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Summary. — We give numerical evidence for the existence of chaotic
motions and of a transition to stochasticity in the classical problem of
a heavy rigid body with a fixed point, by studying a perturbation of the
Euler-Poinsot case. This gives also numerical evidence for the non-
integrability of this problem.

1. — Introduection.

Let us consider the classical problem of the motion of a rigid body with a
fixed point under the action of a uniform gravity field (*?). In the absence

(*) F. KLeiN and A. SoMMERFELD: Uber die Theorie des Kreisels, Vol. 1-4 (Leipzig,
1897-1910; New York, N. Y., 1965).

() A. GrAY: A Treatise on Gyrostatics and Rotational Motions (London, 1918;
New York, N.Y., 1959).

(®) T. Levr Crvita and U. AMALDI: Lezioni di meccanica razionale, Vol. 2, parte 2
(Bologna, 1952).

(" E. T. WiitTARER: A Treatise on the Analytical Dynamics of Particles and Rigid
Bodies, 4th edition (Cambridge, 1959).

(®) V. V. GoLuBEV: Lectures on Integration of the Equations of Motion of a Rigid Body
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of gravity, or equivalently when the centre of mass coincides with the fixed
point (Euler-Poinsot case), the system is well known to be integrable, as two
independent integrals of motion in involution (i.e. with wvanishing mutual
Poisson bracket) exist in addition to energy.

In the presence of gravity, one always has a second independent integral,
namely the vertical component of the angular momentum, in addition to energy,
and the system would be integrable if there were a third independent integral
‘n involution with the second one. Now, apart from the Euler-Poinsot case,
the only known integrable cases are those of Lagrange-Poisson and of Kova-
levskaja, and it was proven by HUssoN (19) (see also ref. (:#)) that these cases
are the only ones for which the Euler-Poisson equations are integrable by
means of algebraic functions. By quoting LEIMANIS (%), « although the litera-
ture on the motion of a heavy rigid body about a fixed point has grown very
extensively during the last 65 years, it is concerned almost entirely with con-
sideration of special cases. In eonclusion, we note that Klein’s and Sommer-
feld’s hopes that “‘by finding enough special cases we may some day be able
to know more about the general solution of the problem” have not yet
come true ».

Indeed, as ARNOL'D says (°), « the problem of the motion of the heavy
rigid body has not been solved and is in some sense unsolvable ».

On the other hand, in the last 25 years, after the fundamental work of
Kolmogorov (11:12), some substantial progress has been obtained in the under-
standing of small perturbations of integrable systems (**17) (see also ap-

about o Fixed Point (Moscow, 1953, in Russian); English translation by the Israel
Program of Scient. Transl. (Jerusalem, 1960).

(&) E. LEmmanis: Some recent advances in the dynamics of rigid bodies and celestial
mechanies, in Surveys in Applied Mathematics, Vol. 2 (New York, N. Y., 1958), p. 1.
(") E. Leimanis: The General Problem of the Motion of Coupled Rigid Bodies about
a Fived Point (Berlin, 1965).

(8) Ju. A. ARHANGELSKI1J: The Analytical Dynamics of Rigid Bodies (Moscow, 1977,
in Russian).

(°) V. I. ArNoL'D: Mathematical Methods in Classical Mechanics, grad. texts in Math.
No. 60 (Berlin, 1978).

(1°) E. Hussox: Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys., 8, ser. 2, 73 (1906);
Acta Math., 31, 71 (1908).

(11) A. N. KoLmoGoROV: The general theory of dynamical systems and classical mechanics,
in Proceedings of the 1954 International Congress on Mathematics (Amsterdam, 1954,
in Russian), p. 315 (English translation in R. ABranAM and J. E. MARSDEN, Foundations
of Mechanics (New York, N. Y., 1978})).

(1) A. N. KoLmoGorov: Dokl. Akad. Nauk. SSSR, 98, No. 4, 527 (1954 in Russian).
(*3) V. I. ArNoL'D: Usp. Mat. Nauk. SSSRE, 18, No. 5, 13 (1963, in Russian) (English
translation Russian Math. Surv., 18, No. 5, 9 (1963)).

() V. I. Avnor'np: Usp. Mat. Nauk SSSE, 18, No. 6, 91 (1963, in Russian) (English
translation Russian Math. Suwrv., 18, No. 6, 85 (1963)).

(3%) J. MosER: Stable and random motions in dynamical systems, in Annals of Mathe-
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pendix 8 of ref. (?)). Indeed the qualitative property which has been established
for systems which are (Hamiltonian, conservative) small perturbations of in-
tegrable ones is, in general, the existence of a set of invariant tori which are
slightly distorted with respect to the ones pertaining to the unperturbed system.
In the typical case, for the perturbed system the set of invariant tori is known
to fill a «large part » of phase space, in the sense that the measure of its com-
plement tends to zero with the perturbation. In particular these results have
been applied to the classical problem of the heavy rigid body with a fixed
point (1%) (see also appendix 8 of ref. (%)).

However, a clear understanding of the type of motions which occur for
initial data in the set complementary to the set of invariant tori is still lacking.
In fact, almost all available information in this connection up to now just
comes from numerical computations (sce, however, ref. (>141%)). The typical
case, as has always becen confirmed in all examples examined after the first
classical numerical investigation of Hénon and Heiles (2°), appears to be the
following: that for small enough perturbations the computations show only
very regular orbits, lying apparently on invariant tori, while for larger per-
turbations a part of the tori seems to be destroyed, and erratic or chaotic orbits
appear instead, filling a so-called stochastic region. These motions starting
in the set complementary to the set of invariant tori have indeed in general
many properties which pertain to typically chaotic motions, such as that of
being visually scattered through some region and that of having positive
maximal Ljapunov characteristic exponent (2':22). This phenomenon of the
blowing up of the complementary set as perturbation increases has been for
this reason described as the occurrence of a «stochastic transition » or, as
we prefer to say, of a «transition to stochasticity ». Clearly, the existence
of a stochastic region in the above-described sense is not compatible with the
integrability of the system.

Now, if one comes to the problem of the heavy rigid body with a fixed
point, one can find, to our knowledge, no work which rigorously implies the
existence of chaotic motions apart from the very interesting recent works

matical Studies, No. 77 (Princeton, 1973).

(*%) V. 1. ArNoL'D: Stability problems and the ergodic properties of classical dynamical
systems, in Proceedings of the 1966 International Congress on Mathematics (Moscow, 1968,
in Russian), p. 387.

(*") N. N. Nexnorosukv: Usp. Mat. Nauk, 33, No. 6, 5 (1977, in Russian) {(English
translation Russian Math. Surv., 33, No. 6 (1977)).

(*8) G. M. Zasravskiy and B. V. Cairikov: Usp. Fiz. Nauk, 105, No. 1, 3 (1971, in
Russian) (English translation Sov. Phys. Usp., 14, No. 5, 549 (1972)).

(1% G. M. ZasrLavskiy: Statistical Irreversibility in Nonlinear Systems (Moscow, 1970,
in Russian).

(2°) M. Hf~on and C. HEILES: Adstron. J., 69, 73 (1964).

(?') G. BexETTIN, L. GALGANI and J.-M. STRELCYN: Phys. Rev. 4, 14, 2338 (1976).
(**) G. BENETTIN and J.-M. STRELCYN: Phys. Rev. A, 17, 773 (1978).
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of Kozlov and Ziglin (*3). Neither we know of works that exhibit the existence
of chaotic motions and of a transition to stochasticity in such a problem (24)
through numerical evidence, although this could be expected according to
the above-mentioned general considerations.

The aim of the present paper is indeed to show numerically the existence of
chaotic motions and of a transition to stochasticity in the classical problem of
the heavy rigid body with a fixed point. More precisely, evidence of this fact
is given here in the particular case of perturbations of the Euler-Poinsot case.
As a consequence, this gives numerical evidence of the nonintegrability of the
clagsical problem of the heavy rigid body with a fixed point in the general case.
In the future we will also investigate, among other problems, perturbations of
the Lagrange-Poisson and of the Kovalevskaja cases.

In sect. 2 we recall the results obtained by HENoN and HEILES (*°), in order
to introduce the reader to the notion of a transition to stochasticity and to
explain some concepts to be used in the next sections, such as that of surface
of section. In sect. 3 we recall the definition of a set of variables recently in-
troduced by DEPRIT (*), which are particularly convenient for studying the
problem of a heavy rigid body with a fixed point, as they actually allow the
reduction to a problem with two degrees of freedom. Finally, the numerical
results establishing the existence of chaotic motions and of a transition to stoch-
asticity in the problem at hand are presented in sect. 4.

We thank DEPRIT (Cincinnati) and KERNER (Paris) for useful discussions.

2. — The transition to stochasticity in the Hénon-Heiles model.

The model considered by HfNoN and HEILES (%°) consists of two harmonic
oscillators of the same frequency coupled by cubic terms in the co-ordinates,
as described by the Hamiltonian

H@, y, pzy po) = (@2 + 2°) + 3 (03 + o) + 2y — 397,

where z, ¥, p,, p,€ R. This model turns out to be of astronomical interest,
in connection with studies of galactic motions. Many investigations on models of

(33) V. V. Kozrov: Vestn. Mosk. Univ., Mat. Mekh, 6, 99 (1976, in Russian) (English
translation Mosk. Univ. Vestn., Mekh., 31, No. 6, 55 (1976)); Usp. Mat. Nauk, 34,
No. 5, 241 (1979, in Russian); S. L. ZigrLin: Dokl. Akad. Nauk SSSR, 251, No. 4, 786
(1980, in Russian).

(2%} It might, however, be interesting to note that in the well-known Lorentz system
of equations, which is nonconservative, but presents some formal analogies with the
Euler equations (with 4 =2, B= € =1), the existence of a very complex structure
of chaotic motions has been numerically observed. See O. LanNrorp: in Statistical
Mechanics, CIME Course, Bressanone, 1976, edited by G. Garravorr: (Napoli, 1978).
(2%) A. DEPRrIT: Am. J. Phys., 55, 424 (1967).
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this type had already been performed by ConNTOPOULOS (26) with the aim of
showing that these systems were « practically integrable ». This was actually
shown to occur at least for not too high energies, in the sense that the com-
puted orbits were indeed found to be very regular and one could find phase-
space functions which were « practically » integrals of motion. More precisely,
one can define formal power series in the variables », y, p,, p, which are prae-
tieally integrals of motion, in the sense that the fluctuations of the numerically
computed values they take along an orbit when the series are truncated at
several orders appear to diminish and to become negligible as the order in-
creases (for example, up to order 13) (-3),

On the other hand, HENoN and HEILES discovered that, if energy was raised,
chaotic motions came to occur. In order to exhibit this fact, one makes use
of the classical tool of the Poincaré surface of section, which consists in con-
sidering, instead of a whole orbit in phase space, the sequence of points obtained
by its intersection with a suitable fixed submanifold (surface of section). In the
Hénon and Heiles experiment the sequence of points is obtained as follows.
Consider a surface of constant energy E. For 0 < E < § it contains a unique
compact component which we denote as Ix. Taking in Iy the two-dimen-
sional surface given by x = 0, one considers the successive points at which a
particular solution intersects this two-dimensional surface with p, > 0. If one
climinates p, with the help of H = E and sets # = 0, one can use y and p,
as co-ordinates on this two-dimensional surface and thus one can plot the
points of intersection on the plane region:

To={y,p,)eR; L(p* + 9"~ 1< B, y<1}.

Now we can describe the transition to stochasticity by making reference to
fig. 1-3. One considers several initial data on a fixed energy surface Iy and
each of the corresponding orbits defines a sequence of points in [ as above.
A first example, corresponding to E = %5, is given in fig. 1. Several orbits
have been computed here, and for each of them the corresponding points ap-
pear to lic on a very regular closed curve; any such curve would be densily
filled if the orbits were computed for longer and longer times. Morcover, the
set of such regular curves appears to practically cover all of I.

The opposite sitnation occurs, for example, for E = §, shown by fig. 2.
Here five orbits have been computed and for one of them the corresponding
points in [, appear visually to almost densily fill all of it. In fact, just a small

(*%) G. CoxtorouLoOs: Astron. J., 68, 3 (1963).

(**) I. Gusravson: Astron. J., 71, 670 (1966).

(*%) A. GrorGIiLrl and L. GarGant: Cel. Mech., 17, 267 (1978).

(*®) A. GiorerLLi: Comput. Phys. Commun., 16, 331 (1979).

(*") G. GoxToPOoULOS, L. GALGANI and A. GIORGILLI: Phys. Rev. A, 18, 1183 (1978).
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Fig. 1. — Surface of section for the Hénon-Heiles model when the energy has value
E =1/12. This figure shows a typical practically-integrable situation.

part of I, for example around the centre of the figure, appears to be covered
by regular curves.

In general, for intermediate values of the encrgy, Iy appears to be subdivided
into two invariant sets. One of these seems to be covered by regular closed
curves and the other one by sequences of scattered points with a visual chaotic
behaviour, each sequence corresponding to an individual chaotic orbit. This
situation is illustrated by fig. 3, which refers to E—%, where one chaotic
orbit is visualized.

The gualitative differences between the region apparently covered by reg-
ular curves, which can be called the ¢ ordered region », and the other region
which can be called stochastic or chaotic, are striking. Possibly one of the
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L

Fig. 2. — Same as fig. 1 for F=1/6, showing a typical almost completely chaotic
situation.

main features distinguishing these regions is the following: motions have a
predictable character in the ordered region and an unpredictable one in the
stochastic region. This is strictly related to the way in which the orbits depend
on the initial data; indeed the computations show that orbits with nearby
initial data diverge from each other exponentially with time in the stochastic
region and in a substantially slower way in the ordered region.

This circumstance, in turn, can be formalized by making reference to the
maximal Ljapunov characteristic exponent (LCE) of an orbit. A numerical
method to compute the maximal LCE is described in ref. (1), where an ap-
plication to the Hénon-Heiles model is also given; a minor technical improve-
ment, as well as a general numerical algorithm to compute all LCEs, is
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Fig. 3. — Same as fig. 1 for E=1/8, showing a typical intermediate situation.

given in ref. (3!). It can be proven that the maximal LCE vanishes almost
everywhere for integrable systems; several numerical computations (21:22:32)
show instead that it vanishes in the ordered region, while it appears to be
definitely positive in the stochastic region.

(3Y) G. BENETTIN, L. GALGANI, A. GIOoRGcILLI and J.-M. STRELCYN: Meccanica, 15,
9, 21 (1980). See also G. BENETTIN, L. GALGANI, A. GioreILLI and J.-M. STRELCYN:
C. R. Acad. Sci. Ser. A, 286, 431 (1978); G. BENETTIN and L. Garcani: Ljapunov
characteristic exponenis and stochasticity, in Intrins. Stochast. in Plasma, Cargese (1979,
in print).

(32) V. I. OseLEpEC: Tr. Mosk. Mat. Obsch. 19, 179 (1968, in Russian) (English tran-
slation Trans. Mosc. Math. Soc., 19, 197 (1968)).
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3. — The Deprit variables in the problem of the rigid hody with a fixed point.

The Hamiltonian and the corresponding equations of motion for a rigid
body with a fixed point take a form much simpler than the usual one related
to the Euler angles and the corresponding momenta, if one makes reference
to a set of variables which were introduced quite recently in this connection
by DEPRIT (**), although they can also be found, in connection with the problem
of celestial mechanics, in an older textbook of Andoyer (33}; a systematic use
of such variables in the problem at hand is made in the recent book of
Arhangelskij (%).

Let us, as usual, take the fixed point O around which the body is rotating
as the origin of two right-hand orthogonal co-ordinate frames: the frame
0XYZ fixed in space with the Z-axis vertical and the moving frame Oxyz
which is fixed relative to the body. The corresponding unit vectors are de-
noted as usnal by I, J, K and i, j, k, respectively. The axes of the moving
frames are directed along the principal axes of inertia of the body, and the
corresponding principal moments of inertia (which we will sappose to be strictly
positive) are denoted by 4, B and C, respectively. Let I' be the angular mo-
mentum of the body with respect to O and I the plane through O normal
to I'. If k, K and T are distinct, the plane I7 cuts the plane OXY along a
straight line OM and the plane Ozy along a straight line ON, which we orient
as KAT and T'Ak, respectively.

Fig. 4. — The Deprit angles.

(33) H. ANDOYER: Cours de mécanique celeste (Paris, 1923).
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The Deprit angles @;, @,, | with 0<p;<< 27, 0 <@, <27, 0<I < 2x are then
defined as in fig. 4, i.e. ¢, is the longitude of the plane /T in the co-ordinate
plane OXY, ¢, is the longitude with respect to OM of the plane (of inertia)
Oxy in the plane /7 and 1 is the angle of rotation of the axis of inertia Ox with
respect to the intersection ON of the plane of inertia Oxzy with the plane I7.
The corresponding momenta I3, I,, L are defined through suitable com-
ponents of the angular momentum I, namely I,=1,, I, =TI, L= 1T, re-
spectively, where I',=T-K, I',=T"-k, and I" is the norm of T.

If ¢, 0, v are the usual Euler angles and py, pe, py the corresponding
momenta, one easily shows that the transformation (g, 0, v, Py, Do, Pe) —
— (@5, @2, I, I, I,, L) is canonical. The notations for the Deprit variables
used here are taken from Arhangelskij’s book (8), whose choice reflects the
fact that I,, I,, ¢,, @, are already action-angle variables for the Euler-
Poinsot case.

The problem is now to express the Hamiltonian H in the Deprit variables.
Let us start with the Euler-Poinsot case when H = H, = T, where T is the
kinetic energy. Recall that

1/1 r r:
m__ x Yo z
) 1 2(A B 0)’

where I',, I',, I', are the components of I' in the frame Ozyz. We already have
I, = L. Denote now by I',, the projection of I on the plane Ozy and by I,
its norm. One cagily sees that

I,=vIi—1, [I,=1I,5sinl, I,=1I},cosl,

so that one gets

) =5 A B 20"

IR— L (sinZZ €os? l) L2

Let us now pause to comment on formula (2), which is the Hamiltonian for
the Euler-Poinsot case in the Deprit variables. As one sees, the variables
@3, @2, I; do not appear there. From the Hamilton equations one thus gets
that the variables ¢,, I, = I, and I, = I" are constant, as was already clear
from conservation of angular momentum. Denoting I, = o« = const, the
problem is then reduced to that of a conservative system with one degree of
freedom with variables !, L and Hamiltonian

o — L2 (gin?] cos?l L2
(3) H, 1) = ( )+ 2

2 A B 20°

Thus, through the Deprit variables, the Euler-Poinsot problem can be treated
as the familiar conservative one-dimensional problems, such as typically the
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plane pendulum. Indeed, for a fixed «, in the phase (}, L)-plane one has just
to trace the level curves y,  of H  to obtain the projection of phase-space tra-
jectories; these cover the rectangle {(I, L); 0<l < 2x, — a<L<a}. each one
corresponding to a particular value of E.

However, for the perturbation of Hamiltonian (2) we will be interested
in the study of surfaces of section of the corresponding flow at a fixed energy £,
in analogy with the description given in sect. 2; thus it is more convenient
for us, even for the unperturbed Hamiltonian (2), to consider another repre-
sentation. Namely, instead of a fixed value of « we take a fixed value of the
energy F and we obtain phase-space trajectories whose projection in the
(!, L)-plane are level curves y, of Hamiltonian (3), each corresponding to a

]OL SRV AP S B LONUUYRE WS RS R SN |
L _,“f = s B b
Y Voo ST L
X |
s L S S U
13 TN / e
1
Y 1 ! L AR R SRR MERAE S I MR B
0 2.0 4.0 6.0
angle

Fig. 5. — The integrable case of the rigid body with a fixed point and no weight,
described by the Hamiltonian (2) with two degrees of freedom, co-ordinates I and ¢,,
momenta I and I,. As ¢, is ignorable and thus I,= o= const, the problem is
essentially one-dimensional and the projections of the phase-space trajectories on the
(1, L)-plane coincide with the level curves of Hamiltonian (3). In the figure one
has L/I, vs. 1 for several values of o« and a fixed value of the energy E= 50 with
A=3, B=2, (=1, Actually, the points have been obtained by integrating the
Hamiltonian equations for Hamiltonian (2) and by taking as surface of section the one
defined by g, = (n/2) (mod 27), in complete analogy with the methods used in the per-
turbed cases of fig. 7-13.
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particular value of o = I,. It is easily seen (as one always has o> |L|) that
these curves cover the rectangle {(I, L); 0<! < 27, |L|<as}, where oz = v/2EC.
Using as co-ordinates ! and L/I, = I',/I" instead of I and L, the curves cover
a rectangle which is independent of FE, namely {(I, L/I,); 0<l< 2, — 1<
< L/I;<1}. As an example we report in fig. 5 some phase-space trajectories y,
for A=3, B=2, (=1 and F = 50, which are just the values which will
also be considered by us in the perturbed case.

The qualitative features of fig. 5 are easily understood if one recalls the well-
known econsideration which gives the possible positions of I' with respect to
the moving frame Oxyz (sce ref. (), sect. 29). Indeed, due to conservation
of cnergy E and of angular momentum I' one has

r.r I
I: Bi;—l— (/—fz = 2F = const, 14 I7?+4 I'’= 1" = const,

so that the vector I lies on the intersection of an ellipsoid with a sphere both
fixed with the body. The curves traced by I on the ellipsoid are easily recognized
to be qualitatively of the form reproduced in fig. 6, which refers to a case with
A>B>C>0. If we take into account that L = I', and the definition of {
(sce fig. 4), the qualitative features of fig. 5 then follow.

One easily thus recognizes that the two fixed points at (72, 0), (3, 0)
correspond to the stable permanent rotations about the axis Oz, the two fixed

Fig. 6. — It explains the qualitative features of fig. 5 and shows possible positions of
the angular momentum I' with respeet to the moving frame for a fixed value of the
energy. The various curves correspoud to different values of the norm of T.
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points at (0, 0) and (7, 0) to the unstable permanent rotations about the axis Oy
and the straight lines L/I, = — 1, L/I, = 1 to the stable permanent rotations
about the axis Oz. Notice that in the latter case the plane of inertia Ozy coin-
cides at all times with the «invariable » plane I/, so that the rotation angle [
is no longer determined; thus the periodic orbits L/I, = — 1 and L/I, =1
in the phase plane I, L/I, can be considered as fixed points too. The separa-
trices conneeting the two unstable fixed points are also exhibited.

Finally, let us come to the case in which gravity is taken into consideration.
Let z,, ¥,, 2, denote the co-ordinates of the centre of mass in the moving frame
Oxyz, let Z, be its third co-ordinate in the fixed frame OXYZ and define
y=1i-K, y'=j-K, "= Ek-K. Then one has H = H,+ mgZ,, t.c.

(4 H=H,-| mg(xey -+ Yor' 4+ 2¥"),

where m and g are the mass of the body and the acceleration of gravity, respec-
tively. The rather complicated expressions for y, 9', " in terms of the Deprit
variables can be found for example at page 22 of ref. (8) and are given by

2\ 3

2% I
~) sml—|—(1—1—) jl—;sinlcos%—{—(l—i—:) cos 1 sin ¢,
2 2

IZ

(5) 4

2

I; LA\t

7 —(1 12) (141—3) CcOS @y .

As we already know that I; = I'; is an integral of motion and that I, = I'> |1},
if we take I, = f+ 0, then we have I, > |[§|> 0, and no problem arises in
the expressions of (). Hamiltonian (4) refers to a system with three degrees
of freedom. For the purposes of this paper it is sufficient to consider, in fact,
the corresponding one-parameter family of Hamiltonians with two degrees of
freedom which ig obtained by putting I, = £ 0 in (4). To this we will refer
from now on.

Fix f# 0. Denote by I'y, the constant-energy surface corresponding to
an energy F, whose possible range is — mg(a? + 2 -+ zﬁ)*<E< co. It is easy
to see that I'y  is always compact. Indeed, as @, and [ are defined modulo 2z
and we already know that |I;(<I, and that |L|{<I,, then it is sufficient to
show that I, is uniformly bounded from above when (., 1, I, L) € [';5. In
turn, this follows from the remark that 7 — E — mgZ, is uniformly bounded
from above (as |Z,|<Va:+ 92 + 22), which by (1) implies the same for
[y |y, |I%] and thus also for I,= I

Actually, a sufficient generality for the qualitative purposes of our investiga-
tion is afforded even if we take the centre of mass on the axis Oz, i.e. if we put

1,
I,
1,
1,
I

#

I\t L NG .
= cosl—i— 1—12) Izcoslcosqaz— I—E sin I sin ¢, ,
L
Y = s
2
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&y = Y, = 0 in Hamiltonian (4). From (5) one thus gets

) I3 — 12 {sin®]  cos?l L2
(6) H(¢27l712,113ﬂ,ﬂ): : ( )+

2 A B 20

L 2\} L2\
T
2 2 2

where y = mge, and B850 is the constant value of I,=1I7.

Notice that the Hamiltonian (6), as well as H,, is a periodic funecticn of !
with period 7z, while the period is 2z for the complete Hamiltonian (4). As a
consequence, it is easy to see that, if {@,(#), (1), L,(t), L{t)},cx is a solution of
the equations of motion for Hamiltonian (6), then {g,(¢), [(t) + 7, Is(t), L{1)},cr
is also a solution.

4. — Results of numerical computations.

Our aim is thus to integrate numerically the equations of motion for
Hamiltonian (6) and to produce figures analogous to fig. 1-3 in order to exhibit
the occurrence of chaotic motions and of & transition to stochasticity as u>0
is increascd.

All computations were performed for A =3, B=2, C=1,=1,=1,=25,
F = 50 with g taking values in the interval 0.46, prceisely g = 0, 0.1, 0.5,
1, 5, 10, 20, 30. The computations were performed on & PDP11 with & precision
of 7 digits, by using a standard Runge-Kutta fourth-order method with time step
typically of 0.01; this gnaranteed encergy conservation up to 4 digits for times
sufficient to give typically 1000 points of section. For questions concerning
the reliability of numerical computations in the study of stechasticity, see ref. (34).

As is well known (see for example sect. 28D of ref. (°)), having chosen a
model with A= B4 C we are necessarily considering a plane rigid body.
An example of a rigid body satisfying our conditions 4=3, B=2, (=1
is the one constituted by four material points of unitary mass at the vertices
of a unit square, the fixed point 0 lying in the middle of one of its sides.

After having fixed values of u, § and E, the initial data were obtained by
giving certain values to ! and L, by taking ¢, = #/2 and getting I,> 0 from
the equation H(n/2,1, I, L; u, f) = E. In all cases considered it turned out
that this equation had one and two positive solutions for L < 0 and L >0,
respectively; moreover in the latter situation only the maximal solution had
a mechanical meaning, namely satisfied the necessary conditions I,> [L|,
I,> Bl

(3% G. Bexer7TIN, M. CASARTELLI, L. GALGANI, A. GIORGILLI and J.-M. STRELCYN:
Nuovo Cimento B, 44, 183 (1978); 50, 211 (1979).
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Our surface of section in I'y; was also defined by the condition ¢,= (72/2)
(mod 2x). Given a trajectory in phase space, the condition ¢,== (n/2) (mod 2x)
defines a sequence of points, representing the trajectery on the surface of
section. In full analogy with the treatment of the unperturbed problem, each
point of this sequence can then be represented as a point in the plane R? through
two co-ordinates ! and L/I,, I, being a well-defined function of [ and L. Thus
to any trajectory there corresponds a sequence of points in the rectangle
F= {1, L/I,); 0<l<2p, —1<L/I,<1}. This choice of L/I, instead of L as a
co-ordinate, notwithstanding the fact that I, is not an integral of motion for
w0, has the advantage that the corresponding region I has then a very
siraple form; on the other hand the possibility of recognizing the regular or
chaotic character of an orbit is not affected by that choice, due to the fact
that I'; 5 is compact and I, is a strictly positive smooth function defined
on I',,.
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Fig. 7. — From the present figure up to fig. 13 the results are given illustrating the
transition to stochasticity in the problem of the heavy rigid body with a fixed point,
described by Hamiltonian (6), as the perturbation parameter u is raised, the values
of the other parameters being 4 =3, B=2, (=1, E= 50, §=5. The cquations of
motion have been solved numerically to obtain the points intersecting the surface with
@, = (7/2) (mod 27) and for them L/I, has been plotted vs. I, as in fig. 5, which correspond
to the unperturbed case with u= 0. Here pu=0.1.
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Fig. 13. — Same as fig. 7 with u = 30.
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2 = Il Nuovo Cimenio B.
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Let us now come to a description of the results. For g = 0 the already
known results are given in fig. 5. This figure could have been obtained by
tracing level curves for the corresponding Hamiltonian (3), but was instead
obtained by the above-described method. Figure 7-13 correspond to p = 0.1,
0.5, 1, 5, 10, 20, 30, respectively.

For 4 = 0.1 one already observes a very small stochastic region around the
curves which are the separatrices connecting the {wo unstable fixed points for
u = 0. For u = 0.5 the situation is similar and just the stochastic region is a
bit larger. For u = 1 a substantial change occurs in the form of the closed
curves around the central stable fixed points, inasmuch as islands of higher
order appear, while the stochastic region keeps essentially the same form as
before being slightly enlarged. Analogously for u = 5. The process of disso-
lution of the invariant curves and the corresponding extension of the stochastic
region continues when g is inereased from 10 to 30, when the stochastic region
occupies the largest part of the available region, i.e. of the rectangle I

As to all fig. 7-13, one sees that the straight line ! = z divides each of
them into two strips, the right one being obtained from the other one by a
translation. This is in complete agreement with the last remark of seet. 3.

5. — Conclusions.

We have thus given a numerical evidence for the existence of chaotic mo-
tions and of a transition to stochasticity in the classical problem of the heavy
rigid body with & fixed point, by studying a convenient perturbation of the
Euler-Poinsot case. This, in particular, gives also numerical evidence for the
nonintegrability of the classical problem of the heavy rigid body with a fixed
peoint in the general case.

Preliminary investigations of perturbations of the Lagrange-Poisson and
of the Kovalevskaja cases appear to confirm the results reported here for
perturbations of the Euler-Poinsot case.

Note added in proofs.

There recently appeared a book by V. V. KozLov: Methods of Qualitative Analysis
in the Dynamics of Rigid Body (Moscow, 1980), which is of great interest for the problems
considered in the present paper.

® RIASSUNTO

In questo lavoro si mostra numericamente 'esistenza di moti caotici e di una transi-
zione alla stocasticita nel problema classico del corpo rigido pesante con un punto fisso,
studiando una perturbazione del caso di Eulero-Poinsot. In tal modo si d&a anche una
dimostrazione numerica della non integrabilitd di questo problema.
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XaoTHYeckHe NBMIKEHHA W NEPEX0J K CTOXACTUYHOCTH B KJIACCHUECKO# npodieMe THKEIOro
JKeCTKOr0 Teaa ¢ (HKCHPOBAHHOMN TOYKOIA.

Pe3oMe (*). — Mbl nOpHBOAUM YUC/IEHHOE MOATBEDPKACHUE CYIIECTBOBAHHS XAOTHYECKUX
JBIDKCHUI M MEPEX0oJa K CTOXacTUYHOCTH B KJIACCHYECKOM mpobiieMe TAKEIOro }eCTKOro
Tena © (UKCHPOBAHHON TOYKOL, HCCIEOys BO3IMYyLIeHHe IS ciydyas Oinepa-Ilyanco.
Taxoxe MPUBOAUTCS YMCTICHHOE TOATBEPKACHIE AJIA HEMHTEr PUPYEMOCTH TaKoH MPoOIeMel.

(*) IHepesedeno pedaxyueil.



