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Summary. — The motion of a nonrelativistic cxtended self-interacting
particle is analysed. The equation of motion is integro-differential and
generates, at variance with the pointlike case, a strictly causal be-
haviour, thus overcoming all the fundamental shortcomings of the
Abraham-TLorentz theory, The motion is endowed with memory, which
generates effects totally absent in the structureless case, such as the
existence of characteristic damped oscillations, whose frequeney and num-
ber are determined by the specific structure.

1. - Introduction.

The classical movement of an electrically charged particle is commonly
described by an equation due to ABRAHAM and LORENTZ (1),

(1) mi =F,_, 4+ m1¥,

where self-interaction is taken into account by considering the mass m of
the particle to be the sum of an inertial mass and of an electromagnetic

(Y) M. ABranawm: Phys. Z., 5, 576 (1904); I. A. LorENTz: The Theory of Electrons
(New York, N.Y., 1952).
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contribution and by including the radiation reaction mz#¥ which contains the
caracteristic time

et

T = .
3med

(2)

This is, except for a geometric factor %, the time needed for light to traverse
the particle classical radius e?/me?. Equation (1) has, for a time-dependent
external force F,_(t) applied at { = 0, the general solution

e

¢

F(t) = exp [t/7] [F(O) — ;nl_r J.exp [— V[T F o (t’) dt’] .

But eq. (1) and its solution have well-known drawbacks, which we need not
do more than list here (29):

i) The Abraham-Lorentz equation is only approximate and does not
apply at all to the free particle (4).

ii) For a point charge the electromagnetic mass diverges.

iii) The electromagnetic contribution to the mass appears with an odd
factor §. For later convenience, we present here a brief account of the origin
of this difficulty. The Abraham-Lorentz equation is derived from the assump-
tion that the electromagnetic moment contained within the (extended) particle
is given by

S
(3) p =f;2 der,

where S is the Poynting vector. However, the relativistic version of this equa-
tion, namely

1
4) Pu= EfT“ dsr,

where T',, is the stress-energy tensor of the self-field, is not Lorentz covariant;

(?)) E. N. Prass: Rev. Mod. Phys., 33, 37 (1961).

(®) J. L. JimENEz and O. L. Fucus: The integrodifferential version of the Abraham-
Lorentz equation, preprint OFIN 19-80, Facultad de Ciencias, UNAM (to be published).
This is a recent review of the subject.

() L. Laxpav and E. Lirsurrz: The Classical Theory of Fields (Cambridge, Mass,,
1951).

(®) P. A. M. Dirac: Proc. R. Soc. London Ser. A, 167, 148 (1938).

{¢) J. D. JacksoNn: Classical Electrodynamics (New York, N.Y., 1962).



THE CLASSICAL MOTION OF AN EXTENDED CHARGED PARTICLE REVISITED 73

to recover covariance, eq. (4) must be modified to become
(4) Pe= ZfT ny d3r
u S uvty ’

where n, = (y(v/c), iy); this eliminates the undesired factor # (¢).

iv) A particle moving with constant acceleration should radiate, ac-
cording to the Larmor formula, but for this case the Abraham-Lorentz equation
admits solutions with vanishing radiation reaction.

v) An extra boundary condition is needed for a third-order equation
such as (1), though the exact original problem does not. (It is sometimes stated,
erroneously, that such an additional boundary condition conflicts with New-
tonian mechanics.)

vi) The solutions to eq. (1) can exhibit «run-away » behaviour, with
an acceleration increasing exponentially even in the absence of external forces.

vii) The solutions to eq. (1) can show the so-called preacceleration which
occurs in time before the corresponding force appears.

One of the last two problems, both of which imply a noncausal behaviour,
can be eliminated by a suitable choice of the initial value for the acceleration,
but not both. Thus #(0) = 0 avoids preacceleration, while

#0) = [exp [t Pt

0

apparently proposed first by IVANENKO and SoKoLoV (") and HAAG (%) (see
also PrAss (%) and ROHRLICH (%)), removes the run-away solutions. The fully
covariant version of the theory due to DirAc solves automatically difficulty iii)
and sidesteps difficulty ii) by using both advanced and retarded potentials to
cancel out the divergent terms; it offers the possibility of a final boundary
condition to eliminate the run-away solutions, but preacceleration remains a
feature of it (?). It is, in fact, generally agreed that there is no satisfactory
classical equation of motion for a radiating point charge moving in an ex-
ternal field.

() D.IvaNeENkoO and A. A. SoxorLov: Klassische Feldtheorie (Berlin, 1953) (translated
from the Russian edition (1949)).

(8) R. Haac: Z. Naturforsch. Teil A, 10, 752 (1955).

(*) F. RoHRrLICH: Classical Charged Particles (Reading, Mass., 1965).
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It is, therefore, reasonable to consider the alternative extended model and
attempt the construction of a consistent classical theory without all these
drawbacks. The idea goes back to LORENTZ and has usually been explored in
a relativistic framework (*1?). In the present paper we shall develop a co-
herent though simple description of the motion of an extended charge with
a completely causal behaviour. Our model is not new, having been to some
extent anticipated by Katp (12), but our approach is essentially nonrelativistie,
though formulated in such a way that the entire effect of the retarded self-
interaction of the extended charge is taken inlo account; the requirements
that come from Lorentz covariance discussed in point iii) above are also satisfied.

It must be stressed that, in allowing for the structure of the particle, even
in the nonrelativistic approximation, we completely recover causality, con-
trary to a common belief that in this way only a finite electromagnetic mass
is achicved. Hence a theory of this kind satisfies a physical desideratum: to
offer an elementary solution to an clementary problem.

The equation of motion that we derive in sect. 2 predicts a number of new
properties for the motion; these will be discussed in sect. 3 to 5. Among
other significant points, the theory contains three different mass parameters,
rather than the usual two, of which only one corresponds to the Newtonian
mass. Furthermore, the extended structure of the charged particle gives rise
to at least one characteristic oseillation frequency, together with a corresponding
decay time. Moreover, it is interesting to mention that, to guarantee causality,
the effective radius of the charge distribution cannot be less than a certain
minimum of the order of the classical radius of the electron.

Section 4 explores the behaviour of the particle for a particular model,
namely when the charge distribution is of Yukawa type. This appears to
be physically more convineing than other models such as the rigid shell of
charge that have been considered (2) and lends itself to a simple mathematical
treatment. In sect. 3 we discuss the possibility of relating the characteristic
frequency to that of the zitterbewegung or pair creation fiequency 2me/h;
with this criterion the size of the electron comes out to be just that predicted
by quantum electrodynamics.

The theory as developed here has several limitations. Firstly, we have
considered the charge distribution to be rigid and neglected nonlinear cor-
rections. Secondly, we ignore the possibility of the charge distribution rotating;
taking rotations into account may prove to be far from simple, but, since the
theory in its nonrelativistic form will apply above all to fairly slowly changing

(*9) J. 8. Nopvik: Ann. Phys. (N. Y.), 28, 225 (1964).

(1) J. D. Kave: Phys. Rer., 152, 1130 (1966).

(1?) H.Levixg, E.J. Mox1z and O. II. Suarp: Am. J. Phys., 45, 75 (1977); E. J. Moxiz
and O. H. Suarp: Phys. Rev. D, 15, 2850 (1977).

(%) H. M. Fraxga, G. C. MARQUES and A. J. pa S1nva: Nuovo Cimento A, 48, 65 (1978).
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forces, the torques developed over the diameter of an electron should be small,
and neglecting them a realistic approximation.

The theory should in principle apply to any charged lepton; because of
their fundamental importance, we shall, however, mostly consider electrons.
The electrical structure of leptons is essentially unknown, hence gpecial care
is taken to show that the fundamental properties of the motion of the ex-
tended particle are largely independent of the details of this structure. The
Yukawa-type model described in sect. 4 is, therefore, intended chiefly as an
illustrative case; but, because of its physically pleasing nature, we propose
to use it in our future work (14).

2. — The equation of motion for extended particles.

Our starting point is the expression that gives the self-force or radiation
reaction force for an extended particle, according to the Lorentz model. If we
negleet nonlinear terms in time derivatives of v—which are all of order (v/e)?
times the linear terms or smaller—, this expression is (%)

2e? — 1) 3,
. — _ Z 137 |p — ' |- 1
(6) F"” 30" n—o N. len (Ot") fd rf( 4 | I Q

where the charge density g(r) is normalized to unity. This force is found by
direct caleulation of the rate of change of the momentum of the particle, this
last being given by eq. (3), i.e. the nonrelativistic approximation to eq. (4).
Now, as stated above, eq. (4) lacks the appropriate Lorentz transformation
properties and must be replaced by eq. (5). The nonrelativistic approximation
to the spatial components of eq. (5) is (%)

(7) pz‘clzf(s+f-v)dar.

Thus we must add to eq. (6) the contribution of the term (1/c¢?) f T-vder. A
direct calculation of this contribution, according to, e.g., JACKSON (%), shows
that this term contributes — } times the n = 0 term in eq. (6) for spherically
symmetric charge distributions. In fact, we have that for a spherically sym-
metric field, the first term in

1 (o 1 )
-c—sz-vd%' = -Sn—czf(QE(E-v) — E2v)d3r

(*) L.DpE LA PERA: Stochastic electrodynamics for the free particle, preprint IFUNAM 80-21
(to be published).
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gives two-thirds of the second; thus one gets

1 -
EJ‘T-vd"r =~ 51 cZJ‘Ezdf‘r

Since E is the self-field produced by the charge distribution p(r), we can
write

Et=—E-Vp=¢V-E— V:(pE) = dneop — V- (¢E),

where @ is the scalar potential of the self-field. Thus we get finally

1 (e e e? o(r)o(r')
— oddr — — —— 18 — — 8y 87
csz vd?r Gczvfgq:d) 60217 I Id

as stated above. Hence, for a spherically symmetric charge distribution and
by considering only linear terms in » and its time derivatives, the self-force
becomes

062 °° _ n
®)  Fa=—an o fdsrfdf*r r— ]t

3c? ,,_0 ﬁ'c"
+ 6_—02 bfdarfdar’ir —r'[Te(r)o(r

From a more pragmatical point of view, we may consider eq. (8) just to
be eq. (6), but with a correct electromagnetic-mass term with which the un-
desired % factor disappears. The series in eq. (8) may be easily summed; in
fact, writing for simplicity R = |r— r’|, we have

@ 8" R0 R
g Rr o a(t) = exp [——a—t] a(t) = a(t—;),
where a stands for acceleration:

(9) a(t) = (1) .
Thus eq. (8) is equivalent to

(10) Fui=— 5 [ [ 2ot [a (1—F) —F at0]

and the equation of motion for the particle, if we assume that the external
force remains essentially unchanged within the dimensions of the charge, is

o0 e ot o o).



THE CLASSICAL MOTION OF AN EXTENDED CHARGED PARTICLE REVISITED 77

where u is the mechanical (bare) mass. By adding to both sides the term
(62/202)fd37jd31" R 1o(r)o(r') and defining

¢ e s [qs. 0(Me(r)
(12) mzy—}—éc—:fdrfdr» T

eq. (11) transforms into

(13) ma = F,, “ezf “fda ’9(’)0 [ (t—?)—a(t}].

This is the desired equation of motion. In the limit of a point particle, it re-
duces to the Abraham-Lorentz equation, as a Taylor expansion of a(t — R/c)
around ¢ shows. Thus, in this limit, m becomes the dressed (classical) mass
of the particle, as will be shown helow. HEquation (13) has been derived by
KATP (1), but using a much more cumbersome procedure.

Equation (13) shows that the self-force of an extended particle produces
retarded effects on itself—as it should do since we have explicitly used re-
tarded potentials in its derivation. This means that ity present motion de-
pends on all past accelerations and hence on the whole trajectory; thus the
particle possesses memory.

Equation (13) may be somewhat simplified by writing it in terms of the form
factor of the charge distribution,

(14) o(k) = @i—ﬁf@m exp [— ik-r]dor .

Since we assume spherical symmetry for the charge distribution, all angular
integrations can be explicitly performed and eq. (13) reduces to

t
(15) ma(t) = F,_, — 167z2mw2fg(c(t — t))[a(t') — a(n)]dt’,
where the structure factor g(r) is given by
(16) g(r) = f k|5(k)| sin kr dk .
[}
Now eq. (1) still containg an explicit mass correction with

(1n dm = lﬁnzmrcfg(r) dr
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Hence, introducing m, {to be carefully distinguished from pu, the bare mass,
see eqs. (11) and (12)) given by

(18) m,—=m— dm,

we can recast eq. (15) in its simplest form

t
(19) moalt) == Fp — mon[g(ot — ¢)) a(t')ar’,
where
m
— 2rp2
(20) n = 16xtte ol

0

It is possible to express dm in another form by combining eqs. (16) and (17}
and using the formula {P stands for principal value)

@

. k 1
J.siukrdr = 11—131:2—{——02 = PI;'
[
One obtains
. , - L2 B
21) bm = (l}_r}g lbnzmwsz e lo(k)|2dk .

0

3. — General properties of the motion.

Here and in the following sections we shall assume that the external force-
depends only on time. We demonstrate that, in general, the acceleration a(t)
has causal behaviour and investigate some properties of the motion. For this.
purpose a formal solution of the integro-differential equation (18) is convenient.
We define

(22) 9(t) = H(t) g(t),

where H(t) is the Heaviside step function; then the integral in (18) may be
extended, so that we have

(23) mea(t) = F(t) — mqn f ot — 1)) a(t') at’ .

Fourier transforming this equation and solving for @ yields

(24) (o) = & 1

=— - Flo) =6wFo).
mol—}—\/Zmyﬁo(w) () (w) Fieo)
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Here the entire effect on the response of the structure of the particle is con-
tained in G(w), which is somewhat like a generalized inverse-mass operator

1 1
mo 1 + \/)nngo ()

(25) Glw) =

The force factor F(w), on the other hand, is determined by the action of the
surroundings on the particle. The Fourier inverse of eq. (24) is

©

(26) a(t) = —1-); f(}(t — ") F()dt .
27

—c

Here G(t) plays the role of a response or transfer function, in the language of
linear-response theory. The acceleration will show a causal behaviour if

(27) G(1) =0 for t < 0,

since then eq. (26) predicts a retarded response:

t

(28) a(t) :\%ﬁ f‘(t—t’)F(t’)dt’.

—c

That the causality condition (27) is actually satisfied under very mild con-
ditions has been shown previously by MoxI1zZ and SHARP ('?) and, more ex-
plicitly, by FRANGA et al. (*); we outline their argument in the appendix, for
completeness’ sake. The conditions referred to are that the form factor 6(k)
should have no poles for Re k>0 and that the mass correction ém of eq. (17)
should be positive; the latter imposes significant conditions on the minimum
radius of the extended charge, as discussed in the appendix. Here we shall
consider only the causal case.

That then neither preaccelerations nor run-away solutions appear may be-
seen by considering a force that acts only for the finite interval #, <<t <.
Now eq. (28) may be rewritten as

@

(29) a(t) = \%; ~[G(t’)F(t —t)dt’' =
= Vi > Res (?(z,,)J‘F(t — ') exp [tw,t' ] exp [— o,t']dY ,,

0
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where we have expressed G(t') in terms of the poles 2, --: w, 4 ic, of G(2).
If t <t,, the argument of F is always less than ¢, and all contributions to the
force vanish, and so there is no preacceleration. On the other hand, for ¢ > ¢,
the acceleration does not immediately drop to zero, there are appreciable
memory effects, since the domain of F is completely contained in the interval
of integration and, in general, the dynamics of the extended eharged particle
differs significantly from that of a Newtonian one, though (as will be seen
in the next section) it can be essentially recovered in the limit ¢ - co. Now,
as is shown in the appendix, the imaginary parts ¢, of the poles of G(z) are
strictly positive; hence, for a force that stops acting at ¢;, the values of ¢’ that
contribute to the integral in (29) increase with increasing #, the acceleration
decreases more and more nearly in exponential fashion and there are no run-
away solutions.

4, — The Yukawa distribution.

A specific example is helpful at this point. In the preceding section we
saw that the motion depends on the poles of G(w); to simplify matters, we
chose a case with only one pole pair, namely a Yukawa distribution for the
charge:

_ P exp[—fr]

(30) e =g —— -
For this o(r), we have

8 1 B

o(k) = (2t Fr i gir) = 55— 7 exp [—fr]
and

- pie 1

3 o) = — — .
(51) Golev) 3272V o7 (Be + iw)?

It is the mathematical simplicity and fast convergence of g(r), as well as
the physical plausibility of p(r), that give to this distribution a special appeal
as a model of the extended particle. Introducing eq. (31) into eq. (24), we get

F) (pe+io)

. ) = Sy (o i+ o
where
(33) wr =100 1o agm OB

3272 2 my, 3m,
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Equation (32) then yields acceleration, velocity and position vectors:

o

1 (e 4 iw)?
Vammy  (Bo T+ iw) + o

(34) alt) = F(w) exp [iwt]dw ,

w

8 . i ) .
(35) v() = vl—-\/——%mo J‘w[f—(ﬂc T o) 1 o] F(w) exp [twt]dow

—c

[+

f 2[(ﬂcﬂi%g1;‘] F(w) exp [iwt]dw .

(36) r(t) =r+ vt + \/an

—©

In addition to the kinematic poles at w = 0 for r and v, the poles of the in-
tegrands are located at

(37) w, = 10 + oy
with
(38) o=fe.

We evaluate the integrals by analytic continuation to the complex plane z.
As before, for i<0 the iniegrals cancel out, but for >0 the contour of integ-
ration lies in the upper half of the complex plane and the integrals do not
vanish. Thus, for £>0, one obtains

(39)  an="0_ o2

m, mgz( —i—w,‘th)exp[—— o(t —t')]sin wg(t —t')adt’,

(40) v(t) = v, + % F(it')at' 4

+m_a’ fF Yexp [— o(t —t')] [wg €Os wg(t —t') + osinwg(t—1')]1dt,

t e

(41)  r(t) =r+ vt + % fdt’fdt”F(t”) +

- —w

2wn Wg , - .
T otk £ oY fF b +az)_fF(nexp[ o(t—1)]

 [(6® — wi) sin wg(t — ') + 20wg €08 wg(t —t')]1de’ .

8 = Il Nuovo Cimenio B,
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In writing these equations we have taken into account that

©

(42) dm = 167z2m-wfg(r) dr = imro
[}

and hence that

(43) m = m,+ 8m=mo(1 +‘;—’§)

‘We see that the solution is given in each case by the sum of Newtonian-
type terms plus a transient term that oscillates with the characteristic fre-
quency w, determined through (33) by the parameter § that measures the size
of the particle. We shall come back to this point in the next section.

It is worth noting here that, by using (31) in eq. (A.3) of the appendix, the
poles may be found as functions of 8 only; the imaginary part is given by (38)
and the real part by

P L

(44) Al

Hence the poles remain in the upper half-plane only, while the «radius» g1
satisfies

(45) 1> 3%rc.

Thus the charge distribution must be larger than the classical radius re for the
particle 10 show causal behaviour; and the peculiarities of preacceleration and
run-away solutions appear well before the point particle limit (12). Similar
results may be obtained for other charge distributions and are discussed else-
where (12).

To get a better insight into these results, it seems worthwhile analysing
them both in time and frequency domains.

A) To study the spectral properties of the asymptotic solution, we take
F(t) = F,H(t) sin wt

and consider the case ¢ > o0~!; the results are

i) for o< w,
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ii) for w ~ w,

F(t) 1
7n_[ +;2-02+ 4wl

alt) — w: 3wi ] 1 (¢ + wp)(e®+ 2wg) AF

" mod o + 4wl at’
iii) for w > o,

Fit) 1 0°4 wy dF
m, mo ot} w? dt’

a(l) =

In general, the response of the extended particle is far from being New-
tonian, even in the asymptotic region. The classical behaviour is only ob-
tained in the case w< w, for sufficiently large times.

B) To study the time response, let us take
F(t) = F,0(t) .
The solution is now

a(t) = 117:9 o) — Ew(% (6* 4 wi) Fyexp [— ot]sinwgt?,
(]

v(t) = v, + % H(t) F ;’_5“—2 F,H(t) exp [— o] [wg c0S 0pt + 0'sinwgt],

r(t)=n+(vl+F")t+

m

2wk wg .
+ iy F,H(t) —s F, I (t)exp [— ot][osinwgt + 2wy €OS wgl] .

Thus the aceeleration produced by the impulsive force corresponds to the
mass mg, not to m, in agreement with case A). At time ¢ = 0 there appears
an impulsive acceleration and then an oscillatory negative transient (an under-
shoot) begins to develop. Both the frequency w, and the decay constant ¢
of this transient are determined by the size of the particle. The velocity has
a more complicated behaviour; for ¢ > ¢, »(t) has the classical form v, -+ Fy/m,
which aseribes to the particle the «classical » mass m. However, for very
short times, the velocity may be approximated by

F, w? F,
v(t) Nv;‘f”ﬁ‘f‘;ﬂ%ﬂzvx‘f‘#,
0

where we have used eq. (43); thus, if we measure the mass of the particle through
its velocity immediately after the application of the impulsive force, we will
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get the value m,, not m. The Newtonian part of r(t) is also characterized by
the classical mass m for all ¢ >0; however, there is a non-Newtonian contri-
bution to r(t) that never disappears, namely the term (2wi/mo®)F;.

5. — Possible connection with quantum dynamics.

So far the «radius» of the particle r, = f~! has remained as a free para-
meter except for the lower bound (45). We may attempt to fix it by argu-
ments like those used in quantum electrodynamics (1*). It seems, however,
more natural to determine 7, by assigning a «reasonable » value to wy: there
exists a gencral characteristic frequency of oscillation of the free electron,
namely that associated with the zitterbewegung predicted by the Dirac theory.
We, therefore, propose the identification

2me?
(46) WOp= —— .

To investigate the radius predicted by this assumption, we substitute (46)
in (44) and express the result in terms of the fine-structure constant « = e2/fic
and the Compton wave-length 7, = #/me. We get after simple algebraic ma-
nipulations

(Vi f)® + da(Vai p) =12va.

This equation has a single real root near vVa 7,8 ~ 1; hence we may neglect
the second term to get

(2yap

-1 __ — D ~

=4 T ais’
or

n=ri,,

where r, = e?/mc® = af, is the classical electron radius. Equation (46) implies
that the electron radius is equal to the geometric mean of the classical radius
and Compton wave-length, just the radius that quantum electrodynamics
assigns to the electron due to the radiative corrections (*%1¢). This most

(¥) N. N. BocorisBov and 8.V, TyasrLikov: Izv. Akad. Neuk Ukr. SSE, 5, 10 (1946).
(*%) The argument goes essentially as follows. The Lamb shift for the ground state
of a harmonic oscillator is, in order of magnitude, «Aiw?/ame?; if we ascribe this
energy to vibrations of the oscillator with amplitude a, so that it equals me?a?,
then a is to be interpreted as an effective radius of the electron. One gets
a?~ akit/am?ci~ aad, which is the result referred to above.
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gratifying result seems to justify the use of eq. (46). The picture that emerges
is interesting, because the theory, in spite of its classical (nonquantal and
nonrelativistic) nature, gives acceptable results.

The above hypothesis may be used to make some other estimates. From
eq. (42) we get

which shows that the mass renormalization is of order «. The period of oscil-
lation will now be

£)

2 3n -
Ty=—=—1~63071,

wy 2«

that is almost three orders or magnitude larger than the radiation time 7.
Finally, these results also show that the amplitude of the transient part of
the velocity is rather small compared with the corresponding classical con-
tribution. For example, from eq. (40) we see that this ratio is of order
wifo® = dmjm, or 3%, Moreover, the logarithmic decrement is o/w,, so that
this rather small oscillation is damped to 1/360 of its amplitude in a single
period.

6. — Concluding remarks.

The preceding results show that taking into account the structure of the
classical self-interacting particle is enough to solve all fundamental problems
characteristic of the Abraham-Lorentz theory. More specifically, we have
seen that the theory applies for all F(t), including the free particle; that, for
physically acceptable charge distributions, all the mass parameters u, m, m,
and 3m are finite and the annoying factor 4/3 relating x4 and m does not appear;
that the response is causal (retarded and finite), which implies freedom from
preacceleration and run-away solutions. Thus ail the discussions about the
need of modification of our usual points of view in connection with causality (*7)
within the classical context are at least unnecessary: preacceleration is the
price for a bad approximation, not a physical phenomenon.

Another interesting result of the theory is related to the properties of the
mass parameters, which seem to be less simple than is normally assumed from
our naive generalizations from Newtonian physics. In particular, we have
seen that the Newtonian mass i3 the low-frequency, long-time mass, as meas-
ured by the velocity or the acceleration. A point of principle that must not

(1) See, e.g., A. GRENBAUM and A. JaNis: Am. J. Phys., 46, 337 (1978).
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pass unnoticed in connection with this discussion is the following. In clas-
sical dynamics, there is no conceptual problem in turning off or on the external
force, but then the mass of the extended particle is undefined. However, when
we go to deeper theories, like quantum electrodynamics for example, we re-
cognize that the «free » particle is just a concept that has no physical counter-
part, since all particles interact at least with the residual (stochastic) vacuum
of each fundamental field. Therefore, the particle presents itself always dressed
and no conceptual uncertainty appears.

The infinite memory shown by the extended electron endows its motion
with specific and complex properties that make the dynamical problem far
richer than its corresponding structureless approximation. These complexities
may reveal themselves even more important for a confined particle due to the
cumulative effects of the memory, which could produce essentially new re-
sults, unknown to the Newtonian theory. This is one of the reasons why we
congsider this theory important in connection with approaches such as stoch-
astic electrodynamics (1*), but we reserve the discussion of these problems for
a forthcoming publication.

* % k

The authors acknowledge many valuable suggestions and comments from
their colleague and friend, Prof. T. A. BroDnY.

APPENDIX
We have
(A.1) G(t) = A f&(w)exp [+ tot]dw .
\/27z A

To evaluate this for ¢ > 0, the contour in the complex plane is best closed by
a semi-circle at infinity in the upper half-plane, while for t<< 0 the lower half-
plane is used. Thus condition (27) is equivalent to the condition that all the
poles of ((z) at which 2 = w + 9o lie in the upper half-plane.

Using (16), (22) and the inverse transform to (A.1), we have

(A.2) Gole) = f dt exp [— iwt] exp [ot] f k|g(k) |2 sin okt dk .

(1) A brief survey by T. H. BOoYER is to be found in Foundations of Radiation Theory
and Quantum Klectrodynamics, edited by A. O. Barur (New York, N.Y., 1980);
P. CLAVERIE and S. DiNER: Int. J. Quantum Chem., 12, Suppl. 1, 41 (1977); L. DE 1A
PESNA and A. M. Cerro: J. Math. Phys. (N. Y.), 18, 1612 (1977); 20, 469 (1979).
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For negative o, the integration over ¢ can be carried out, yielding

o[k
Jo(2) =fﬂ‘2'_—zz lo(k)|>dk .
0

If, in eq. (25), m, > 0, the poles of G(z) are the solutions of
(A.3) 1 4 Vaangy(e) = 0

Separating the real and imaginary parts, we have the equations

2k — w? 4 o?)
(A.4) 1+ vVon fc2k=—-w2—}—o) —}—wazdk
and
¢ kla(k)|?
R . A .
(A.5) wgf((ﬁkz—w +02)2+w02dk 0.

]

Since the integral in (A.5) is positive definite, » must vanish for a solution to
exist when ¢ < 0. But, for w = 0, the integral in (A.4) is also positive definite
and no solution exists if 0. There are no poles in the lower half-plane. Nor
are there any on the real axis if one assumes that ¢g(r) has support on a set of
nonzero measures, for then (A.3) becomes

Jo(w) = \/ fo exp [—iwt]dt = —\_/%m;

the only solution of which is g,(¢) ~ 6(¢). But this is not physically plausible:
as eq. (16) shows, an infinitely extended uniform charge would have this
behaviour. Hence, if g(k) has no poles for k>0, then neither G(2) has poles on
the real axis and all poles lie strictly in the upper half-plane; the only pos-
sible exeeption to this result demands the use of very peculiar charge distri-
butiong (**19),

Equation (A.2) shows that, whenever w -+ s is a pole, then so is — w 4- ig,
for this changes only the sign of the imaginary part of §,(2), which from (A.5)
must vanish. Thus the poles occur in pairs in the upper half-plane, arranged
symmetrically around the imaginary axis. Note that, in general, the origin
does not represent a pole pair, though there are forms of o(r) for which it can
be reached; thus the point particle is not necessarily the limiting case of the
extended charge distribution.

(1*) These exceptional charge distributions that generate poles on the real axis (o= 0)
and hence correspond to stationary oscillations have been used as models to explain
the atomic stability. See, e.g., D. Bous and M. WEINSTEIN : Phys. Rev., 74, 1789 (1948);
G. H. GoEDECKE: Phys. Rev. Sect. B, 135, 281 (1964).
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The above demonstration heavily depends on the assumption n>0. This
condition characterizes what we may call the zone of defined causality; it can
be expressed in a physically more transparent form as follows. According to
eqs. {(17) and (20), 5 is given by

7N = 167:21'02[1 — 16nztcfg(r)dr];
0
in terms of the characteristic radius % of the charge distribution, defined by
R = 16nzfg(r) dr,
1}

the condition #>0 is thus expressed as
(A.6) R>ve = }r..

This is the minimum size that a charge distribution must possess to guarantee
that its motion is causal. For the Yukawa distribution eq. (A.6) reduces to
eq. (45) in the text.

® RIASSUNTO (Y

Si analizza il moto di una particella non relativistica estesa autointeragente. L’equazione
di moto & integrodifferenziale e genera, diversamente dal caso puntiforme, un compor-
tamento strettamente causale, cosi superando tutti gli svantaggi fondamentali della
teoria di Abraham-Lorentz. Il moto & dotato di memoria, che genera effetti totalmente
assenti nel caso senza struttura, come l’esistenza di caratterestiche oscillazioni smor-
zate, la frequenza e il numero delle quali sono determinati dalla struttura specifica.

(*) Traduzione a cura della Redazione.

Kiaccuueckoe nBHAKenHe MPOTSDKEHHOH 3apsikeHHOH YACTHUBI

Pe3tome (*). — AHanu3MpyeTCs [BHKEHHE HEPEISTHBHCTCKOM MNpPOTAXKEHHOH caMo-
B3aHMMOJACHCTBYIOIIEH YacTUUBL. Y paBHEHHE JBIDKEHUSA ABNsETCS HHTErpomubdepermans-
HbIM M, B NPOTUBOPEYHH C TOYEYHO-NOHOOHBIM CIIydYaeM, INPUBOIMT K CTPOTO NPHUYMH-
HOMY MOBENECHHIO, TEM CAMEIM YCTPAHAIOTCA BCE OCHOBHBIE HEOCTATKH TeopuH AGparama-
Jlopenua. Asmxenne o6iagaeT MamATBIO, 9TO IPHBOAHT K BO3HHKHOBEHHIO 3(QeKTOB,
TIOMHOCTLIO OTCYTCTBYIOIMMX B GECCTPYKTYPHOM Cly4ae, TaKuX Kak HaJlM4Me Xapakre-
PHCTHYECKHMX 3aTyXalOMMUX OCLWIIALMIA, YaCTOTA H YHMCIO KOTOPHIX OIpeneinsercs crie-
IHaNbHOYK CTPYKTYPOM.

(*) Iepesedeno pedaxyueii,



