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Summary. We present a study concerning the derivation of the
so-called «shock generating function» in a flow of a simple mixture
of v ideal constituents. Due to the analytical complexity of this function,
in general, numerical treatments have been discussed in some particular
cages (v =2 and » = 3). On the basis of these results, we discovered
that, unlike the classical model of a single fluid (where only the super-
sonic shock is admitted), the mutual interaction of the constituents of
the mixture allows the rising of a new type of k-shocks confined within
intervals of low-shock Mach numbers, which satisfy the entropy prin-
ciple. A procedure to symmetrize the system of the original balance
equations in terms of the « main field » and the explicit computation of the
jump of this field across the shock are also given in appendices.

PACS. 05.70. — Thermodynamics.

1. - Introduction.

Recent studies on quasi-linear hyperbolic systems of the first order have
emphasized the important role played by those systems—in the context of
continuum theories—which, written in conservative form, admit a supple-
mentary conservation law and a convex density energy. A panorama on the
status of these researches can be found in (*13).

(1) K.O. FriepricHS and P.D. Lax: Proc. Nat. Acad. Sci. USA, 68, 1686 (1971).
(?) P.D. Lax: in Contribution to Nonlinear Functional Analysis, edited by E. H.
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198 N. VIRGOPTA and F. FERRAIOLI

An important point worth noticing is that for such systems a «main field »
exists, depending only on the field equations and the supplementary con-
servation law, in terms of which the original balance system assumes a sym-
metric hyperbolic conservative form, in the sense of Friedrichs (2), through a
4-vector generating function. This 4-vector behaves, therefore, like a sort of
potential in that it generates the differential field equations (%12). Furthermore,
for such systems, important properties for the shock structure hold: the ex-
istence of a generalized entropy—the so-called generating function of the
shock—, which increases across a noncharacteristic shock (7), and the existence
of limits for the speed of the shocks which cannot exceed the characteristic
velocities. In a relativistic context this means that the shock velocity ean
never exceed the velocity of light in vacuum ().

In the course of this work we shall derive the supplementary conservation
law for a flow of a simple mixture of » ideal constituents (*41%) and then shall
construct the «shock generating function» (SGF) for this thermodynamie
inviseid system. Numerical models will attempt to lighten some of the main
properties of this funection.

The plan of this paper is the following: in sect. 2 we present some outlines
concerning the theory on which the work is based. In sect. 3 are summarized
the governing balance equations of the mixture.

In sect. 4 we give a proof for the convexity of the assumed density entropy
for the mixture and also derive the supplementary conservation law. Section 3
is devoted to the shock-generating function which shall be derived in terms
of each of the shock Mach numbers of the components of the mixture. In
sect. 6 we apply, under simplifying assumptions, the theoretical apparatus to
cases of one-dimensional models to make easy numerical calculations. In
this context, in a) we consider the characteristic polynomial for the eigenvalues
of the system, in b) we discuss the global behaviour of the temperature jump
across the shock and in ¢) we describe the numerical models and the profiles of
both the temperature jump and the SGF. Finally, brief concluding remarks

ZARANTONELLO (Academic Press, New York, N.Y., 1971), p. 603.

(3) . O. FriepRICHS: Commun. Pure Appl. Math., 27, 749 (1974).

4) . O. FrieprIcHS: Oommun. Pure Appl. Math., 31, 123 (1978).

®) Borrar: C. R. Acad. Sci. Paris, A 274, 1018 (1972).

(8) Bomrat: €. R. Acad. Sci. Paris A, 278, 909 (1974).

) Boirrar: C. R. Acad. Sei. Paris A, 283, 409 (1976a).

) BorraTt: 0. R. Acad. Sci. Paris A, 283, 539 (1976b).

®) BoiLraT: in Wave Propagation, Corso CIME (Bressanone, 1980).

(1) G. BoiLLaT and T. Rueeeri: C. R. Acad. Sei. Paris, A 289, 257 (1979).

(1) G. Bormrar and T. RucGreri: Acta Mech., 35, 271 (1980).

(12) RuaGeert and A. StrRUMIA: Ann. Inst. Henri Poincaré, XXXIV A, 65 (1981).
(13) T. RuGGERI: Acta Mech., 47, 167 (1983).

(14) I. MOLLER: Arch. Ration. Mech. Anal., 28, 1 (1968).

(*%) I. MULLER: Thermodynamics and Constitutive Equations, Corso CIME (Noto, 1982).
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are provided in seet. 7. In appendices the procedure to build up the Hessian
coefficient matrices for the symmetrized system and the jump of the main
field are explicitly derived. These calculations may be of some utility to search
numerical solutions.

2. — Recalls and outline of the general theory.

Some general recalls of the theory concerned with are required for a better
understanding of the paper. To this aim, let

(2.1) doFo(U)=f(U) or AoU)2,U=f(U),

with Ae =V Fo(U) a N XN matrix (w =0,4; ¢ =1,2,3; Vy=0/2U is the
gradient with respect to the components of the field U), be the first-order quasi-
linear hyperbolic system in conservative form describing the flow, where
U= Uxy) c 2CRY is the unknown N-vector, £ a convex open domain,
00 = 0/0%0, F* and f column vectors of R¥, with the convection that F, = U
and x, =t (time). Supposing that a supplementary conservation law, con-
sequence of the field equations (2.1), exists and is given by

(2.2) duho(U) = g(U),

then, if ho(U) is a convex density funection of U, defined in &, the « main field »
is given by (512)

N

(2.3) U= U'(U)=Vyh(U) (~ denotes transposition).

The field U’e R¥ allows us then to build up the «4-vector-generating
function »

(2.4) pe=U-U—h, HIi=U" Fi—hi.
Since from (2.3) it turns out that the Jacobian matrix

o _
U~

VulVol') = 555w

is symmetric and, thanks to the convexity of k% positive definite, a well-known
theorem (¢) ensures the global invertibility of the mapping U'(U). In view
of this, one has also that U= V .k’

(**) M. Bereer and M. BERGER: Perspectives in Nonlinearity (W. Benjamin Inc.,
New York, N.Y., 1968).



200 N. VIRGOPIA and F. FERRAIOLI

By taking, therefore, U’ as new field, it is a simple matter to prove that

~

(2.5) Fe =V h'.

This is an important result in that it expresses that, for all those systems
of type (2.1) endowed with a supplementary conservation law (2.2) with A°
a convex function of U, the vectors F» are nothing but the transposed of the
gradients of h'® with respect to the new field U’. In other words, the 4-vector
h'e plays the role of a potential and for this reason h'® are called the «gen-
erating functions» of system (2.1) (12).

From (2.4), it turns out that U and U’ are conjugate of the other through
the simplest contact transformation (the so-called Lie Gendre transformation),
so that h'® too is a convex function of U'.

The substitution of (2.5) into (2.1) yields the following symmetrized con-
servative system:

aZhlw

(2.6) U0

2,U = f(U),

which, through the generating functions h'¢, describes the flow in terms of
the main field U’ (*). System (2.6) is further hyperbolic (in the sense of Frie-
drichs (%)) in that the Hessian coefficient matrix of the time derivative of U,
o2h'ojoU’-0U’, turns out to be positive definite. The convexity of h® provides,
therefore, a sufficient condition for the hyperbolicity of the original balance
system.

As remarked in (12), the field U’ possesses special privileges both from the
mathematical standpoint and for its physical relevance. In fact, U’ is not
affected by the transformation of U, i.e. it is independent of the choice of U.
The components of U’ are generally expressed in terms of thermomechanics
quantities, velocity, absolute temperature and free enthalpy, namely in terms
of the « observable » properties of the physical system. They play, furthermore,
as pointed out by the mentioned authors, the same role as the so-called « La-
grange multipliers » (¥) used in connection with the entropy principle pro-
posed and elaborated in (%%:20) in the context of a new thermodynamic theory
of the mixtures. The supplementary conservation law (2.2) may be obtained,

(*} The search for idoneous field vectors, able to reduce in gymmetrie form some special
physical systems, ig found first in (17). The general approach is given in (¢) with neces-
sary and sufficient conditions to construct a conservation supplementary law for a given
conservative hyperbolic system.

(") 8. K. Gobuxov: Sov. Math., 2, 947 (1961).

(*®) Liv I-Surmu: Arch. Ration. Mech. Anal., 41, 131 (1972).

() I. MULLER: Arch. Ration. Mech. Anal., 40, 1 (1971).

(**) I. MULLER: Arch. Ration. Mech. Andl., 41, 319 (1972).
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in fact, as a linear combination of the field equations by using the components
of U’ as multiplier factors.

It is worthwhile recalling finally that, for a symmetric conservative system,
a well-known existence and uniqueness theorem holds (21). This theorem ensures
that, if the initial data of the problem belong to a Sobolev space H*(R¥) with
index S>4, then in the neighbourhood of ¢ = 0 the system has a unique solution
belonging itself to H*.

In view of the foregoing statements a number of important properties
concerning either the evelution of weak discontinuities, or the shock waves
has been straightforwardly demonstrated.

Limiting our speech to the shock wave topie, for what concerns the present
paper, the following main properties are worth being recalled (%1%11):

i) the existence of a function which generalizes the jump of the thermo-
dynamie entropy, the already mentioned SGF, which is an increasing funetion
of the shock velocity;

ii) the finiteness of the shock speeds, confined within the range of the
characteristic velocities, which are real and bounded.

Property i) descends from the fact that the Rankine-Hugoniot jump con-
ditions lose their validity when applied to the supplementary law (2.2). In
fact, the quantity ()

2.7) 7 =[] g

is, in general, nonvanishing (the brackets [[]] shall denote hereafter the jump
of any quantity across the shock front g(x,) = 0).

By indicating by s the velocity of the shock front, it has been shown that
07(s)/ds > 0 (**) and >0 for s> with 1 denoting any one of the eigenvalues
of system (2.1). This behaviour of 7 implies the well-known growth of the
thermodynamic entropy across a shock. Furthermore, in the case of a non-
characteristic shock (namely, when the shock speed s 1), indicating by U,
the unperturbed field, the jump of U’ can be also expressed by

(2.8) [U] = a"{]] (A2, ).

(21) A. Fiscuer and D.P. MarspEN: Commun. Math. Phys., 28, 1 (1972).

(*) TUnlike as usually done, we have used, for convenience, the symbol 7 to indicate
the SGF preserving the symbol # for the density entropy.

(**) This result, first derived in (?) by introducing in the field equations an artificial
viscosity, has been further discussed in () under the only condition of convexity for
the density energy. A generalization of this result in a covariant formalism has been
made in (12).
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In other words, with only the knowledge of the function #(U,, s), one knows
the jump of U’; 7j behaves, therefore, as a « generator » of the shock.

Applications of this theory have been made in several physical fields: hyper-
elastic media subject to finite strains (1), relativistic fluid dynamics (%), ex-
tended thermodynamics (*), nonlinear electrodynamics (22), classical fluid
dynamics (17%-23:24),

3. — Balance equations for the flow of a mixture of v constituents.

According to the usual formalism (1¢), the leading system of partial dif-
ferential equations describing the flow of a simple mixture of v ideal constituents,
determining the fields of densities g, velocities v* and absolute temperature 7'
or total energy E, writes

0Qa ) -
(3.1}, & a_a‘; (0a?5) = Ta (balance of masses),
3.1), e O ieps_ 43y m? (balance of momenta),
ot oz,
oF 0

(3.1), o -+ 3 (Ev,—t;,;v,+ q;) = 0 (balance of energy for the mixture)
F)

(x=1,2y..,7;4,§=1,2,3),

where we have neglected in eqs. (3.1), the specific external-body forces and in
6gs. (3.1), both the specific energy supply due to radiation and the exchange
of energy among the constituents. Since in our context the constituents are
not reacting, the source terms 7, on the r.h.s. of eqs. (3.1), might be also can-
celled. All these simplifications do not reduce the general results of the present
work in that the neglected terms do not belong to the differential part of the
system.

To the above balance equations one must associate the constitutive re-
lations compatible with the linear representation (415) for a nondissipative
simple mixture of ideal constituents.

(?2) G. BorLrat: C. R. Acad. Sei. Paris A, 290, 259 (1980).
() D. Fusco: Atti Semin. Mat. Fis. Univ. Modena, XXVIII, 223 (1979).
(#4) A.I. VorpeErT and S.I. Hupiaev: Math. USSR Sbornik., 10, 571 (1972).
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Even though all the variables in (3.1) can be easily identified with the
index « denoting the constituent, we list the following symbols:

e =2 0a (density of the mixture as a whole),
i (v“)” 2 .
E =73 guxleat 5 | =ele -+ 3 (total energy/em® of the mixture),
1 (u=)? ] .
e =&+ . > 04 3 (internal energy/g of the mixture),
v, = 1zg(,,'vi‘ (¢-th velocity component of the
ST mixture) ,
1 . .
v = 529.,'0“ (velocity of the mixture),
12 (symmetric stress tensor on the
constituent «),
t,; = E (13— Qaufus) (symmetric stress tensor on the
* mixture) ,
ay2
=4+ 2 0a (%)— us (internal energy flux of the mixture),
uf = o] — v, (i-th diffusion velocity component of
the constituent «),
"= p*—9 (diffusion velocity of the constituent «) ,
Ta {mass production of the constituent «
due to chemical reactions),
mg (momentum production due to

exchange) .

The balance laws of the mixture as a whole impose the constraints > s = 0
and > m{ = 0, so that total mass and momentum of the mixture are conserved.

The constitutive relations read

o . R
t,-jz —pa(s; with Pa= .7“ thT 3
1 124
(3.2) a=y g Oatx with e, = 2 T=c:T,
T __ &[0 v . « __ Op Ps
‘L'—ZQv(”e—v.-) with QV——Qaz? 5ﬂ+a; + 0xéa+ Pa,
o [

¢, and ¢; denote, respectively, the intrinsic values of internal energy and the flux
of internal energy as defined in (%5). In the above relations .#, is the molecular



204 N. VIRGOPIA and F. FERRAIOLI

weight of the constituent «, # is the ideal-gas constant, 2, =1/(ys —1)=$, 3
and 3 (according to whether the gas is monoatomie, biatomic, or poliatomic),
v. = €yfcy the ratio of specific heats.

The constitutive relations for m? and 7, need not to be explicated in the
context of the present work.

By setting
Qa 0,7 Ta
33) F=Us=|e), F=\| eovv—t; |, [f=[mi],
E Bo; — 150, 4+ q; 0

system (3.1) of 4» 4 1 equations in the 4v -+ 1 unknown functions g, v
and E writes

]
i

cU oF/
W Tan =

4. — Supplementary conservation law and convex density entropy for the ba-
lance system.

a) The supplementary conservation law. In view of the Gibbs equation for
a mixture (%)

1
(4.1) d(en) = 75 [dlee) — Em doa]
we get

. o(en) 1 d(0&y) 1 00a
42 R AR I REDICE o F

where 5 = (1/9) X pans is the specific entropy of the mixture with 7, =

= ¢} log (pap,?*) the enfropy of the constituent «; ul=e¢, — Ty, + p, /o,
is the intrinsic chemical potential of the constituent o« (i.e. the specific free
entalpy).

To write down explicitly the supplementary conservation law (2.2) for our
balance system (3.1), we need few steps. In fact, eq. (3.1); may be rewritten as

0 (v* 0
(4.3) Y [051 + Z Qx “l] = — 83/' (Bv;—ts0,+ q5)

7

so that, since

O[oa(v7)*] ovf |, 0(0ay)
)2 — *\2 —
9“(’0 ) - ;Q“(’vi) a'nd at O‘IUL at + Iv
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in view of (3.1),, one finds

a[ a('va . & 0 aap a
(4.4) gat =% [z 0a(? =23 (m,. v — 0! ?m—)—'r (%)% —

L 1

0
— E': o [oa; (v%)2].

i

Besides, although tedious, it is not difficult to show the identity

(4.5) Bo,—t,0,+ 4= zv,{ea[ﬁ“’z)]wa}.

Substitution of (4.4) and (4.5) into (4.3), after some simplifications, yields

0 1 )2 0 a’
(4.6) Lgi‘) = 2 [Ta (’02) c ? i —;é? (90‘80"0 —DPa E - ]

ot S oz,

Finally, combining (4.2) and (4.6), eliminating Og./0t and manipulating,
one finds the requested supplementary congervation law

0 0 1 )2
(4.7) g [—a—t (0ana) + ; o, (gariavi‘)] =7 g: {[(1)2) _,ul] To— Z mfp;‘} .

In the case of a single constituent (adiabatic motion of an ideal fluid in
continuum mechanics), since the production density and the exchange of
momentum are identically zero, eq. (4.7) reduces to the well-known «equation
of continuity for the entropy » and reads

2(en) ) -
m-+V(MW—0

with gnv the entropy flux density.
Returning to the general case, let us set

BO(U) = — > gatia = — 01,

B(U) = — 3 oanatf

0= gz =[]

i

(4.8)

then eq. (4.7) takes the compact form (2.2).

b) Main field and convexr density entropy. As sketched in sect. 2, the
main field U’ to be associated to the field U = F°, as given by (3.3),, can be
found once a convex density function h°(U) is known,
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From the definition of U'= 6'Uh°, the main field may be directly found
by expressing (4.1) in terms of the components of the differential field dU,
namely in terms of dp_, d(g, v?) and dE. This may be obtained through a simple
manipulation which allows us to write

1 gei(v?)’
e‘:E{E_g[ 204 J}

de,— _{z [‘121 —81] dos— 3 3 o7 d(0av?) + dE} :

and then

3

The combination of this expression with (4.1) gives

49 dien) ——aw) = {5 [ ] do.— 3 3 ot ateent) + as).

3

From this last one derives at once

~ 1 [(v%)?
U’E—T[(—)~—‘u;, — 7, 1].

Let us now evaluate the thermodynamical restrictions which are requested
in order that h° is a convex function of U. For this it suffices to find the con-
ditions under which the Hessian matrix 0%k°/oUcU or, equivalently, the qua-
dratic form

ozhe

stag AU AU = d(Vyho)dU = dU'-aU

is positive definite.
Now, since

al = {dga, oadvf 4 o7 doa, (e + )dg + o(de + vdv)}

and

. 1 1 (v%)5]dT T 4T
' —= . ipedex I r__ Y7\ [ « T
v = T{” do% -+ 7 dT Qadpa+[,»¢, ’ ]T, aof + o S, — 1

it follows that

(4.10) TdU-dU' = Z( 2 do?)? —Qidpadga-’r

-+ {[Sa + (T)- + ga] doa + eaqaadha} df) + [(e + %2) do 4+ pvde 4o de] % .

X



ON THE SHOCK-WAVE—-GENERATING FUNCTION IN A SIMPLE MIXTURE OF GASES 207

By using the Gibbs equation, one finds that

“)?

de=Tdn—odv - - 2 {[ (s -+ %2) -+ T(n—m)—i—z—j doa+ Qavadva} y

which, introduced into (4.10), allows the quadratie form to be written as
(4.11) dU-dU' = Z [2 dv?)? — (dpa d¥a— AT dns) ]

where ¥’ = 1/gs is the specific volume of the constituent «. It is evident
that (4.11) is positive definite if the quantity

(4.12) S (Apa d¥ s — AT dza)

is negative definite.

To show this, we note that, differentiating u’ and then eliminating dn. =
= (dex + pa 4¥5)/T, one finds that dul = —ns dT + ¥adps. Setting for
brevity G = G(pa, T) = u.(p,, T), it follows that

oG @
G,:(ﬁ) = and G = (ap )T

In view of these expressions, each term of quantity (4.12) writes
(4.13) dp,d¥, — dTdy,= G, (dp,)* + 2G, ,dp,dT + G, (dT)*.

It turns out that (4.13) is negative definite if and only if the following
inequalities hold:

07 GO __Pa 07
Gppoy = (a pa)T< 0 Gyr = (a—f)% (a pa)T = Gr,, >0,

(e & p.[o%
Crr = (51‘1),,;“11“?(57),50’

8o that the discriminant of (4.13) turns out to be

cy(a’//') -0
apa T )

In other words, under conditions (4.14) which for a single fluid are but the
usual thermodynamical-equilibrium functions, we have established that the
function A° is, in the large, a convex function of U in any convex domain
2C R and, as a consequence, that the balance system is hyperbolic.

(4.14)
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We possess now all the elements to construct the 4-vector h'»(U’). From
definition (2.4) it turns out, in fact, that

' : 1 (v2)® E
we=U 'U—"°=f§{9a [uf.— : ]+ oa(v“)’}—T +on =1,
(4.15)
Wi=UF—h= 1@2 0at (s — en k- Tpe) = 75 3 par

which, in the case of a single fluid, reduce, respectively, to k'® = p/T and ' =
= pv,|T (35%).

Expressing h'e in terms of the components of the main field U’, the Hessian
coefficient matrices of the relative symmetrized system (2.6) are explicitly
given in appendix A.

5. — The shock-generating function.

a) The Rankine-Hugoniot equations. As known, the compatibility con-
ditions for a shock to be a weak solution to system (3.1) are the so-called
Rankine-Hugoniot jump conditions. These can be simply derived from eqs. (3.1)
through the formal substitutions (*%)

. 0 0
(5.1) P ——s[] and oz, —n,],

where s denotes the normal velocity of the shock front represented by a C2-
surface I'.¢(ze) =0 and n = (n,) is the positive unit normal vector to

I. [[X]] = )1( - ]0( denotes the difference of the limits taken from the two sides
of I
In view of (5.1), from (3.1) we get

—s[oa] + [eavi] =0,

— s[eav?] + [oav®v; + pan] =0,

( -3

(5.2)
v*)2 ”
—s[E] + |[>: gut [an+ 5 +§H —o,

where v, = v-n. In writing (5.2); we made use of identity (4.5). The ex-

(**) T. RugGERIi: in Wave Propagation, Corso CIME (Bressanone, 1980).

(3¢) T. RUGGERI: in Lectures at VI Scuola Estiva di Fisica Matematica (Ravello, 1981).
(2?) A. JEFFREY and T. Tantuti: Non Linear Wave Propagation (Academic Press,
New York, N.Y., 1964).
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plicit form of (5.2), which shall be useful in the following, writes

8a(03 — 8) = 4(05 —5)

Qa’v ( —3) +pa"— Qa'v“(’v — ) +Pa",

Z{Qa [€a+ (v:) }( )+pav,.} E{ea [&x+—)] (95 —s) +pav,.}

13 &

(5.3)

Defining the shock Mach number (SMN) in the unperturbed flow as

0 "

(5.4) Moo= """ With &= (yaDa/0a)t
Ca

and setting Y, = I[v;]], simple manipulations upon (5.3),, lead to

0x Y
Y.+ If[, C,

(5.5) [ea] = — and [P = — ga Jo{a & Ya.

On the other hand, we may also write

5.6) [pa] = % [oaT) = 55 Tecd 171+ 85171+ Ploo]} —%{M—lp

Co &

where we have set [T] = Klo’ with K > — 1 a real constant to be determined.
From (5.5), and (5.3) it turns out that

0
Cx

Q0
o (1 —“’}’al‘ﬁ + 0. Wa),
2ya Ma

(5.7) lra -

where o, can take the value |- 1 or — 1 and we have put for brevity W, =
=[1—vy, Jloli)z— 41Ky, Jloli]*. From (5.7) it follows also that, in order that
Y« be real, K must satisfy the constraint

0
1 —ys M2)2
(5.8) —1<K<min(—zal,—“)—-
¢ 4y, M5

In view of (5.7), expressions (5.5) becomo

[
Qa y 7 0
all = — 55— ( aMaIa+KctY)
le-] St x ’
(5.9)
aMa
[ps] = —72.7% $a Y,

14 — Il Nuovo Cimenlo B.
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and, as a consequence,

(5.10)

U:V]] 0 K + yaMaYa
—)’aszsz ’
[[po‘]] o '}’aMocYa"—gzx yaﬁ—“Yao 0
[[“//']] - 0 0 0 . Ou -
& YaMuYo+ K C

When the mixture is considered as a whole, one has

(5.11)

M, Y, er

[} =X les] =—1 K(ZW + K@),

0 0 0 .0
V z'yaMa Yagaloa—}— K

1=
0— S Mo Yo o/

a—M Y.
[[p]] =—2 Yo obe e “pa ’
Ga
0
Ii] ( . ya) 2o Mo Yool
S i Mo Yo Bafbu+ K|

Other jumps which are useful in the following calculations are explicitly

given by

(5.12)

[['v“]] = Y(xn ’
[lw=)] = 5o + So] = {[o] + 26} [o] = V2 + 26, Vo=

0 0 0
Co
= —7% [(1—ya1&§+2’ﬂ[3‘—“)y Ko“Ma],

[ez]

[pars] = B.[03] + 05 [pa] = {[pa] + Ba}[03] + 05 ]pe] =
= 110{0‘107& |:7¢x (l‘o[zx"— ,sz) Yo+ Kcoa] -

Cy
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Equation (5.3), in view of (5.3), and (5.4), may be conveniently written as

s [t et 2] o] =,

which, expressed in terms of the foregoing jumps (5.12), gives the following
equation for K:

Y.
0 0 0 0ay % __ " __)/a—l—l
(5.13) gcapa []}Mo‘K 4 (1 + ya M2) g ]m 0 with I}, = a1

fe2

It is worthwhile remarking that the values of K, implicit solutions of (5.13),
must also satisfy the foregoing consfraints (5.8).
In the case of a single fluid, eq. (5.13) reduces to

0
(5.14) g 2y— a1

Me 1)
v g Y

Making use of this value, algebraic manipulations give

28(1 — M= 2(M>—1)p
Y:[[Iv":ﬂ: A lo)? [[@]]: ( 0 e y
(y+1)M (y—1) M2+ 2
29 (IP—1) op(M*—1)p
y =, )=
T S

which are but the well-known Rankine-Hugoniot relations in ordinary fluid
dynamics (28).

b) The function 7. As sketched in sect. 2, the Rankine-Hugoniot con-
ditions, when applied to the supplementary conservation law of a physical
system written in conservative form, do not generally lead to an identically
zero quantity as they do for the field equations. On the eontrary, from (4.7},
in view of (5.1), we get

(3.15)  — 3 [ slo.n.] + [ean. o] = X [8als — 8)7, — 8,05 — 8),] =
=3 é.(s = 0)n] =17

(*®) L. D.Lawpav and E. M. LirsHIrz: Fluid Mechanics (Pergamon Press, London,
1959).



212 N. VIRGOPIA and F. FERRAIOLI

and, in general, this quantity is not zero. Besides, by using expressions (5.9),
the entropy jump of the constituent « takes the explicit form

0 0 - \17va
[7a] = 5 log [(%) 1+ K)ra] .

Co

For the mixture as a whole we get

(5.16) Il = y_ O tla —

ol =
gl

3 e = 1[5 (6l + fhleed) —el]

fD»—lI =

with

and »x the concentration of the constituent c.
Finally, expressing (5.15) in terms of the SMN, the general expression of
the SGF for a mixture of » constituents takes the form

0 0 Ya—1
Co—YaMa Yy
(5.17) f=2c¢ 036, M. §, log [("‘—"-;;L) 1+ K)—r.] )
~ In the case of a single constituent, it turns out that 7 oc [n] and simple
calculations lead to

[] 02 v
ﬁ:cngé’log” y+1 o” y+1) M H
(1—p)+2yM*] Ly —1) M*+ 2

By setting u®* = (y — 1)/(y + 1), the foregoing expression exactly coincides
with the same law as found in (2°) (*).

As was to be expected, except for the case of a single fluid, the geometrical
representation of 7 is very complicated. Its strong dependence on the param-

(*) Let us remark that in the single-fluid model the value K = — 1 (devoid of any
physical meaning!) leads, through (5.14), to the limiting SMN values M= +

+ [(y —1)/29]}. In a (]?{—ﬁ) framework these values correspond to two vertical
agymptotes for 7.
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eter K, 1.e. on the temperature jump, as given implicitly by eq. (5.13), makes
the problem one to be resolved only numerically.

6. — Study of the function 7.

As mentioned, the analytical study of 7, as given by (5.17), turns out to
be extremely complicated. We shall confine, therefore, to numerical solutions
relative to one-dimensional models. The results of these cases shall lighten
the problem and make a better understanding of the general behaviours of
this function possible.

Let us note, first of all, that the graphycal image of 7 turns out to be very
useful in that it helps to distinguish among its branches those which are com-
patible with physical shocks, namely those along which [[17]] > 0. The relative,
acceptable ranges of the SMN may be also visualized. Furthermore, since for
7 # 0 also [] 5= 0 across the shock, the irreversible thermodynamical character
of a nonlinear shock is well enhanced. Finally, in view of the general ine-
quality (%)

A ¢
N _po(U) + h(U,) - C—ho(U— U) >0,
as 0

the slope of 7 gives a measure of the shock strength amplitude.

To start with, we recall that the eigenvalues of the system describing the
flow—which are but the propagation velocity of weak perturbations along the
characteristic lines—are also roots of the funection 4. This important fact
allows us to check separately the numerical values of both the eigenvalues as
the roots of the characteristic polynomial related to system (3.1) and the
zeros of 7 as found from (5.17) among which there are also these roots.

a)‘ FEigenvalues. In the one-dimensional case, system (3.1) may be con-
veniently set into the form

Qa0
o +§;(Qa") ) = Ta,
_ ov® 0v* 1 0pa 1 “
(6.1) % T %% +aa‘—a(ma—7av )y
oE 0

—a‘t‘—f—é;[(E—tu)v‘*‘%] =0

The eigenvalues of this system may be found—as usually is formally made
in treating weak-discontinuity propagation— as those values of A to which
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correspond nontrivial solutions of the following algebraic system (*):
l (— 4 4 v*)3pa+ 0ad0*= 0,
1
(— A+ v9) 3024 —8pa=10,
Qo
‘ (—A+ v)3E 4 (B —1t,)8v—23t;+ 8¢, =0,
obtained from (6.1) through the formal substitution (see, for instance, (7))

9—-»—);(3 2—>(5.

ot ox
Now, with the help of (3.2), one finds
bi=p— z Qalu®) = z {Qa [v? — (v*)?] — pa} y

“w=3 [—92— (v"— )* + par{zat 1)] —vloec+ p).

Besides, since B = pe; + > 04(v*)?/2, we obtain
?)2
E—t,= 9(38——281+ E) +p.

By differentiating these relations, the characteristic polynomial of system
(6.1) may be obtained through subseguent eliminations. After some rear-
rangements, one gets

St — 1;’“%% ith dx= (1 —wp— 22,
=G

(6.3) 1 Sv =A—Q_”§1£§£%,
3E={esl+§[ea—(’g) +M]Z}%T,
Sty = — (A — )zs—;g%,

(*) In the following, all the involved quantities should be evaluated at the unperturbed
state; for simplicity of notation we remove the superposed circles 0.
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3 1
3¢, = Z{(v“—v)’(é ).—E'v—'v“) +

3

(63) |  + (m+1(2—09) [(A — o) — ) + %] +

paST
2, —3e—=|(A—0)p— —.
+ (26, — 3¢ 0)( )}gaT

The combination of all these quantities with the last of (6.2) leads to the
following algebraic equation of order 2v + 1:

Rud2+ Sed + Tx
— v%)2 — Daf0a

(6.4) o&(v — A) + z =0,

where we have set for brevity

Ry = 24(v* — ) Pa

Sy = [&‘ — 22,0%(v* — 'v)] Pa

Qa

fe= {[8“—%(«)“)*1(«;—«)“) —%} P

and have used the relation & 9s = 2aPa = pa/(ys — 1).

To handle analytically eq. (6.4) is not a simple task, except in some
particular case. Let us take, therefore, as unperturbed field, a state in which
the velocity of each constituent coincides with the velocity of the mixture as
a whole, namely, whatever « may be, we set v* = v = 0. Then, after simple
algebra, eq. (6.4) becomes

1 Pa 1
. P
(6:5) ng“(y—l 0a lz—palea) 0;

so that A = 0 is a standard root of this equation.
Consider

I) »=1 (single fluid), then ys =1y, pa = p, ga = ¢ and from (6.5)
A*=ypjo =0 We obtain in this case the well-known eigenvalues A =0
and It=4e¢.

ITI) v = 2 (case of a binary mixture). Equation (6.5) becomes

(6.6) A — (Bol + Ce2) A*+ Deiet =0,
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where

y 4 P y 4 y P2 y 2
= B = C =
n—1 " y—1’ %—1+71(72—1)’ 72‘—‘1+'}’a('}’1—1)’

. P D2
T n—1) + lya—1)’

¢, and ¢, being the sound velocities related, respectively, to each single fluid.
As expected, due to the hyperbolicity of the leading system, the four roots
of (6.6), which we know are real and distinct, are given by

Be? + Ce2 + V(Be + 002)2—4AD0102
A=+ oA .

Notice that the reality of these roots might be also checked at once since
it is very easy to prove that BC > AD.

III) » = 3. Simple manipulations allow us to write eq. (6.5) in the form

(6.7) Al —BML 01— D=0,

where this time

P D2 Ps
A=
7 =1 +72——1 +y3__1,

P c; €3 D2 Ps
B = HE R

71—1(c+%+ya)+7 1( e +7’a)+'}’3_1('}’1+ te )
c=-2 [ci(c—g+§)+@]+ £ [c:(°—§+3§-)+“§”§]+
y1—1 Ve Vs Y2Vs y.—1 Y1 Vs 1Y

Ps €y ﬂc_i
+ ys—1 [c (V! + ?’z) + 7172] ’

D— cicyc; ( 1Py VaP2 + YiDs )
P1Ye¥s \y1—1 y.—1 Ya—1

Again, due to the hyperbolicity of the problem, the six real and distinct
roots of eq. (6.7) have been computed numerically.

b) Global behaviour of the temperature jump. We report here the global
study of the temperature jump K whose behaviour is strictly related to 7.
To this aim observe that, having assumed v* = v = 0, Va, we may write, for
instance, Ms = fx M, With fu = &1/¢x = (yy Ma/ya-#,)}. In such a way all the SMN
differ from each other for a constant which depends only on the constituent a.
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Equation (6.13) then becomes

6.8) S capa [rafamK L paft M)

.(1 —)’af:Mi -+ O'a\/(l — Ya :Mf)z_‘iy“ﬁMi]S)] =0
27afa -

It is a simple matter to realize that, for any fixed M,, the root K = 0 can
be always obtained by choosing a suitable set of signs o,: (One gets in this
case that all the jumps of the field functions are identically zero, in agreement
with the fact that the continuum solution too satisfies the Rankine-Hugoniot
jump conditions.) Equation (6.8), which is of order 2’ in K, distributes, in fact,
all its roots in the set of the 2 dispositions of the signatures ., say, for instance,
(++a +—— +,——)Ol‘(—{—++,-—-——, + +_’__ +y =+ —+—,
+ — —, — + 4-) according to whether v = 2 or 3, respectively.

The behaviour of K for very large or very low values of M?, as reported
below, can help for a better understanding of the profile of 4.

i) For very high values of M2, eq. (6.8) may be substituted by
1

(6.9) S cafapa(2 K — yafa M3 + 0aVyifa Mt — dya i MIK) = 0

and it is not difficult to prove that K and M? must have the same order of in-
finite. In view of this, the following law

(6.10) K = LM:

must hold, with L a necessarily positive constant. Substituting (6.10) into (6.9),
we obtain the following algebraic equation of order 2” in L:

(6.11) S Ba(2luN+L —1 4 0aV1 — 4N, L) =0,

where B, =y, fle p and N_ =1y f.
From (6.11) one sees that L must satisfy the following constraint:

. v 1
{6.12) 0< L<4~m}rm‘.
In view of the parabolic law (6.10), the branches of the curve K = K(M3)
for high SMN are, therefore, as many as the roots of eq. (6.11) which satisfy (6.12).
Discarding, in view of what stated above, the solution L = 0, we have numer-
ically found only one branch of K which extends to infinite, namely only one
real root = 0.
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ii) For very small values of M} eq. (6.8) reduces to
(6.13) S Capa(2ya T2 MEE + 1 4+ 0uV1 —dya f2MAK) =0 .

One sees at once that, when M} ->0, none of the following situations
KM? — oo or KM? -0, or KM? — h 5= (0, o) can be verified (*). This allows

30

20

10+

—10 -5 0 5 M1 10
1

Fig. 1. — Model A4). The parabolic profile of the temperature jump K as given by
eq. (6.10) for high SMN values, as a function of M; = s/¢, (see the text).

(*) In fact, KM? — 4 co implies K to be an infinite of order larger than M7j?2, but
this is not possible in view of the constraint inf K > —1 (see (5.8)). For K positive,
the reality of (6.13) imposes that KM?2 < 1/4y,f2.

If, on the other hand, KM% — 0, then, for small values of KMZ, eq. (6.13) would
reduce to

(6.13)' YeaPul2y, L AMIK + 14 0,(1—2y,f M{K)] = 0.
>
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/e V)10

~51

Fig. 2. — Model A). The profile of the shock-generating function # for high SMN (see
the text).

This equation can never be satisfied for K # 0 in that, if ¢, = — 1, Va, then
Y ¢, Py Yu oI, + 1) %= 05 on the contrary, if some of the o, is 5= — 1, then one at leagt

22
of the terms in (6.13)' is equal to 2 overcoming eventually the remaining infinitesimal
terms of the summation.

Analogously one can prove immediately that the situation KM; — k(> 0) is not
allowed, i.e. K and M;? cannot be infinite of the same order.
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one to conclude that a neighbourhood of zero for M,; must exist at which the
curve K = K(M?) is not allowed. Properties i) and ii) are clearly exhibited
by the plots of K as we shall see later on in disecussing numerical models.

¢) Discussion of the numerical results. The theory exposed has been
numerically experimented for the following three models of gaseous mixtures:

A) 3 constituents (X = 0.4, X,=0.3, X, ,=0.3),
B) 2 constituents (X, = 0.5, X, = 0.5),
C) 2 constituents (X, = 0.1, X, = 0.9).

The symbols indicate the concentrations and are self-explicative. In the
following we shall use indices 1, 2 and 3 for, respectively, H, O and H,0. In
discussing the graphs related to each model, the reader should take into ac-
count that suitable, nonlinear numerical scales have been often used to allow
the global plotting of the functions K and 4 at the smallest SMN values. The
seale effect remarkably distorts the natural shape of the profiles.

10_

1:\

{0 | \

- ! N R } o
FN\ NN /
—105

—155

Fig. 3. — Model A4). The profile of the temperature jump K, as implicitly given by
eq. (6.8), in a narrow interval of SMN. For plotting reasons we found suitable to use
in ordinate the mapping |K| = 10E(— 4 + log,|I|) = 10~4I|%(a = log,10) with I
denoting a length and with the convention of taking K < 0 for I < 0 (see the text).
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Model 4). In fig. 1 is shown, on linear scale for both eo-ordinates, the parab-
olic behaviour of the function K for high SMN, M, = s/¢, (with M, =— M ) (*).
This figure does not exhibit the profile of K in its wholeness because, owing to
the scales adopted, that part of the graph for the smallest SMN would get
crushed upon the abscissa axis. The entire profile is given in fig. 3, where the
inner part is clearly shown. Asterisks in this figure indicate those values of M,
at which the eigenvalues drop. Except the origin, each of the innermost
asterisks, indicated by an arrow, is representative of two indistinguishable
eigenvalues. In fig. 3, where only in abscissa the scale is linear, the defor-

-
Wl
)

T

I
3]

|
N
o
T T T T T 1

L

U TR T R T S T 00 VOO A N S U DU TN NN W S0 S O O T ) I T T TS S VO A TS SN TN S T S S S DA N N T OO A |

—0.2 —0.1 0 0.1 w 0.2

Fig. 3a. — Model A). An enlargement of fig. 3 in the neighbourhood of M{ = 0.

(*) Hereafter, as a rule, we shall use, as abscissa, M; = s/e;. To read the abscissa

in terms of a generic M’ we recall that M. = (c,/c,) M{ With {¢;, €5, ¢5)/v/T = 1.174-104,

2.692-10® and 5.676-10%, respectively. For convenience of the reader we report also

the mean sound speed in each of the mixtures here considered. Since the mean specific-

heat ratio in a mixture writes y = (3 y,7,/[#u(v,— 1)) J(Z 7/l Ay~ 1)]) and
o [23

plo =" Rv, T|H,, one finds, respectively, (c,, ¢z, co)/v/T = (7.763, 8.501, 4.462) 103,

&
where the symbols are self-explicative. The mean SMN, expressed in terms of M,
is then, respectively, given by M = M; X (¢,/c4, ¢)/cn, ¢1/ce) = My x(1.514, 1.382, 2.633).
In other words, the values of M, such that M = 1, namely M; = 0.661, 0.723, 0.380,
discriminate between supersonic and subsonic shocks (physically acceptable if [5] > 0)
for the models A, B and O, respectively.
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mation of the outermost symmetric branches, when compared with those ex-
hibited in fig. 1, is remarkable (see the explanation of fig. 3). Two branches,
those indicated by a double-pointed arrow, are yet indistinguishable. An
enlargement of the inner part of fig. 3 is shown in fig. 3a; here the distincted
ccuples of points, B, I and E', I', indicate the points, indistinguishable in
fig. 1 (indicated by arrows), representative of the inner eigenvalues.

In fig. 2 is shown, on linear scales, the partial profile of 7 for high SMN,
together with two asymptotes in correspondence with those values of M, at which
K = — 1 (see eq. (5.17)). Each vertical line is representative of three indistin-
guishable asymptotes. The profile of this figure looks, in shape, like the entire
profile one obtains in the case of a single fluid with the nonconvexity zone
delimited by the two asymptotes and with the two horizontal flex points
in correspondence with the eigenvalues (*). In our case, on the contrary, the
scales we have used do not allow us to see the inner branches for small SMN.
As in fig. 1 each of the asterisks, indicated by an arrow, is representative of
two eigenvalues.

The profile of 7 in its wholeness is shown in fig. 4. Here the branches b

T 1 1T 1T 171

T ¢ 1 1 1 r ¥t

!
4
o
T T T T T 7 7 T T T 771

e remcE=z K

Fig. 4. — Model 4). The plot of 7in a narrow interval of SMN. We have used in ordinate
the mapping |7|/(e v T) = 10¢-5{I|L-53(a = log, 10) with the convention of taking 7< 0
for I < 0. Each one of the dashed vertical lines, indicated by arrows, represents two
indistinguishable asymptotes (see the text).
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and ¢ and the antisymmetric ones b’ and ¢’ are yet indistinguishable; besides,
due to scale effect, the branches a and a' undergo now to an evident distorsion
(compare with fig. 2) and the two flex points are no longer horizontal as they
appear in fig. 2 (*).

l
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-0.2 —~0.1 . M"
Fig. 4a. — Model A). An enlargement of fig. 4 in the neighborhood of M; = 0. Notice
the two inner asymptotes which are now separated.

llllllllJ_J

0.2

(*) In order to get the plot of # in its wholeness, we have used in fig. 4 the mapping
|7l/fe VT = 10E(6.5 + 1.5log,|I|) = 108-5|I|1-5a with a = log,10. This mapping largely
distorts the natural profile of 7, but this is the price one has to pay to get an idea onall
the branches which form the curve #. It follows that

1/(e vT)d}7|/d M, = 1085 x 1.6a|I|0-se—0d|T{/d M, .

This relation justifies the transformation of a horizontal flex point in the (M, — 7)-
framework, say, for instance, the point A of fig. 2, into the vertical flex point A4
of fig. 4in the (M, — |I])-framework. The mapping is, in fact, such that 7 = 0 <1 = 0,
whereas d|7j|/dM, = 0 may come also, through the above differential relation, from
an infinite value of d|I|/dM,.
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TABLE I. — Summary of some relevant numerical results related to model A (*).

Branch  Interval of crossing  Asymp- [pa] [Va] [p] {[V] [#] Remarks
existence point tote
at M; at M;
a —[ o0, 0.4309) —0.9850 —0.4309 + — + — + (1
+ J—
._+_ J—
e —[0.6796, 0.0245) —0.1955 —0.0245 +  — — o+ + (@) @)
—  +
— o+
i —[0.1893, 0.0161) —0.1833 —0.0161 -+ = — - r (3 @)
+ J—
— +

(*) The numerical values reported in this table refer to the branches a, ¢ and i of fig. 4. The
same deductions hold for the antisymmetric branches a’, ¢’ and i’, respectively. For the quan-
titles affected by index « (fifth and sixth column) signs in the first, second and third row refer,
respectively, to the constituent of the mixture according to the order as written in subsect. 6¢).
(1) Signs are given for |}M{| > 0.9850 and undergo inversion for IM]| < 0.9850. At the crossing
point 8 = A4 = — 0.9850¢;.

(2) Signs are given for |M{| < 0.1955 and undergo inversion for ]M{| > 0.1955. At the crossing
point 8 = g = — 0.1955¢,:

(3) Signs are given for |M{| > 0.1833 and undergo inversion for |M{| > 0.1833. At the crossing
point 8 = A, = —0.1833¢,.

(4) It is worthwhile remarking that, whereas for each single comstituent [Ipa]] >0 and [IV a]] <0
go that [ps]/[#=] < 0 (in agreement with the entropy principle), for the mixture as a whole one
finds numerically that, in correspondence with cach of the asymptotes related to the branches ¢ and 7,
respectively, a left neighbourhood of Af{ exists at which [#7] < 0. For these branches it results that
[#] <o, therefore, [p]/[#] > 0; it also happens that the sign of [] changes from positive to
negative so that the shock loses its physical meaning. This behaviour of [[17]] is at once explained,

In fact, for K — — 1 (this condition lets % become infinite, see (5.17)), 7 — 0 80 that 7« — — oo.
From (5.16) it turns out, therefore, that [] becomes definitively negative.

TaBLE II. — Summary of the relevant numerical results related to model B (*).

Branch  Interval of Crossing Asymp- Ipa]l [7] [p] [»] [n] Remarks
existence point tote
at M, at M,
a — [0, 0.426) —0.981 —0.426 + — -+ — + (1)
+ J—
¢ —[0.654, 0.021) —0.196  —0.021 + —_ - 4+ + @ 3

+

(*) The numerical values here reported are related to the branches a and ¢ of fig. 6. The same
deductions as given in the explanation of table I hold.

(1) Signs are given for ]M{l > 0.981 and undergo inversion for IM{I < 0.981. At the crossing point
s = As = —0.981c,.

(2) Signs are given for |Mj| < 0.196 and undergo inversion for |M{] > 0.196. At the crossing point
8= Ac = —0.196¢,.

(3) ¥or branch ¢ hold the same remarks as made for the jumps [[1"]] and [In]} in Table I, for the
inner branches of model A.
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Fig. 5. — Model B). The profile of K. The same mapping of fig. 3 have been used.
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Fig. 6. — Model B). The profile of function 7. The same mapping of fig. 4 have

been adopted.
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Fig. 7. — Model (). The profile of the temperature jump K. Here linear scales have

been used.
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Fig. 8. — Model 0). The profile of 77 on linear scales. Notice the well-distincted

horizontal flex points.
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Notice in this figure the zero points of the branches b, ¢, d and h and their
antisymmetric b’y ¢’, d' and h'. These zeros are «spurious» roots for 7. In
fact, whereas at 4, E, I and 4', E', I' both 7 and K are zero, so that the shock
is identically zero (in all these cases the k-shock condition, namely lim [U] =0,

as given in (1#%) is well verified), on the contrary, at the crossing points of
the foregoing mentioned branches, solely 7 is zero, whereas K = 0 ensures the
existence of a shock.

In table I, which summarizes some of the numerical results, we shall confine
our discussion only to the k-shocks, viz. to the shocks related to the branches
a, e and 1 and their antisymmetric ones. Signs |+ along these branches denote
the points and so delimit the SMN intervals, where [5]> 0, namely where
shocks are physically acceptable.

Figure 4a) is a partial enlargement of fig. 4 with the innermost asymptotes
clearly separated. The zone in between these asymptotes is the region of non-
convexity for the density function h°(U): 7j cannot enter this zone!

Model B). This model is illustrated by fig. 5 and 6 where the graphs of the
temperature jump K and of # are, respectively, exhibited.

For plotting reasons, as those adduced for model 4), we have used the same
mapping K<«> I and 57« I as explicitly given in the explanations of fig. 3
and 4, respectively. Except for a smaller number of branches, the behaviour
of each of these graphs is similar to the corresponding of model A4).

Table IT summarizes some of the numerical results.

Model C). This model has been computed to see how the percentage change
of the constituents influences the shape of the plots. The results are similar
to those of model B) and are exhibited in fig. 7 and 8. Numerical data are
summarized in table ITI. This time, however, it has been possible to use linear

TaBLE 111. — Summary of the relevant numerical results related to model C (*).

Branch Interval of Crossing  Asymp- [pa] [74] [r] (1 [#n] Remarks
existence point tote
at M} at M/
a — [ o0, 0.327) —0.899 —0.327 + — + -— + (1)
- + -
¢ —[0.478, 0.052) —0.207  —0.052 + — — + + (2 (3)

4+

(*) The numerical values bere reported are related to the branches a and ¢ of fig. 8 (or 9). The
same deductions as given in the explanation of table I, hold.

(1) Signs are given for IM{] > 0.899. They undergo inversion for |M{[ < 0.899. At the crossing
point 8 = A4 = — 0.899c¢,.

(2) Signs are given for IM;Q < 0.207. They undergo inversion for !M{l > 0.207. At the crossing
point 8 = Ac = 0.207¢;.

(3) For branch ¢ hold the same remarks as made for the jumps [¥7] end [5] in table I, for the
ioner branches of model A).
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scales for both graphs K and 7. Just to make a direct comparison, we have
repeated in fig. 9 the plot of 7 by using a nonlinear scale in ordinate. This
last figure shows the desappearance of the horizontal flex point which, on the
contrary, is clearly exhibited in fig. 8.

It is worthwhile noticing finally that the cuspidal points of all the graphs
concerning 7 discend from the property that, since 07/0s > 0, 7 is an increasing
funection of the shock velocity.

{ L L S L A S . NNOLIA S WL LI

Fr1r1rrrrirra1rrrrtr

-1.0 —-0.5 0 0.5

Fig. 9. — Model (). The same as in fig. 8. In ordinate we have used the mapping
[7l/(e vT) = 108:5|I|0-751¢ with the same convention as in fig. 4.

7. — Concluding remarks.

As well known, a shock is physically aceeptable when the jump of the
specific entropy across the shock itself is positive. In fig. 4, 6 and 8 this property
is indicated by signs + along the branches of 7 in agreement with the numerical
data as given in the tables I, II and III, respectively.

Our computations have shown that in a mixture of fluids, in addition to the
supersonic shock, which is unique in the case of a single constituent, a new type
of shock arises (those related to the branches ¢ and 4 in fig. 4 and to branch ¢
in both figures 6 and 8). These new shocks, confined in narrow ranges of low SMN
(0.0245 < |M,] < 0.1955 for branch ¢ and 0.0161 < |M,| < 0.1833 for branch ¢
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of model A4); 0.021 < |M,| < 0.196 and 0.052 < |M,| < 0.207 for branch ¢
of model B) and C), respectively) (*) satisfy the thermodynamical principle
[n] > 0 and may be explained as due to the mutual interaction of the single
components of the mixture.

If we look at the plots of the temperature jump K, we see that, in corre-
spondence to these SMN intervals, K < 0, i.e. the temperature decreases
across these shocks. However, since [n]> 0, this means that some of the
densities of the constituents should also decrease sufficiently to keep the
entropy jump positive. This mechanism is clearly exhibited by the numerical
tables in which one finds that some of the jumps are positive.

As one sees, the problem turns out to be much complicated and a correct
physical interpretation might perhaps be given both numerically and experi-
mentally through an accurate evolutive analysis of shock decay and measures

of shock amplitudes.
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APPENDIX A

Although the understanding of this paper does not require the explicit
symmetrization of system (3.1), we give here, for the aim of completeness and
in view of applications, the procedure—somewhat heavy—to construct the
related Hessian matrices in terms of the main field U’. To start with, let us
sketch the procedure to write the matrix H'®= 92h'°/oU’-0U’. We need first
to express the differentials dA'® in terms of the components of AU’. From (4.15),
we have

; P 1 Pa
e W 1} ’0: —_— 0= — —— .
(A1) dh dT ngadga

(*) We remark that for a mixture of fluids the eigenvalues are no longer simply expressed
in terms of the sound velocity (as in the case of a single fluid), but are complicated
expressions like those given as roots of eq. (6.4). Besides, the mean sound speed in
the mixture does not coincide in general with anyone of the eigenvalues.

In view of what said in the footnote (*) on p. 221, one sees at once that all these
new-type shocks are subsonic.
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By using thermodynamic relations, simple manipulations allow us to ex-
press dos in terms of the components of dU’. We have

0 0aT 1 (v%)? (v*)2 1 Y (0
o e T o TR sl

Combining (A.1) and (A.2), we may then write

gl el s e3)

It follows, therefore, that

on'y _, e e
/DL — w2y — 7 8y~ % 1T

(A.3)

To get the second partial derivatives of k', the best way is then to express
d(pav?) and dF in terms of the components of AU’ as made for dp,. Cumber-
some calculations lead to

I A(ga?) = asvs Afia+ axv?fsdo + > aa ((v‘," o 10-)—“ (5}) dsf,

(A.4) R
l dE = Y (@taBa dfia -+ 2 a7 0: dv) + [(2E — 0e) T -+ Y an62]do,

where we have set for brevity

” 1 (v%)? of 1
e ¥ = = g = —
[-l T.u'a 2 ’ i T’ T’
A5
Y P TN Cid R M
2= BTty bbbl

s0 that the elements of the matrix H'® may be arranged as

oh'e e o'e tan® 57 oh'o 0
Jhadfis 2P Bgaont T "% Faiae T eV

Qzh'e oth'o N ? N Q2hlo P
3% O = @05 05, Sviet = Oa ('”.- v - ES‘ 55) 0f » & oo = a5 0s,
o%h'° a2k, ozh'e ) v
m = agbs , 350 e = ag® 0# ) o0 (2F — &) T + glakak .

The (4v 4 1) X (4v 4 1) matrix H'® may be explicitly written by taking the
indices « and § in the Kroneker symbol as, respectively, row index and column
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index. In the following scheme, the matrix H'® may be explicitly written by
fixing, for instance, the index «(= 1, 2, ..., ¥) and taking, each time, for each
term of the fixed row, the index § variable from 1 to #:

[ 4,05 ax V%65 605 05 @03 85 as0x T
axv705 Aa[(v7)2 + Paf0alOF as v} v3 05 avi vy 05 x50,
axv3 0% axvi vy 03 as[(v5)* + Paf0alOf a5 v5 0 x5 O
asv; 0% @05 05 05 axv; 5 05 aa[(v5)" + Paloal0f 3403 0
asp agv? g agv30g asvi0p (2E —oe) T + 2 a,,0,‘
L k=1

The calculations to construct the matrices H'' = o2h'¢/oU’-eU’ (i = 1,2, 3)
are a little more complicated. From (4.15), one has

e « }_ Pa Pa «
(A.8) dhi= Zpav‘d( ) T;[ (gadga—}—TdT)—{—padv‘]

besides

: R S O | v
(A7) da)f_d(TT)_v,.Td( T)+Td(T)°
Combining (A.2), (A.7) and relations (A.5) with (A.6), we obtain

(A.8) db'i =3 [pav?dfia+ 3 (0avi0] + pad)) dvf + 0av20,do] .
« i

Therefore, we readily have

o' i
574 = 0a¥y
R
(A.9) o = 0a®5 07 - Pafd},
i PO
3 > 0a970s= [in view of ((4.5)]Ev,+ ¢;— t;,0;

Let us remark, at this point, that expressions (A.3) and (A.9) are, as
was to be expected, in perfect agreement with the vectorial equation (2.5).
This gives a good check for all the calculations.

To compute the second derivatives of 2'¢, the best way is to first differentiate
the quantities on the r.h.s. of (A.9),; and then express these differentials in
terms of the components of dU’. Making use of previous expressions, simple
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manipulations lead to

(A10)  A(gat0f -+ padl) = gav? dog —+ of d(gart) + (% ot 22 dT) 5 =
— (v;*v:f + 2 6;1) dfat 3 as [vz-‘v?v;: 2 ot 4 a0t + v;z‘é;»] as +
[+ & &

+ ax [v;"v;" (@x—}— 2%) + %ﬁ‘ 5a6§] do.

Qa

In view of (4.5)

(A.11) A(Hv, + q,—t;,0;) 2{[ “) +p"‘] d(pav?) +

[

On the other hand, we have

dew— Tead (— :1—0) ,

(v“)

Pa) _pal _f 1
(@)= )

so that

wa et b ofler e a(=F) + Swa(F))-

Substituting (A.4), and (A.12) into (A.11), we can finally write

= z'v dof = {in view of (A.7)] T(v“)Zd(_IT) + 3 Tosd (”_7“) :

i

(A.13) A(Bv; + ¢;—t;0;) =

== z {aoﬂ,‘?a{x d‘l.ia —['— z Ay [’0‘;?)‘; (aa —|— —Q—) + p(x 00; ] d'V] + a(x’l} (Oa ‘+" )ea dG}

&,

Starting from (A.9) and using relations (A.4), (A.10) and (A.13), the second
derivatives h'¢ write

0(0a?7) o(0at5) Pa 9(0a07)
i) 6 € — A gy £ ¢ 6t 6tx &
a/zﬂ = GxV; I: R a’l’f o (,01 V; + 0x i [ ao, = AaV; 00‘ ’
@(le@?v? —I—paa;) _ & 00 P i &
i = ax | V707 + 0n 05) 05,

Aeatfo 20— oragor + 22 o + ot 4 oo o5,
k o
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! Qa Ox

do
Q . — 1.0 -~
C(E’U,—+— gl t!le) — aa’”?aey
a[ua
R R A ’ ~A .
O 0= t0) oo B+ 22) + 22y
[} Y Qa Oa

NEv, + g, — 150,
do

): Z(l’av?(é\a—*—%)a‘x-

According to the previous convection concerning the indices of the Kro-
necker symbol, matrices H'! can be promptly constructed.

APPENDIX B

The jump of the main field U'.

To search the jump of U’, we do not need to proceed by using system (2.8),
as suggested by the theory; more simply we can find it straightforwardly from
the components of U’ themselves. We have, in fact,

o5 B

With the help of previous results as given in b) of sect. 5, we find

1 K //f:;:|] Hiea p":|]
==, =17+ = —[n.],
[[T]l (K+1)T [T T 0T

(0)? L 2 v, ML b
LR R
(I( + 1) T VY -Mx Cx Vx

and
v, Y.n— Kv*
T - o
K4+ 0T
so that
1 0 0 v\l
W1 = [— 2.(K +1)log [(Q_—ycﬁ) a+ K)ra] -

0 0
(3
4

C 0 0 K % - . .
—— ao (1—yaM§—}—2yaM,, %) Y.+ ?[(80‘)2 —{—j‘] , l.,n—]uga, le.

&
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In the case of a single constituent, after a great deal of algebra that is omit-
ted here, this jump writes

[0] =5 {—2 log(
QT

1—y+2yﬁﬂ[w—l)ﬁ2+2
L+vy (v + 1) M2
M — [ + 1M + (y — 1)y M2+ 1)],
Sy + 18 M1 — Mt)n — 2y — 1)y M+ 1)(H2—1) 3,

v 0
] )—232(1112—1) +

2y — 1)y M2 1) (M2 —1)},

where we have set for brevity

Q@ =I[y—1) 11%2+ 21—y -+ 2;/11012) .

® RIASSUNTO

8i calcola e si studia la cosiddetta «funzione generatrice dell’urto» in una miscela
semplice di » costituenti ideali. Essendo in generale tale funzione abbastanza compli-
cata, si discutono alcuni modelli numerici nel caso particolare di fluidi composti da 2
0 3 costituenti. Sulla base di tali risultati si scopre che, a differenza di quanto accade
nel cago classico di un singolo fluido (dove & ammesso il solo urto supersonico), la mutua
interazione dei costituenti della miscela fa nascere un nuovo tipo di k-urti che soddi-
sfano il principio di entropia in corrispondenza a limitati intervalli di piccoli numeri
di Mach. Si riportano infine i procedimenti per simmetrizzare le equazioni originali
di bilancio in funzione del « campo principale » e per costruire il salto di quest’ultimo
attraverso 1'urto.

O npu3ssogsueii Gynxuun yAapHbBIX BOJH B NPOCTOH CMECH ra3os.

Pearome (*). — Msl yccenyeM BLIBOJ TaK Ha3bIBaeMol npousBoaamelt GyHKiAr yaapHbIX
BOJIH B IOTOKE IPOCTOM CMECH v UAEANTbHBIX KOMITOHEHT. V3-3a aHAIATHIECKON ClIOXK-
HocTH 3Toit dyHKIEE B 00meM citydae, OOCYXAarOTCA YMCIIEHHBIE Pe3yJIbTATHI IS HEKO-
TOPBIX YacCTHBRIX ciay4aeB (¥ =2 u »=3). Ha OCHOBE HONYYEHHBIX DPE3YNBTATOB MBI
0o0HAPYXHWIH, 4TO B OT/IHYHAE OT KJIACCHYECKOU MOAENH HNsE OOHOMU cpenbl (FOe MOXKET
CYLIECTBOBATH TOJIBKO CYHNEP3BYKOBAs yAapHas BOJIHA) B3aMMOAEHCTBHE KOMIIOHEHT CMECH
nomyckaer obpa3oBaHuMe HOBOTO THIIA %k YAapHBIX BOJIH, B OIPaHHMYEHHOM MHTEpBaJe
MaJIbIX 4YHCesl Maxa M KOTOphle YAOBJIETBOPSIOT HPHHLHINY 3HTPOIMH. B IpRIOXEHMUA
TIPUBOAATCH IPOLEAYPa CHAMMETPHU3AIMA CHCTEMBI UCXONHBIX YpaBEEHMYU OayaHca B Tep-
MUHaX GyHKHIT « [TABHOTO TOJIS » M SBHOE BBIYHCIIEHHE CKaYKa 3TOTO IOJIA Yepe3 YAaPHYIO
BOJIHY.

(*) Ilepesedeno pedaxyueii.



