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S u m m a r y .  - -  A solution of Einstein's field equations is derived which 
represents a thin spherical shell of charged dust falling in the spherically 
symmetric field of a charged massive body placed at its centre. Under 
suitable conditions the shell bounces reversibly at a nonzero minimal 
radius. A bounce is still possible even after the shell has collapsed inside 
the Schwarzschild sphere, so that the collapse as viewed externally is 
irreversible. The apparent paradox is explained in terms of the lattice- 
like structure of the analytically extended Reissner-NordstrSm manifold. 
The possible relevance of the results to the problem of realistic gravita- 
tional collapse is discussed. 

1 .  - I n t r o d u c t i o n .  

We shall be  concerned ill this p~per  wi th  a convent ional  p rob lem in general  
re la t iv i ty :  the  grav i ta t iona l  collapse of a charged th in  spherical shell falling 

in a spher i - symmetr ic  external  field. The s tudy  of such simple artificial prob-  

lems, while of no direct relevance to astrophysics,  can none the  less serve a 

useful purpose,  since i t  b~'ings into relief basic issues of principle in tile general  

relativist ic theory  of collapse which are still far  f rom understood.  
General  re la t iv i ty  leads to the  following picture  for the  evolut ion of 

a contract ing spherical  body (1). Once tile compression passes a cer ta in  crit-  

ical l imit,  character ized roughly by  the  interior  (Newtonian) poten t ia l  be- 
coming comparable  wi th  c 2, the  subsequent  his tory is one of cont inuing col- 
lapse which cannot  be hal ted by  pressure forces. The i rreversibi l i ty  of this 

(1) See, e.g., YA. B. ZEL'DOVICI~ and I. D. NovIxov: Sov. Phys.  Uspekhi, 7, 763 
(1965); 8, 522 (1966). 
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picture is surprising, and differs radically from the corresponding Newtonian 

picture, where the motion is in general oscillatory. I f  one examines the rela- 

tivistic derivation to see how the element of irreversibility enters, one finds 

tha t  it stems from two largely unconnected causes. 

A)  External  irreversibili ty: development o/ an event horizon at r = 2 m .  

The surface of the contract ing spherical body  passes (in finite proper time) 

within the critical Sehwarzsehild sphere r = 2m. To an external observer, 

light emit ted from this sphere suffers infinite gravi tat ional  red-shift, and r = 2m 

therefore appears as an event horizon which the contract ing body seems to 

be approaching asymptot ical ly  as t-->c~. I f  ordinary ideas of causality are 

to be maintained, he can never see the body re-emerge from this sphere. 

B) In t r ins ic  irreversibili ty: spacelike character o] the curves r = const near 

r = 0. The exterior (Sehwarzsehild) field of the body, analyt ical ly extended 

to r----0, has the proper ty  tha t  the curves r = eonst < 2m are spaeelike. The 

his tory of a particle on the surface of the body is a t imelike curve of the 

exterior manifold. I t  is easy to see tha t  the particle can reverse its inward 

motion at r----ro ~ 2m only if a) its world-line is momentar i ly  spacelike, and 

b) it subsequently travels into the past. Assuming tha t  classical general rela- 

t iv i ty  remains valid even under the extreme conditions prevailing near r = 0, 

one is forced to the conclusion tha t  no rebound is possible and tha t  the entire 

mass piles up irreversibly on the singular curve r = 0. 

Of these two arguments,  A) seems on surer ground, since it does not depend 

on extrapolat ion to extreme conditions. For  masses of astrophysical interest, 

compression to r ~ 2m does not produce immoderate  densities or curvatures.  

Modifications due to quantized gravitation, possible inapplicabili ty of Ein- 

stein's field equations at  very high curvatures,  or other new physical effects 

of an unant ic ipated kind might  profoundly affect the si tuation near r-=--0, 

but  should not be impor tan t  near r----2m. The exact nature of such modi- 

fications is, of course, unknown. One could t ry  to take their  effects into ac- 

count in a crude way by supposing tha t  the s tandard Schwarzsehild metric is 
modified (2) to 

ds ~ + r  ~ + ' ' "  + 1 + ~ + . . .  dt ~, r r 

dr9 ~ : d02 + sin s 0 d~ ~ . 

(~) That the unmodified Schwarzschild metric cannot be trusted near the singular 
curve r = 0 is clear from the fact that this curve is spacelike : a body which has collapsed 
irreversibly to r = 0 would have to travel faster than light! 

4 8  - l l  Nuovo  Cimento A .  
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I f  the usual as t ronomical  predict ions of Einste in 's  theory  are to be preserved,  

the  constants  a, b would have  to be small  compared  with  m 2. In  t h a t  case, 

we still have  an event  horizon (the sphere on which go0----0), bu t  the  argu- 

merits of B) are clearly l iable to b reak  down. The possibi l i ty cannot  be ruled 

out t ha t  a collapsing spherical  body  reverses its mot ion  near  r = 0 and  re- 
expands.  The intr iguing question is how such a p ic ture  can be reconciled wi th  

the  appa ren t  i r revers ibi l i ty  of the  collapse as seen by  an externa l  observer .  

We shall i l lustrate  some of the  possibil i t ies by  focussing a t t en t ion  on the  
special line e lement  (3) 

(1) ds2=]-~dr~ + r~df22- -]d t  ~, ] -- ] - - 2 m / r  § e2/r 2, 

which is formal ly  the  Reissner- l~ordstr6m metr ic  for the  g rav i t a t iona l  field 

of a charged part icle.  I n  Sect. 2 and  3 we derive the  equat ion  of mot ion  of a 

th in  spherical  shell in such a field. I t  is found (Sect. 4, 7) t h a t  bounce  can 
occur under  a great  va r i e ty  of conditions. I n  par t icular ,  the  shell can bounce 

inside an event  horizon. I n  t h a t  case the  manifo ld  represented  by  (1) is in- 
complete.  I f  i t  is ex tended  analy t ica l ly  (Sect. 5) in the  manner  of GRAVES and 

BRILL (4), the  extended space- t ime appears  as a periodic la t t ice  of geometr i -  

cally similar a sympto t i ca l ly  fiat spaces, joined by  (~ tunnels  ~) in which space 

is closed. Re-emergence of the  rebounding  shell f rom the event  horizon then  

takes  place in a new, dist inct  space (Sect. 6, 7). 
Our results are similar  to those recent ly  ob ta ined  by  I~OWKOV (8), who 

has considered the  homologous collapse of a un i formly  charged ball  of dust.  

The shell model  has the  advan tage  t h a t  the  comple te  solution can be given 

in a simple explici t  form. lqovikov 's  results can be recovered as a special case 

(Sect. 7). 
The pape r  concludes wi th  some general  r emarks  (Sect. 8). 

2. - D y n a m i c s  of a th in  she l l .  

The dynamics  of a th in  shell in vacuo has been  considered in a previous  

pape r  b y  one of us (6). The case where  the  shell falls in a cont inuous m e d i u m  

with  nonvanishing energy tensor  is a s t ra ight forward  generalization,  and  we 

(3) As an illustration, i~ may be remarked that (1) represents the external field 
of an (uncharged) spherical body in the theory of F. HOYLE and J. V. NARLIKAR: 
Pros. Roy. Sos., A 294, 138 (1966). 

(a) g. C. GRAVES and D. R. BRILL: Phys. Rev., 120, 1507 (1960). 
(5) I. D. NOWKOV: J E T P  Lett., 3, 142 (1966). 
(8) W. ISRAEL: 2YUOVO Cimento, 44B, 1 (1966); ibid, 48 B, 463 (1967). 
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shall sketch i t  briefly, referring the reader  to the previous paper  for a fuller 

account of the basic ideas. 
Let  the t imelike hypersurface Z divide space-time into two parts  V _ ,  V+ 

which both  contain Z us par t  of their  boundaries  and are otherwise disjoint. 
Let  n (directed from V_ to V+) be the uni t  spaeelike normal  to Z, ~a a set of 
intrinsic co-ordinates for Z, e(~) the t r iad  of holonomic basis vectors tangent  
to Z and associated with ~a (i.e. an infinitesimal displacement in Z has the 
form e(,)d~ ~) (7). Fur ther ,  let K~,  Ka + denote the extrinsic curvatures  of Z 

associated with its imbeddings in V_, V+ respectively.  Then Z is the his tory 

of a thin shell if 

Y,b - -  K + b -  Kab 

is nonvanishing. The surface energy tensor  of the shell is given by  the Lanczos 

equations (6) 

(2) Yah - -  gabY : - -  87~Sa~, (Y ~ gab~'ab) , 

the analogue of Einstein 's  field equations 

(3) G~  = - -  8 a T ~  

for the surrounding continuous medium. 

In general, one has the following eight relations (6) between the extrinsic 

curvatures K~b and the normal components  of the Einstein tensor  on Z:  

(~) 

(5) 

aR - -  Kab  Kab -~ g e T -  = - 2G=~ n~'n~] ~= , 

b + K.;  b - -  ~ , K  I- = __ G ~,~e(,)~' n~]=~ . 

Here,  K ~ K~ ~', 3R is the intrinsic curvature  invar iant  of Z, and the semi- 
colon indicates covariant  differentiation with respect to the intrinsic metric 

of Z. The jumps of (4) and (5) across Z can be writ ten,  with use of (2) and (3), 
in the form 

(6) Sa~(K h + K-~b ) = 2[T~,~W'n~], 

(7) We adopt the following conventions: G = c  ~ 1, signature of metric + + + --, 
Greek indices refer to 4-dimensional, Latin indices to 3-dimensional quantities. Limits 
of the field quantity T as the event P on Z is approached from V_, V+ respectively 
are denoted by T(P)I - ,  ~(P)I +. In Sect. 2 square brackets denote jump discontinuities: 
[~]--- ~I + -  ~l-.  
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We now specialize to the  case of a coherent  shel l  o] dus t ,  character ized by  
the surface energy tensor 

(8) S ~ = (~u~ ~ , 

where the uni t  t imelike vector  u a = d~a/dT tangent  to Z represents Che 4-velo- 

ci ty of the dust part icles and a is the sum of their  rest masses per uni t  ~re~.. 
F rom (7) and (8) it  follows tha t  

(9) (aUb):b : u~[ T c,~e(a)~n ~] : [ T a~uC' n ~] 

(10) au~;bu ~ : - -  ((5 ~ a ~- u ~u~)[ T ~e(~)~'n~] . 

The two 4-accelerations 3u" /3v l  +- of a dust particle, as measured in V_, V+ 
can be resolved into components  t~ngential  and normal  to X according to (6) 

(11) ~u~/~v[ +- : e(a)C~ U~;b Ub - -  na  K ab UaUbl+ . 

From (11) and (16) we immediately obtain 

a n  ~ ~u~/~vl  + + an~,~u~/~v[  - =- - -  2[ T ~ n ~ n ~ ]  , (12) 

and also 

(13) 

with the aid of (2) and (8). 

3. - Charged spherical shell  in a spheri -symmetric  electrovac field. 

We consider a charged spherical shell of dust falling in the electrovac field 
produced by  a spherically symmetr ic  concentrat ion of mass and charge near 

its centre. For  such a spherically symmetr ic  (static or nonstatic) universe, 
an extension (s) of Birkhoff 's  theorem shows tha t  the line element is reducible 

to the s tandard  Reissner-NordstrSm metric (1)--with  appropriate  parameters  
e, m - - i n  any region free of mutter .  

Let  r = R ( v )  be the  equat ion of X, the  his tory of the shell, and 

(14) (ds')~ = {R(r)} '  d~9' - -  d~ 2 

(a) B. I-IorFMAN~: Quart. Journ .  Math . ,  4, 179 (1933), also in Recent  Developments 
i n  General Relat iv i ty  (Warsaw, 1962), p. 279; A. DAs: Progr.  Theor. Phys . ,  24, 915 (1960). 
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be its intrinsic metric,  so t h a t  v is proper  t ime  measured  along the streamlines O, 
= eonst. The interior and  exter ior  line elements m a y  be wr i t t en  

(15) (ds~)_ = {/_(r)} -~ dr ~ ~- r 2 d~22 - -  ]_(r) dt~_, (r < R ( ~ ) ) ,  

(16) (ds~)+ = {/+(r)} -~ dr ~ ~- r ~ d ~  2 - -  ]+(r) d t+ ,  (r > R ( 7 ) ) ,  

where 

(17) ]_(r) = 1 - -  2m~/r ~- e~/r 2 , ]+(r) = 1 - -  2 m J r  ~- e~/r ~ . 

Thns~ the  shell has charge e~--e~ and  grav i ta t iona l  mass m 2 - - m ~ .  

Both  (15) and (16) mus t  induce the  same intrinsic metric~ namely  (14), 

on Z. Comparison of the  coefficients of d~2 2 confirms tha t  the interior and 
exter ior  radial  co-ordinates agree on 2:. Fur ther ,  

(18) d ~  = L ( R )  at ~_ - -  {/_(R)}-,  dR~ =/+(R) ate+ - -  {/+(R)}-~ aR~. 

This fixes the  relat ion be tween t_ and t+ on Z, and  verifies, as expected~ t h a t  
the  s imul taneous imbedding of ~ in V_, V+ is possible. 

We proceed to write out explici t ly the  dynamica l  equat ions (9), (10), (12), 

(13). Since u, n are or thogonal  uni t  vectors  in the 2-space of r ( ~  x~), 
t=t: ( _ 4 x• we have  

(19) 

(20) 

where 

(21) 

cr u+ = dx+/dv  = (.~, O, O, X+) ,  

+ --- (x+ ,  o, 0, - - R ) ,  n ~  

] + x +  = {/+(n) +R~}~,  .it - -  d t~ /dv  , 

with corresponding expressions for u ~, n~. By intrinsic differentiation of 
u . u = - - l ,  we find 

and this m a y  be used to e l iminate  32t+/3r~ f rom 

% ~ua/SvJ + = X ~R/87=  --I~ ~t/87~I+ 

yielding 

(22) n~Su~/371 + = (IX) -1 8~R/87~1+ = (]+X+) ~d2R/d72 ~- � 89  

with an analogous expression for n ~ u ~ / 3 7 1  - .  
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(25) 

F rom (9) and (24), 
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The l~eissner-NordstrSm metric (1) is associated with the energy tensor  

(23) - -  T~ =~ - -  T~ = T~ = T~3 = e~187~r ' 

(other components  zero), so tha t  in our case 

T~.u~nnl  +- = O, 

[T"~n~n~] = (e~ ~ -  e ~)18~r ~ . 

(26) (au~);b = 0,  

expressing conservation of the proper  mass (or the number  of particles) of 
the shell. For  the co-moving co-ordinates employed in (14), u b = (0, 0, 1) and 

(26) simplifies to 

(27) 4nR2(~ = const .  

Equat ions  (12) and (13) yield, when (22) and (25) are subst i tu ted into them, 

(28)  (/+X-Jr.) -1 {-~ -iF ~n'21 'R2 - -  e~/~11:~3 } -[- ( f - X - )  -1 {-~' -~- ~n,/R2 - e~/R2} = 

= ( ~ -  e~)lr 

(29) if+x+)-' {~ + m U R  ~ - -  e~lR ~} - -  i f _ X _ ) - '  {.i~ + r e , l i t  ~ - -  e:,l R3} - ~ , ~  . 

We recall f rom (21) tha t  

]+X+ = {1 -F/~2__ 2 m J R  + e~/R2} �89 , 

L z _  = {1  + _ ~ - 2 % I ~  + e~,lR~} �89 . 

Equat ions  (28) and (29) are completely integr~ble. To obtain a first integ- 

ral, mult iply them together  (thus eliminating a), set y--�89 3) so tha t  
= d y / d R ,  and employ x ~ 1/R as independent  variable. The resulting first- 

order equation, 

( y - - m , x  ~- l e~x2) (dy /dx- -m~ ~- e~x) 2 -  ( y - - m ~ x  ~- � 89  ~- e~x) 2 = 

1 2 .2 1 [~2 .2 
- -  - -  2 ( e ~  - -  e~)(y - -  m i x  ~- ~elx  ) ( y  - -  m 2 x  + ~ 2 x  j ,  
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has a general solution of the form 2y = A + B x ~ - C x  2, where one of the th ree  
constants A,  B, C is arbi t rary.  In  this way we arrive at  the first integral  

(30) 1 ~- (dR/d~) ~ =- A + B / R  -7 C/R ~ , 

with A as the constant  of integrationj and 

(31) 

(32) 4C--A(e'~--e21)~/(m2--m~) - - ' )  ~ (.2 "~ "((1-~- ~) ~- A - i ( m ~ - - m S  ". 

Subst i tut ion of (30) into (28) or (29) now gives 

(33) 4zR2a A-~(m~ - -  ml) , 

in conformity  with (27). For  a physically meaningful solution it  is necessary 

tha t  A be nonnegative.  Equa t ion  (33) enables us to in terpret  this constant  
in terms of the binding energy W, since 

- -  W=-- ( m 2 - - m t ) ( 1 - -  A ~�89 

represents the difference between the gravi ta t ional  mass m 2 - - m l  of the 

shell (i.e. its to ta l  energy) and the sum of the rest masses of its const i tuent  
particles. I t  ~hus represents the contr ibut ion to the shell's gravi tat ional  mass 
due to its kinetic and potent ial  energies. 

The fur ther  integrat ion of (30) would be elementary.  However,  the various 
physical possibilities emerge more clearly f rom a quali tat ive description of a 
few representat ive  special cases. This will be our aim in the next  few Sections. 

4. - Charged s h e l l  in  vacuo .  

Suppose first t ha t  no mass or charge is present  apar t  f rom the shell itself 
(mass m, charge e). Then e l = m 1 = 0 ,  e2=e ,  m 2 = m  and the equation of 
motion (30) reduces to 

(34) {1 + (dR~dr)2} �89 = a -  b /R ,  

where we have wri t ten  A t =  a and 

(35) b = (a~e ~ -  m~)12am. 

I f  b < O, we can imagine the shell as starting, either f rom infinity with 
initial veloci ty /~ = - - ( a - ~ - - l )  �89 (for a ~ l ) ,  or f rom rest at  a finite maximal  

radius R ~  x = ]b[/(1--a) (for O<  a <  1). I~ accelerates as it falls inward and, 
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upon reaching R = 0, produces a s ingulari ty.  The subsequent  h is tory  is there-  

fore a m a t t e r  of conjecture (the possibil i ty of a rebound  is, of course, not  

excluded). 

More definite conclusions can be drawn when b > 0 (always obta inable  for 

a shell wi th  given mass and nonvanishing charge b y  tak ing  a sufficiently large). 

I n  this case, i t  is necessary t h a t  a > 1. The shell is impelled inwards  f rom 

infinity wi th  ini t ial  speed (a s _  1) �89 I t  is decelerated,  and comes to rest  a t  a 

finite radius R ~ .  = b / ( a - - 1 ) ,  then  re-expands  symmetr ica l ly  to infinity. 

We have  been concerned wi th  the  intrinsic descript ion of the  mot ion,  
r = R(~), as seen b y  a co-moving observer  using the proper  t ime  ~. Since 

is re la ted  to the  t ime  t of s t a t ionary  observers in the  interior  flat domain  by  
d ~ S =  dt 2 _ - d R  ~, we obta in  f rom (34) 

(36) ( d R / a t )  s = [ ( a - - 1 ) R - - b ] [ ( a  + 1 ) R - - b ] / ( a R - - b )  2 . 

The denomina tor  does not  vanish  for R~>Rmx ~. The mot ion  as seen by  an 

interior  observer  is thus qual i ta t ively  similar to the  intrinsic descript ion just  

given. 
To an external  observer,  however,  the  sequence of events  m a y  appea r  

quite different. F r o m  (34) and  (16) we obta in  

(37) 
( r  2 1 

d R /  = 7; + 
R 2 

J [ ( a -  ] ) R - -  b][(a + I ) R - -  b] ' 

J(R) ~ [ (R--  m) 2 + e ~ -  mS]/R 2 , 

as the  equat ion of mot ion  in t e rms  of the  exter ior  t ime  co-ordinate  t+ (essen- 
t ial ly the  p roper  t ime  of u s t a t ionary  observer  wi th  large radia l  co-ordinate).  
For  a shell wi th  e2> m 2, ] never  vanishes and  the  co-ordinates r, t+ cover  

the  complete  exter ior  manifold:  qualitatively the  mot ion  seen ex terna l ly  is as 
previously described. However ,  there  is a quan t i t a t ive  divergence which in- 

creases wi thout  bound  as e 2 -* m 2. Consider, for instance,  the  ease where b > 0 

and  (5 _~ (eS- -ms)  �89 is small. Before reaching its min imal  radius Rmi n ~ (aq-1)" 

�9 m/2a  < m, the  contract ing shell passes th rough  the  (( s tagnant  zone ~ m - -  (~ < 

< R < m + ~ ,  where the  t e r m  1/I 2 in (37) becomes large and  dominant .  The 

proper  t ime  required to t raverse  this zone is very  small (of order ~), bu t  the 

external ly  obse lvcd  t ime  is of order m2/5. Accordingly, the proper  t ime  re- 

quired to implode f rom any  given radius and re-exPand to this radius is finite, 

bu t  the external ly  observed t ime  exceeds this by  an amount  of order mS/(d - -  ms)�89 

which is unbounded  when e2-+ m s. We reach the curious conclusion ~chat an 

external observer never sees the re-expanding shell i] eS<-~ mS; re-expansion to arbi- 

trarily large radius nevertheless occurs in  finite t ime according to an interior or 

a co-moving observer. 
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5. - Analyt ic  completion of Reissner-Nordstrhm manifold for e" <~ m 2. 

To r e so lve  t h e  a p p a r e n t  p a r a d o x  of t he  p r e v i o u s  Sec t ion ,  we r e q u i r e  a pic-  

t u r e  of t h e  e x t e r i o r  m a n i f o l d  when  e2~<m ~. The  c o - o r d i n a t e s  r, 0, ~0, t t h e n  no  

longer  f u rn i sh  a c o m p l e t e  m a p .  The  p r o b l e m  of a n a l y t i c a l l y  c o m p l e t i n g  the  

R e i s s n e r - N o r d s t r 6 m  m a n f o l d  has  been  dea l t  w i t h  b y  G~AVES a n d  BRILL (4) 

(for e 2 <  m ~) a n d  b y  CARTER (9) (for e 2 - -m2) .  W e  shal l  p r e s e n t  a s o m e w h a t  

s impl i f i ed  rev iew.  

i) T h e  case e ~ = m 2. I n  th i s  case  t he  c o - o r d i n a t e  t r e m a i n s  t i m e l i k e  for  

a l l  r. I n t r o d u c e  a n  a n g u l a r  t i m e l i k e  c o - o r d i n a t e  O,  w i t h  r a n g e  - - c o  < 0 < oo,  

such  t h a t  t / 2 m  = t g O  for  - - ~ / 2  < O < ~/2.  The  ( fo rmal ly )  e x t e n d e d  l ine  ele- 
m e n t  

ds  2 = ( 1 - - m / r )  -~ d r  2 4- r 2 d ~ 2 - - 4 m 2 ( 1 - - m / r ) ~ ( d t g O )  ~ , 

r e p r e s e n t s  a p e r i o d i c  s p a c e - t i m e  wh ich  has  a g e o m e t r i c a l  s i n g u l a r i t y  a t  r = 0 

a n d  is o the rwi se  free of s ingu la r i t i e s .  The  r, O m a p  is sub j e c t  to  loca l  b r e a k -  

down  on t h e  l ines  r ---- m~ 0 = (nd- �89 T h a t  r = m is a c t u a l l y  a r e g u l a r  p a r t  

of t h e  m a n i f o l d  can  be  ver i f i ed  b y  exp re s s ing  t h e  l ine  e l e m e n t  in  a f o r m  which  

is m a n i f e s t l y  r e g u l a r  for  r > 0: 

(38) ds  ~ = 2 d r ' d r - -  ( 1 - -  m / r )  2 d v  '~ + r 2 d,Q 2 , 

where  t h e  a d v a n c e d  t i m e  p a r a m e -  

t e r  v' is a n a l y t i c a l l y  r e l a t e d  to  

r, t b y  

(39) d r '  = ( 1 - -  re~r) - 2 d r + d r  

(r > m). 

Fig. 1 . -  Schematic representation 
of the extended Reissner-Nordstr6m 
manifold for e =  m. Shaded sections 
of the map are not par t  of the man- 
ifold. Dashed lines represent radial  
null geodesics; the apparent  constric- 
tion of these lines at r = m is due to 
local defectiveness of the co-ordinates. 
The timelike curve K L M  represents 
the history of a thin shell, which 
implodes in the space I a, reverses 
i ts motion at L after passing through 
the event horizon r = m ,  then re- 

expands in the space I b. 

I- 
1/2 ~ I t=-~ \~ / / / / / / / / / / / / / / / / / / / / /~  r c ~  

sr~\\\\\\~,~' t = + ~, / - - - -  M 

o "" ~ "  ""--'AIb 

--3/2 

�9 ~---..s- K 

(9) B. CARTER: P h y s .  Le t t . ,  21, 423 (1966). 
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In  the  v', r char t  one can, for instance,  follow any  incoming radial  null  geodesic 

v ' =  const originating in a region with  r >  m (e.g. region I a  of Fig. 1) down 

to r = 0 (in region I I I a ) .  This char t  thus  provides a regular mapp ing  of two 

adjoining regions such as I a  and  I I I a .  By  analogous use of a re ta rded  t ime  

p a r a m e t e r  we can construct  a char t  for I I I a  and  Ib. An infinite chain of such 

over lapping co-ordinate patches enables us to follow any null or t imelike geo- 

desic down to the singulari ty r = 0 or to indefinitely large values of its affine 

parameter .  Use of the r, 0 map  means t ha t  allowance mus t  be made  for local 

breakdowns,  but  has the  advan tage  of providing a clearer over-al l  picture.  

ii) The  case e 2 -< m 2. I n  this case, the  quadrat ic  coefficient ](r) in the  

Reissner- lqordstr6m metr ic  (1) has real  unequal  factors  

(40) ](r) = ( r - - r ~ ) ( r - - r ~ ) / r  ~ (0 < r2 < rl) . 

Incoming  and outgoing radial  null geodesics have  equat ions v = const and  

u = const respectively,  where 

(41) 2 k u  -~ d u  = ] - 1  ( ~ ,  _ _  d t ,  

(42) 2kv -1 ctv = ]--1 dr  _k dt , 

and k is an adjus table  constant .  I n  the  u ,  v char t  the  line e lement  (1) t akes  
the  fo rm 

(43) ds 2 = (4k2J/uv) d u  dv  + r 2 d ~  2 . 

In t eg ra t i on  of (41) and (42) yields 

2 

(44) r + Z L  _ In 
r~-- r2 

r _  1]_ r2~r21n] ~ 
rl  I r~ 

- -  ] i =  k l n  l u v l  , 

(45) t = k in lvlul (r > r~ or r < r~). 

The constants  of in tegra t ion have  been placed equal  to zero for convenience. 

Consider now the char t  ul ,  vl obta ined  by  set t ing k = k ~  =_r~ / ( r l - - r2 ) .  

We find f rom (44) 

and  (43) exhibi ts  no s ingular i ty  a t  r = rl. The char t  Ul, vl in fact  gives a reg- 
ular  mapp ing  of any  given subregion of the  manifo ld  which has r > r 2 .  
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A (co-o rd ina te )  s i n g u l a r i t y  does  deve lop  a t  r = r~, however ,  a n d  i t  is neces-  

s a r y  to  go ove r  to  a n o t h e r  c h a r t  be fo re  tha~ h a p p e n s .  

Def ine  t h e  c h a r t  u~, v., b y  s e t t i n g  k = k~ ~--r2~/(r~--r2) in  (44) a n d  (45). 

T h e n  

()(  r e x p [  r ~ 2 r ]  ( r <  r l ) ,  
r~ l r~ J 

\ m% E M 

\ . . ,  _ / % ~ / /  ~c 7 

r=O ~ r=O 

~ %,~ " x 

-5 G " 

a n d  th i s  p r o v i d e s  a r e g u l a r  cove r ing  for  a n y  

sub reg ion  w i t h  r < r~. 

Fig. 2. - Schematic representat ion of the extended 
Reissner-Nordstr6m manifold for e < m. Null lines 
are inclined at 45 ~ FGHJM is the history of a sheli 
which collapses from infinity in the asymptotical ly 
flat space I a, passes through the event horizon 
r = r ~ ,  comes to rest at  J with a minimal radius 
smaller than r.~, then re-cxp~nds into the asymptoti-  
cally fiat space I c. ABCDE is the history of an 
oscillatory shell or uniformly charged sphere. Shading 

on the curves distinguishes the interior domain. 

' U 1 

/ /-, I%-V 

' k 

i>/<" SFa 

[ t o J  

, \ t /  
a) 

X 

I. r=/~ 

y. k~ 

r = !  

b) 

U 2 

r = ~  

from ] b 

.~d)=q ~ c , ,  ) 
J ,,~" x (  O ,�9 , V 2 

Fig. 3. - Kruskal- type diagrams for port ions of the over-all map of Fig. 2, showing 
the same curves ABCDE and FGItJM. Figures 3a) and b) overlap in the region I I  b, 
and may be regarded as l inked together along the curve r = %, where r 0 is any con- 

venient value between r 1 and r 2. 
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I n  the domain of overlap rs < r < r~ the two charts are related by 

(48) lUll r~ : ]U2I -ra~, IV1[ r~ ---[W=[ -r~ ( r2<~ '< r l ) .  

The complete manifold for e2< m s is ~ periodic lattice of a l ternat ing re- 

gions of type  I ( r>r~) ,  type  I I  ( r 2 < r K r ~ )  and type  I I I  ( r<r~) .  Figure 2 

(due to CARTER (9)) is a schematic over-all map with local singularities at 

some of the lattice points. Figures 3a) and b) are Kruskal- type diagrams which 

together  give a faithful map of any subregion covered by a pair  of overlap- 

ping charts u~, v~ and us, v2. 
Because of the cyclic character  of the extended manifold, it is natural  to 

raise the question of possible topological identifications. For  instance, in Fig. 1 

for e 2 =  m ~, one might postulate tha t  all points (r, Od -2ns ) ,  n = O, =t=1, ..., 

represent the same physical event. Such <~ space-saving ~> devices are tempting,  

but  they lead to causal paradoxes. In  addition, there would be dynamical  diffi- 

culties connected with gravitat ional  self-interaction, since a world-tube would 

then intersect a space t = const more than once. These possibilities will not 

be considered further  here. 

6. - Charged she l l  w i t h  e 2 ~< m~ in vacuo .  

We now re turn  to the discussion, begun in Sect. 4, of the charged shell in 

emp ty  space, and proceed to consider the exterior view of the motion for b ~> 0, 

e ~< m 2, when an event  horizon exists. 
For  a shell with e2=  m ~, there is always a special solution (a = 1 in (34) 

(35)) which is static. The shell is then at rest (in neutral  equilibrium) at any 

radius R. The world-line S T  (Fig. 1) represents the history of such a shell 

with /~----const ~ m. The extended manifold displays an infinite sequence of 

r = 0 physical singularities, e.g. for �89 ~ 0 ~ ~-~. I f  we wish, we can remove 

these singularities and maintain strict periodicity by introducing an endless 

number  of (( re-incarnations >) of the shell, e.g. ~t S ' T ' .  Space-time is then flat 

for r ~ / ~  and all O. The result is of some interest mathematical ly,  since it 

represents a universe containing an event horizon (r--~ m) which is every- 

where free of singularity (~o). 

(10) This does not contradict a theorem on the inevitability of singularities due to 
R. PENROSE: Phys. Rev. Lett., 14, 57 (1965), since two of the hypotheses of that theorem 
are not satisfied here. In the first place, the manifold with e = m contains no <c trapped 
surface )) (even though it contains an event horizon), since outgoing radial null geo- 
desics have dr/dt = (1 -- m/r) 2 >~ 0 and do not converge anywhere. Secondly, the man- 
ifold with e<.<m does not admit a Cauchy hypersurface. 
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The history of a shell with e 2 -- m 2, a >  1 is represented by the timelike 

curve K L M  in Fig. 1. To an external observer in the asymptot ical ly  flat 

space Ia  the shell implodes, then appears to slow down as it approaches the 

observer 's event horizon r = m ,  reaching it only asymptot ical ly  as t - ~ c ~ .  

On the other hand, an observer moving with the shell finds tha t  it passes 

rapidly and uneventful ly through r -  m, contracts to a nonzero minimal ra- 

dius at L, then re-expands into a new space Ib, identical with Ia  in its geomet- 

rical properties, but  physically distinct from it. I t  appears tha t  we are forced 

to accept this resolution of the paradox encountered in Sect. 4. 

The pa th  F G H J M  (Fig. 2 and 3) of a bouncing shell with b ) 0 ,  e2~ m ~ 

has a similar general character :  the bounce carries the shell into a different 

space. A new and peculiar feature is the appearance of a timelike singular 

curve r = 0 (the curve XY) in the vacuum region outside the shell. This sin- 

gulari ty is connected with a temporary  closure of the spaces t = eonst. I t  has 

to be interpreted as the history of a particle with mass m and charge - -e .  

7. - Test shell;  uniformly charged ball of dust. 

We now turn  briefly to the situation where the hollow interior of the shell 

contMns nonvanishing charge el and mass ml. We shall confine our discussion 

to the ease where the mass # = m 2 - - m ~  and charge e = e ~ - - e ~  of the shell 

itself are smM1 compared with ml and e~, ~nd for a qualitative description it 

will be sufficient to consider the limit of a (( test shell ~> (/z --~ 0, s -~ 0 with el# 
finite). I n  this limit we obtain from (30) 

+A , 

where we have wri t ten el --  e, ml --- m. 

I t  is to  be expected tha t  (49) will agree with the equation of motion of a 

radially moving charged test particle in the Reissner-Nordstr6m field (1). The 
latter is obtainable f rom the Lagrangian 

L R,--d-[ ~/~A-�89 -- g ~  dt at ] s~, dt : #A-�89 ]-l(dR/dt)~}�89 ~e/R 

(where q~ = (0, O, O, e/r) is the electromagnetic vector potential) by  forming 

the Hamil tonian integral H =/~, and it does indeed reproduce (49). 

I f  Ie/ml, ]s//~[ and A are each less than  unity,  (49) shows tha t  the shell's 

radius oscillates between a max imum larger than  r~ = m - ~ / m ~ - - e  2 and a 

minimum smaller than  r~ ~ m - - ~ / m  2 -  e ~. The his tory of the shell is repre- 
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sented by  the  curve A B C D E  .. .  in Fig. 2 and  3. In  each oscillation the  shell 

enters  a new space. As viewed by  a co-moving or an inter ior  observer  the  

oscillation is s t r ict ly periodic;  however  the  pa th  A B C 1 ) E  . . .  in the  exter ior  

space-t ime is not  cyclic, bu t  subject  to a sys temat ic  t ime-shif t .  I f  a given 

m a x i m u m  occurs for t = t0  in the  space Ib (say), then  succeeding m a x i m a  

(in Ic, etc.) occur for t = t , §  t0+2C, etc. The constant  C m a y  be evalua- 
ted  f rom (49) and  (18) by  an  in tegra t ion  in the complex plane. For  large max-  

imal  radius, C is near ly  equal  to the  proper  per iod of pulsation,  and  bo th  agree 
closely wi th  the  corresponding period calculated f rom ~ewton ian  theory  (11). 

The occurrence of a bounce is independent  of the  re la t ive  sign of s and  e, 

so it clearly has l i t t le to do with  a contest  between grav i ta t iona l  a t t r ac t ion  

and electrostat ic repulsion. For  a neut ra l  shell (e = 0) we obta in  f rom (49) 

by  differentiation, 

d ~ R / d T  ~ = - -  M ( R ) / R  "2 , M ( R )  = m - -  e 2 / R .  

This brings out clearly the physical  mechan i sm responsible for the  bounce.  

Because the  electrostat ic  field energy of the  in ternal  charge e is diffused through-  
out space, less and  less of it  contr ibutes  to the  effective inter ior  g rav i ta t iona l  

mass M ( R )  as the shell contracts .  U l t ima te ly  M ( R )  becomes negat ive  and  there  

is a gravi ta t ional  repulsion. 
Finally,  let us note  another  in teres t ing special case. I f  we set e/# = e l m ,  

(49) m a y  be regarded as the  equat ion  of mot ion  of a part icle  on the  outer  sur- 
face r = R ( v )  of a un i formly  charged ball  of dust  with to ta l  charge e and  
mass m ,  which is collapsing homologously.  For  e 2 < m 2, A < 1, the  mot ion  

is agMn oscillatory, and  the  h is tory  of the  surface is given qual i ta t ive ly  b y  the  

curve A B C D E . . .  in Fig. 2 and  3. This example  has been discussed b y  

NOVIKOV (5). 

8.  - C o n c l u d i n g  r e m a r k s .  

The collapse of a spherically symmet r ic  body  to an event  horizon appears  

as an  irreversible process to an externa l  observer.  As we have  seen, the  pos- 

sibility cannot  be ruled out t h a t  the  body  reverses its mot ion  within  the  event  

horizon and  re-expands symmetr ica l ly .  I t  t hen  appears  necessary to  believe 

in the  existence of other  asympto t ica l ly  flat spaces geometr ical ly  similar to 

bu t  dist inct  f rom ours, which will accommoda te  the  re-expansion.  This seems 

at  least  as fantas t ic  as the  a l te rna t ive  of irreversible collapse to v i r tua l ly  

point-l ike dimensions. 

(11) In the Newtonian description the pulsating shell of course always remains in 
the  sam e  space .  
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In  assessing the possible relevance of these results to realistic gravi tat ional  

collapse, it  is, of course, necessary to keep in mind the various idealizations 

an4 hypotheses  involved (asymptotic  flatness, exact  spherical symmetry ,  an- 

alytic cont inuabi l i ty  of the manifold etc.), each of which could be questioned. 
As a null hypersurface (i.e. a characterist ic hypersurface of the field equa- 

tions), an event  horizon is a possible locus of discontinuities of the field. I t  is 
not  necessary, and perhaps not  physically justified, to insist on analytic con- 
t inuat ion of a manifold through an event  horizon (15). 

For  the collapse of a stellar mass in our expanding universe, the idealiza- 
t ion of asymptot ic  flatness is justified at the present  epoch, but  clearly no:~ 
in the remote  past.  I t  will not  always be justified in the future  if the universe 

happens to be oscillatory. In  fact,  a latt ice s t ructure for space-time of the 
general type  we have been describing would find a natural  in terpreta t ion in 

terms of an oscillatory universe. 
The following question is of more immediate  concern. To what  extent  

does the development  of an event  horizon in gravi tat ional  collapse (and hence 
the external ly observed irreversibili ty) depend on the restrictive assumption 
of spherical symmetry?  In astrophysical  situations a considerable degree of 
a symmet ry  will nearly always be present.  I t  has been claimed (13) tha t  smal l  

departures f rom spherical symmet ry  will not  affect the quali tat ive features 
of the collapse. Even  this, however, does not  ye t  seem to have been conclu- 

sively established. 

I t  is a pleasure to express our thanks to P}'of. J .  L. SY~qGE for the hospi- 
ta l i ty  of the Dublin Ins t i tu te  for Advanced Studies, and to the staff and 
scholars of the Ins t i tu te  for their  interest  in this work. We grateful ly ac- 
knowledge the financial support  of the Nat ional  l~esearch Council of Canada. 

(12) Cf. A. KOMAR: Phys .  Rev.,  137, B 462 (1965). 
(13) A. G. DOROSItKEVICI~, YA. B. Z~ELtDOVICI-[ and  I. D. s Soy. Phys .  J E T P ,  

22, 122 (1966). 

R I A S S U N T 0  (*) 

Si deduce una soluzione delle equazioni del campo di Einstein che rappresenta un 
sottile strato sferico di polvere carica ehe cade nel campo a simmetria sferica di un corpo 
carico dotato di massa posto al centro. In opportunc condizionilo strato rimbalza in modo 

(*) Traduzione a cura della Redazione. 

i 
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reversibile ~ u n  raggio min imo non nullo. E possibile un rimb~lzo anehe dopo ehe lo 
strnto ~ ero]lato entro la sfera di Sehwarsehild,  cosieeh~ il eollasso visto dal l 'es terno 
irreversibile.  Si spiega l ' apparen te  paradosso per  mezzo delln s t ru t tu ra  ret ieolare  delia 
moltepl iei ts  di Reissner-NordstrSm estesa anal i t ienmente .  Si diseute la possibile influenza 
dei r isul ta t i  sul problem~ del eollasso gravi taz ionale  realistico. 

UpaBnTa~UOHHa~[ ynpyrocTb. 

Pe3mMe(*). - -  Bbmo~nTC~ pemeHne IIO:IeBblX ypaBnerrm] 3~rnnxe~Ha, roTopoe  
npe~craBsmeT ToHKyIO cdpeprr~ecKyio o6ono~Ky 3apn~erum~ IIbIYII4, nanaroluea B UeH- 
TpaYlbHO-CI4MMeTpI, IqHOM IiO~e 3apngerrrroro MaccI4B~IOFO Tena, r toMememmro B uer~Tpe. 
Ylpri 1]O~XO~J.ttHx ycaoBrrnx o6o~o~Ka OTCKaKHBaeT o6paTrIMO I~ ~erry~eBOMy Ma4Hrf- 
Ma~Ib~OMy pa~nycy. YnpyrocTb eme oKa3biBaeTcn BO3MO:~KtIOffI, ~a)Ke nocne TOrO, KaI~ 
060no~Ka KonnancripoBana BHyTpb cqbepbI IIIsapmunnb~a,  Tar ~TO ron~anc,  i(or~a 
paccMaTpn~aeTcfl I43B~Ie, flBJ]J/eTC~/ rreo6paTnMbIM, Kaz~ymn~cn napaaorc  06~,ncrraercn B 
TepMrIr~ax pei~eTqaTo-noAo6Ho~ cTpyKTypbI artam~TnqecrrI npo] lo~er r r ro ro  Mr~oroo6- 
pa3Hn Pe~cHepa-Hop~cTpeMa. O 6 c y ~ a e T c n  BO3MO)KI-Ia~I yMeCTI~OCTb 3TI, IX pe3yYlbTaTOB 

a npo6~eMe pe~TrlB~ICTCKOFO rpaBHTatIxaonTzoro Ko~nanca. 

(') HepeseOeno pec)atcque~. 
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