
IL NUOVO CI~[ENTO VOL. 81B,  N. 2 11 Giugno 1984 

On the Shock-Wave-Generating Function in a Simple 

Mixture of Gases. 

I~T. VIRGOPIA a n d  F .  FERRAIOLI 

Dipartimento di Matematica dell'Universit~ di t(oma , La Sapie~za , 
P.le A. More, 00185 Roma 

(ricevuto il 24 Gennaio 1984) 

S u m m a r y . -  We present a s tudy concerning the der ivat ion of the  
so -ca l l ed ,  shock generating function ~ in a flow of a simple mixture  
of v ideal constituents. Due to the analyt ical  complexi ty of this function, 
in general, numerical t rea tments  have been discussed in some par t icular  
cases (v --~ 2 and ~ ~ 3). On the basis of these results, we discovered 
that ,  unlike the classical model of a single fluid (where only the super- 
sonic shock is admitted),  the mutual  interaction of the consti tuents of 
the mixture  allows the rising of a new type of k-shocks confined within 
intervals  of low-shock Mach numbers, which satisfy the ent ropy prin- 
ciple. A procedure to symmetr ize  the system of the original balance 
equations in terms of the , main f ie ld ,  and the explici t  computat ion of the 
jump of this field across the shock are also given in appendices. 

PACS. 05.70. - Thermodynamics.  

1 .  - I n t r o d u c t i o n .  

R e c e n t  s t ud i e s  on  quas i - l i nea r  h y p e r b o l i c  s y s t e m s  of t h e  f irst  o r d e r  h a v e  

e m p h a s i z e d  t h e  i m p o r t a n t  ro le  p l a y e d  b y  t h o s e  s y s t e m s - - i n  t h e  c o n t e x t  of 

c o n t i n u u m  theo r i e s  which ,  w r i t t e n  in  c o n s e r v a t i v e  fo rm,  a d m i t  a supp le -  

m e n t a r y  c o n s e r v a t i o n  law a n d  a c o n v e x  d e n s i t y  ene rgy .  A p a n o r a m a  on t h e  

s t a t u s  of t h e s e  r e sea rches  c a n  b e  f o u n d  in (~.ls). 

(1) K .O .  FRIEDRICHS and P . D .  LAX: Prec. Nat. Acad. 8ci. USA, 68, 1686 (1971). 
(2) P . D .  LAx: in Contrib~*tio~ to .Nonlinear Futvoliorml A~talysis, edited by E. H. 

197 



1 9 ~  N. VIRGOPIA n i l0  F, FERRAIOLI 

An impor tan t  point  wor th  noticing is tha t  for such systems a (( main field ~) 
exists, depending only on the  field equations and the  supplementary con- 
servat ion law, in terms of which the original balance system assumes a sym- 
metr ic  hyperbolic  conservative form, in the  sense of Friedrichs (3), th rough a 
4-vector generat ing function. This 4-vector behaves,  therefore,  like a sort of 
potent ia l  in tha t  it  generates the  differential field equations (e,~,). Fur thermore ,  
for such systems, impor tan t  properties for the  shock s t ructure  hold:  the  ex- 
istence of a generalized en t ropy  the so-called generat ing funct ion of the  
shock---, which increases ucross a noncharacterist ic  shock (7), and the  existence 
of limits for the  speed of the  shocks which cannot  exceed the characterist ic 
velocities. In  a relativistic context  this means t h a t  the shock veloci ty can 
never  exceed the velocity of light in w c u u m  (lo). 

In  the  course of this work we shall derive the  supplementary conservation 
law for a flow of a simple mix tu re  of v ideal const i tuents  (~4,~5) and then  shall 
construct  the  (~shock generat ing function)) (SGF) for this thermodynamic  
inviscid system. :Numerical models will a t t empt  to lighten some of the  main 
propert ies  of this function. 

The plan of this paper  is the  following: in sect. 2 we present  some outlines 
concerning the  theory  on which the  work is based. In  sect. 3 are summarized 
t h e  governing balance equat ions of the  mixture.  

In  sect. 4 we give a proof for the  convexi ty  of the  assumed density en t ropy  
for the  mix ture  and also derive the  supplementary conservation law. Section 5 
is devoted  to  the  shock-generating function which shall be derived in terms 
of each of the shock Much numbers  of the  components  of the mixture .  In  
sect. 6 we apply, under  simplifying assumptions, the  theoretical  appara tus  to 
cases of one-dimensional models to make  easy numerical  calculations. In  
this context ,  in a) we consider the characteristic polynomial  for the eigenvalues 
of the  system, in b) we discuss the  global behaviour  of the t empera tu re  jump 
across the  shock and in c) we describe the  numerical  models and the profiles of 
bo th  the  tempera ture  jump and the  SGF. Finally,  brief concluding remarks  

ZARA~TO~LLO (Academic Press, New York, N.Y., 1971), p. 603. 
(3) K.O. FRI:EDRICttS: Commun. Pure Appl. Math., 27, 749 (1974). 
(a) K. 0. FRI~.DRIC~IS: Commun. Pure Appl. Math., 31, 123 (1978). 
(5) G. BOILLAT: C. 17. Acad. Sei. Paris, A 274, 1018 (1972). 
(~) G. BOILLAT: C. R. Aead. Sei. Paris A, 278, 909 (1974). 
(v) G. BOILLAT: C. R. Aead. Sei. Paris A, 283, 409 (1976a). 
(s) G. BOILLAT: C. R. Acad. Sci. Paris A, 283, 539 (1976b). 
(9) G. BOILLAT: in Wave Propagation, Corse CIME (Bressanone, 1980). 
(lo) G. BOILLAT and T. RVGGERI: C. R. Aead. r Paris, A 289, 257 (1979). 
(11) G. BOILLAT and T. RUGG~RI: Acta Mech., 35, 271 (1980). 
(12) T. RUGGERI and A. ST•UMIA: Ann. Inst. Henri Poincar~, X X X I V  A, 65 (1981). 
(13) T. RUGG~RI: Acta Mech., 47, 167 (1983). 
(14) I. 1VIi)LL]~R: Arch. t~ation. Mech. Anal., 28, 1 (1968). 
(15) I. MiJLLER: Thermodynamics and Constitutive Equations, Corse CIME (Note, 1982). 
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are provided in sect. 7. In  appendices the procedure to build up the Hessian 
coefficient matr ices for the symmetr ized  system and the jump of the  main 
field are explicit ly derived. These calculations may  be of some uti l i ty to search 
numerical solutions. 

2. - Recal ls  and outl ine o f  the general  theory.  

Some general  recalls of the  theory  concerned with are required for a be t te r  
unders tanding of the  paper. To this aim, let 

(2.1) ~F~(U)=f(U) or  A~(U)~U=f(U), 

with A ~ - ~ V v F ~ ( U  ) a .N•  mat r ix  (co : O, i; i = 1, 2, 3; V v = ~ / ~ U  is the 
gradient with respect to the components  of the field U), be the  first-order quasi- 
linear hyperbolic  system in conservat ive form describing the flow, where 
U-~ U(x~,)~ ~ c  R~ is the  unknown N-vector ,  ~ a convex open domain, 
~, ~ ~/~x~, F '~ and f column vectors  of R ~, with the  convection tha t  Fo = U 
and Xo ~--t (time). Supposing t ha t  u supplementary conservation law, con- 
sequence of the  field equations (2.1), exists and is given by  

(2.2) ~h~(U)  = g(U),  

then,  if h~ is a convex densi ty funct ion of U, defined in ~ ,  the  (~ main field ~ 
is given by  (6,12) 

(2.3) U'-~ U ' ( U ) ~  Vvh~ (v denotes transposition).  

The field U'E R ~ allows us then  to  build up the  (( 4-vector-generat ing 
funct ion ~ 

(2.4) h '~ = U' .  U - -  h ~ , h '~ ---- U' . F  ~ --  h ~ . 

Since f rom (2.3) it  turns out  t h a t  the  gacobian mat r ix  

~U' Vu(#vh~ -- ~ho 
~U ~U.~U 

is symmetric  and, thanks  to the  convexi ty  of h ~ positive definite, a well-known 
theorem (le) ensures the global inver t ibi l i ty  of the mapping U'(U). In  view 
of this, one has also tha t  U--~ Vv, h '~ 

(Is) •. BERGER and M. BERGER: Perspectives in Nonlinearity (W. Benjamin Inc., 
New York, N.Y.,  1968). 
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B y taking,  therefore, U'  as new field, it is a simple ma t t e r  to prove t h a t  

( 2 . 5 )  F ~ = V u ,  h '~ . 

This is ai~ impor tan t  result  in tha t  it  expresses tha t ,  for all those systems 
of type  (2.1) endowed with a supplementary conservation law (2.2) with h ~ 
a convex funct ion of U, the  vectors F~ are nothing b u t  the transposed of the 
gradients of h'~ with respect to the  new fi~ld U'. In  other  words, the 4-vector 
h'~ plays the  role of a potent ia l  and for this reason h '~ are called the  (( gen- 
erat ing functions ~ of system (2.1)(12). 

F r o m  (2.4)1 it turns out  t ha t  U and U' are conjugate  of the  other  th rough  
the  simplest contact  t ransformat ion (the so-cMled Le Gendre t ransformation),  
so tha t  h 'o too is a convex funct ion of U'. 

The  subst i tut ion of (2.5) into (2.1) yields the following symmetr ized con- 
servat ive system: 

(2.6) ~U' .~U '  ~,,U'---- f ( U ' ) ,  

which~ through the generat ing functions h'% describes the flow in terms of 
the main  field U' (*). System (2.6) is fur ther  hyperbolic  (in the  sense of Frie- 
driehs (3)) in tha t  the  Hessian coefficient mat r ix  of the  t ime derivat ive of U', 
~2h'~ turns out to be positive definite. The convexi ty  of h ~ provides, 
therefore,  a sufficient condition for the hyperbolici ty  of the original balance 
system. 

As remarked  in (12)~ the field U'  possesses special privileges both  f rom the 
mathemat ica l  s tandpoint  and  for its physical relevance. In  fact,  U'  is not  
affected b y  the t ransformat ion of U, i.e. it  is independent  of the choice of U. 
The components  of U' are generally expressed in terms of thermomechanics  
quantit ies,  velocity, absolute t empera ture  and free ea thalpy,  namely in terms 
of the  (~ observable ~) propert ies of the physical system, They  play, fur thermore ,  
as pointed  out by  the ment ioned authors, the  same role as the  so-called (~ La- 
grange multipliers ~)(18) used in connection with the  en t ropy  principle pro- 
posed and elaborated in (15,1%2o) in the  context  of a new thermodynamic  theory  
of the  mixtures.  The supplementary  conservation law (2.2) m ay  be obtained,  

(*) The search for idoneous field vectors, able to reduce in symmetric form some special 
physical systems, is found first in (17). The general approach is given in (6) with neces- 
sary and sufficient conditions to construct a conservation supplementary law for a given 
conservative hyperbolic system. 
(17) S.K. GODUNOV: SOV. Math., 2, 947 (1961). 
(is) LIU I-S~IH: Arch. Ration. Mech. Anal., 41, 131 (1972). 
(19) I. Mi)LLER: Arch. Ration. Mech. Anal., 40, 1 (1971). 
(2o) I. Mi~LLEn: Arch. l~ation. Mech. Anal., 41, 319 (1972). 
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in fact,  as a linear combination of the  field equations b y  using the components 
of U'  as mult iplier  factors. 

I t  is worthwhile recalling finally tha t ,  for a symmetr ic  conservative system, 
.~ well-known existence and mliqueness theorem holds (2~). This theorem ensures 
that ,  if the  initial da ta  of the problem belong to a Sobolev space Hs(R ~') with 
index S>~ 4, then in the neighbourhood of t ~ 0 the system has a unique solution 
belonging itself to  H s. 

In  view of the  foregoing s ta tements  a number  of impor tan t  propert ies 
concerning ei ther the evolution of weak discontinuities, or the  shock waves 
has been s t ra ightforwardly demonstra ted.  

Limit ing our speech to the shock wave topic, for what  concerns the  present  
paper, the  following main propert ies  are worth  being recalled (mo.~l): 

i) the  existence of a funct ion which generalizes the  jump of the thermo- 
dynamic ent ropy,  the  already ment ioned SGF, which is an increasing function 
of the  shock veloci ty;  

if) the  finiteness of the shock speeds, confined within the  range of the  
characterist ic velocities, which are real and bounded. 

P rope r ty  i) descends from the  fact  t ha t  the Rankine-Hugoniot  jump con- 
ditions lose thei r  val idi ty whoa applied to the supplementary law (2.2). In  
fact,  the  quan t i ty  (*) 

(2.7) ~ ~ / h ~  ~ v 

is, in general, nonvanishing (the brackets  [ ~ shall denote  hereaf ter  the  jump 
of any quan t i ty  across the shock f ront  ~0(xo) = 0). 

B y  indicating by  s the veloci ty of the shock front,  it  has been shown th a t  
c~(s)/~s > 0 (**) and 4 > 0  for s > 2  with 2 denoting any  one of the eigenvalues 
of system (2.1). This behaviour  of ~ implies the  well-known growth of the  
thermodynamic  en t ropy  across a shock. Fur thermore ,  in the  case of a non- 
characteristic shock (namely, when the  shock speed s r ~), indicating by  Up 
the  unper tu rbed  field, the  jump of U' can be also expressed by  

(2.s) ~u'~ = ~ o  (A~ ~o~)-1. 

(21) A. FISCHER and D.P.  MARSDEN: C/omm,ttn. Math. Phys., 28, 1 (1972). 
(*) Unlike as usually done, we have used, for convenience, the symbol ~ to indicate 
the SGF preserving the symbol ~ for the density entropy. 
(**) This result, first derived in (2) by introducing in the field equations an artificial 
viscosity, has been further discussed in (7) under the only condition of convexity for 
the density energy. A generalization of this result in a covariant formalism has been 
made in (12). 
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In other  words, with only the  knowledge of the  funct ion ~(U0, s), one knows 
the jump of U';  ~ behaves, therefore,  as a ~ generator  )) of the shock. 

Applications of this theory  have  been made in several physical fields: hyper-  
elastic media subject to  finite strains (1~), relativistic fluid dynamics (~2), ex- 
tended  thermodynamicsQa),  nonlinear electrodynamics (s2), classical fluid 
dynamics (i,,~3,~). 

3. - Ba lance  equations for the  f low o f  a mixture  o f  v constituents.  

According to the usual formalism ("), the  leading system of par t ia l  dif- 
ferential  equations describing the flow of a simple mix tu re  of �9 ideal consti tuents,  
determining the fields of densities ~ ,  velocities v ~ and absolute t empera tu re  T 
or to ta l  energy E, writes 

(3.1h ~t + ~,, (e~vT.7 -t,~) 

DE 
(3.1), - ~  + ~ (Ev~-  t,,v, + q,) 

(balance of masses) ,  

(balance of m o m e n t a ) ,  

----0 (balance of energy for the mixture)  

(a = 19 2, . . . ,~;  i, j = 1 , 2 , 3 ) ,  

where we have  neglected in eqs. (3.1)2 the  specific external-body forces and in 
eqs. (3.1)s bo th  the specific energy supply due to  radiat ion and the exchange 
of energy among the constituents.  Since in our context  the consti tuents are 
not  reacting, the source terms v~ on the r.h.s, of eqs. (3.1)1 might  be also can- 
celled. All these simplifications do not reduce the general results of the  present  
work in t ha t  the neglected terms do not  belong to the  differential pa r t  of the  
system. 

To the  above balance equat ions one must  associate the const i tut ive re- 
lations compatible with the  linear representat ion (14,15) for a nondissipative 
simple mixture  of ideal consti tuents.  

(22) G. BOILLAT: C. •. Acad. Sol. Paris A, 290, 259 (1980). 
(2a) D. Fusee: Atti ~emin. Mat. Fis. Univ. Modena, XXVII I ,  223 (1979). 
(24) A.I .  VOLP~.RT and S.I .  HVDIAEV: Math. USSR ~bornik., 10, 571 (1972). 
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Even  though all the variables in (3.1) can be easily identffied with the  
index a denot ing the  constituent,  we list the following symbols: 

Q 2 
1 

v ,  = - ~ e .v~ '  

1 
V = - -  ~ ~ a V  a 

t,~ = ~.  ( i T , -  e~u';uT) 

(u"),  
q, = qi-[- Z O ~ , ~ - u 7  

"lr = V t ~ '0 i 

? in  : ~r _ _  f f  

"l'a 

(density of the mix ture  as a whole) ,  

( total  energy/cm 3 of the  mix tu re ) ,  

(internal energy/g of the  mix ture ) ,  

(i-th veloci ty component  of the  
mix tu re ) ,  

(velocity of the  m ix tu r e ) ,  

(symmetr ic  stress tensor  on the  
const i tuent  ~) ,  

(symmetr ic  stress tensor  on the  
mix tu r e ) ,  

(internal energy flux of the mix tu re ) ,  

(i-th diffusion veloci ty  component  of 
the  const i tuent  ~) ,  

(diffusion veloci ty of the  const i tuent  ~) ,  

(mass product ion  of the  const i tuent  
due to chemical  reac t ions) ,  

(momentum produc t ion  due to  
exchange) .  

The balance laws of the  mix ture  as a whole impose the constraints ~ r~ = 0 

and ~ m~' = O, so tha t  to ta l  mass and momentum of the  mix ture  are conserved. 

The const i tut ive relations read 

(3.2) 
1 

ql = ~. q~(v~: - v',) 

with p~ = ~ ~ T  , 

with e~ ---- z ~ - ~  T = c~ T ,  

~o eo § § 

e~ and q~ denote,  respectively, the intrinsic values of internal  energy and the flux 
of internal  energy as defined in (~6). In  the above relations ~ '~ is the molecular 
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weight of the const i tuent  ~, ~ is the ideal-gas constant ,  z~ ~-- 1/(7~ -- 1) = ~, 
and 3 (according to whether  the  gas is monoatomic,  biatomic,  or poliatomic),  
y~ = c~/c~, the  ratio of specific heats. 

The consti tut ive relations for m~ and w~ need not  to be explicated in the 
context  of the present work. 

B y  set t ing 

(3.3) F ~  U ~ @ ~ , 

\Evj - -  t .  v~ § q j /  

system (3.1) of 4v q - 1  equations in the 4v-{-1 unknown functions 
and E writes 

~U ~F~ 
~'t q- ~ = f "  

i 

4. - Supplementary conservat ion law and convex  density entropy for the  ba- 
lance  system. 

a) The supplementary conservation law. 

a mix ture  (~) 

(4.1) 

we get  

(~.2) ~ ( ~ )  

In  view of tile Gibbs equat ion for 

1 

at - T ~ ~ - K J '  

where ~ ~--(1/@)~ @~,/~ is the specific en t ropy  of the mixture  with ~1~----- 

= c~log (p~@~-v,) the en t ropy  of the const i tuent  a; #~ = G -- T ~  q-p~/@~ 

is the  intrinsic chemical potent ia l  of the const i tuent  a (i.e. the  specific free 
entalpy).  

To write down explicitly the  supplementary conservation law (2.2) for our 
balance system (3.1), we need few steps. In  fact,  eq. (3.1)3 m a y  be rewri t ten  as 

[ - + q,) (4.3) ~ ~ : , - I -~e~  2 j ~x~ ' 

so tha t ,  since 

e~(~) ~= ~ e~(v~)' 
i 

and 
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in view of (3.1h,2 one finds 

(4.4) c3t ~ct , ~ \ c x , /  

Besides, a l though tedious, it is not  difficult to  show the  iden t i ty  

Subst i tut ion of (4.4) and (4.5) into (4.3), af ter  some simplifications, yields 

8(qs~) 
(4.6) 8t 

Finally, combining (4.2) and (4.6), eliminating ~ / S t  and manipulating, 
one finds the  requested supplementary conservation law 

{[V g <~.~ ~ ~ < ~  + ~ ~ +o~o~/:  ~ ~ ~o- ~,~, ~,, 

In  the case of a single const i tuent  (adiabatic mot ion of an ideal fluid in 
cont inuum mechanics), since the  product ion density and the  exchange of 
momentum are identically zero, eq. (4.7) reduces to the  well-known <~ equation 

of cont inui ty for the  en t ropy ~ and reads 

c~t 

with Q~/v the  en t ropy  flux density. 
Returning to  the  general case, let  us set 

h~ = - -  ~ e='l~ = - -  e'~, 

(4.8) 

g( 

then  eq. (4.7) takes the  compact  form (2.2). 

b) M a i n  ]ield and convex density entropy. As sketched in sect. 2, the  
main field U'  to  be associated to the  field U = F e, as given b y  (3.3)1, can be 
found once a convex density funct ion h~ is known. 
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F rom the  defiuition of U ' =  Vvh ~ the  main  field m ay  be direct ly found 
by  expressing (4.1) itr terms of the components of the  differential field dU, 
namely  in terms of de~, d (~v~)  and dE. This m a y  be obtained through a simple 
manipula t ion which allows us to  write 

and then  

, ,= E - X  jj 

The combinat ion of this expression with (4.1) gives 

(4.9) d(0~) = - -  dh~ = ~ - -  --,u~ d0a - -  X X v~' d(eav~' ) + d E  . 

F rom this last one derives at  once 

[7' 1 r(~=), ] 

Let  us now evaluate  the  thermodynamical  restrictions which are requested  
in order  t ha t  h ~ is a convex funct ion of U. For  this i t  suffices to find the  con- 
ditions lmder which the Hessian mat r ix  ~hO/~U~U or, equivalently,  the  qua- 
dratic form 

~ h  o 
~ U . ~ u  d U . d U  = d ( V v h ~  d U ' . d U  

is posi t ive definite. 
Now9 since 

and 

- - - ~  O--2dp=+ ~--~-, y,--d~7+v~' 

i t  follows tha t  

dT 

T '  

1 dp~ do~ + (4.1o) T d V . d V ' =  - - ~  --Q= X ( d e ) , - - - -  . 

e=J " ~ "  ~ J Y )  + + ~'~ ~ - "  
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By using the  Gibbs equation, one finds tha t  

which, in t roduced into (4.10), allows the  quadrat ic  form to be wri t ten as 

where Y/~----1/~ is the  specific volume of the const i tuent  a. I t  is evident  
t ha t  (4.11) is posit ive definite if the  quan t i ty  

(4.12) ~ (dp~ dr -- a T  d ~ )  

is negative definite. 
To show this, we note  thatr  differentiating/z~ and ibex1 eliminating d~?a 

= (de~ + p~, d ~ ) / T ,  one finds t ha t  d # I  = - -  ~a d T  + ~ d p ~ .  Sett ing for 

brevi ty  G =-- G(po, r T)  I #~(P~ r T)~ it  follows tha t  

In  view of these expressionsr each t e rm of quan t i ty  (4.12) writes 

I t  turns out  t ha t  (4.13) is negat ive definite if and only if the following 
inequalities hold:  

o,o,o= k~l, Or \ ~ 2 ~ o  ~ ~,D-:/~, = o~,~ > Or 
(4.14) 

so tha t  the discriminant of (4.13) turns  out  to be 

~ a p , ] ,  > o . 

In  other words, under  conditions (4.14) which for a single fluid are bu t  the 
usuM thermodynamicM-equil ibr ium functions, we have  established tha t  the  
function h ~ is r in the  large r a convex funct ion of U in any convex domain 

c R *'+1 and r as a consequent% tha t  the balance system is hyperbolic.  
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We possess now all the elements  to construct  the 4-vector h'~(U'),  l~rom 
definition (2.4) it  turns out,  in fact ,  t ha t  

(4.15) 
h,O = U'. U - -  he = ~ ~ e~ ~ - -  + e~(v~)~ - - ~  + q~ = ~ ,  

1 ~ o~v~tu I __ ~ + T,I~ ) 1 

which, in the  case of a single fluid, reduce, respect ively,  to h '~ = p i T  and h '~ = 
= p v , / T  (2~.2e). 

Express ing  h '~ in t e rms  of the  components  of the  ma in  field U',  the  Hess ian  
coefficient matr ices  of the  re la t ive  symmetr ized  sys tem (2.6) are explici t ly 
given in appendix  A. 

5. - The  s h o c k - g e n e r a t i n g  f u n c t i o n .  

a) The  Rank ine -Hugon io t  equations. As known,  the  compat ibi l i ty  con- 
dit ions for a shock to be  a weak solution to sys tem (3.1) are the  so-called 
Rank ine -Hugon io t  jmnp  conditions. These can be s imply  derived f rom eqs. (3.1) 
th rough  the  formal  subst i tut ions (27) 

r et ~'-s[~ and ~ n , [ ~ ,  

where s denotes the  normal  veloci ty  of the  shock f ron t  represented b y  a C 2- 
surface F:~0(x~)= 0 and n ~ ( n ~ )  is the  posi t ive uni t  normal  vec tor  to 

1 o 
F. ~X~ = X --  X denotes the  difference of the  l imits  t aken  f rom the two sides 

of F. 
I n  view of (5.1), f rom (3.1) we get 

(5.2) 

- s ~ e ~  + I[ao~:]l = o ,  

- ,~[~o,,~]1 + [[e~,,~,: + w, , ] ]  = o ,  

= 0 ,  

where v, ~ - v . n .  I n  wri t ing (5.2)3 we made  use of ident i ty  (4.5). The  ex- 

(2s) T. RUC.GERI: in Wave Propayation, Corse CIME (Bressanone, 1980). 
("s) T. RU(~G~.RI: in Lectures at VI  Scuola Estiva di .Fisica Matematica (Ravello, 1981). 
(27) A. JEFFREY and T. TANIUTI: _N'o~t Linear Wave Prapagatiou (Academic Press, 
New York, N.Y., 1964). 
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plicit form of (5.2), which shall be useful in the following, writes 

(5.3) 

1 1~ 0 O~ 
&,(Vn - -  8) = ~ x ( v .  - -  s ) ,  

1 1 Io~ 1 0 0 0 
Qa vX(v .  - -  s) Jr- p . n  = ~avx(v~ - -  s) -Jr- ~ a n  , 

Defining the  shock Much number  (SMN) in the  unper turbed  flow as 

(5.4) M~ -- o 
Ca 

o o 
with ~a = (7ap~,/r 

and setting Y~ = ~v~, simple manipulat ions upon (5.3h,2 lead to 

(5.5) 
o 

~e~ = -- e~ Y~ and 
o o 

o 0 

Ou the other  hand,  we may  also write 

0 o 
.~  .~ o I f  Mc, ea - -  Y~ o 

M~ ea + Y~ 

o 

where we have  set ~T~ = K T  with K > -- 1 a real constant  to  be determined. 
From (5.5)2 and (5.3) it turns out  t ha t  

(.). i ) Y a  = 

0 

o 
2y~ M~ 

where a~ can take  the  value + 1 or -- 1 and we have pu t  for brevi ty  W~ 
0 2 2  [ ( 1 -  7x Mx) - -4K7~  ~r~]t. F rom (5.7) i t  follows also tha t ,  in order tha t  

Y~ be real, K must  satisfy the constraint  

o 

(5.8) - - 1 <  K < m i n  ( ] -  
Mx~)2 

o 

47 ~ Mi 

In view of (5.7), expressions (5.5) become 

(5.9) 

0 

~.,(1 q- K)  

0 0 

o 

- p ~ Y . ,  
o~ 

14  - I I  N u o v o  C i m e n t o  B .  



210  N. VI1RGOPI~ and F. FERR&IOLI 

a n d ,  as  a c o n s e q u e n c e ,  

(5 .1o )  

0 
0 

0 o 

l 0 o '% 0 
[[p~] 1 ~ , ~ t ~ - ~ / r ~  o o 

/ ~ ' -  -o- -I o P ~ e ~ .  

(5.11) 

When  %he mixture  is considered as a whole, one has 

1 7,~ 0o, + K 
[[0]] = Z [[0~ - -  I + X or 

0 0 
~ 7 ~ M ~ y ~  o o 

t~ 

0 0 

0 

Other  jumps which are useful in che following cMcular are explicit ly 
given by  

(5 .12 )  

0 a  

[( oo 
v~ / J 

_ L~T~ _ K ~  
[ E a ~  o 

T 7~(}'~-- 1) ' 

[p~v~] ~ ~ o~ o ~ o~ 
= v ~  + ~ ~p4 = (~p~ + P~}~.~ + ~ [ v ~  = 

oo[(o + K~]. 
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Equat ion (5.3)3, in view of (5.3)~ and (5.4), may  be conveniently writ ten as 

which, expressed in terms of the  foregoing jumps (5.12), gives the following 

equation for K :  

~c~p~ I'~M~K+(I +y~M~) 0 with F~--7~_1.  (5.13) o o 

I t  is worthwhile remarking tha t  the values of K, implicit solutions of (5.13), 
must  also satisfy the foregoing constraints (5.8). 

In the case of a single fluid, eq. (5.13) reduces to 

o 

(5.14) K -- 2 (~ - -1 )  M u - ]  o 
o (TM -2-F 1 )  . 

(~ + 1 ) ~  i ~ 

Making use of this value, algebraic manipulations give 

0 

(~ + 1 ) ~  ' [I~]] : o , (~- -1)  M~+  2 

0 0 0 o 
~ _ 2 ~ (m~--  1) 2 y ( M ~ - -  ~)p  

( r + ] ) l ~  ' [ P ~ -  7 + 1  ' 

which are bu t  the well-known Rankine-Hugoniot  relations in ordinary fluid 
dynamics (2s). 

b) The ]unction (]. As sketched in sect. 2, the Rankine-Hugoniot  con- 
ditions, when applied to the supplementary conservation law of a physical 
system wri t ten in conservative form, do not generally lead to an identically 
zero quant i ty  as t hey  do for the  field equations. On the contrary,  from (4.7), 
in view of (5.1), we get 

(5.15) - X [ -  8  o,oi +  eo,o 
r162 

[ ~ ( s -  ~ * o o~, o 
= %)~7~ - O~(s - % ) ~ ]  ---- 

= Z o~(8 - - # 
~v 

(ca) L. D.LANDAU and E. M. LIFSHITZ: Fluid Mechanics (Pergamon Press, London, 
1959). 
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and, in general, this quan t i ty  is not  zero. Besides, b y  using expressions (5.9), 
the  en t ropy  jump of the  const i tuent  :r takes  the  explicit  form 

o ] 
~.~- - - -o~ log  . - - 7 o M a  ( 1 +  K ) r . .  

For  the  mix tu re  as a whole we get 

(5.16) 

with 

~ 1 ~  1 1 ]~ 0 0 ~ [ ~  1 ] 

= p~, r/~, = " log 
Q a ~ I 

o 0 

~ (1 § K) 

and ~a the  concentrat ion of the  const i tuent  ~. 
Final ly,  expressing (5.15) in te rms  of the  SM.N, the  general expression of 

the  SGF for a mix tu re  of ~ const i tuents  t akes  the  fo rm 

(5.17) 

o) ] 
~ o  o o - - 7 '  M a  r~,-I 

q = ~ c r e ~ , M ~ , ~ , l ~  o (1 + K ) - r . .  
a C a 

I n  the  case of a single const i tuent ,  i t  tu rns  out  t h a t  q oc [~/~ and  simple 
calculations lead to 

r = e v c M  ~ log . . . .  . 
( l - - r )  4- ~rM~J t ( r - - ~ ) ~ q  - 2 

B y  s e t t i n g / ~  = ( 7 -  1)/(? q- 1), the  foregoing expression exact ly  coincides 
with the  same law as found in (~3) (*). 

As was to be  expected, except  for the  case of a single fluid, the  geometr ical  
representa t ion  of ~ is ve ry  complicated.  I t s  s t rong dependence on the  p a r a m -  

(*) Let us remark that in the single-fluid model the value K = - -  1 (devoid of any 
o 

physical meaning!) leads, through (5.14), to the limiting SMN values M = :~ 

q-[(7--1)/27]t .  Ill a ()~/--~) framework these values correspond to two vertical 
asymptotes for q. 
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eLer K, i.e. on the temperature jump, as given implicitly by oq. (5.13), makes 
the problem one to be resolved only numerically. 

6.  - S t u d y  o f  t h e  f u n c t i o n  4.  

As mentioned, the analytical study of 4, as given by (5.17), turns out to 
be extremely complicated. We shall confine, therefore, to numerical solutions 
relative to one-dimensional models. The results of these eases shall lighten 
the problem and make a better understanding of the general behaviours of 
this function possible. 

Let us note, first of all, that  the graphycal imago of 4 turns out to be very 
useflfl in tha t  it helps to distinguish among its branches those which are com- 
patible with physical shocks, namely those along which ~/~ > 0. The relative, 
acceptable ranges of the SM2g may be also visualized. Furthermore, since for 
4 ~ 0 also ~ J  v~ 0 across the shock, the irreversible thermodynamical character 
of a nonlinear shock is well enhanced. Finally, in view of the general ine- 
quality (me) 

__ ~h ~ 
~4 he(U) + hO(Uo) + ~ ( U - -  Uo) > o 
~s 

the slope of 4 gives a measure of the shock strength amplitude. 
To start with, we recall that  the eigenvalues of the system describing the 

flow--which are but  the propagation velocity of weak perturbations along the 
characteristic lines--are also roots of the function 4. This important fact 
allows us to check separately the numerical values of both the eigenvalues as 
the roots of the characteristic polynomial related to system (3.1) and the 
zeros of 4 as found from (5.17) among which there are also these roots. 

a) Eigenvalues. In the one-dimensional case, system (3.1) may be con- 
veniently set into the form 

(6.~) 

~ t  ~ 
+ ~ (~ ~v~) = r~, 

~v ~ ~ v  ~ 1 ~ p ~  1 (m,--r~v~) ,  

~E r + ~ [ ( B -  tll)v + ql] = 0 

The eigenvalues of this system may be found--as usually is formally made 
in treating weak-discontinuity propagat ion--  as those values of 2 to which 
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co r r e spond  non t r iv i a l  so lu t ions  of t he  fol lowing a lgebra ic  s y s t e m  (*): 

(6.2) 

(-- 2 @ v ~) 8q~, + q~ ~v = = o ,  

(--,~ + v~)~v~+ ! 8 p ~ , =  o ,  

(--;~ + v ) S E +  (E- - t~OSv- -v~q~+ ~q~= o,  

o b t a i n e d  f r o m  (6.1) t h r o u g h  t h e  f o r m a l  s u b s t i t u t i o n  (see, for  ins t ance ,  (~')) 

8 ~-~--)~, 8~->6" 

lgow, wi th  t he  help  of (3.2), one finds 

O~ 

Besides ,  since E = ~e~ @ ~ q~(v~)~/2, we o b t a i n  

B y  d i f fe ren t ia t ing  these  re la t ions ,  t h e  cha rac te r i s t i c  p o l y n o m i a l  of s y s t e m  
(6.1) m a y  be  ob t a ined  t h r o u g h  s u b s e q u e n t  e l imina t ions .  Af t e r  s o m e  rea r -  
r a n g e m e n t s ,  one ge t s  

(6.3) 

8v ~ _ 2 - -  v ~ p~ 8T  w i t h  A~ ---- (2 - -  va) ~ - -  P-~, 
A ~ ~ T ~ 

8 ~ _  p~ 8T 
A c ,  T ' 

v - -  - -  

B E =  

8 T  

Q T ' 

(*) In  the following, all the involved quantities should be evaluated at the unperturbed 
state;  for simplicity of notation we remove the superposed circles 0. 
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(6 .3)  [ ':] + (z~, + i ) ( ) .  - -  r (2. - -  r ~) + ~ 4- 

+ ( 2 ~ i - - 3 e - -  p )  (,1.- v)}-- - -  
p~ ST 
Qa T " 

The combination of all these quantities with the last of (6.2) leads to the 
following algebraic equation of order 2v ~ -1 :  

R, ) . '  -t- S,). § T~, _-- 0 
(6.4) ~e1(v--.~) + ~ ( ] t _ v t , ) a _ p a / ~  a , 

where we have set for brevi ty 

R~, -- z~,(v"-- v)p~, , 

Fp~, , o<, : ,1 
S~, = [ ~ - -  2z~,v tv - v j j p :  , 

T~,=[[~, - -z~ , (v~ ' ) ' ] (v- -r162 

and have used the relation e ~  = z ,p~  : P ~ / ( 7 ~ -  1). 
To handle analytically eq. (6.4) is not  a simple task~ except in some 

particular ease. Le t  us take, therefore, as unperturbed field~ a state in which 
the velocity of each consti tuent coincides with the velocity of the mixture  as 
a whole, namely,  whatever ~ may  be, we set v ~ ~ v = 0. Then, after simple 
algebra, eq. (6.4) becomes 

1 p~ 1 ) 
(6.5) P= = o ,  

so tha t  2 = 0 is a s tandard root of this equation. 
Consider 

I) v = l  (single fluid), then  7 ~ 7 ,  P ~ = P ,  ~ = ~  and from (6.5) 
~ = 7P/~ = v~. We obtain in this case the well-known eigenvalues 2 -  0 
and ~t + = • v. 

II) v = 2 (ease of a binary mixture).  Equat ion (6.5) becomes 

(6.6) A ) )  - -  (Be; + Co, ~) ~2 + Do 1~ c 2~ = 0 ,  
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where 

A - -  pl P2 pl + Tx(P2y~ P2 Pl 
7~ __1 -F - -  B - -  C - -  -F 72 - -  1 ' y l  - -  1 - -  1 ) ' 7~  ~ 1 7 2 ( Y l  - -  1 )  

r~(7 , - -  ]) 7,(7-,-- 1) ' 

et and e~ being the sound velocities related, respectively,  to each single fluid. 
As expected,  due to the hyperbol ic i ty  of the leading system, the  four  roots 
of (6.6), which we know are real  and distinct, are given by  

1 =  • / 2A ] 

Notice tha t  the reali ty of these roots might  be also checked at once since 
it  is ve ry  easy to prove t h a t  B C  > A D .  

I I I )  v ---- 3. Simple manipulat ions allow us to write eq. (6.5) in the form 

(6.7) 

where this t ime 

A ) -  6 - -  B ) .  4 4 -  0 ) 3  - -  D = O , 

A - -  pl _+_ P2 P a  

7 - - 1  72- -1  + 7 a - - ~ '  

E + 4 +  

71--1 L \7,  ~ / +  727,J ~ L \7, 7 . /  r ,  YaJ 

D _ 

Again, due to the hyperbol ic i ty  of the problem, the  six real and distinct 
roots of eq. (6.7) have been computed  numerically. 

b) Global behaviour o] the temperature j u m p .  We repor t  here the global 
s tudy  of the tempera ture  jump K whose behaviour  is strictly related to 4" 
To this aim observe t h a t ,  having assumed v ~ = v = 0, W, we m ay  write,  for 
instance,  M~ = ]~ M1 with ]~ : cl/c~ = (7~./d~/7~ .K1) ~. In  such a way all the SMUT 
differ f rom each other for a constant  which depends only on the const i tuent  ~(. 
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Equat ion (5.13) then becomes 

(6.8) 

.(1- y,, 1~* M,* + a~, ~(12--y~I~M~)'--4r~I~M~K)]7~ t~ --~0. 

I t  is a simple ma t t e r  to realize tha t ,  for any  fixed M~, the  root  K : 0 can 
be always obta ined by choosing a suitable set of signs a~. (One gets in this 
case tha t  all the  jumps of the field functions are identically zero, in agreement  
with the fact  t ha t  the cont inuum solution too satisfies the Rankine-Hugoniot  
jump conditions.) Equat ion  (6.8), which is of order 2" in K,  distributes,  in fact,  
all its roots in the  set of the 2" dispositions of the signatures a~, say, for instance, 
( + + , +  , + , - - - - ) o r ( + + + , - - - - - - , + +  , + , + - - + , - - + - - ,  
+ , -{- -~) according to whether  r = 2 or 3, respectively.  

The behaviour  of K for ve ry  large or very  low values of M~, as reported 
below, can help for a be t te r  unders tanding of the profile of ~. 

i) For  ve ry  high values of M~, eq. (6.8) m ay  be subst i tuted by  

(6.9) 

and it  is not  difficult to prove t ha t  K and M~I must  have  the  same order of in- 
finite. In  view of this, the  following law 

(6.10) K : LM21 

must  hold, with L a necessarily positive constant.  Subst i tu t ing (6.10) into (6.9), 
we obtain the following algebraic equat ion of order 2" in L :  

(6.11) Bc,(2Fc,  N a L  - -  1 + (Yc, V']_ - -  4No, L)  ~-- 0 ,  

where B : ~,~,/~c~,p~, and AT : l/y~]2. 
From (6.11) one sees tha t  L must  satisfy the following constraint :  

(6.12) 0 < L <  
4 max Na " 

In view of the parabolic law (6.10), the  branches of the curve K ~- K(M~) 

for high SMN are, therefore, as many  as the roots of eq. (6.11) which satisfy (6.12). 
Discarding, in view of what  s ta ted above, the solution L ~ 0, we have muner- 
ieally found only one branch of K which extends to infinite, namely only one 
real root  :~ 0. 
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ii) F o r  v e r y  smal l  v a l u e s  of M12 eq. (6.8) r e d u c e s  t o  

(6.13) ~_cr , ~ ~ - l + a ~ V 1 - - 4 7 ~ / ~ M  1 ) = 0 .  

One  sees a t  once t h a t ,  w h e n  M ~ - +  0, n o n e  of t h e  fo l lowing  s i t u a t i o n s  

K M  ~, --> c~ or  K M ~  ---> O, or  K M ~  ->  h # (0, cr can  b e  ver i f ied  ( ').  Th is  a l lows 

3O 
I 

K 

20 

lO 

o I , ' ' ' 

I I I I I ~ I I I I I I I I I I I I I I 

- l O  - o 5 Mlt 10 

Fig. 1. - Model A). The parabol ic  profile of the tempera ture  jump /i: as given by  
eq. (6.10) for high SMN values, as a function of M~ = s/cl (see the text).  

(*) In  fact, /i:M~ --~ 4- co implies K to be an infinite of order larger than M~I ~, but  
this is not  possible in view of the constraint  i n f / i : > -  1 (see (5.8)). For  K positive, 
the rea l i ty  of (6.13) imposes tha t  KM~ < 1/47~,] ~. 

If, on the  other hand, K_M~ --~ 0, then, for small values of /LM~, eq. (6.13) would 
reduce to 

(6.13)' ~., c~,p~,[27~ , P~/~ M'~.K + 1 -t- a~(1 - -  27c,1~ M[.K)] = O . 
Oc 
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Fig.  2. - Model  A). The  profile of t he  shock-genera t ing  func t ion  *7 for high SMN (see 
the  text) .  

This  equa t ion  can never  be satisfied for /i: r 0 in tha t ,  if  a s ~ - - 1 ,  V~, then  
%,p~, 7~,]~(Fo, + 1) r 0; on the  cont rary ,  if  some of the  a~ is =fi - -  1, then  one a t  least  

6e 

of the t e rms  in (6.13)' is equal  to 2 overcoming  even tua l ly  the  remain ing  infini tesimal  
t e rms  of the  summat ion .  

Analogously one can prove immed ia t e ly  tha t  the  s i tua t ion  KM~ ~ h(> 0) is not  
allowed, i . e . .K  and M~ ~ cannot  be inf ini te  of the  same order.  
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one to conclude that  a neighbom'hood of zero for M1 must  exist at which the 
curve K ~ K(M~I) is not  allowed. Properties i) and ii) are clearly exhibited 

by the  plots of K as we shall see later on in discussing numerical models. 

c) Discussion o] the numerical results. The theory  exposed has been 
numerically experimented for the following three models of gaseous mixtures:  

A) 3 constituents (X R --~ 0.4, X o ----0.3, XH~ o = 0.3), 

B) 2 constituents (X.-----0.5, X o ~ 0.5), 

C) 2 constituents (X .  ~ 0.1, X o ~ 0.9). 

The symbols indicate the  concentrations and are self-explicative. I n  the 
following we shall use indices 1, 2 and 3 for, respectively, H, O and H~O. In  

discussing the graphs related to each model, the reader should take into ac- 

count  t h a t  suitable, nonlinear numerical scales have been often used to allow 

the global plott ing of the functions K and ~ at the smallest SMN values. The 
scale effect remarkably distorts the natural  shape of the profiles. 

10 

:f \ 
E E r 

- 5  

/ 

--1.0 --0.5 0 0.5 hf~ 1.0 

Fig. 3. - Model A). The profile of the temperature jump K, as implicitly given by 
eq. (6.8), in a narrow interval of SMN. For plotting reasons we found suitable to use 
in ordinate the mapping [K] = 10E(--4 + logs[I[)= lO-~I[]a(a = log210 ) with I 
denoting a length and with the convention of taking 3i: < 0 for I < 0 (see the text). 
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Mode l  A ) .  I n  fig. 1 is shown, on linear scale for bo th  co-ordinates,  the  p~r~b- 

olic behaviour  of the  function K for high SM~,  M'~ = s/v~ (with M'~---- - -  M )  (*). 
This figure does no~ exhibit  the profile of K in its wholeness because, owing to 
the scales adopted ,  t ha t  pa r t  of the  graph  for the smallest  SMN would get  
crushed upon  the  abscissa axis. The entire profile is given in fig. 3, where the 
inner pa r t  is clearly shown, Asterisks in this figure indicate  those  values of M'~ 
a t  which the  oigonvalues drop. Excep t  the  origin, each of the  innermost  
asterisks, indicated b y  a a  arrow, is representa t ive  of two indistinguishable 
eigenvalues. I n  fig. 3, where only in abscissa the  scale is linear, the  defer- 

Fig. 3a. - Model A). 

I I I t 

t I,/ \ l 
2, 

- -5  

-10 

-15 

- 0 . 2  --0.1 0 0.1 0 . 2  M1/' 
An enlargement of fig. 3 in the neighbourhood of M~ ~ 0. 

(*) Hereafter, as a rule, we shall use, as abscissa, M~ = s/c z. To read the abscissa 
in terms of a generic M~ we recall that  M~ = (cl/%) M~ with (cl, c2, c3)/~/-T : 1.174.104, 
2.692.108 and 5.676.103 , respectively. For convenience of the reader we report also 
the mean sound speed in each of the mixtures here considered. Since the mean specific- 
heat ratio in a mixture writes y =  ( ~  yo, vo,/[.~'o,('yo,--l)])/(~/[dt~(X~--i)]) and 

P / e :  ~., ~ 'r  T/.Af~,, one finds, respectively, (c A, c~, ce)/v/'T = (7.763, 8.501, 4.462). 10 a, 

where the symbols are self-explicative. The mean SMN, expressed in terms of M~, 
is then, respectively, given by M : M~ • (cJcA, click, cl/cc) : M~ • (1.514, 1.382, 2.633). 
In other words, the values of M~ such that 21/ : 1, namely M~ : 0.661, 0.723, 0.380, 
discriminate between supersonic and subsonic shocks (physically acceptable if IV] > 0) 
for the models A, B and C, respectively. : 
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marion of the  outermost symmetric branches, when compared with those  ex- 
hibited in fig. 1, is remarkable (see the explanation of fig. 3). Two branches, 
those  indicated by  a double-pointed arrow, are ye t  indistinguishable. An 
enlargement of the inner part of fig. 3 is shown in fig. 3a; hero the distinoted 
couples of points, E, I and .E', I', indicate the  points,  indistinguishable in 
fig. 1 (indicated by  arrows), representative of the  inner oigenvalues. 

In fig. 2 is shown, on linear scales, the partial profile of ~ for high SMN, 
together with two asymptotes  in correspondence with  those values of M' 1 at which 
K = --  1 (see eq. (5.17)). Each vertical line is representative of three indistin- 
guishable asymptotes.  The profile of this figure looks, in shape, like the  entire 
profile one obtains in the  case of a single fluid with the  nonconvoxi ty  zone 
delimited by  the two asymptotes  and with the  two horizontal flex points  
in correspondence with the  eigon'caluos (2e). In  our case, on the  contrary, the  
scales we have  used do not  allow us to see the  inner branches for small SMIg. 
As in fig. 1 each of the asterisks, indicated by  an arrow, is representative of 
two eigenvalues. 

The profile of ~ in its wholeness is shown in fig. 4. Hero the branches b 
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Fig. 4. - Model A). The plot of r a narrow interval of SMN. We have used in ordinate 
the mapping ]~l/(e V/F) = 10e'sIIil"Sa( a = logs 10) with the convention of taking ~ < 0 
for I < 0. Each one of the dashed vertical lines, indicated by arrows, represents two 
indistinguishable asymptotes (see the text). 
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a n d  c a n d  t h e  a n t i s y m m e t r i c  ones b' a n d  c' are  ye t  i n d i s t i n g u i s h a b l e ;  besides,  

due  to  scale effect, t he  b r a n c h e s  a a n d  a '  unde rgo  now  to  a n  e v i de n t  d is tors ion  

(compare  w i t h  fig. 2) a n d  the  two  flex p o i n t s  are no  longer  ho r i zon t a l  as t h e y  

appea r  i n  fig. 2 (*). 
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Fig. 4a. - Model A). An enlargement of fig. 4 in the neighborhood of M~ ---- 0. Notice 
the two inner asymptotes which are now separated. 

(') In  order to get the plot of 4 in its wholeness, we have used in fig. 4 the mapping 
1~1/~ ~/~ = 10E(6.5 + 1.51og21I])= 10,.5[ij~.5, with a : log2 10. This mapping largely 
distorts the na tura l  profile of 4, but  this is the price one has to pay to get an idea on all 
the branches which form the curve 4. I t  follows that  

1/(5 VT)d[4[/dM= = 10"s • 1.5a[I[(1"sa-1)d[I]/dM~, . 

This relation justifies the transformation of a horizontal flex point  in the (M= - -  4)- 
framework, say, for instance, the point  A of fig. 2, into the vertical flex point A 
of fig. 4 in the (M= - -  ]/])-framework. The mapping is, in fact, such that  4 = 0 ~ I = 0, 
whereas dl4]/dM = = 0 may come also, through the above differential relation, from 
an infinite value of d]I[ /dM=.  
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T A B L E  I .  - Summary  o] some relevan.t numerical results related to model A (*). 

B r a n c h  I n t e r v a l  of  c r o s s i n g  A s y m p -  ~pa~ ~Vc,] ~ IV] [~ R e m a r k s  
e x i s t e n c e  p o i n t  t o t e  

a t  M ~  a t  M ~  

a - - [ 0 %  0 . 4 3 0 9 )  - - 0 . 9 8 5 0  - - 0 . 4 3 0 9  § - -  
§ - -  

§ 

e - - [ 0 . 6 7 9 6 ,  0 .0245)  - -  0 .1955  - - 0 . 0 2 4 5  § - -  

- -  § 

- -  § 

i - - [ 0 . 1 8 9 3 ,  0 . 0 1 6 1 )  - - 0 . 1 8 3 3  - - 0 . 0 1 6 1  § - -  

§ 

- -  § 

+ - -  + (1) 

- -  + + (2 )  ( 4 )  

- -  + + ( 3 )  ( 4 )  

(*) Tile n u m e ~ c a l  va lues  r e p o r t e d  in th i s  t a b l e  re fer  to  t h e  b r a n c h e s  a, e a n d  i of fig. 4. The  
s a m e  d e d u c t i o n s  ho ld  for  t he  a n t i s y m m e t r i c  b r a n c h e s  a ' ,  e" a n d  i ' ,  r e spec t ive ly .  F o r  t he  q u a n -  
t i t ies  a f f e c t e d  b y  i n d e x  g (fifth a n d  s i x t h  co lumn)  s igns  in  t h e  f i rs t ,  s e c o n d  a n d  t h i r d  r o w  refer ,  
r e s p e c t i v e l y ,  to  the  c o n s t i t u e n t  of t h e  m i x t u r e  a c c o r d i n g  to  t he  o r d e r  as  w r i t t e n  in  s u b s e c t .  6e). 
(1) S igns  a r e  g iven  for  ]M~I > 0 .9850 a n d  u n d e r g o  i n v e r s i o n  for  IM~I < 0.9850.  A t  t h e  c ros s ing  
p o i n t  s = ~tA = --  0.9850c~. 
(2) S igns  a re  g iven  for  IM~I < 0 .1955 a n d  u n d e r g o  i nve r s ion  for  ]M~I > 0.1955.  A t  t h e  c ros s ing  
p o i n t  s = 2s  : -- 0 .1955ct ;  
(3) S igns  a r e  g iven  for  IM~I > 0 .1833 a n d  u n d e r g o  i n v e r s i o n  for  IM~l > 0.1833.  A t  t h e  c r o s s i n g  
p o i n t  s = 2 1  = - -0 .1833e~.  
(4) I t  is w o r t h w h i l e  r e m a r k i n g  t h a t ,  w h e r e a s  for  e a c h  s ingle  c o n s t i t u e n t  ~p~ > 0 a n d  ~ < 0 
so t h a t  [pa~/~'f',] < 0 (in a g r e e m e n t  w i th  the  e n t r o p y  pr inc ip le ) ,  fo r  t he  m i x t u r e  as a w h o l e  one 
f inds n u m e r i c a l l y  t h a t ,  in c o r r e s p o n d e n c e  w i th  e a c h  of t he  a s y m p t o t e s  r e l a t e d  to  the  b r a n c h e s  e a n d  i,  
r e s p e c t i v e l y ,  a le f t  n e i g h b o u r h o o d  of M~ ex is t s  a t  w h i c h  ~ ' ~  < 0. F o r  these  b r a n c h e s  i t  r e su l t s  t h a t  
[p~ < 0, t he re fo re ,  ~ p ~ / ~  > 0; i t  a lso  h a p p e n s  t h a t  t he  s ign  of ~ c h a n g e s  f r o m  pos i t ive  to  
n e g a t i v e  so t h a t  t he  s h o c k  loses i t s  p h y s i c a l  m e a n i n g .  This  b e h a v i o u r  o f ~  is a t  once  exp l a ined .  

1 
I n  f ac t ,  fo r  K --* - -  1 ( th i s  c o n d i t i o n  le t s  ~ b e c o m e  inf in i te ,  see (5.17)),  --~ 0 so t h a t  ~ -* --  oo. 
F r o m  (5.16) i t  t u r n s  ou t ,  t he re fo re ,  t h a t  ~y~ becomes  de f in i t ive ly  n e g a t i v e .  

T A B L E  I I .  - Summary  o] the relevant numerical results related to model B (*). 

B r a n c h  I n t e r v a l  o f  C r o s s i n g  A s y m p -  ~pa~] [bv'a~ ~p~ ~ ]  ~ R e m a r k s  

e x i s t e n c e  p o i n t  t o t e  

a t  M ~  a t  M ;  

a - - [ c %  0 . 4 2 6 )  - - 0 . 9 8 1  - - 0 . 4 2 6  § - -  § - -  § (1) 

+ 

c - - [ 0 . 6 5 4 ,  0 . 0 2 1 )  - - 0 . 1 9 6  - - 0 . 0 2 1  § - -  - -  § § (2) (3)  
- -  + 

(*) The  n u m e r i c a l  va lue s  hero  r e p o r t e d  a r c  r e l a t e d  to  t he  b r a n c h e s  a a n d  c of fig. 6. The  s ame  
d e d u c t i o n s  as  g iven  in t he  e x p l a n a t i o n  of t ab l e  I ho ld .  
(1) S igns  a ro  g i v e n  for  IM~[ > 0.981 a n d  u n d e r g o  i n v e r s i o n  fo r  [M~I < 0.981.  A t  t h e  c r o s s l n g p o i n t  
s - 2A = - -  0 . 9 8 1 C ~ .  

(2) S igns  a re  g iven  for  IM~[ < 0 .196 a n d  u n d e r g o  i n v e r s i o n  fo r  IMp] > 0.196.  A t  t he  c r o s s i n g  p o i n t  
s ~ 2c  = - -  0.196c~. 
(3) F o r  b r a n c h  c h o l d  tile s a m e  r e m a r k s  as  m a d e  for  t he  j u m p s  ~ ' f ]  a n d  ~ in  Tab le  I ,  fo r  the  
i n n e r  b r a n c h e s  of mode l  A.  
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15 - ] l  N u o v o  C i m e n t o  B .  
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:Fig. 7, - Model  U). The profile of the  t empera tu re  j u m p  K.  Here  l inear  scales have  
been used. 
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1~otice in this figure the  zero points  of the  branches  b, c, d and h and  their  
an t i symmet r i c  b', c', d' and h'. These zeros are (~ spurious ~ roots for ~. I n  
fact ,  whereas a t  A, E, I and  A' ,  E ' ,  I '  bo th  ~ and K are zero, so tha t  the  shock 
is identically zero (in all those cases the k-shock condition, name ly  lira ~U~ --~ 0, 

as given in (~2.~6) is well verified), on the  contrary,  a t  the  crossing points  of 
the  foregoing ment ioned  branches,  solely ~ is zero, whereas  K ~: 0 ensures the  

existence of a shock. 
I n  table  I,  which summarizes  some of the  numerical  results, we shall confine 

our discussion only to the  k-shocks, viz. to the shocks re la ted  to the  branches  
a, e and i and  their  an t i symmet r ic  ones. Signs -~ along these branches  denote 
the  points  and  so delimit the  S ~ N  intervals,  where ~ ]  > 0, namely  where 
shocks are physical ly  acceptable.  

Figure 4a) is a par t ia l  en la rgement  of fig. 4 with the  innermost  a sympto te s  
clearly separated.  The zone in be tween these a sympto tes  is the  region of non- 
convexi ty  for  the  densi ty funct ion h~ ~ cannot  enter  this zone! 

Model B).  This model is i l lustrated b y  fig. 5 and 6 where the  graphs  of the  
t empe ra tu r e  j ump  K and of ~ are, respectively,  exhibited.  

For  p lo t t ing  reasons, as those adduced for model  A),  we have  used the  same 
mapp ing  Kr I and  ~ ( - ,  I as explici t ly given in the  explanat ions  of fig. 3 
and 4, respectively.  Excep t  for a smaller number  of branches,  the  behaviour  
of each of these graphs  is similar to the  corresponding of model  A). 

Table  I I  summarizes  some of the  numerical  results. 

Model C). This model  has been computed  to see how the percentage  change 
of the  const i tuents  influences the  shape of the  plots. The  results are similar 
to those of model  B) and  are exhibi ted in fig. 7 and  8. Numerical  da ta  are 
summarized  in tab le  I I I .  This t ime,  however,  i t  has been possible to use linear 

TABLE I I I .  - Summary o/ the relevant numerica~ results related to model C (*). 

Branch Interval of Crossing Asymp- ~p~] [r ~p~ [[~ [[~ Remarks 
existence point tote 

at M; at M' 1 

a --[c~, 0.327) --0.899 --0.327 + - -  -t- --- + (I) 
+ - -  

c - -  [0.478, 0.052) - -  0.207 ~'0.052 + - -  - -  + + (2) (3) 
- -  + 

(*) T h e  n u m e r i c a l  v a l u e s  h e r e  r e p o r t e d  a r e  r e l a t e d  to  t h e  b r a n c h e s  a a n d  c of  fig.  8 ( o r  9).  T h e  
s a m e  d e d u c t i o n s  a s  g i v e n  in  t h e  e x p l a n a t i o n  of  t a b l e  I ,  ho ld .  
(1) S i g n s  are  g i v e n  fo r  IM~] > 0 .899.  T h e y  u n d e r g o  i n v e r s i o n  fo r  I~l~[ < 0 .899 .  A t  t i le  c r o s s i n g  
p o i n t  s = ).A = - -  0.899c~. 
(2) S igns  a r e  g i v e n  fo r  IM~t < 0 .207.  T h e y  u n d e r g o  i n v e r s i o n  fo r  tM~t > 0 .207 .  A t  t h e  c r o s s i n g  
p o i n t  s = ~c  = 0.207c~. 
(3) F o r  b r a n c h  c h o l d  t h e  s a m e  r e m a r k s  a s  m a d e  fo r  t h e  j u m p s  [[~f'~ a n d  ~,~ in  t a b l e  I ,  fo r  t h e  
i n n e r  b r a n c h e s  of  m o d e l  A) .  
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scales for bo th  graphs K and 4. Jus t  to make a direct comparison, we have 
repeated  in fig. 9 the plot  of ~ by using a nonlinear scale in ordinate.  This 
last figure shows the  desappearance of the horizontal  flex point  which, on the 
contrary,  is clearly exhibi ted in fig. 8. 

I t  is worthwhile noticing finally tha t  the cuspidal points of all the  graphs 
concerning ~ discend from the  proper~y that ,  since 8~/8s > O, ~ is an increasing 
funct ion of the shock velocity.  
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Fig. 9. - Model C). The same as in fig. 8. In ordinate we have used the mapping 
]~i/(Q ~/T) ~ 10s'5]I[ ~ with the same convention as in fig. 4. 

7.  - C o n c l u d i n g  r e m a r k s .  

As well known, a shock is physically acceptable when the  jump of the  
specific en t ropy  across the  shock itself is positive. In  fig. 4, 6 and 8 this p roper ty  
is indicated by  signs d- along the  branches of ~ in agreement  with the numerical  
da ta  as given in the tables I, I I  and I I I ,  respectively. 

Our computat ions have  shown tha t  in a mix ture  of fluids, in addit ion to the 
supersonic shock, which is unique in the case of a single consti tuent,  a new type  
of shock arises (those re la ted to  the  branches e and i in fig. 4 and to branch c 
in bo th  figures 6 and 8). These new shocks, confined in narrow ranges of low SMN 
(0.0245 < [M1] < 0.1955 for branch e and 0.0161 < [Mll < 0.1833 for branch i 
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of model A);  0 . 0 2 1 <  ]M1] < 0.196 and 0.052 < IM,] < 0.207 for branch c 
of model B) and C), respectively)(*) satisfy the thermodynamica l  principle 
[~J > 0 and m a y  be explained as due to the mutua l  interact ion of the  single 
components  of the  mixture.  

If  we look at  the plots of the  tempera ture  jump K,  we see that ,  in corre- 
spondence to these SMN intervals,  K < O, i.e. the  t empera tu re  decreases 
across these shocks. However,  since ~ J  > 0, this means t h a t  some of the  
densities of the  consti tuents should also decrease sufficiently to keep the  
en t ropy  jump positive. This mechanism is clearly exhibi ted b y  the numerical  
tables in which one finds tha t  some of the  jumps are positive. 

As one sees, the  problem turns  out  to be much complicated and a correct 
physical in terpre ta t ion might perhaps be given both  numerically and experi- 
mental ly  through an accurate evolutive analysis of shock decay and measures 
of shock amplitudes.  

* * *  

We would hke to thank  G. BOILLAT~ P. J.  (]HEN, I. M~)LLER and T. RuG- 
GEZI, for useful discussions and appreciations to this work. 

This work was largely inspired by  the  lectures given by  I. MtiLLER at  the  
Corse CIME on Thermodynamics and Constitutive Equations (lgoto, I ta ly ,  
1982) and by  the lectures on Propagazione Ondosa given b y  G. Boillat and 
T. Rugge~i a t  the  VI Scuota Es t iva  di Fisiea Matemat ica  (Ravello, I ta ly ,  ~981). 

This research was supported by  the C.N.R. (National Research Council) 
through the G.N.F.M. (National Group for Mathematical  Physics). 

APPENDIX:  A 

Although the unders tanding of this paper  does not  require the explicit 
symmetr iza t ion  of system (3.1), we give here, for the  aim of completeness and 
in view of applications, the p rocedure- - somewhat  h e a v y - - t o  construct  the 
related Hessian matrices in terms of the  main field U'. To s ta r t  with, let us 
sketch the  procedure  to write the  ma t r i x  H '~  ~*h'~ ' .SU'. We need first 
to express the differentials dh '0 in terms of the components  of dU' .  F ro m  (4.15)1 
we have 

(A.1) d h ' ~  d ]~ ] ~ 

(*) We remark that for a mixture of fluids the eigenvalues are no longer simply expressed 
iu terms of the sound velocity (as in the case of a single fluid), but are complicated 
expressions like those given as roots of eq. (6.4). Besides, the mean sound speed in 
the mixture does not coincide in general with anyone of the eigenvalues. 

In view of what said ill the footnote (*) on p. 221, one sees at once that all these 
new-type shocks are subsonic. 
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By using the rmodynamic  relation% simple manipulat ions allow us to ex- 
press d0,  in te rms of the components  of dU' .  We have  

(A.2) . , , +  - 

Combining (A.1) and (A.2), we may  then write 

I t  follows, therefore,  t h a t  

%h'o c~h '~ ~h '~ 
(A.3) 8{(IIT)[#~ -- (v~)~12]} ---- L'~, 8(v?IT) -- ~v~, ~(-- I/T) -- E. 

To get the second p~rt ial  derivatives of h '~ the  best  way is then  to express 
d(Qo`v~') and  dE  in terms of the  components  of dU '  as made  for d()o`. Cumber- 
some calculations lead to 

(A.4) 

d(0o`vT) --  ao`v 7 dfio` %. ao`C] "Oa da %. . a a (v, v~ %- e~, 

dE  = ~. (a~Oo`dfi~,%- ~. a o`vT"Oo`d~?) %- [(2E - -  ee , )T  %- ~ ao`O:]da, 

where we have set for b rev i ty  

(A.5) 

/~o`= ~ ~ - -  
2 J  

a~, , Oa= e:,%. (va)' 0"~,~ 0o,%. p_a 
p~ 2 ~ 

so tha t  the elements of the  ma t r ix  H '~ may  be arranged as 

~h'o a2h'O ~h'o 
~ t %  - a ~ ,  ~ t ~ - ~  - a ~ v ~ ; ,  ~ , . ~  ~ - a,0o` , 

~.h,o _ ~.h,o ( p , )  ~h,o 

~ h  '~ _ , ~ h ' o  _ a.~v~Oa , ~ h ' o  

k = l  

The (4v + 1) • (4~ + 1) ma t r ix  H '~ may  be explicit ly wri t ten by taking  the  
indices ~ and/3 in the Kr6neker  symbol as, respectively,  row index and column 
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index. In  the  following scheme, the ma t r ix  H '~ may be explicitly wri t ten b y  
fixing, for instance,  the index a(---- :I, 2, ..., ~) and taking,  each time, for each 
t e rm of the  fixed row, the  index fl variable f rom ] to ~: 

- a~ c5~ aa v~ 5~ ar v~ 5~ aav~ 5~ aaO,~ 

aav~r aa[(v~)' § Pa[ea]5~ a~vlv, ~ aavlv, bp aavlOa 

aav~5~ aav~vaO ~ aav~v~O~ a v ~, 2 

,r 

The calculations to construct  the  matrices H' ~ ---- a 2h"/a U'. ~ U' (i ~ 1, 2, 3) 
are a l i t t le  more complicated. F r o m  (4.15)~ one has 

(A.6) _ ~ 1 l [ v ~ ( ~ d ~ § 2 4 7  dv~] 

besides 

(A.7) 

Combining (A.2), (A.7) and relations (A.5) with (A.6), we obtain 

(A.8) 
J 

Therefore, we readily have 

(A.9) 

~h  ri 

= e~vTv7 § p~O~, 

c~a --  ~ e~v~0a---- [in view of ((4.5)]Ev, § q , - -  tr 

Let  us remark,  at  this point,  t h a t  expressions (A.3) and (A.9) are, as 
was to be expected,  in perfect  agreement  with the vectorial  equat ion (2.5). 
This gives a good check for all the  calculations. 

To compute  the second derivatives of h", the best  way is to first differentiate 
the quanti t ies on the  r.h.s, of (A.9)2.3 and  then  express these differentials in 
terms of the components  of dU' .  Making use of previous expressions, simple 
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manipulat ions lead to 

(~ ~ )  (A.10) d(~,v~v~ -4- p~5~) = t)~,v~dv~,4, v~d(e~v~') -4- p~ de~'4" d T  ~ : 

[ ( ~)~ ] 4- a~, v~ v~ 0c,,4, 4- q~, 

In  view of (4.5) 

(A.~) 

"4" e~v~ d e a t  "4" ~ �9 

On the other hand, we have 

2 --  ~ v~dv~. = [in view of (A.7)] T(v~)~d - -  -4- Tv?d , 

o(~):~-~(;) ~ 
so tha t  

(A.12) P~  

Subst i tu t ing (A.4)1 and (A.12) into (A.]I) ,  we can finally write 

(A.13) d(Evi -4- q~-- tr = 

-~ aocv~.O~,dfio,,4, Zao, vivj On'4" "4"~0~51 dv~.,tao, v? 0o,,4, O~,da 
1 

Star t ing  from (A.9) and using relations (A.4), (A.10) and (A.13), the second 
derivatives h '~ write 

( ~ ) ~(~) ~(ec, V~) ~(e~,r v~v7 -4- ,~ ,~ ~,~ 

~(~.r [ ] 
. . . . .  - - -  (v~ ~ -4- v~ (~ -4- v~ (~j) (~  , 
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~ a  

~c(Ev, + q ~ -  t.v~) 
af,~, 

~(Evi + q~ - -  t.v~) 
O'P k 

P~' P~' 0~, ~ , 

o~ A 
a a  i) i r~O 

ae~ V i V k -~- 

According to the 1)revious convection concerning the indices of the ](l'6- 
necker symbol, matrices H '~ can be promptly constructed. 

A P P E N D I X  B 

T h e  j u m p  o f  t h e  m a i n  f i e l d  U ' .  

To search the jump of U', we do not need to proceed by using system (2.8), 
as suggested by the theory; more simply we can find it straightforwardly from 
the components of U' themselves. We have, in fact, 

:~:{I~[~, '~']l , I~l I~l} 
With the help of previous results as given in b) of sect. 5, we find 

I v l -  ,,~ 
and 

so that  

K 

(K + 1)~' 

o oo / [ ~ 

Iv~ 1 _ 1", n - -  K $  :~ 
-~ ( K + I ) ~ ~, ' 

1 --~a(K + 1)log _e~-- y~l/a l~)  (1 + K),', - -  

~  [ } Ca o o K e~ . . ~ o 

"2' y~ M~ 
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I n  t h e  c a s e  of  a s ing le  c o n s t i t u e n t ,  a f t e r  a g r e a t  d e a l  of  a l g e b r a  t h a t  is o m i t -  
t e d  h e r e ,  t h i s  j u m p  w r i t e s  

~0 ' ] ] - -~  1 - - ~ Q l o g  1 - - y - ~ 2 y M 2  ( Y - - I ) ' M z ?  2 - - 2 ~ ' ( M " - - ] ) - ~  

QT 1 + 7  [. (7 ~-1) M z  

0 0 0 0 0 0 

-I- ~(M~--~)[(~(7 § ~)~M-t- (7--~)~(rM~§ ~)], 
o o o o o 

2( 7 + 1)o M(1 --  M~)n --  2{7-- 1)(TM'-t- 1)(M~-- 1) ~,, 

o o } 
~ ( ) , - - ~ ) ( 7 ~ , +  ~ ) (~ , - -_ t )  , 

w h e r e  we  h a v e  se t  fo r  b r e v i t y  

o o 
Q = [ ( r - -~ )  M , +  ~](1 - - 7  + 27M') .  

�9 R I A S S U N T O  

Si ealcola e si s tudia  la  eos iddet ta  (~ funzione genera t r ice  del l 'ur to  ,~ in una  miscela  
semplice di v cos t i tuent i  ideali .  Essendo in generale  ta le  funzione abbas tanza  compli-  
cata,  si discutono alcuni modell i  numeric i  nel caso pa r t i eo la re  di fluidi compost i  da 2 
o 3 cos t i tuent i .  Sulla base di ta l i  r i su l ta t i  si scopre che, a differenza di quanto  accade 
nel  caso classico di un singolo fluido (dove ~ ammesso il solo ur to  supersonico), la  m u t u a  
in te raz ione  dei cos t i tuent i  della miscela fa nascere un nuovo  t ipo di k-urti  che soddi- 
sfano il  pr incipio di en t ropia  in corr ispondenza a l imi t a t i  in te rva l l i  di piccoli  numer i  
di Maeh. Si r ipor tano infine i procediment i  per  s immetr izzare  le equazioni  or iginal i  
di bflancio in funzione del (~ campo pr incipale  ,> e per  eostruire  il salto di ques t ' u l t imo  
a t t raverso  l 'ur to .  

O npssao~mme~ ~ymctm~ y~apns~x ~OnH ~ npocTofi cMeca ra~om 

PeamMe (*). - -  Mbt i4ccne/lyeM BbmO~ Tar ua3bmaeM0i~ n p o ~ 3 e o ~ m e g  Oym~m~ yRapm, lx 
BOHH B IIOTOKe IIpOCTO~[ C M ~ H  P H ~ t I I ~ H ~ I X  KOMrIOHeHT. H 3 - 3 a  aHanara~ecxoR cnO~K- 
HOCTH 3TO1~ (1)yHKIHIH B o6meM cny~ae, o6cyz~aIOTC~ ~Hc.neHH~Ie pe3y.rl&TaT~! RJI~ HeKO- 

TopI~X ~IaCTH~IX cay,-taeB (v = 2 rt v = 3). H a  OCHOBC nony~emmrx pc3yJlbTaTOB MI,I 
06uapy)K~YlH, ~ro  s OTnH~HC Or KYlaCCHqeCKO]~ Mo]~enH ]UI~ O]~Oi~ cpc~1~t (r~e MOXeT 
cymCCTBOBaTb TOJIbKO cyHep3ByKOBa~ y~(apHa~ BOJIHa) B3aHIVIO~Ct~CTBHe KOMIIOHeHT cMeCH 
]~onycgaeT 06paaoBam4e HOBOrO Tnna k y]~apH~]X BOHH, B o r p a ~ e H H O M  HHTepBane 
Manbw qHCC~ Maxa H KOTOpbIe y]~OBHeTBOpmOT H p ~ y  3HTpO~mH. B IIpHTIO~eHI~ 
IIpHBO~HTOI npoue~ypa CHMMCTpHZaUm~ CHCTeMM HCXO]~H~tX ypaBHenl~r~ {Sa.qaHca B Tcp- 
MnUax ~byHKHfl << rnaBHoro n o ~ ,  H ~BHOC BI~IqHCYIOHHC cKaq~a 3Toro non~ ~epe3 y~lapHy~O 
Bo~Hy. 

(*) lleper pec)arque~. 


