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Summary. — In the context of a theory of decay proposed by the authors,
two theorems, which are necessary in order to guarantee the physical
consistency of the formalism, are proved.

In a previous paper on this subject () we have given a simple and concise
physical prescription for obtaining the wave function describing an unstable
system when this system appears as a resonance in a scattering experiment.
In the context of the theory of decay obtained in I and restricting ourselves,
for simplicity, to potential scattering, we shall prove the following two theorems:

A) The formalism of I allows the description of an unstable state by
limiting the considerations only to the isolated resonanee responsible for that
state.

B) Two resonating phase shifts which differ slightly in the resonance
region, while outside that region they may well be far away from each other,
give rise for the corresponding unstable states to almost identical decay laws.

() L. FoxNpa and G. C. GHIRARDI: Nuovo Cimenio, 67 A, 257 (1970). This paper will
be referred to as I in what follows.
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Both these conditions must be satisfied in order to have a physically con-
sistent formalism. In fact, the first guarantees that we can talk of an unstable
system if the proper conditions are satisfied in the resonance energy interval,
independently of the dynamics of the process for energies far apart from that
region, while the second is necessary since in practice a pure Breit-Wigner
resonance never occurs, so that the statement that we have an unstable system
is sensible provided we have a sufficiently Breit-Wigner-like behaviour in a
proper energy interval.

Let us recall the basic equations of I to be used in what follows. The unstable
system is defined through the state vector (*)

(1) Pansanal8) = [B) exp [— BTy () Lk,

where g are the outgoing-wave scattering states. The coefficients ¢(k) yield
the nondecay probability amplitude

(2) A(t) = (Iq)unstab]e(o}V q)unstable(t)) :f|0(k) |2 eXp [_ ?:Ek t]dzk *

By means of the localization procedure introduced in Sect. 2 of I, the coef-
ficients e(k) have the following expression for potential scattering:

(3) Ny (k)

where we assume that the resonance appears in the I-th wave. f,(k) is the Jost
function and N,(k) is given by

) No(k) = %ffl—if“;) 1k, &)kt R 2 dk

g:(k) is the I-th wave energy form factor of the impinging wave packet and
I(k, k') is given by

B) Ll ) =[gulle, gy N+ [gulle, 1 [’y 1) — (', M,

where ¢,(k, r) is the regular solution of the radial Schrodinger equations behav-
ing at the origin as ¢,(k, r),~ r**!/(21 4+- 1)!! and @™k, r) is the free wave to

r—>0

( Natural unita i=c¢=1 will be used.
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which ¢,(k, r) converges for r — co. Substituting (3) into (2) gives

INI

) exp [—iE,t]k2dk .

(6) A(t) =

In order to prove Theorem A) we must investigate the detailed shape of
|V.(k) 2. We must show that this function is sharply peaked near the resonance
energy and vanishes rapidly outside the resonance region, providing thereby
a natural cut-off in energy. In this way an isolated resonance appearing in f,(k)
will describe completely the unstable system thercof obtained. We start by
observing that in eq. (4) ¢,(k¥') is of course taken to be sharply peaked near
the resonance energy k'=rk, and that f,(—#') is almost zero at the same
point. We can then treat the factor g,(k')/f.(— k') as a delta-function 6(k' —k,)
in the integral on the right-hand side of (4). In this way we get

(7) Ny(k)oc KM I (K, kg) kL .

The problem is now that of studying I,(k, k,) for fixed %k, as a function of k.
For simplicity we assume that the potential is a square well of range R. All
the following considerations can however easily be extended to more general
cases. Let us start with S-waves.

Under the above assumption we have

Polkg, ) = g3 (o, 7) for r> R,

so that I,(k, k) greatly simplifies:

R R
(8) Ly(k, keg) = | dr gy (k, 1) 0y, 7) = %fsin kr sin krdr =
0 0 — — =
sin (k— k)R sin (k+ k)R
ok (k—k)R (k+ k)
where we have defined

k=vEktom[V] and k=+vVkj+om|V].

We see that I(k, k;), and consequently, through eq. (7), No(k}), are peaked
near k, and vanish by moving away from the resonance region. The energy
interval AE in which Ny(k) is appreciably different from zero can easily be seen
to be greater than the width I” of the resonance. In fact, since Ak ~ 1/R and
therefore AE ~ v/R, the inequality

9) AE>T
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is equivalent to o/R> I, that is

(10) > R.

Equation (10) states that the range of the forces should be smaller than the
distance travelled by the decay produets during one lifetime, a condition that
must be satisfied in order that it be meaningful to talk of an unstable system.

The same result is obtained for 154 0 waves. Actually, since the functions
j, for 1540 oscillate more than j,, the funection N,(k) turns out to be
more peaked at %, in this case. We have therefore eompleted the proof that
|N (k)] has the desired shape, 4.e. it is peaked at the resonance energy E, and
vanishes rapidly when moving away from the resonance region, being ap-
preciably different from zero in a region AF greater than the width I" of the
resonance. The isolated resonance appearing at F, is then able to describe
completely the corresponding unstable state through eq. (2), ¢.e. we can forget
about other resonances or wild energy behaviours occurring outside the con-
sidered energy region AE. In this way proof of Theorem A) is accomplished.

Let us now prove Theorem B). We shall show that if we choose two reso-
nating phase shifts almost alike in the region |EF— E,|< AE, the correspond-
ing decay laws turn out to be almost the same. This result is not at all obvious
since even though only the values of the Jost function in the considered energy
interval AE will contribute to the integral (6) owing to the cut-off properties
of |N,(k)[?, the Jost function itself depends on the overall energy dependence
of the phase shift. It would seem then that even changes in the phase shift
8(E) far away from the resonance region could affect the final result.

Let us make the following assumptions:

i) We consider a phase shift 6,(F) having a sharp resonance at ¥ = E,
with width I

ii) The relevant contribution to the considered integral comes from a
region B, —AE<E<E,+ AE with AE> I

iii) A second phase shift is given:
0,(E) = 6,(E) + &(H),
where (1) is assumed to be very small in a region

EB,—a<E<E,+a

with &> AE. 6,(E) is then also resonating near ¥ = ¥,.

In other words, the phase shifts are rather alike in a region surrounding
the resonance, but can possibily be very different from each other sufficiently
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far away from E,. Let us recall the expression of the Jost function

B, L[ S(E)aE
(11) fulk) = H(l - L_‘) exp [’; m]’

n
0

where the product extends over the bound states. Due to the cut-off intro-
duced by the function |N,(k)[?, in the funetions (1 — E [E) we can safely put
E = E,. Apart from a constant we gef then for the moduli of the two Jost
functions corresponding to J,(EF) and §,(¥):

©

P[leEYdE
(12) e = ] exp|—7 [

where p stands for the «principal value» of the integral. Let us write the
integral on the right-hand side of eq. (12) as follows:

13) ffe(E/)dq B P (E’ dE’ e(E') dE’
a) B—E gz ) E—E "E—E
0 Ep—a Egta

The first integral on the right-hand side of eq. (13) is small because e(¥) is
smallin the interval of integration. To be precise, it can immediately be proved
that this integral vanishes in the limit as £(F)— 0 in the considered energy
interval. As for the gecond integral on the right-hand side, we remark that
in the energy interval which is relevant for the integration of eq. (6), 4.c. for
| —H,|<a, the denominator is a slowly varying funection of E so that we
can safely put £ = F, there. We get then

(14) [f® (k)| ~ const|f (k)] .

From eq. (6) we also see that the corresponding decay laws will be practically
identical over many lifetimes if hypotheses i)-iii) are satisfied.

We have therefore completed the proofs of theorems 4) and B). In conclu-
sion we can then say that for all physical effects which can be related to the in-
terpretation of an isolated resonance as a formation of an unstable state, the
only relevant quantity is the phase shift in a narrow region near the resonance
energy, and that small changes of the phase shift in that region induce corre-
spondingly small changes in the decay law of the unstable system.,
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® RIASSUNTO

Nel contesto di una teoria del decadimento proposta dagli autori, si stabiliscono due
teoremi che sono essenziali per garantire la coerenza fisica del formalismo.

PesromMe He IONYYEHO.



