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S u m m a r y .  - -  We give numerical  evidence for the existence of chaotic 
motions and of a t ransi t ion to s tochast ic i ty  in the  classical problem of 
a heavy  r igid body with a fixed point ,  by  s tudying  a pe r tu rba t ion  of the  
Eulcr-Poinsot  case. This gives also numerical  evidence for the non- 
in tegrabi l i ty  of this problem. 

1 .  - I n t r o d u c t i o n .  

L e t  us  c o n s i d e r  t h e  c lass ica l  p r o b l e m  of t h e  motiorL of  a r i g i d  b o d y  w i t h  a 

f i xed  p o i n t  u n d e r  t h e  a c t i o n  of a u n i f o r m  g r a v i t y  f ie ld  (1-9). I n  t h e  a b s e n c e  

(1) F.  KLEIN and A. SOMMERFELD: Uber die Theorie des Kreisels,  Vol. 1-4 (Leipzig, 
1897-1910; New York, N . Y . ,  1965). 
(2) A. GRAY: A Treatise on Gyrostatics and Rotational Motions (London, 1918; 
New York, N . Y . ,  1959). 
(3) T. LEvi  ClVITA and U. AMALDI: Lezioni  di meccaniea razionale, Vol. 2, pa r t e  2 
(Bologna, 1952). 
(4) E. T. WHITTAK]~R: A Treatise on the Analy t ical  Dynamics  of l~articles and _Rigid 
Bodies, 4th edition (Cambridge, 1959). 
(5) V . V .  GOLUB]~V: Lectures on Integration o] the Equat ions o] Motion o] a t~igid Body  
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of gr,~vity, or equ iva len t ly  when  the  centre  of mass  coincides with the fixed 
poin t  (Eule r -Poinso t  case), the  s y s t em  is well known to be integr~ble,  as two 
independen t  in tegra ls  of mot ion  in involut ion (i.e. with vanishing mutua l  
Poisson bracke t )  exis t  in ~ddition to energy.  

I n  the  presence  of g rav i ty ,  one a lways  has a second independent  integral ,  
n ame ly  the  ver t ica l  c o m p o n e n t  of the  angular  m o m e n t u m ,  in addi t ion to  energy,  
and  the  s y s t e m  would be in tegrable  if there  were a th i rd  independent  integral  
:n :'n~'olution wi th  the  second one. ~ o w ,  ap~rt  f rom the Euler-Poinsot  ease, 
the  only known  in tegrab le  eases are those  of Lagrange-Poisson and  of K o v a -  
levskaja ,  and  it  was p r o v e n  b y  H v s s o ~  (lO) (see also ref. (5.8)) t ha t  these eases 
are the  only ones for which the  Euler -Poisson equat ions are integrable  b y  
means  of ~lgebraic  funct ions.  B y  quot ing LEIIVIANIS (~), (( a l though the  litera- 
tu re  on the  mo t ion  of a h e a v y  rigid b o d y  abou t  a fixed point  has  grown very  
ex tens ive ly  dur ing  the  last  65 years ,  i t  is concerned a lmost  ent i re ly  with con- 
s iderat ion of special  cases. I n  conclusion, we note  t h a t  Kle in ' s  and  Sommer-  
feld 's  hopes t h a t  " b y  finding enough speci,~l cases we m a y  some day  be able 
to k n o w  more  a b o u t  the  general solution of the  p rob l em"  have  not  ye t  
come t rue  ~). 

Indeed ,  as A ~ O L ' D  says (9), (~ the  p rob lem of the mot ion  of the heavy  
rigid b o d y  has not  been  solYed and is in some sense unsolvable  ~). 

On the  o ther  hand,  in the  last  25 years,  a f t e r  the funde~mental work of 
K o l m o g o r o v  (~,12), some subs tan t ia l  progress  has  been  obta ined  in the  under-  
s t and ing  of small  pe r tu rba t i ons  of integrable  sys tems (~3-~7) (see also ap- 

about a Fixed Point  (Moscow, 1953, in Russian); English translation by the Israel 
Program of Scicnt. Transl. (Jerusalem, 1960). 
(6) E, LEIMA~IS: Some recent advances in  the dynamics o] rigid bodies and celestial 
mechanics, in Surveys in  Applied Mathematics, Vol. 2 (New York, N. Y., 1958), p. 1. 
(~) E, LEIMANIS: The General Problem of the Motion o/ Coupled Rigid Bodies about 
a Fixed Point  (Berlin, 1965). 
(s) Ju. A. ARHANGELSKIJ: The Analytical Dynamics o] Rigid Bodies (Moscow, 1977, 
in Russian). 
(a) V . I .  ARNOL'D: Mathematical Methods in  Classical Mechanics, grad. texts in Math. 
No. 60 (Berlin, 1978). 
(10) E. Husso~:  Ann.  Fac. Sei. Univ. Toulouse Sci. Math. Sci. Phys.,  B, set. 2, 73 (1906); 
Aeta Math., 31, 71 (1908). 
(11) A. N. KOLMOGOnOV: The general theory o/dynamical  systems and classical mechanics, 
in Proceedings o] the 1954 International Congress on Mathematics (Amsterdam, 1954, 
in Russian), p. 315 (English translation in R. ABRAHAM and J. E. MA~SD~N, Foundations 
o] Mechanics (New York, N.Y. ,  1978)). 
(~2) A. N. KOLMOGO~OV: Dokl. Akad. Nauk.  SSSR ,  98, No. 4, 527 (1954 in Russian). 
(13) V. I. ARNOL'D: Usp. Mat. Nauk.  S S S R ,  18, No. 5, 13 (1963, in Russian) (English 
translation Russian Moth. Surv., 18, No. 5, 9 (1963)). 
(14) V. I. ARNOL'D: Usp. Mat. Nauk  S S S R ,  18, No. 6, 91 (1963, in Russian) (English 
translation Russian Math. Surv., 18, No. 6, 85 (1963)). 
(15) j .  ~OSER: Stable and random motions in  dynamical systems, in Annals  of Mathe- 
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pendix  8 of ref. (9)). I ndeed  the  qual i ta t ive  p r o p e r t y  which has been  es tabl ished 
for sys tems  which are (Hami l ton ian ,  conservat ive)  small  pe r tu rba t ions  of in- 
tegrable  ones is, in general,  the  existence of a set of i nva r i an t  tor i  which ~re 
slightly dis tor ted with  respect  to the  ones per ta in ing  to the  u n p e r t u r b e d  sys tem.  
I n  the  typ ica l  case, for the  p e r t u r b e d  sys t em the  set  of i nva r i an t  tor i  is k n o w n  
to fill a (~ large pa r t  ~> of phase  space, in the  sense t h a t  the  measure  of its com- 
p lemen t  tends  to zero wi th  the  per tu rba t ion .  I n  par t icu lar  these resul ts  h a v e  
been appl ied to the classical p rob l em  of the  h e a v y  rigid b o d y  with  a fixed 
point  (~s) (see also append ix  8 of ref. (9)). 

However ,  a clear unde r s t and ing  of the  t y p e  of mot ions  which occur for  
initial  da ta  in the set c o m p l e m e n t a r y  to the  set of inva r i an t  tor i  is still lacking. 
In  fact ,  Mmcs t  all avai lable  in format ion  in this connect ion up to  now just  
comes f rom numer ica l  compu ta t ions  (see, however ,  ref. (9,~-~9)). The typ ica l  
case, as has a lways been confirmed in all examples  examined  af ter  the  first 
classical numer ica l  invest igat ion of I tdnon  and  Heiles U~ appears  to be the  
following: t h a t  for smM1 enough pe r tu rba t ions  the  computa t ions  show only 
ve ry  regular  orbits,  lying ~ppa.rently on invar ian t  tori,  while for larger per- 
tu rba t ions  a p~r t  of the  tori  seems to be destroyed,  and  errat ic  or chaotic  orbits  
appea r  instead,  filling a so-ca.lied s tochast ic  region. These mot ions  s ta r t ing  
in the set c o m p l e m e n t a r y  to the set of invar ian t  tori  have  indeed in general  
m a n y  proper t ies  which perteoin to typ ica l ly  chaotic  mot ions ,  such as t h a t  of 
being visual ly  scat tered th rough  some region ~nd t h a t  of hav ing  pos i t ive  
max ima l  L j a p u n o v  character is t ic  exponen t  (2~.2~). This p h e n o m e n o n  of the  
blowing up  of the c o m p l e m e n t a r y  set ,~s pe r tu rba t i on  increases has been for 
this reason described as the  occurrence of a <~ stochast ic  t rans i t ion ~ or, as 
we prefer  to say, of a <, t rans i t ion  to s toehas t ie i ty  ~>. Clearly, the  existence 
of a s tochast ic  region in the  above-descr ibed sense is not  compat ib le  wi th  the  
integrabi l i ty  of the  system.  

Now, if one comes to the  p rob lem of the h e a v y  rigid b o d y  wi th  a fixed 
point ,  one can find, to our knowledge,  no work  which r igorously implies the  
existence of chaotic mot ions  apa r t  f rom the ve ry  interes t ing recent  works 

matical Studies, No. 77 (Princeton, 1973). 
(1~) V. I. ARNOL'D: Stability problems and the ergodic properties o] classical dynamical 
systems, in Proceedings o] the 1966 International Congress on Mathematics (Moscow, 1968, 
in Russian), p. 387. 
(1~) N. N. N]~KHOROSHEV: Usp. ;~lat. Nau]~, 33, No. 6, 5 (1977, in Russian) (English 
translation Russian Math. Surv., 33, No. 6 (1977)). 
(is) G. M. ZASLAVSKIJ and B. V. CmRIKOV: Usp. _Fiz. IYauk, 105, No. 1, 3 (1971, in 
Russian) (English translation Sov. Phys. Usp., 14, No. 5, 549 (1972)). 
(19) G. M. ZASLAVSKIJ: Statistical Irreversibility in Nonlinear Systems (Moscow, 1970, 
in Russian). 
(2o) M. Hs and C. HEILES: Astron. J. ,  69, 73 (1964). 
(21) Cx. BENETTIN, L. GAZGANI and J.-M. STRELCYN: .Phys. Rev. A, 14, 2338 (1976). 
(22) G. BENETTIN and J.-M. STRELC:~N: Phys. Rev. A,  17, 773 (1978). 
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of Kozlov  and Ziglin (23). l~either we know of works tha t  exhibit  the existence 

of chaotic motions and  of a t ransi t ion to stochast ici ty in such a problem (2~) 
t h rough  numerical  evidence, a l though this could be expected according to 
the  above-ment ioned  general considerations. 

The ~im of the present  paper  is indeed to show numerical ly the existence of 
chaot ic  mot ions  and of a t ransi t ion to stoehast ici ty in the classical problem of 

the  heavy  rigid body  with a fixed point.  More precisely, evidence of this fact  
is given here in the part icular  case of per turbat ions  of the Euler-Poinsot  case. 
As a consequence, this gives numerical  evidence of the nonintegrabil i ty of the 

classical problem of the heavy  rigid body  wi th  a fixed point  in the general ease. 
I n  the  future  we will also investigate,  among  other problems, perturbat ions of 
the Lagrange-Poisson and of the Kovalevska ja  cases. 

I n  sect. 2 we recall the results obtained by  H ~ o N  and  HEILES (2o), in order 

to introduce the  reader  to the not ion of a t ransi t ion to stochasticity and to 
explain some concepts  to be used in the next  sections, such as tha t  of surface 

of section. I n  sect. 3 we recall the definition of a set of variables recently in- 
t roduced  by  DEPg~T (2~), which are par t icular ly  convenient  for s tudying the 

problem of a heavy  rigid body with a fixed point,  as they  actual ly allow the 
reduct ion to a problem with two degrees of freedom. Finally, the numerical 

results establishing the existence of chaotic motions and of a transit ion to stoch- 
as t ic i ty  in the problem at hand  are presented in sect. 4. 

We thank  DEP~T (Cincinnati) and I~ERNER (Paris) for useful discussions. 

2. - The  t rans i t ion  to  s tochas t i e i t y  in  the  H 6 n o n - H e i l e s  m o d e l .  

The model  considered by  tI~NoN and HEILES (2o) consists of two harmonic  

oscillators of the same frequency coupled by  cubic terms in the co-ordinates, 

as described b y  the I t ami l ton iaa  

H(x,  y, p~, p~) = �89 + x ~) + l(p~ ~_ y~) _~ x ~ y _  _~_y3, 

where x, y , p ~ , p , ~  R. This model  turns  out to be of astronomical  interest,  

in connect ion with studies of galactic motions. Many investigations on models of 

(2a) V. V. KOZLOV: Vestn. Mosk. Univ., Mat. Mekh, 6, 99 (1976, in Russian) (English 
translation Mosk. Univ. Vestn., Mekh., 31, No. 6, 55 (1976)); Usp. Mat. Nauk, 34, 
No. 5, 241 (1979, in Russian); S. L. ZIGLIN: Dokl. Akad. Nauk SSSR, 251, No. 4, 786 
(1980, in Russian). 
(2~) It  might, however, be interesting to note that in the well-known Lorentz system 
of equations, which is nonconservative, but presents some formal analogies with the 
Euler equations (with A = 2, B = C = 1), the existence of a very complex structure 
of chaotic motions has been numerically observed. See O. LANFOgD: in Statistical 
Mechanics, CIME Course, Bressanone, 1976, edited by G. GALLAVOTTI (Napoli, 1978). 
(~5) A. D]~P~IT: Am. J. t)hys., 55, 424 (1967). 
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this type  had already been performed by  CO~TOPOUL0S (~) with the aim of 
showing t h a t  these systems were ~ pract ical ly integrable )~. This was actual ly 

shown to occur at  least for not  too high energies, in the sense tha t  the com- 
pu ted  orbits were indeed found to be ve ry  regular and one could find phase- 
space functions which were (~ practically ~) integrals of motion.  More precisely, 
one can define formal  power series in the  variables x, y, p . ,  p~ which are prac- 

tically integrals of motion,  in the sense tha t  the f luctuations of the numerical ly  
computed  values they  take along an orbit when the series are t runca ted  a t  
several orders appear  to diminish and  to become negligible as the order in- 
creases (for example, up to order 13)(2e-ao). 

On the other hand, H ~ o N  and HEILES discovered that ,  if energy was raised, 
chaotic motions came to occur. I n  order to exhibit  this fact,  one makes use 
of the classical tool of the Poincar6 surface of section, which consists in con- 

sidering, instead of a whole orbit in phase space, the sequence of points obtained 
by  its intersection with a suitable fixed submanifold (surface of section). I n  the  
H6non and Heiles experiment  the sequence of points is obtained as follows. 
Consider a surface of constant  energy /~. For  0 < E < ~ it contains a unique 
compact  component  which we denote as F . .  Taking in F~ the two-dimen- 

sional surface given by  x ~ 0, one considers the successive points at  which a 
part icular  solution intersects this two-dimensional  surface with p .  > 0. I f  one 
eliminates p .  with the help of H ~ /~ and sets x = 0, one can use y and p~ 

as co-ordinates on this two-dimensional  surface and thus one can plot the  
points of intersection on the plane region:  

1 2 I~ = {(y,p,,)~ R2; ~(p~ ~- y2)_  ~ya<E ' y < l } .  

Now we can describe the t ransi t ion to stochast ici ty by  making  reference to 
fig. 1-3. One considers several initial data  on a fixed energy surface 1"~ and  

each of the corresponding orbits defines a sequence of points  in /~. as above.  
A first example, corresponding to E ~ ~2-, is given in fig. 1. Several orbits 
have been computed  here, and  fox" each of t hem the corresponding points  ap- 

pear to lie on a very  regular closed curve;  any  such curve would be densily 
filled if the orbits were computed  for longer and longer times. Moreover, the  
set of such regular curves appears to practical ly cover all of ~E. 

The opposite situation occurs, for example, for E = - ~ ,  shown b y  fig. 2. 

Here five orbits have been computed  and  for one of t hem the corresponding 
points  in F~ appear  visually to almost  dcnsily fill all of it. I n  fact, just  a small 

(26) G. CONTOt'OULOS: Astron. J., 68, 3 (1963). 
(~7) F. Gus~AvSO=N: Astron. J., 71, 670 (1966). 
(2s) A. GIORmLLI and L. GALGA=NI: Cel. Mech., 17, 267 (1978). 
(29) A. G~ORGILLI: Comput. Phys. Commun., 16, 331 (1979). 
(a0) G. GO=NTOI'OULOS, L. GALGA=NI and A. GIORGILLI: Phys. Rev. A, 18, 1183 (1978). 
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Fig. 1. - Surface of section for the H6non-Heiles model when tile energy has value 
E =  1/12. This figure shows a typical practically-intcgrable situation. 

par t  of P~, for example around the centre of tile figure, "~ppears to be covered 
by  regular curves. 

In  general, for in termediate  values of the e n e r g y , / ~  appears to be subdivided 

into two invar iant  sets. One of these seems to be covered by regular closed 
curves and the other one by  sequences of scat tered points with a visual chaotic 
behaviour,  each sequence corresponding to an individual chaotic orbit. This 

si tuation is i l lustrated by  fig. 3, which refers to E--~ {, where one chaotic 
orbit is visualized. 

Tile qual i tat ive differences between the region apparent ly  covered by  reg- 

ular curves, which can be called the (< ordered region ,), and the other region 
which can be called stochastic or chaotic, are striking. Possibly one of the 
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Fig. 2. - Same as fig. 1 for E ~ 1/6, showing a typical almost completely chaotic 
siguation. 

main  features  dist inguishing these regions is the  following: mot ions  have  a 
predic table  charac ter  in the  ordered region and  an  unpred ic tab le  one in the  
stochast ic  region. This is s t r ic t ly  re la ted  to the  w a y  in which the  orbi ts  depend  
on the  initial da ta ;  indeed the  computa t ions  show t h a t  orbi ts  wi th  n e a r b y  
initial da ta  diverge f rom each other  exponent ia l ly  with t i m e  in the  s tochast ic  
region and  in a subs tant ia l ly  slower way  in the  ordered region. 

This c i rcumstance,  in tu rn ,  can be formal ized b y  m a k i n g  reference to  the  
max ima l  L j a p u n o v  character is t ic  exponen t  (LCE) of an  orbit .  A numer ica l  
m e t h o d  to compute  the m a x i m a l  LCE is described in ref. (21), where  an  ap-  
pl icat ion to  the  H6non-Hei les  model  is also g iven;  a minor  technical  improve-  
ment ,  as well as a general  numer ica l  a lgor i thm to compu te  all I ,CEs,  is 
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Fig. 3. - Same as fig. 1 for E =  1/8, showing a typical intermediate situation. 

g iven  in ref.  (31). I t  can  be p r o v e n  t h a t  t he  m a x i m a l  L C E  van ishes  almosl~ 
e v e r y w h e r e  for  i n t eg rab le  s y s t e m s ;  several  numer i ca l  c o m p u t a t i o n s  (21,22,3,) 

show in s t ead  t h a t  i t  van i shes  in the  o rdered  region,  while it appears  to  be  

def in i te ly  pos i t ive  in t he  s tochas t i c  region.  

(31) G. BENETTIN, L. GALGANI, A. GIORGILLI and J.-M. STR~LeYN: Meccanica,  15, 
9, 21 (1980). See also G. B~.N~,TTIN, L. GALGA~I, A. GIORGILLI and J.-M. STR~LCYN: 
C. R .  Acad .  Sci .  Se t .  A ,  286, 431 (1978); G. BENETTI~ and L. GALGANI: .L japunov  
characterist ic  exponen ts  a n d  stochastie~ty, in I n t r i ,  s. Stochast.  i n  J~lasma, Cargese (1979, 
in print). 
(8,) V. I. 0SF.LV, D~C: Tr.  Mosk .  Mat .  Obsch. 19, 179 (1968, in Russian) (English t ran-  
slation Trans .  Mosv.  Ma th .  Sot . ,  19, 197 (1968)). 
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3. - The Deprit variables in the problem of the rigid body with a fixed point. 

The Hami l ton ian  and the corresponding equat ions of mot ion  for a rigid 
body  wi th  a fixed point  take  a form much simpler t h an  the  usual one re la ted  
to the  :Euler angles and  the corresponding momenta ,  if one makes reference 
to  a set of variables which were in t roduced  qui te  recent ly  in this connect ion 
by  Da~PmT (25), a l though they  can also be found,  in connect ion with the  problem 
of celestial mechanics,  in an older t ex tbook  of Andoye r  (~3); a sys temat ic  use 
of such variables in the problem at  hand  is made  in the  recent  book  of 
Arhangelskij  (s). 

Le t  us, as usual, t ake  the  fixed poin t  0 a round  which the  b o d y  is ro ta t ing  
as the  origin of two r ight-hand or thogonal  co-ordinate  f rames:  the  f rame 
O X Y Z  fixed in space with the  Z-axis ver t ical  and  the  moving  f rame Oxyz 
which is fixed relat ive to the  body.  The corresponding uni t  vectors  are de- 
no ted  as usual  by  I,  J ,  K and i, j ,  k, respect ively.  The axes of the  moving  
frames are directed along the principal  axes of iner t ia  of the body,  and the  
corresponding principal  moments  of inert ia  (which we will suppose to be s tr ict ly 
positive) are denoted by  A, B and C, respect ively.  Le t  r be the angular  mo- 
m e n t u m  of the  body  ~vith respect  to  0 and H the  plane th rough  0 normal  
to r .  i f  k, K and r are distinct,  the  plane / /  cuts the plane O X Y  "along a 
s t ra ight  line OM and the  plane Oxy along a s t ra ight  line 02/,  which we or ient  
as K A r  and rAk,  respectively. 

/ 
i ~ / '~-- -  J/ 

Fig. 4. - The Deprit angles. 

(an) H. fl~I~DOYER: Cours de mdcanique celeste (Paris, 1923). 
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The Depri t  angles ~3, F2, 1 with 0 < ~3 ~ 27~, 0 < F2 ~ 2z, 0 < l < 2~ are then  
defined as in fig. 4, i.e. % is the longitude of the p l a n e / / i n  the co-ordinate 

plane O X Y ,  q~s is the  longitude with respect  to OM of the plane (of inertia) 
Oxy in the p l a n e / / a n d  1 is the angle of ro ta t ion  of the axis of inertia Ox with 

respect  to the intersection ON of the plane of inertia Oxy with the plane / / .  
The corresponding momen ta  I~, Is,  L are defined through suitable com- 

ponents  of the angular  m o m e n t u m  r ,  name ly  I3 ~ Fz, I2-~ F, .L ~-F~, re- 
spectively, where F z - ~  r - K ,  /~, = r .  k, and  F is the norm of r .  

i f  ~, o, w are the usual Euler  angles and  pc, po, p~, the corresponding 

momenta ,  one easily shows tha t  the t ransformat ion  (q~,O, ~p,p~,po,pv)w-~ 
~-* (%, ~2, l, Ia, I2, L) is canonical. The nota t ions  for the Depri t  variables 
used here arc t aken  from Arhangelski j ' s  book (s), whose choice reflects the  

fact  t h a t  I3, I2, ~3, ~s are a l ready action-angle variables for the Euler- 

Poinsot  ease. 
The problem is now to express the Hamil tonian  H in the Depri t  variables. 

Le t  us s tar t  with the Euler-Poinsot  case when H - ~  Ho-~ T, where T is the 

kinetic energy,  l~ecall tha t  

where Fr ,  /'~, I'~ are the components  of r in the frame Oxyz. We already have 
/~z ~ L. Denote  now by  rx~ the project ion of r on the plane Oxy and by  / ~  

its norm. One easily sees t h a t  

/'~y ~ ~r --  L 2 , 1'~ = 1~,~ sin l ,  /~,~ --~ I'~y cos l ,  

so tha t  one gets 

(2) 
- 2 - - + ~  + 2 - - 0  

Let  us now pause to c o m m e n t  on formula  (2), which is the  Hamil tonian  for 

the  Euler-Poinsot  case in the  Depri t  variables. As one sees, the variables 
ep3, ~2, I~ do not  appear  there. F r o m  the Hami l ton  equations one thus gets 

t ha t  the variables %, 13 ~-- Fz and I2 ~- F are constant ,  as was already clear 
f rom conservat ion of angular  momen tum.  Denot ing  I2----a = coast, the 
problem is then reduced to tha t  of a conservative system with one degree of 

f reedom with variables l, L and Hamil tonian  

- 2 + + 2 - - 0 "  

Thus,  th rough  the Depri t  variables, the Euler-Poinsot  problem can be t reated 
as the familiar  conservat ive one-dimensional problems, such as typically the 
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p l a n e  p e n d u l u m .  I n d e e d ,  fo r  ~ f i xed  :r in  t i l e  p h a s e  (1, L ) - p l s n e  one  h s s  j u s t  

to  t r a c e  t h e  leve l  cu rves  VE,~ of H~ to  o b t a i n  t h e  p r o j e c t i o n  of p h s s e - s p a c e  t r a -  

j e c t o r i e s ;  t h e s e  cove r  t h e  r e c t a n g l e  {( l , /~) ;  0 < l  < 2~,  - -  ~ < J L < ~ } .  e ach  one  

c o r r e s p o n d i n g  to  8 p u r t i c u l a r  v a l u e  of E .  

H o w e v e r ,  for  t h e  p e r t u r b a t i o n  of H s m i l t o n i ~ n  (2) we wil l  be  i n t e r e s t e d  

in t h e  s t u d y  of su r f s ce s  of s ec t ion  of t h e  c o r r e s p o n d i n g  f low a t  8 f ixed  e n e r g y  E ,  

in  ,~n~dogy wi th  t h e  d e s c r i p t i o n  g i v e n  in  sect .  2 ;  t h u s  i t  is m o r e  c o n v e n i e n t  

for  us,  e v e n  for  t h e  u n p e r t u r b e d  H a m i l t o n i a n  (2), t o  c o n s i d e r  ~ n o t h e r  r ep re -  

s e n t a t i o n .  ~ a m e l y ,  i n s t e a d  of 8 f ixed  v a l u e  of ~ we t s k e  8 f ixed  v a l u e  of t h e  

e n e r g y  E 8 n d  we obt~An phsse - sp&ce  t r s j e e t o r i e s  w h o s e  p r o j e c t i o n  in  t h e  

(l, L)-]) l~ne r i t e  level  c u r v e s  y~,~ of H a m i l t o n i u n  (3), e~eh c o r r e s p o n d i n g  to  a 

~,0 
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Fig. 5. - The integrable ease of the r igid body with a fixed point  and no weight,  
described by  tl le Hamil toniau (2) wi th  two degrees of freedom, co-ordinates l aud  %, 
momenta  L and 12. As q~ is ignorable and thus 12=  ~ - - e o n s t ,  the  problem is 
essentially one-dimensional and the project ions of the phase-space t ra jec tor ies  on the  
(1,/5)-plane coincide with ti le level curves of Hami l ton ian  (3). In  the  figure one 
has L / I  2 vs .  1 for several values of ~ and a fixed value of the  energy E =  50 wi th  
A = 3, B = 2, C = 1. Actual ly ,  the  points  have  been obta ined  by  in tegra t ing  the  
Hamil tonian equations for Hamil tonian  (2) and by  tak ing  as surface of section the one 
defined by  ~z = (~/2) (mod 2n), in complete anMogy with  the  methods  used in the  per- 
tu rbed  cases of fig. 7-13. 



p~rticular value of ~ ~ I2. I t  is easily seen (as one always h~s ~ >  ILl) t h a t  
these curves cover the rectangle {(l, JL); 0 < l  < 2z, [L[<~z}, where ~e = %/2EC. 
Using as co-ordin~tes 1 and -L/I2 : F~/F instead of 1 ~nd L, the curves cover 
a rectangle which is independent  of E, n~mely {(1,.L/I~); 0 4 l < 2 ~ ,  - - 1 <  

< L/I2 < 1}. As an ex,~mple we report  in fig. 5 some phase-space tr.~jectories ye,~ 
for A-----3, B = 2 ,  C : I  ~nd E = 5 0 ,  which are just  the wflues which will 

~lso be considered by  us in the per turbed ease. 
The qu~lit,~tive fcatures of fig. 5 ~re c~sily unders tood if one recalls the well- 

known consideration which gives the possible positions of r with respect to 
the moving frnme Oxyz (see ref. (9), sect. 29). Indeed,  due to conscrv,~tion 

of energy E nnd of nngul,~r m o m e n t u m  r one bus 

F~ F~ F~ __~ 2E --~ const, 
A-~ + ~ + C-~ 

t 

F~ 4- I'~ + F :  = 1 '2 = const ,  

so tht~t the vector  r lies on the intersection of an ellipsoid with a sphere both 

fixed with the body.  The curves tr'~ccd by  r on tile ellipsoid :~rc easily rt,cognizcd 
to bc qual i ta t ively of the  form reproduced in fig. 6, which refers to a et~se with 
A ~ B ~ C ~ 0 .  I f  we t~d~e into ~ccount tha t  / , : I ' .  ~md the definition of / 

(see fig. 4), the qu~flitt~tivc features of fig. 5 then follow. 
One e,~sily thus recognizes t h:~t the two fixed points ~t (z/2, 0), ( ~ ,  0) 

correspond to the st~ble perm,~nent rotat ions about  the ,~xis Ox, the two fixe(l 
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Fig. 6. - I t  explains the qualitative features of fig. 5 and shows possible positions of 
the angular momentum I' with respect to the moving frame for a fixed value of the 
energy. The various em'ves correspoud to different values of the norm of r. 
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points  at  (0, 0) and  (~, 0) to the  uns tab le  permeonent ro ta t ions  a b o u t  the  axis Oy 
and  the s t ra ight  lines .L/I2 = -- 1, L/I2 = 1 to  the  s table  p e r m a n e n t  ro ta t ions  
abou t  the  axis Oz. Notice t h a t  in the  l a t t e r  case the  p lane  of inert ia  Oxy coin- 
cides at  all t imes  wi th  the ~, invar iable  ~> plane  H, so tha t  the  ro t a t ion  angle l 
is no longer de te rmined;  thus  the  periodic orbi ts  L/Is = -  1 and  .L/L = 1 
in the  phase  p lane  l, L]I2 can be  considered e~s fixed poin ts  too.  The  separa-  
"~riees connect ing the  two uns table  fixed poin ts  are also exhibi ted .  

Final ly,  let us come to the  ease in which g r a v i t y  is t aken  into  considerat ion.  
Le t  x.,  y.,  z, denote  the  co-ordinates  of the  centre  of mass  in the  mov ing  f r a m e  
Oxyz, let Z, be its th i rd  co-ordinate  in the  fixed f rame  O X Y Z  and  define 
~ = i ' K ,  F ' = j ' K ,  y"~-k .K .  Then  one has  H = H o ~ - m g Z o ,  i.e. 

(4) H = Ho @ mg(xoy @ Yo~'-b Zo?/), 

where m and  g are the  mass  of the  body  and the  accelerat ion of g rav i ty ,  respec-  
t ively.  The r a the r  compl ica ted  expressions for y, y ' ,  ?" in t e rms  of the  Depr i t  
var iables  can be found for example  a t  page  22 of ref. (8) and  are g iven b y  

( ( ( 
1 - - ~  cosl-~- 1 - - ~ 2 j  17e~176176  1 - - ~ ]  sin l sin 992 , 

2/' 2 

= - I s  - ~ 1  i= =] c o s  ~ .  

As we a l ready know t h a t  I3 ~ Fz is an in tegra l  of mot ion  and  t h a t  I2 = / ' >  IIal, 
if we t ake  I a = t 9 : / : 0 ,  t hen  we h a v e  I 2 > 1 r  and  no p rob l em arises in 
the  expressions of (5). H a m i l t o n i a n  (4) refers  to  a sys tem with th ree  degrees 
of f reedom. F o r  the  purposes  of this  pape r  it is sufficient to  consider,  in fact ,  
the  corresponding one-pa ramete r  fami ly  of Hami l ton ians  wi th  two degrees of 
f reedom which is obta ined  b y  p u t t i n g  I3 = fl ~: 0 in (4). To this we will refer  
f rom now on. 

F i x  f l ~  0. Deno te  b y  FE, ~ the  cons tan t -energy  surface corresponding to  
an energy E,  whose possible range  is - -  mg(x~ -}- y~ d- z~ ) � 89  c~. I t  is easy  
to see t h a t  FE, e is a lways compact .  Indeed ,  as P2 and  1 are defined modulo  2~ 
and  we a l ready  know tha t  [ Ia[<I~ and  t h a t  ILI<I2, t hen  it  is sufficient to  
show tha t  I2 is un i formly  bounded  f rom above  when (%., l, I~, L) e.Fe.~. I n  
turn ,  this follows f rom the r e m a r k  t h a t  T = E -  mgZo is un i fo rmly  bounded  

f rom above  (as IZol<~e/x~+y~-Jr-z2o) , which b y  (1) implies the  same for 

[F~], [F~[, [F~[ and  thus  also for 12 = F .  
Actual ly ,  a sufficient genera l i ty  for the  qual i ta t ive  purposes  of our invest iga-  

t ion is afforded even if we t ake  the  centre  of mass  on the  axis Oz, i.e. if we p u t  
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Xo = Yo = -0  in Hamil tonian  (4). F rom (5) one thus  gets 

(6) H(q%, l, I2,  L ; # ,  fl) - -  - -  2 - - + - -  +gO. ' +  

L ~  - ~ 1  I~ / ' 

where #----maze and fl V= 0 is the constant  value of I3 == F z .  
:Notice tha t  the Hami l ton ian  (6), as well as He, is a periodic function of l 

with period ~z, while the period is 2~z for the complete Hamil tonian (4). As a 
consequence, it is easy to see that ,  if {~2(t), l(t), I2(t), Z(t)}t~R is a solution of 
the equations of mot ion for Hamil tonian  (6), then {~2(t), l(t) + 7~, I2(t), L(t)}~R 

is ~lso a solution. 

4. - R e s u l t s  o f  n u m e r i c a l  c o m p u t a t i o n s .  

Our aim is thus to integrate  numeric:~lly the equations of motion for 
H~Jmiltotfign (6) and to I)roduce figures tmalogous to fig. 1-3 ill order to exhibit 

the occurrence of chaotic motions and of a transit ion i;o stoch~stieity as /~> 0 
is increas(,d. 

All computa t ions  were performed for A = 3, B = 2, C = 1, fl = Ia = Fz = 5, 
E = 50 with # t ak ing  values in t.he interval 0.40, precisely tt = 0, 0.1, 0.5, 
1, 5, 10, 20, 30. The comput.o~tions were performed on a P D P l l  with a precision 
of 7 digits, by  using a s tandard  Runge -Ku t t a  fourth-order method with time step 
typical ly  of 0.01; this gn~z~ntced energy conservation up to 4 digits for times 

sufficient to give typical ly  1000 points of section. For  questions concerning 
the reliability of numericsA computat ions  in the s tudy  of stochp~sticity, see ref. (s4). 

As is well known (see for example sect. 28D of ref. (s)), having chosen a 

model  with A =  B +  C we ure necessarily considering a plane rigid body.  
An  example of a rigid body  satisfying our conditions A = 3 ,  B ~ - 2 ,  C=-1  
is the one const i tuted by four material  points of uni tary  mass at the vertices 

of a unit  square, the fixed point  0 lying in the middle of one of its sides. 
After having  fixed values of #, fl grid E, the initigl data  were obtained by 

giving certain values to 1 and L ,  by  taking ~2 = ~z/2 and gett ing I :  > 0 from 

the equat ion H(:~/2, l, I2,  L ; / u ,  f l ) -=  E .  In  all cases considered it tu rned  out 
t ha t  this equat ion had  one and two positive solutions for L < 0 and Z > 0, 
respect ively;  moreover  in the  lat ter  si tuation only the maximal  solution had  

a mechanical  meaning,  namely  satisfied the necessary conditions L >  ILl, 

(za) G. BEN:ETTIN, M. CASAI~TIgLLI, L. GALGANI, A. GIORGILLI and J.-M. STI~ELCYN: 
NUOVO Cimento B,  44, 183 (1978); 50, 211 (1979). 
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Our surface of section in F~,~ ~'~s also defined by  the  condition ~ 2 ~  (~I2) 
(rood 2~). Given a t ra jec tory  in phase space, the condit ion ~2 = (z/2) (mod 2~) 
defines a sequence of points, represent ing the t ra jec tory  on the surface of 

section�9 I n  full ~nalogy with the t r ea tmen t  of the unper tu rbed  problem, each 
point  of this sequence can then be represented ~s a point  in the pl~ne R 2 th rough  

two co-ordinates 1 and L/Z2, 12 being a well-defined funct ion of l and L. Thus  
to any  t ra jec tory  there corresponds a sequence of points in the rectangle 
ID~ {(l,L/I~); 0 < / < 2 p , - - l < L / I , < : l } .  This choice of L/I2 instead of L as a 

co-ordinate, notwi ths tanding the fact  t h a t  I2 is not  an integral of mot ion  for 
g # 0, has the advantage  tha t  the corresponding region /~ has rhea  a very  
simple form; or~ the  other hand  the  possibility of recognizing the  regular or 
chaotic character  of an orbit is not  ~ffected by  tha t  choice, due to the  fact  

tha t  F,,~ is compact  ~nd I~ is a strictly positive smooth funct ion defined 
OD J~,fl. 
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Fig. 7. - From the present figure up to fig. 13 the results are given illustrating the 
transition to stochasticity in the problem of the heavy rigid body with a fixed point, 
described by Hamiltonian (6), as the perturbation parameter g is raised, the values 
of the other parameters being A = 3 ,  B = 2 ,  C =  l, E = 5 0 ,  f l=5 .  The equations of 
motion have been solved numerically to obtain the points intersecting the surface with 
q2 = (n/2) (mod 2n) and for them L/Iz has been plotted vs. l, as in fig. 5, which correspond 
to the unperturbed ease with y = 0. Here # = 0.1. 
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Let  us now come to a description of the  results. For  It -~ 0 the a l ready 
known results are given in fig. 5. This figure could have been obtained by  
t racing level curves for the corresponding Hamil tonian  (3), but  was instead 
obtained by  the above-described method.  Figure  7-13 correspond to # -~ 0.1, 

0.5, 1, 5, 10, 20, 30, respectively. 
For  # --~ 0.1 one already observes a ve ry  small stochastic region ~round the  

curves which are the separ~trices connect ing the two unstable  fixed points  for 

tt = 0. For  It ~ 0.5 the s i tuat ion is similar and just  the stochastic region is a 
bit larger. For  It----1 a substant ial  change occurs in the form of the closed 
curves around the central  stable fixed points,  inasmuch as islands of higher 

order appear,  while the stochastic region keeps essentially the same form as 

before being slightly enlarged. Analogously for It ~- 5. The process of disso- 
lution of the invariant  curves and the corresponding extension of the stochastic 
region continues when It is increased f rom 10 to 30, when the stochastic region 
occupies the largest par t  of the available region, i.e. of the rectangle /~. 

As to all fig. 7-13, one sees t ha t  the s traight  line l ~ ~ divides each of 
them into two strips, the r ight one being obtained from the other one by  a 
translation.  This is in complete s, greement  with the last remark of sect. 3. 

5 .  - C o n c l u s i o n s .  

We have thus given a numerical  evidence for the  existence of chaotic mo- 

tions and of a transit ion to stochast ici ty in the classical problem of the heavy  
rigid body with a fixed point,  by  s tudying  a convenient  per tu rba t ion  of the  
Euler-Poinsot  case. This, in particul',.,r, gives also numerical  evidence for the 

uonintegrabili ty of the classical problem of the heavy rigid body with a fixed 
point in the  general ease. 

Prel iminary investigations of per turbat ions  of the  Lagrulxge-Poisson an4  

of the Kovalevskaja  eases appear  to confirm the  results reported here for 

perturbat ions of the Euler-Poinsot  ease. 

Note a,lded in proo]s. 

There recently appeared a book by V. V. KOZLOV: Methods o] Qualitative A~alysis 
in the Dynamics o] Rigid Body (Moscow, 1980), which is of grcat interest for the problems 
considered in the present paper. 

�9 R I A S S U N T O  

In questo lavoro si mostra numericamente l'esistenza di moti caotici e d i u n a  transi- 
zione alla stocasticit~ ncl problcma classico del corpo rigido pesante con un punto fisso, 
studiando una perturbazione dcl easo di Eulero-Poinsot. In tal modo si d~ anche una 
dimostrazione numerica della non integrabilit~ di questo problema. 
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XaoTHqecKHe ~BH~eHHH U n e p e x o ~  K CTOXaCTHqHOCTH B KnaCcuqeeKo~ n p o 6 n e M e  T a ~ e a o r o  

~eCTKOFO T e ~ a  c @HKCHpOBaHHOfi TOqKOH. 

P e 3 m M e ( * ) .  - -  M b i  npnBO~HM q n c n e H H o e  HO~T B epg~eaHe  c y m e c x B o B a n n a  x a o T n q e c ~ n x  

~ B a g e H a f i  a n e p e x o ~ a  K c roxac ra~HOCTH B Knaccn~ecKo~  n p o 6 n e M e  T n m e n o r o  ~ e c w K o r o  
T e n a  c ~ c a p o B a H ~ o ~  TO~KO~, H c c n e ~ y n  BO3MyLLIeHHe ~ n  c n y q a a  ~ n e p a - I I y a H c o .  

T a K ~ e  n p a B o ~ a r c a  ~ a c n e H H o e  n O ~ T a e p ~ e H a e  ~ n ~  HenaTerp~pyeMOCTa  TaKo~ n p o O ~ e M ~ .  

(*) Hepeeedeno peOanque(t. 


