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Summary. — A solution of Einstein’s field equations is derived which
represents a thin spherical shell of charged dust falling in the spherically
gymmetric field of a charged massive body placed at its centre. Under
suitable conditions the shell bounces reversibly at a nonzero minimal
radius. A bounce is still possible even after the shell has collapsed inside
the Schwarzschild sphere, so that the collapse as viewed externally is
irreversible. The apparent paradox is explained in terms of the lattice-
like structure of the analytically extended Reissner-Nordstrém manifold.
The possible relevance of the results to the problem of realistic gravita-
tional collapse is discussed.

1. — Introduction.

We shall be concerned in this paper with a conventional problem in general
relativity: the gravitational collapse of a charged thin spherical shell falling
in a spheri-symmetric external field. The study of such simple artificial prob-
lems, while of no direct relevance to astrophysics, can none the less serve a
useful purpose, since it brings into relief basic issues of principle in the general
relativistic theory of collapse which are still far from understood.

General relativity leads to the following picture for the evolution of
a contracting spherical body (). Once the compression passes a certain crit-
ical limit, characterized roughly by the interior (Newtonian) potential be-
coming comparable with ¢%, the subsequent history is one of continuing col-
lapse which cannot be halted by pressure forces. The irreversibility of this

() Seec, e.g., Ya. B. ZEL'DOVICH and I. D. Novixov: Sov. Phys. Uspekhi, T, 763
(1965); 8, 522 (1966).
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GRAVITATIONAL BOUNCE 745

picture is surprising, and differs radically from the corresponding Newtonian
picture, where the motion is in general oscillatory. If one examines the rela-
tivistic derivation to see how the element of irreversibility enters, one finds
that it stems from two largely unconnected causes.

A) External irreversibility: development of an event horizon at r = 2m.
The surface of the contracting spherical body passes (in finite proper time)
within the critical Schwarzschild sphere r =2m. To an external observer,
light emitted from this sphere suffers infinite gravitational red-shift, and » = 2m
therefore appears as an event horizon which the contracting body seems to
be approaching asymptotically as ¢ —+oco. If ordinary ideas of causality are
to be maintained, he can never see the body re-emerge from this sphere.

B) Intrinsic irreversibility: spacelike character of the curves r = const near
r =0. The exterior (Schwarzschild) field of the body, analytically extended
to r =0, has the property that the curves r = const << 2m are spacelike. The
history of a particle on the surface of the body is a timelike curve of the
exterior manifold. It is easy to see that the particle can reverse its inward
motion at ¢ =7,<2m only if a) its world-line is momentarily spacelike, and
b) it subsequently travels into the past. Assuming that classical general rela-
tivity remains valid even under the extreme conditions prevailing near » = 0,
one is forced to the conclusion that no rebound is possible and that the entire
magss piles up irreversibly on the singular curve r = 0.

Of these two arguments, A) seems on surer ground, since it does not depend
on extrapolation to extreme conditions. For masses of astrophysical interest,
compression to r =2m does not produce immoderate densities or curvatures.
Modifications due to quantized gravitation, possible inapplicability of Ein-
stein’s field equations at very high curvatures, or other new physical effects
of an unanticipated kind might profoundly affect the situation near r =0,
but should not be important near » = 2m. The exact nature of such modi-
fications is, of course, unknown. One could try to take their effects into ac-
count in a crude way by supposing that the standard Schwarzschild metric is
modified (2) to

—1 ‘
d82:(1—2—m —|-i—§—...) dr® + r2d Q22— (1—?1”+2+...)dt2,
r r2 \ r r? ,

de2? = a2 + sin2 H de= .

(*) That the unmodified Schwarzschild metric cannot be trusted near the singular
curve 7= 0 is clear from the fact that this curve is spacelike: a body which has collapsed
irreversibly to r =0 would have to travel faster than light!

48 — Il Nuovo Cimenlo A.
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746 V. DE LA CRUZ and W. ISRAEL

If the usunal astronomical predictions of Einstein’s theory are to be preserved,
the constants @, b would have to be small compared with m2 In that case,
we still have an event horizon (the sphere on which g, = 0), but the argu-
ments of B) are clearly liable to break down. The possibility cannot be ruled
out that a collapsing spherical body reverses its motion near r =0 and re-
expands. The intriguing question is how such a pieture can be reconciled with
the apparent irreversibility of the collapse as seen by an external observer.

We shall illustrate some of the possibilities by focussing attention on the
special line element (3)

(1) ds? = f~2dr? 4 r2dQ% —fasz, f=1—2mjr+ exfr?,

which ig formally the Reissner-Nordstrom metric for the gravitational field
of a charged particle. In Sect. 2 and 3 we derive the equation of motion of a
thin spherical shell in such a field. It is found (Sect. 4, 7) that bounce can
oceur under a great variety of conditions. In particular, the shell can bounce
ingide an event horizon. In that case the manifold represented by (1) is in-
complete. If it is extended analytically (Sect. 5) in the manner of GRAVES and
BRILL (%), the extended space-time appears as a periodic lattice of geometri-
cally similar asymptotically flat spaces, joined by «tunnels» in which space
is closed. Re-emergence of the rebounding shell from the event horizon then
takes place in a new, distinct space (Sect. 8, 7).

Our results are similar to those recently obtained by Novikov (°), who
has considered the homologous collapse of a uniformly charged ball of dust.
The shell model has the advantage that the complete solution can be given
in a simple explicit form. Novikov’s results can be recovered as a special case
{Sect. 7).

The paper concludes with some general remarks (Sect. 8).

9. — Dynamies of a thin shell.

The dynamics of a thin shell in vacuo has been considered in a previous
paper by one of us (¢). The case where the shell falls in a continuous medium
with nonvanishing energy tensor is a straightforward generalization, and we

(®) As an illustration, it may be remarked that (1) represents the external field
of an (uncharged) spherical body in the theory of F. Hovie and J. V. NARLIKAR:
Proc. Roy. Soc., A 294, 138 (1966).

(4} J. C. Graves and D. R. BriLL: Phys. Rev., 120, 1507 (1960).

(®) I. D. Novigov: JETP Lett., 3, 142 (1966).

() W. ISRAEL: Nuovo Cimento, 44 B, 1 (1966); ibid, 48 B, 463 (1967).
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GRAVITATIONAL BOUNCE 747

shall sketch it briefly, referring the reader to the previous paper for a fuller
account of the basic ideas.

Let the timelike hypersurface 2 divide space-time into two parts V_, V.
which both contain 2’ as part of their boundaries and are otherwise disjoint.
Let n (directed from V_ to V) be the unit spacelike normal to 2, & a set of
intrinsie co-ordinates for 2, e, the triad of holonomic basis vectors tangent
to 2 and associated with £ (i.e. an infinitesimal displacement in 2 has the
form e, d&%) (7). Further, let K, K, denote the extrinsic curvatures of X
associated with its imbeddings in V_, V. respectively. Then X is the history
of a thin shell if

Yo = K, — K,
is nonvanishing. The surface energy tensor of the shell is given by the Lanczos
equations (%)

(2) yab ‘gaby - Sﬂsab (V = gabyab) ’
the analogue of Einstein’s field equations
(3) Gy =—8aT g

for the surrounding continuous medium.
In general, one has the following eight relations (®) between the extrinsic
curvatures K and the normal components of the Einstein tensor on X:

(4) SR— K, K™ 4 K2+ =—2G ,n*nf|*,

@ M

(5) KZ;:; - auKIi = G:xﬂe
Here, K= K/, *R is the intrinsic curvature invariant of X, and the semi-
colon indicates covariant differentiation with respect to the intrinsic metric
of 2. The jumps of (4) and (b) across 2 can be written, with use of (2} and (3),
in the form

(6) 8K, + Kg) = 2T yn“nf],

(7) S'f.;b :—[Toeﬂe(m(xnﬁ] .

(") We adopt the following conventions: G =¢ =1, signature of metric ~ + + —,
Greek indices refer to 4-dimensional, Latin indices to 3-dimensional quantities. Limits
of the field quantity ¥ as the event P on X is approached from V_, ¥, respectively
are denoted by ¥(P)|-, P(P)]*. In Sect. 2 square brackets denote jump discontinuities:
[(Fl=v[—¥.
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748 V. DE LA CRUZ and W. ISRAEL

We now specialize to the case of a coherent shell of dust, characterized by
the surface energy tensor

(8) 8 = guu’,

where the unit timelike vector u* = d£¢/dv tangent to 2 represents the 4-velo-

city of the dust particles and ¢ is the sum of their rest masses per unit area.
From (7) and (8) it follows that

(9) (Gub);b = ua[Taﬁe(a)anﬂ] = [Taﬂuawg]

(10) OU U =—(0,° -+ ucu“)[Twem)“nﬂ] .

The two 4-accelerations du”/37|* of a dust particle, as measured in V_, V,
can be resolved into components tangential and normal to 2 according to (%)

(11) du” (87|t = e, u, u* —n"K jutub|*.

From (11) and (16) we immediately obtain

(12) on, du®[37[* + on, Su®[dt|- = —2[ T, n*n],
and also
(13) n, Su®[dt[t —n, du[dT|” = —yp utud = 470,

with the aid of (2) and (8).

3. — Charged spherical shell in a spheri-symmetric electrovac field.

We consider a charged spherical shell of dust falling in the electrovae field
produced by a spherically symmetric concentration of mass and charge near
its centre. For such a spherically symmetric (static or nonstatic) universe,
an extension (8) of Birkhoff’s theorem shows that the line element is reducible
to the standard Reissner-Nordstrom metric (1)—with appropriate parameters

¢, m—in any region free of matter.
Let » = R(z) be the equation of X, the history of the shell, and

(14) (ds%)5 ={R(7)P 4Q? —dz?

(®) B. HoFrMANN: Quart. Journ. Math., 4, 179 (1933), also in Recent Developments
in General Relativity (Warsaw, 1962), p. 279; A. Das: Progr. Theor. Phys., 24, 915 (1960).
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GRAVITATIONAL BOUNCE 748

be its intrinsic metrie, so that v is proper time measured along the streamlines 6,
@ = const. The interior and exterior line elements may be written

(15) (ds?)_ = {f_(r)} drt + r2 A —f_(r) d® (r<R(7)),
(16) (ds?), ={f, ()} dr® 4-r2 A2 —] (r) 4%, (r> R(1)),
where

(17) fr) =1—=2m,[r+e&fr*,  f.(r)=1—2m,[r+ é&r*.

Thus, the shell has charge e,—e, and gravitational mass m,—m,.

Both (15) and (16) must induce the same intrinsic metrie, namely (14),
on 2. Comparison of the coefficients of d£2 confirms that the interior and
exterior radial co-ordinates agree on 2. Further,

(18) dv? =f_(R) Q2 —{f_(R)}"'dR* = f(R) A2 —{f,(R) ;' dR=.

This fixes the relation between t_ and ¢, on X, and verifies, as expected, that
the simultaneous imbedding of X' in V_, V_ is possible.

We proceed to write out. explicitly the dynamical equations (9), (10), (12),
(13). Since u, n are orthogonal unit vectors in the 2-space of r(= zl),
. (=

(=a%), we have

(19) u§ = dafjdr = (R, 0, 0, X,),

(20) nh =(X,, 0,0, —R),

where

(21) fo X ={f,(R) + R}, R =dR/dr,

with corresponding expressions for #%, n;. By intrinsic differentiation of
u-u=—1, we find

=u,8u*/d7|* = [ RS R[Sv*—f X 82t [S2,
and this may be used to eliminate 32¢,/87% from

n, Su®[3t[t = X §2R[S7* — R 5%t/8v2[+
yielding

(22)  m, 3ufd7|t = (fX)1 B:R/Sr3F = (£, X,) fd2Rjdze + }af,(R)/dR),

with an analogous expression for n, du®/87|-.

6149



750 V. DE LA CRUZ and W. ISRAEL
The Reissner-Nordstrom metric (1) is associated with the energy tensor
(23) — T4 =—1T} =T; =T = ¢*/8nr*
{other components zero), so that in our case
(24) Tiwngl= =0,
(25) [T*n,ng] = (¢,° — e,7)(8mr* .
From (9) and (24),
(26) (Gub);b =0,
expressing conser{ra,tion of the proper mass (or the number of particles) of
the shell. For the co-moving co-ordinates employed in (14), ® = (0, 0, 1) and
(26) simplifies to
(27) 4nR%¢ = const .

Equations (12) and (13) yield, when (22) and (25) are substituted into them,

(28)  (fo X )R 4 my/ B — 6| R*} + (F_X_)7 (B + my[R* — ¢}/ "} =

= (6§ —é)/4nR’s,
(29)  (f X, )t (i + mofRE— e3R*} — (f_X_) {E 4 m,[B* — ¢}/ B} = 4o .
We recall from (21) that
fo X ={1 4 B —2m,[B + B},
fX_={14R*—2m R+ &/R*}.
Equations (28) and (29) are completely integrable. To obtain a first integ-
ral, multiply them together (thus eliminating o), set y = (1 +R?) so that
B =dy/dR, and employ z = 1/R as independent variable. The resulting first-

order equation,

(y—my@ -+ Jeia?) (dy)dw —m, + 62)° — (y — myw + be3a*)(dy/dw—m, + o) =

=2(6 — &)y — mx + Lela* )y — m,w + Lela?),
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GRAVITATIONAL BOUNCE 751

has a general solution of the form 2y = A Bz Cx?, where one of the three
constants 4, B,  is arbitrary. In this way we arrive at the first integral

(30) 14 (dR/d7)? =A+B/R + C/R?,

with A as the constant of integration, and

(31) B =m, 4+ m, — A(e;—e)/(m,—m,),

(32) 40 = A(e—e])*/(m,—m,)* — 2+ e3) + A7 (m, —m,)"
Substitution of (30) into (28) or (29) now gives

(33) 7R = A~ m,—m,),

in conformity with (27). For a physically meaningful solution it is necessary
that A be nonnegative. Equation (33) enables us to interpret this constant
in terms of the binding energy W, since

— W= (m;—m)(1— A7}

represents the difference between the gravitational mass m,—m, of the
shell (i.e. its total energy) and the sum of the rest masses of its constituent
particles. It thus represents the contribution to the shell’s gravitational mass
due to its kinetic and potential energies.

The further integration of (30) would be elementary. However, the various
physical possibilities emerge more clearly from a qualitative description of a
few representative special cases. This will be our aim in the next few Sections.

4. — Charged shell in vacuo.

Suppose first that no mass or charge is present apart from the shell itself
(mass m, charge ¢). Then ¢, =m, =0, ¢, =¢, m,=m and the equation of
motion (30) reduces to

(34) {1+ (dR/d7)*}t =a—b/R,
where we have written A* =a and
(35) b = (a%e*—m?)2am .

If <0, we can imagine the shell as starting, either from infinity with
initial velocity R = —(a*—1)* (for a>1), or from rest at a finite maximal
radius B, = [b]/(1—a) (for 0<a <<1). It accelerates as it falls inward and,
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752 V. DE LA CRUzZ and W, ISRAEL

upon reaching R = 0, produces a singularity. The subsequent history is there-
fore a matter of conjecture (the possibility of a rebound is, of course, not
excluded).

More definite conclusions can be drawn when b>0 (always obtainable for
a shell with given mass and nonvanishing charge by taking & sufficiently large).
In this case, it is necessary that a>1. The shell is impelled inwards from
infinity with initial speed (a*—1)}. Tt is decelerated, and comes to rest at a
finite radius R_,, = b/(a—1), then re-expands symmetrically to infinity.

We have been concerned with the intrinsic description of the motion,
r = R(7), as seen by a co-moving observer using the proper time 7. Since t
is related to the time f_ of stationary observers in the interior flat domain by
d7* = A’ —dR? we obtain from (34)

(36) (dR/dt_)2 =[(a—1)R—b][(@ - 1)R —Db]/(aR —b)2.

The denominator does not vanish for E>R,, . The motion as seen by an
interior observer is thus qualitatively similar to the intrinsic description just
given.

To an external observer, however, the sequence of events may appear
quite different. From (34) and (16) we obtain

diy\: 1 Re
('&7%) 7 e DR btla+ HE—5]’
f(R) = [(R— m)* 4 e>— m?]/R?

(37)

as the equation of motion in terms of the exterior time co-ordinate ¢, (essen-
tially the proper time of a stationary observer with large radial co-ordinate).
For a shell with e2>m?, f never vanishes and the co-ordinates r, {, cover
the complete exterior manifold: qualitatively the motion seen externally is as
previously described. However, there is a quantitative divergence which in-
creases without bound as e* —m?2 Consider, for instance, the case where b> 0
and = (e2—m?)? is small. Before reaching its minimal radius R, ~ (a+1)-
-m/2a <m, the contracting shell passes through the « stagnant zone » m —d <
< R<m-d, where the term 1/f2 in (37) becomes large and dominant. The
proper time required to traverse this zone is very small (of order d), but the
externally observed time is of order m?/0. Accordingly, the proper time re-
quired to implode from any given radius and re-expand to this radius is finite,
but the externally observed time exceeds this by an amount of order m?/(¢* — m?*)t
which is unbounded when e2->m® We reach the curious conclusion that an
external observer mever sees the re-expanding shell if e*<m?; re-expansion to arbi-
trarily large radius nevertheless occurs in finite time according to an interior or
@ co-moving observer.
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GRAVITATIONAL BOUNCE 753

5. — Analytic completion of Reissner-Nordstrom manifold for ez < me.

To resolve the apparcnt paradox of the previous Section, we require a pic-
ture of the exterior manifold when ¢2<m?2. The co-ordinates 7, , ¢, t then no
longer furnish a completc map. The problem of analytically completing the
Reissner-Nordstrém manfold has been dealt with by GRAVES and BRILL (%)
{for e2<<m?) and by CARTER (°) (for ¢2 =m?). We shall present a somewhat
simplified review.

i) The case e = m2. In this case the co-ordinate t remains timelike for
all ». Introduce an angular timelike co-ordinate @, with range —co << @ < oo,
such that ¢/2m =tg® for —zn/2 <O <x/2. The (formally) extended line ele-
ment
ds? = (1 —m/r)=2dr? 4+ r2 Q2 — 4m*(1 — m/r)2(d tg @)2,

represents a periodic space-time which has a geometrical singularity at » =0
and is otherwise free of singularities. The », @ map is subject to local break-
down on the lines r =m, ©® = (n-+1)z. That r =m is actually a regular part
of the manifold can be verified by expressing the line element in a form which
is manifestly regular for r>0:

(38) ds? =2 dv'dr— (1 —m/jr)? dv'2 + r2 dQ2,
where the advanced time parame- Ao )
ter ¢’ is analytically related to //,// le
7, t by 3/27'[ \\{’t > \// t=—c Z
] e ’ g
(39) dv' =(1—mjr)2dr|at lH:bl'—//;/
D
(r>m). ""E‘t\;\\\\
V2m N slr\ /\\/t=+o<> M
Fig. 1. - Schematic representation 7 \\\\\ et
of the extended Reissner-Nordstrom 0 - \\> =— — A
manifold for e=m. Shaded sections o _—
of the map are not part of the man- ifam ST A T
ifold. Dashed lines represent radial lia! t=+m/ 7
null geodesics; the apparent constrie- =:JIT —= 7
tion of these lines at » = m is due to =47
local defectiveness of the co-ordinates. -1 ;\\ X
The timelike curve KLM represents —32n N '\t:_"”‘ \ Z
the history of a thin shell, which . AN
implodes in the space I a, reverses \\\\\\ ~ la
its motion at I after passing through DN
the event horizon r=m, then re- < t\:\_jo \\: K
expands in the space Ib. | Z 7 Z

(®) B. CarTER: Phys. Leit., 21, 423 (1966).
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754 V. DE LA CRUZ and W. ISRAEL

In the o', r chart one can, for instance, follow any incoming radial null geodesic
9" = const originating in a region with r>m (e.g. region Ia of Fig. 1) down
to r =0 (in region IIla). This chart thus provides a regular mapping of two
adjoining regions such as Ia and I11a. By analogous use of a retarded time
parameter we can construct a chart for IIIa and Ib. An infinite chain of such
overlapping co-ordinate patches enables us to follow any null or timelike geo-
desic down to the singularity r == 0 or to indefinitely large values of its affine
parameter. Use of the », & map means that allowance must be made for local
breakdowns, but has the advantage of providing a clearer over-all picture.

ii) The case e?*<<m? In thigz case, the quadratic coefficient f(r) in the
Reissner-Nordstrom metriec (1) has real unequal factors

(40) fr) = (r—r)(r—my)/r* (0<r,<m).

Incoming and outgoing radial null geodesics have equations v = const and
% = const respectively, where

(41) 2ku—tdu = f~rar—dt,
(42) 2kv-tde =ftar + d¢,
and % is an adjustable constant. In the u, v chart the line element (1) takes

the form

(43) ds? == (4k2f/uv) du dv + r* d2*.

Integration of (41) and (42) yields

> | 2
(44) SRINLL N P A LR S P

.
——1li=kn |uw|,
r—7ry T | 1 ‘

£

(45) t=kln |vju| (r>7r, or r<{7y).

The constants of integration have been placed equal to zero for convenience.
Consider now the chart u,, v, obtained by setting k =k, =r>/(r,—1.).
We find from (44)

*Tzz/ 1z (71— 9
(46) ulvlz(;——l)( e exp[“y!’r] (r> 1),

1 \72 1

and (43) exhibits no singularity at » =#,. The chart u,, v, in fact gives a reg-
ular mapping of any given subregion of the manifold which has 7>7,.
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GRAVITATIONAL BOUNCE 755

A {co-ordinate) singularity does develop at r —=r,, however, and it is neces-
sary to go over to another chart before that happens.

Define the chart w,, v, by setting k =%k, =—7>2/(r,—r,) in (44) and (45).
Then

4"12/7'12 — 7.
(47) Uy Uy = (;— 1) (1 — i) exp [— i# r] (r<mr),

51 Ts

and this provides a regular covering for any
subregion with r <.

Fig. 2. — Schematic representation of the extended
Reissner-Nordstrom manifold for ¢<<m. Null lines
are inclined at 45°. FGHJM is the history of a shell
which collapses from infinity in the asymptotically
flat space Ia, passes through the event horizon
r=1r,, comes to rest at J with a minimal radius
smaller than 7,, then re-expands into the asymptoti-
cally flat space I ¢. ABODE is the history of an
oscillatory shell or uniformly charged sphere. Shading
on the curves distinguishes the interior domain.

Fig. 3. — Kruskal-type diagrams for portions of the over-all map of Fig. 2, showing

the same curves ABODE and FGHJM. Figures 3q) and b) overlap in the region II b,

and may be regarded as linked together along the curve 7 ==17,, wWhere r, is any con-
venient value between r, and r,.
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756 V. DE LA CRUZ and w. ISRAEL
In the domain of overlap r,<<r<r, the two charts are related by
(48) ' = w7, ol = o (o <r<m).

The complete manifold for e2<<m? is a periodic lattice of alternating re-
gions of type I (r>ny), type Il (r,<<r<r,) and type III (r<<r,). Figure 2
(due to CARTER (%)) is a schematic over-all map with local singularities at
some of the lattice points. Figures 3a) and b) are Kruskal-type diagrams which
together give a faithful map of any subregion covered by a pair of overlap-
ping charts «,, », and u,, ,.

Because of the cyeclic character of the extended manifold, it is natural to
raise the question of possible topological identifications. For instance, in Fig. 1
for ¢2 =m?, one might postulate that all points (r, @+2nxm), n =0, £1, ...,
represent the same physical event. Such « space-saving » devices are tempting,
but they lead to causal paradoxes. In addition, there would be dynamical diffi-
culties connected with gravitational self-interaction, since a world-tube would
then intersect a space ¢ = const more than once. These possibilities will not
be considered further here.

6. — Charged shell with ¢ < m? in vacuo.

We now return to the discussion, begun in Sect. 4, of the charged shell in
empty space, and proceed to consider the exterior view of the motion for b >0,
e?<m?, when an event horizon exists.

For a shell with e* = m?, there is always a special solution (a =1 in (34)
(35)) which is static. The shell is then at rest (in neutral equilibrium) at any
radius R. The world-line 87 (Fig. 1) represents the history of such a shell
with R = const < m. The extended manifold displays an infinite sequence of
r = 0 physical singularities, e.g. for fn <@ < $n. If we wish, we can remove
these singularities and maintain strict periodicity by introduecing an endless
number of «re-incarnations» of the shell, e.g. at §'7". Space-time is then flat
for r< R and all @. The result is of some interest mathematically, since it
represents a universe containing an event horizon (r =m) which is every-
where free of singularity ().

(1°) This does not contradict a theorem on the inevitability of singularities due to
R. PENROSE: Phys. Rev. Lett., 14, 57 (1965), since two of the hypotheses of that theorem
are not satisfied here. In the first place, the manifold with e=m contains no « trapped
surface » (even though it contains an event horizon), since outgoing radial null geo-
desics have dr/dt= (1 —m/fr)* >0 and do not converge anywhere. Secondly, the man.-
ifold with e<<m does not admit a Cauchy hypersurface.
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GRAVITATIONAL BOUNCE 757

The history of a shell with e¢? =m? > 1 is represented by the timelike
curve KLM in Fig. 1. To an external observer in the asymptotically flat
space Ia the shell implodes, then appears to slow down as it approaches the
observer’s event horizon r =m, reaching it only asymptotically as ¢-—>oco.
On the other hand, an observer moving with the shell finds that it passes
rapidly and uneventfully through » =m, contracts to a nonzero minimal ra-
dius at L, then re-expands into a new space 1b, identical with Ia in its geomet-
rical properties, but physically distinet from it. It appears that we are forced
to accept this resolution of the paradox encountered in Sect. 4.

The path FGHJ M (Fig. 2 and 3) of a bouncing shell with b > 0, e?<<m?
has a similar general character: the bounce carries the shell into a different
space. A new and peculiar feature is the appearance of a timelike singular
curve 7 =0 (the curve XY) in the vacuum region outside the shell. This sin-
gularity is connected with a temporary closure of the spaces ¢ = const. It has
to be interpreted as the history of a particle with mass m and charge —e.

7. — Test shell; uniformly charged ball of dust.

We now turn briefly to the situation where the hollow interior of the shell
contains nonvanishing charge e, and mass m,. We shall confine our discussion
to the case where the mass u =m,—m, and charge ¢ =¢,—e¢, of the shell
itself are small compared with m,; and ¢, and for a qualitative description it
will be sufficient to consider the limit of a « test shell » (u— 0, ¢—>0 with ef/u
finite). In this limit we obtain from (30)

dR\? 2m o e? AN
4 — ) =1 — "= =]~ N
w (@) = (7 )l

where we have written ¢, =e¢, m, = m.

It is to be expected that {49) will agree with the equation of motion of a
radially moving charged test particle in the Reissner-Nordstrém field (1). The
latter is obtainable from the Lagrangian

dR do> dzf\ ¢ da#
— ) =ud"— g .- — | — = —f {1 2%
1(m, ) =nat (', T) oy — pAHI— AR e

(where @, = (0, 0, 0, ¢/r) is the electromagnetic vector potential) by forming
the Hamiltonian integral H = u, and it does indeed reproduce (49).

If le/m], |e/u| and A4 are each less than unity, (49) shows that the shell’s
radius oscillates between a maximum larger than 7, =m-+v/m*—e2 and a
minimum smaller than 7, =m —+/m?— ¢%. The history of the shell is repre-
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sented by the curve ABCDE ... in Fig. 2 and 3. In each oscillation the shell
enters a new space. As viewed by a co-moving or an interior observer the
oscillation is strictly periodic; however the path ABCDE ... in the exterior
space-time is not cyelic, but subject to a systematic time-shift. If a given
maximum occurs for { =%, in the space Ib (say), then sueceeding maxima
(in Ie, ete.) oceur for t =t,+0C, t,4+20C, ete. The constant C may be evalua-
ted from (49) and (18) by an integration in the complex plane. For large max-
imal radius, C is nearly equal to the proper period of pulsation, and both agree
closely with the corresponding period calculated from Newtonian theory (11).

The occurrence of a bounce is independent of the relative sign of ¢ and e,
8o it clearly has little to do with a contest between gravitational attraction
and electrostatic repulsion. For a neutral shell (e =0) we obtain from (49)
by differentiation,

d?R/dt? = — M(R)/R?, M(R)y=m—e*}R.

This brings out clearly the physical mechanism responsible for the bounce.
Because the electrostatic field energy of the internal charge ¢ is diffused through-
out space, less and less of it contributes to the effective interior gravitational
mass M(R) as the shell contracts. Ultimately M(E) becomes negative and there
is a gravitational repulsion.

Finally, let us note another interesting special case. If we set s/u = ¢/m,
(49) may be regarded as the equation of motion of a particle on the outer sur-
face r = R(7) of a uniformly charged ball of dust with total charge ¢ and
mass m, which is collapsing homologously. For e*<<m? A <1, the motion
is again oscillatory, and the history of the surface is given qualitatively by the
curve ABCDE ... in Fig. 2 and 3. This example has been discussed by
Novikov (5).

8. — Concluding remarks.

The collapse of a spherically symmetric body to an event horizon appears
as an irreversible process to an external observer. As we have seen, the pos-
sibility cannot be ruled out that the body reverses its motion within the event
horizon and re-expands symmetrically. It then appears necessary to believe
in the existence of other asymptotically flat spaces geometrically similar to
but distinet from ours, which will accommodate the re-expansion. This seems
at least as fantastic as the alternative of irreversible collapse to virtually
point-like dimensions.

(*Yy In the Newtonian description the pulsating shell of course always remains in
the same space.
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In assessing the possible relevance of these results to realistic gravitational
collapse, it is, of course, necessary to keep in mind the various idealizations
and hypotheses involved (asymptotic flatness, exact spherical symmetry, an-
alytic continuability of the manifold ete.), each of which could be questioned.

As a null hypersurface (¢.e. a characteristic hypersurface of the field equa-
tions), an event horizon is a possible locus of discontinuities of the field. It is
not necessary, and perhaps not physically justified, to insist on analytic con-
tinuation of a manifold through an event horizon ('2).

For the collapse of a stellar mass in our expanding universe, the idealiza-
tion of asymptotic flatness is justified at the present epoch, but clearly not
in the remote past. It will not always be justified in the future if the universe
happens to be oscillatory. In fact, a lattice structure for space-time of the
general type we have been describing would find a natural interpretation in
terms of an oscillatory universe.

The following question is of more immediate concern. To what extent
does the development of an event horizon in gravitational collapse (and hence
the externally observed irreversibility) depend on the restrictive assumption
of spherical symmetry? In astrophysical situations a considerable degree of
asymmetry will nearly always be present. It has been claimed ('3) that small
departures from spherical symmetry will not affect the qualitative features
of the collapse. Even this, however, does not yet seem to have been conclu-
sively established.
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RIASSUNTO (%)

Si deduce una soluzione delle equazioni del campo di Einstein che rappresenta un
sottile strato sferico di polvere carica che cade nel campo a simmetria sferica di un corpo
carico dotato di massa posto al centro. In opportune condizionilo strato rimbalza in modo

(") Traduzione a cura della Redazione.
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reversibile a un raggio minimo non nullo. E possibile un rimbalzo anche dopo che lo
strato € crollato entro la sfera di Schwarschild, cosicehe il collasso visto dall’esterno &
irreversibile. Si spiega lapparente paradosso per mezzo della struttura reticolare della
molteplicitd di Reissner-Nordstrom estesa analiticamente. Si discute la possibile influenza
dei risultati sul problema del collasso gravitazionale realistico.

T'paBHTAIMOHHAS. YHPYrOCTb.

Pe3tome (*). — BrpIBomuTCs pellieHHE IIOJICBBIX ypaBHeHWIl OiiHIITelHa, KOTOpOe
TIPEACTABIIAET TOHKYIO ChepuyecKyro O0OJOYKY 3apsDKeHHOH IbLIM, Najarouled B UeH-
TPaNbHO-CHMMETPHYHOM IMOJIE 3apsSKEHHOTO MACCHBHOILO Tea, IMOMEIEHHOrO B LEHTPE.
IIpy MOAXOAAIINX YCIOBHAX O0OJIOYKA OTCKaKuBaeT oOpaTUMO K HEHYJEBOMY MHHH-
MaNnsHOMY pamuycy. YIpyrocThb elle OKa3bIBAaeTCS BO3MOXHOHM, maxe IOCie TOro, Kak
000J104ka KoJulamcupoBana BHYTpb chepsr HIBapmmmmsrga, Tak 4TO KOJIAIC, KOraa
paccMaTpHBAeTCs W3BHE, sABNsAETCA HeoOparumbiM, Kaxymuiicss mapamokC oOBACHACTCA B
TePMHHAX PEIIEeTYATO-NOAOOHOM CTPYKTYphl AHAIMTUYECKH MPOIJOIDKEHHOTO MHOT0006-
pasus Peiicuepa-Hopactpema. O6cyxmaeTcs BO3MOXHasi YMECTHOCTh 3THX PE3yJbTaTOB
B npoblieMe PEeNATHBACTCKOIO I'DaBUTAUMOHHOIO KOJLIAICA.

(*) Ilepegedeno pedaxyueil.
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