WW 

(for each i: i ~ 1, ..., 5rf is the flavour index) can be easily written in com- 
ponents, in the Wess-Zumino gauge (see appendix C). From these equations 
(eqs. (C.1)-(C.3)) it follows tha t  the higher components (0 ~, 02 020, 0~0 
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and  020 ~) of the  composi te  opera to r  ~ c x p  IV] q} conta iu  anomalous  t e r m s  
involving the  gauge mul t ip le t  (see eq. (C.4)) (*). 

On the  o ther  hand,  the  lower components  (0 -~ ~ ~ 0, 0, ~ and  00) cannot ,  
and  in fac t  do not ,  contain  anomalous  t e rms  because there  exis t  no gauge-in- 
v a r i a n t  opera tors  fo rmed  out  of gauge and  gauge-fermion fields t h a t  have  the  
r ight  d imension and  chir~lity.  

As a consequence,  the  lowest  componen t  of eq. (5.1) can be cast  into the  

fo rm of an anomalous  an t i com m ut a t i on  re la t ion (~), (**) 

(5.~) 

val id  for each i. 
This re la t ion  was ob ta ined  in ref. (e) b y  working direct ly  in the  componen t  

formal i sm.  
Tak ing  the  v a c u u m  expec ta t ion  value of the  bo th  sides of eq. (5.2), we get  

a r igorous resul t  (e) 

(5.a) 

since s u p e r s y m m e t r y  is not  spontaneous ly  b roken  for  m # 0 (~), (***). 

An analogous reasoning,  s t a r t ing  f rom the  nonanomalous  g U ~ t × S U ~  

ident i t ies ,  eq. (3.20), leads to  

(5.4) <v~¢,> = o (i ¢ j) 

in the  basis  in which the  mass  m a t r i x  is diagonal.  

(*) A detailed study in the Pauli-Yillars regularization method in the component 
formalism (6,~) confirms these statements• More precisely, gauge-noninvariant <~ anom- 
alous )) terms in the lower components arise from regulator loops that are divergent, 
and are taken care by the ordinary subtraction procedure of divergent contributions. 
On the contrary, the anomalous pieces in the higher component (which are gauge- 
invariant) come from finite graphs involving regulator loops. I t  is this situation that 
makes the separation between the nonanomalous and anomalous parts of ~exp[V]  ¢ 
look apparently nonsupersymmetric. Actually this anomaly is perfectly compatible 
with supersymmetry as is evident in the present approach. 
(**) We use the following notation for the component fields of SQCD: 

~ = (~ + ~ 0 ~  + 0 ~  + ...)~, 

x '~  = (7 + ~¢'~oz + o~z',  + ...)'~ (i = 1 . . . . .  ~v,; ~ = ~ . . . . .  ~ o l ,  

W ~ = --  i ~  + 2 (~"#')~F,~0~ + . . . .  

Also, the mass matrix was taken, without losing the generality, to be flavour-diagonal. 
(***) Note that  if it were not for the anomalous right-hand side of eq. (5.3) one would 
have (incorrectly) concluded that <~ ¢~> = 0 for all massive flavours. 
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Fur thermore ,  in the  massless ease (or if at  least one of the  flavours is mass- 
less), one gets (from eq. (5.2)) 

(5.5) <z~> = o 

if one assumes supersymmetry  not  to be broken dynamically.  
Equat ions (5.3)-(5.5) strongly constrain the possible low-energy realization 

of the ehiral SU2v ~ ×SU2v ~ × Uv, ~ symmet ry  of SQCD. 
Impor t an t  as it  may  be, eq. (5.3) gives only relations among the eondensates 

and tells :nothing about  their  absolute values. Crucial information in this 
sense came from the recent s tudy  of instanton effects (~-5) in supersymmetric 
gauge theories. For  SQCD, they  imply (2,~) 

2Vf 

(5.6) <2;t> ~°-~' 1~ <~'¢'> = coast A 3a°-~ , 

where A is the renormalization invariant  mass scale of the  theory.  
When eq. (5.6) is combined with eqs. (5.3)-(5.5), one arrives at  the  following 

picture of SQCD vacua (*). 
~Vf 

i) Mass ive  theory. The symmet ry  of the  theory  is reduced to [ I  U~,~ 
i = l  

(for unequal  masses). The scalar and gauge-fermiou condensates are determined 

to be 

(5.7) m,<~'q~,> = (g~/32uz)< ~ >  : coast [-[ m ~/N°.A a-~'m¢ exp [ i2zk /No] .  

There is a N-p le  degeneracy of the  vacua (k = 1, ..., No) corresponding to 
Wit ten 's  index. The remarkable formula eq. (5.7) was originally obtained in 
an effective Lagrangian approach (~o). 

ii) Massless  theory. In  the m,~ssless theory,  the  net  result  can be sum- 
marized by  eq. (5.5) and 

(5.s) 

and by 

{ s~l ,No<C, ' ... ¢,~c > = s~ .%<~' ... ~]*~o> = coast A ~ (for N, = No-= _~), 

= 0 (otherwise), 

~f 

(5.9) [ I@~¢j> : 

oo for N~ < ~ ,  

eonst A ~ for N~ = £V 

O for N~ > No. 

(*) In this discussion we shall restrict ourselves to continuous global symmetries com- 
mu~ing with supersymmetry. 
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Each of (~¢~) ,  however, remains undetermined.  There exist thus  a large 
degeneracy of possible vacua, which can be interpreted as being related by  
SL~f,c×SL~,c× Uv, ~ (*)(**), a complex extension of SU~f×SU~t× Ur,~. Note 
t ha t  these possible vacua are not  all equivalent  under  SU~XSU~v~× Ur,~; 
this  is a reflection of the flat directions in the  scalar potent ial  in the per turbat ion 
theory.  

Nonetheless, not  all the perturbat ive vacua survive the  nonperturbat ive  
effects, according to eq. (5.9). l%r 2V~45V°, eq. (5.9) shows t h a t  some of the 
per turbat ive  vacua (e.g. ¢~ ~ ~ ~ 0 for all i) are not  found in the  t rue vacua:  
the  nonrenormalizat ion theorem (~o) is thus invalidated (%a). 

For  ~V~ > ~V, eq. (5.9) alone might  suggest (~) the  full per turbat ive  degeneracy 
of vacua to survive. However, the  result  of the  massive case, eq. (5.7) (which 
was shown to hold for all IV~ and hr~ (a,~v)), indicates t ha t  the  nonperturbat ive  
effects invalidate the nonrenormalization theorem in this case as well (***). 

On the  other hand,  eqs. (5.7)-(5.9) do suggest the  dynamical  possibility 
of ehirally symmetr ic  vacua when IV~ > ~ro. In  this respect, i t  is interesting 
tha t ,  for the part icular  case of ~ ~ ~ + 1, there exists a simple plausible 
set of massless composite chiral superfields. Indeed,  the following set (~V ---- hr~, 

~r---- £V -F 1) 

B ~ ~_ o~...~ aS~, ~,~ 

s e ~' ' ' '~ X ~' ... X ~ ,  

satisfies the  ~t Hooft  anomaly matching equations with respect to the  full 
global symmet ry  group, SU~+~ ×SU~+~ × Uv, ~ × Ux,~, for any  _~r. 

I t  is also interesting to compare eq. (5.5) with the  result  for pure Yang- 
l~Iills theory  (9,~8) 

(5.10) (~) -~ O(A ~) 7~ 0 (no ma t t e r  fields). 

How can massless ma t t e r  loops, which are suppressed by powers of 1/Y.7 
modify  the l a r g e - ~  result eqs. (5.10) to (5.5)? The formula eq. (5.7) suggests 
the answer: the  1/hro expansion is invalidated by  infra-red divergences in the 
massless l imit.  

(*) The condensates of eq. (5.7) suggest a larger symmetry of the vacuum: a GL~,C. 
This is, however, not the case, because of the presence of other types of condensates 
such as (¢*~) and (7* ~), which break this G~t ,c  completely (is). 
(37) M. T. G~IsA~u, W. Siw~]~L and Yl. R o e ~ :  N~d. Phys. B, 159, 429 (1979). 
(**) Uva factor is absent for Nf = ~V~. 
(***) In this respect we disagree with the conclusions of ref. (4) for the cases N~ > ~Y~. 
(~s) F~. COHV,~ and C. Go~]~z: Phys. l~ev. T~ett., 52, 237 (1984). 
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Impor tance  of the  mass singularities was also poin ted  out ,  in explaining 
how the resul t  such as eqs. (5.3) and (5.4) can  be smoothly  connected to  the  
massless SU~v ~ × SU~ symmetr ic  l imit  (s). 

This concludes our discussion on the  propert ies  of the  ground states  of 
SQCD. 

i s  an example  of application of the  WT identi t ies  eq. (3.22) to  a chiral  
theory ,  le~ us consider a S/75 model s tudied in ref. (5). The m a t t e r  chiral  mul t ip le t  

of the  model  are 

(5.11) ~ and X ~ : - - X  a (a, f l : l ,  5; i , a = l ,  2), 

namely ,  two sets of (5 -~  10*)'s. The SU~-invariant superpotent ia l  

(5.12) m(¢, x ) =  h':¢,¢~X o=- ho¢¢X 

is assumed to  be present  (h~o ~ = -- h~ ~ = ~ ho). 
The simplest of the  WT identi t ies eq. (3.22) for  this model  can be cast into 

the  form (following the  same reasoning as in the  SQCD case) (*) 

(5J3) 

( 5 . 1 4 )  

g2 

g2 
<{(21, 21~}/2V~> = --ho<¢¢~°> + 3 ~ < ~ > .  

l~urthermore there  exists ~ (nonanomalous) au t i commuta t ion  relat ion (for each 
i, a, and  b)(5) 

(5.15) <{Qi, ~; ,~,~,v} ,~yl . . .~ ,}>/2V~ = -  2h/~<¢Tv~,~v~,~,v~,~,>,~,--p,. 

M_EURmE and VENEZ~NO (5) have,  fur therraor% computed  the  ins tan ton  
effects in this model,  which imply 

(5.16) 

where 

(5.17) 

• a Aii 9a sub ~,<,UL> <A~> <A~> = const 0 , 

i - -  ~ed  ~ " l a f l a ' l f l t ~a ' l f l , f l sWt  " 

(*) We use the following notation below for the component fields: 

• ~=  (0 + V20~ + . . . )~ ,  X ~ =  (7 + V~0Z + . . . ) ~ .  

Gauge fermions are denoted by 2 as in SQCD. 

9 - I I  N u o v o  U i m e n t o  A .  
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As noted by the authors of ref. (s), there are no (~ solutions >> of eqs. (5.13)- 
(5.15) for the eondensates, if supersymmetry is to remain unbroken. The only 
way out seems to be to conclude tha t  supersymmetry is, actually, dynamically 
broken in this model (5). 

If  supersymmetry is indeed spontaneously broken, one finds from eqs. (5.13)- 
(5.15) current-algebra-type formulae (*) 

(5.1s) 

(5.19) 

and 

(5.20) 

f,<~1¢;¢10>/2 V~ = 2ho<¢¢,f> + (g~/32~)<XX>, 

f.<al~ ~ v~ v~ Io>/2 V 2  : - 2ho<¢V °v~ V~>, 

where I~) is the massless Goldstone fermion and ]. is the strength of the super- 
symmetry breaking 

( ~ - ~ t h e  supersymmetry current). The derivation of eqs. (5.18)-(5.20) 
employs the standard current algebra techniques. 

Furthermore, according to eqs. (5.18)-(5.20), the low-energy effective La- 
grangian of the present model will contain, as effective degrees of freedom, 
composite supermultiplets of general types, • exp [V]~b, X exp [~] X and 

exp [V]XX as well as a few composite chiral supermultiplets (*)(**). 
A few other simple models have been studied along the line of analysis 

sketched here; they suggest that  a rich variety of patterns of realization of 
ehiral symmetries and supersymmetry are possible, depending upon the details 

of the model considered. 

6. - Summary and concluding remarks. 

In the first part  of the paper, we discussed a (superfield-) functional-integral 
formulation of anomalous chiral WT identities in supersymmetric gauge 
theories. The gauge covariance and supersymmetry have been kept manifest 
throughout. Our U1 identities have thus gauge-invariant form. 

Supersymmetrie generalization of axial SU~,~ anomalies have been ob- 
tained, in the simple case in which only the external vector SUv,~ fields are 

(*) Equation (5.18) was first derived in AFFLI~CK et al. (6). 
(**) In fact, simple effective Lagrangians which contain composite chiraZ superfields 
only lead to incorrect results in this model (~4). 
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present .  Our discussion also included the  gauge anomaly  cancellat ion in ehiral  

theories.  
In  the  second pa r t  (sect. 5), we have shown how the  supersymmetr ic  par tners  

of the  U1 identi t ies lead to  exact  relat ions among scalar and gauge-fermion 
condensates.  When  combined with dynamical  informat ion based on explici t  
ins tanton calculus, t hey  make  it  possible to  compute  the  vacuum proper t ies  
s tar t ing f rom the  first principles. We discussed two examples,  SQCD and a 
chiral  SU5 model~ following the  works of ref.  (3.5). 

We conclude wi th  a few general  remarks .  
We are aware of the formal  and somewhat  heuris t ic  na ture  of our discus- 

sions; in part icular ,  the  effects of renormal izat ion have not  been proper ly  
discussed. 2~lso, our considerations based on the  funct ional  integrat ion do not  
tell  whether  or not  the  anomaly  t e rm  receives corrections of higher  orders 
in g. The only result  concerning this point  we know of comes f rom the  work 
on SQED by  CLA~CK, PmUET and SrSOLD (D, done within the  B P H Z  renor- 
realization scheme. Thei r  result  suggests t h a t  the  form of the  superspace 

WT identi t ies is not  modified by  renormal iza t ion  (*). 
I t  is, of course, easy to  check t ha t  each t e r m  of eq. (5.2), for instance,  is in- 

var ian t  under  renormalizat iou,  to  one loop. To higher  orders, the  first t e rm  
on the  r ight -hand side of eq. (5.2) (also in eqs. (5.13) and (5.14)) remains in- 
var iant ,  due to the  nonreuormal izat ion theorem.  The o ther  two te rms will 
mix under  renormalizat ion,  bu t  we have  assumed t h a t  the  form of the  equat ion  
remains unchanged af te r  renormalization~ jus t  as in the  ease of usual axial- 
current  divergence equat ion (**). 

Final ly,  we wish to  point  out  t ha t  the  superspace U~ WT ident i t ies  
(eqs. (3.15)-(3.18), eq. (3.20), eq. (3.23)) contain ac tual ly  more informat ion  
t han  has been t aken  into account  in the  discussion of sect. 5. Recently~ the  
full informat ion contained in such superspace WT identi t ies  was exploi ted 
in a s tudy  of the  s t ruc ture  of the  low-energy effective action,  in the  context  
of general supersymmetr ic  confining theories (~s). The outcome,  emergence of 
the  (~ effective gauge s y m m e t r y  ~> (an exact  local s y m m e t r y  s t ruc ture  a t  the  
t ree  level of the  low-energy effective action) and  of a generat ionl ike s t ructure  
of composite m a t t e r  mult iplets  (is), seems to  be an encouraging sign t h a t  super- 

(*) According to SIBOLD (private communication) this can be proven for SQCD as well. 
(**) In fact, a plausibility argument can be given for the form invariance of the WT 
identities under renormalization. We first consider the component containing the cur- 
rent divergence equations, and generalize the usual argument for the softly broken 
current divergences (29) (by using the nonrenormalization theorem) and for the anom- 
alous UA,1 current divergence (30) (by using the form of the anomaly, eq. (4.7)); we 
then invoke supersymmetry. 
(39) See, e.g., D. GRoss: Les Houches Lectures, 1975, edited by R. BALIAN and J. ZINN- 
JUSTIN (North Holland Publishing Company, 1976). 
(so) See, e.g., R. C~EWTH~R: Status o] the U 1 problem, CERN preprint, TH-2546 (1978). 
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symmetr ic  gauge theories might  one day find their  place within a realistic 
composite theory  of particle physics. 

* * *  

This work s tar ted when both  of us were visit ing CERN for a short period. 
We t h a n k  its theory  division for hospitali ty.  

APPENDIX A 

In  this appendix we describe the calculation of the matr ix  element 

(A.1) ( g i n  exp [Z/M,](-- D'/4)lz) 

appeared in eq. (3.12). (For SQED, this matr ix  element has been known (~t).) 
The first step is to observe t ha t  the operator L = / 9 ~  exp [-- V] D ~ exp [V]/16 
always acts on D~(...) so t ha t  Z can be rewri t ten as (1__ = --D~[4) 

(A.2) 

where 

(A.3) 

L I  _ = ( P , - -  ½W~,D: + C'uP. + ~') 1 _ _ ,  

w~ -= - ¼ (D~ exp [ -  V] 1)~ exp [ V]), 

C ~  _ _  ½ ~, -S ,  / 9  ~, , = a~,;,(D exp [-- V] exp [V]) 

= ~ (D, exp [ -  V]D~ exp IV]) ,  

and P~ is the  momentum operator which acts as (xlP~' . . . .  5dyi .3~(x--y)_.  
"(YI..:. The brackets in eqs. (A.3) mean tha t  the covariant  derivatives D ~ 
and D ~ do not  act  outside them. 

To evaluate  the  finite (as M S -> oo) par t  of eq. (A.1), we observe the  
following two facts. First ,  in order to get a nonvan ish ing  diagonal element 
(00}...]00) we need precisely two D's and two D's  operating on 100}, e.g. 

(A.4) <0, OI.D~DaB~IO , O) = 8 e~a . 

I t  means t h a t  the  W~,D~, t e rm in the  exponent should be expanded at  least  
to second order. 

On the  other hand,  the  matr ix  element (xl...Ix } is a t  most  of order O(M4), 
since 

(A.5) <x[exp[P~ + lower order in P]/M~[x> = 

f d'k k~]M~] (1 + O(1]M)) -~ ifd'/16xr ~ -+ O(M3). eXp [ -  
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Since the expansion in -- ½ W~D~ -~ C,P,  -~ F brings down a factor of 
1/M s per each power, it follows in the light of the above observation that  the 
finite p,~rt of eq. (A.]) comes exclusively from the second-order expansion 
of -- ½ W~D~ (and zeroth order in C,P~, ~- F). A simple calculation, by 
using eq. (A.¢) and eq. (A.5)~ leads to the answer (after resealing, V---> 2gV)~ 

(A.6) lira (zliA exp [L/M2]( - / )2 /4)  Iz) = iX(z)(g2[32~ s) W~(z) W~,(z). 
M~---> co 

I t  is easy to check the stability of the answer, when the Gaussian cut-off 
is replaced by an arbitrary function I(L/M ~) that  satisfies 

{ I(oo) = 1'(oo) . . . . .  0 
(A.7) I(0) = ~ .  

and 

Indeed the only change would be in eq. (A.5) which, however, leads to the 
same result as before 

(A.s) f d4 k ~ .  (2~)----, l ({k s + O(k)}/M ~) = 

co 

_ 16g s i  f d k sk~ /" (k , !M S )  + ... - -  
o 

iMa 
16~--~ @ O(Ma) • 

A P P E N D I X  B 

In this appendix we describe the derivations of eq. (3.15) by the point- 
splitting and the Pauli-Villars regularization method, both of which were 
employed in ref. (6) in the component formalism. These derivation are close 
to those given in ref. (8). 

In the point-splitting method, we start with the definition 

(B.1) exp IV] ~b ~ lira ~b+. U(x @ e, x --  e) (exp [V] ¢)..__., 
$-'~0 

where U is the string operator 

(B.~) 
8 + 8  

with F ,  = i ¼ De, exp [_V]/) exp [-- V]. Here only the space-time co-ordinate 
has been point-split. U is constructed in such a way that  the nonlocal opera- 
tor ~b~+, U(exp [V] ¢)~_, is invariant under the gauge transformation, eq. (3.5) (% 
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Applying ¼D* to eq. (B.1), one finds that  

(B.3) 9,{~ .+ 0(e~p IV] +),_.} = 
-~ ¼ ~=+~(D 2 U) exp [V] q} + ½ ~+,(D~ U) D~(exp [V] ¢)  27 mO,,+,X,_,. 

I t  is easy to show, using eq. (B.2), that  

(B.4) 
{ Do~U = 2euDo~u 270(e =) , 

D ~ U-~ 4eue,(D~.~u)(.Do,.F,) 270(e3). 

Hence the problem is now reduced to calculating the singular parts of the 
propagator <T(exp IV] q))~_,~+~ in the presence of the external gauge super- 
field V. For an actual calculation, one may use the explicit representation 
of the propagator (~) 

(B.5) 
- i 

<T(exp [V] ~)=_~ ¢=+~} = ~ <x--s ,  0, 0lexp [~]- 

• (m 2 "D2exp[--V]D~exp[V])-~exp[V]D~lx27e,  O,O~ 
16 

or use the superfield Feynman rules. We quote only the result 

(B.6) <T(exp [V] ~),_, ~,+,> : (167~2e2) -~ {1-- 2s,~a 27 0(e~)}, 

which is combined with eq. (B.3) to give eq. (5.1). 
We emphasize the importance of the point-splitting method in deri~ng 

the anomalous Ux identities for ehiral theories, hence justifying the regulariza- 
tiou, eqs. (3.12), (3.13) and (3.22), for such theories. Note that  the Pauli-¥illars 
regularization cannot be used in these cases. (For simplicity of calculation, 
we have used the expression eq. (B.5) valid only in SQCD, but this can be 
avoided. Evaluation of the matrix element eq. (B.5) has been done, without 
using the right-hand side of it, by M_~-~IC~ (23)). 

In  the Pauli-Villars regularization method (useful only in left-right symmetric 
theories) all operators are local but the regulator chiral superfield X, and q5 
also contribute to the regularized equation 

(B.7) ~D2(q5 exp [V] q}) = mXq~ -- MX,¢),.  

Accordingly, it is necessary to extract from the Green's function <T(X,q~)...} 
the part  which behaves as I[M as the regulator mass goes to infinity. The 
functional representation of <X,~5~} is given by 

(B.s) 
( 1 )1 

iM<X,O~> = M~@,O,O] M ~- D*exp[--V]D2exp[V] l__]x,O,O> , 

which turns into the anomaly term of eq. (5.1) in the M -+ c~ limit, as readily 
verified by following the reasoning similar to the one in appendix A. 
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~ - P P E N D I X  C 

Equa t ion  (5.1) can be wr i t t en  in components  in the  Wess-Zumino g~uge 
~s ( C - -  ~ e x p  [V]q}), 

(C.1) - -  C ( ~  : m ~ ¢  - -  (g~/327~ ~) ~ 2 ,  

i 
(C.~) - -  C~ ~o) - -  ~ (~. ~ C~)~ = 

g~ 

((;.3) 

g2 

4 j 

Other  components  of eq. (5.1) p rove  to be e i ther  v~nishing, equivalent  to  one 
of eqs. (C.1)-(C.3), or H e r m i t i a n  conjugates  of them.  

Equa t ions  (C.1)-(C.3) ~gree wi th  the  resul t  found in ref. (6), 

(c.4) exp [ V] ~b : 

: ( ~  exp [V] qs)~lv, g2 [ 3 2 ~  02W ~ W ~ -  o~0. ww[~,)] b.c.--~- (WWIo, + 

where ( ~  exp [V] ¢)n,~v~ means  t h a t  the  components  of the  first t e r m  are the  
operators  ob ta ined  b y  the  usual  expans ion  of ¢ ,  ~b and  exp  [V] in te rms  of 
the  componen t  fields. 

• R I A S S U N T 0  (*) 

Si formulano le identit~ anomale chirali e correlate di Ward e Takahashi nelle teorie 
di gauge supersimmetrica, per mezzo della generalizzazionc del metodo dell'integrale 
funzionale di Fujikawa al superspazio. I1 nos~ro approecio fornisce un trattamento 
manifestamcnte supersimmetrico e di gauge covariante delle anomalie abeliane del 
superspazio, ed ~ applicabile a teorie chirali come pure a teorie simmetriehe destre- 
sinistre. Si discutono anche brevemente le anomalie non abeliane. Le anomalie abeliane 
del superspazio implicano che partieolari operatori composti, eio~ quelli contenenti le 
correnti associate di U1 come eomponente, esibiscano ann struttura di supermultipletto 
anomalo. Si discute come ci6 p o r t i a  varie relazioni esatte tra scalari e condensatl di 
fermioni di gauge, imponendo cosl forti vincoli sulle possibili realizzazioni di simme- 
tria chirale helle teorie a confinamento supersimmetrico. 

(*) Traduz ione  a cura della Redazione .  
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I I o ~ x o ~  c MeHOJII~.OBaHEleM ~yHrd~OHa.~bHOrO I4HTeFpllpOBaHEL9 g KHpa.~blmlM aHOMa.rlltgM 

B cynepcnMMe'rpnmm~ Ka.TI~6poBoqHbIX Teopa~lx. 

Pesxo~e (*). - -  0 6 o 6 ~ a . ~  MeTO~ ~yma~oHaJ~HOrO m~TcrpHpOBaHmq ~ y ~ K a ~ H  Ha 
CyIIepDpocTpaHCTBO, IIOJIy~IaIOTC~I Kl~pa.r~HbIe TO~,j~eOTBa H TO~OOTBa, pO~CTBe~E~Ie 

TO~K~CCTBalvI Yop~a-TaKaxam~,  B cynepcmvIMeTpn~I~LX Ka.rm6poBo~mx TeopH~Ix. I Ipe~-  
JIO)KeRHb//~ B 3TO]~ pa6oTe n o ~ x o ~  ~ J ~  a6eneBbix aHOMa.URR ~mJ~eTc~ B ~IBHOM B~Re 
cynepcmvnvteTpmml, nv~ n npmvteaRM r Teopamv~ c xHpazmHO~ caMMerpae~ a c JzeBo-rlpaBo~t 
CrtM~erpHe~. Hea6eaeBsi  aHOMa.r~H MOryr 6r, Ir~, paCCMOTpeHbI aHaaora~rmB¢ o6pa3oM, 
HO S aTO~ p a 6 o r e  o6cy)zj~amrc~ TOm, t o  BKpaTt~e. A6eaem,  x aHOMav-mH B cynepnpocrpaH-  
CT~e no~pa.3yMeBamT aHoMaJmHym cy-nepMy~ibTRtmeTay~ cvpyKTypy ~Jm HeKoropbIX 
COCTaBR~IX o~lepaTOpOB. O6cyzc~aeTc~, xax 3TOT IIO~XO~ nprmo~aT r pa3awn~XM To~m,~M 
COOTHOI~em~M, BZJIio~a~om;mv~ cKan,qp~r~ ~t Kan~6pOBOqaO-~epM~OR~mRR roa~eacar~,~ 
ri, cne~;oBaTeJ~no, ~azaan~mammmv[  cnn~rm~e o r p a m e a e n ~  Ha peasm3at0an ~paJIbar t i~  
c a M M e r p n a  (a  c y n e p c a M ~ e v p ~ )  B cynepcaM~eTpa~m~,~x ynepz(aBamrrmx reopam¢.  

(*) Hepese()euo pe()ag~ue~. 


