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Summary .  - -  The motion of a nonrelativistic extended self-interacting 
part icle  is analysed. The equation of moti(m is intcgro-differential and 
generates, at variance with the pointlike case, a str ict ly causal be- 
haviour,  thus overcoIning all the fundamental  shortcomings of the 
Abrahaln-Lorcntz  theory. The nmtion is endowed with memory,  which 
gcnerates effects to ta l ly  absent in the structureless ease, such as the 
existence of characteristic dainped oscillations, whose frequency and num- 
ber are determined by the si)ecific structure. 

1 .  - I n t r o d u c t i o n .  

The  c lass ica l  m o v e m e n t  of ~m e l ec t r i c a l l y  c h a r g e d  p a r t i c l e  is c o m m o n l y  

desc r ibed  b y  a n  e q u a t i o n  due  to  Am~AZZA_~ a n 4  LORENTZ (1)~ 

(1) ~ = ~,~ + mT~', 

where  s e l f - i n t e r a c t i o n  is t a k e n  i n t o  a c c o u n t  b y  cons ide r ing  t h e  mass  m of 

t h e  p a r t i c l e  t o  be  t h e  sum of a n  i n e r t i a l  mass  a n d  of a n  e l e c t r o m a g n e t i c  

(1) M. ABRAI1AM: -phys. Z., 5, 576 (1904); II .  A. LORENTZ: The Theory o/ Electrons 
(.New York, N . Y . ,  1952). 

71 



72 L. DE LA P:E~A, J. L. JIM~NF, Z and R. MOKT:EMAYOR 

contr ibut ion and by  including the  radiation react ion mvi ~" which contains the  
caracterist ic t ime 

2e  2 

(2) ~ -  3mcS. 

This is, except  for a geometric factor  3, the t ime needed for light to t raverse  
the part icle  classical radius e2/mcL Equat ion  (1) has, for a t ime-dependent  
external  force F~t(t) applied at  t = 0, the  general solution 

t 

0 

But  eq. (1) and its solution have well-known drawbacks, which we need not  
do more than  list here (34): 

i) The Abraham-Lorentz  equat ion is only approximate  and does not  
apply at  all to the  free part icle  (4). 

ii) For  a point  charge the  electromagnetic mass diverges. 

iii) The electromagnetic contr ibution to the  mass appears with an odd 
factor  4. For  later  convenience, we present  here a brief account  of the  origin 
of this difficulty. The Abraham-Lorentz  equat ion is derived from the  assump- 
t ion t h a t  the electromagnetic moment  contained within the (extended) part icle 
is given by  

f' (3) p = ~ dSr, 

where S is the Poynt ing  vector.  However,  the relativistic version of this equa- 
t ion, namely  

(4) P,=-  i IT~,d3 r 
c J  

where T is the stress-energy tensor of the  self-field, is not  Lorentz  covar iant ;  

(~) E. N. PLASS: t~ev. Mod. Phys., 33, 37 (1961). 
(s) J. L. JIM]~NEZ and O. L. Fvcns:  The integrodi]]erential version of the Abraham- 
Zorentz equation, preprint OFIN 19-80, Facultad de Ciencias, UNAM (to be published). 
This is a recent review of the subject. 
(4) L. LA~'DAU and E. LIrSHITZ: The Classical Theory o] •ields (Cambridge, Mass., 
1951). 
(5) P .  A .  ~ .  DIRAC: Pror Soc. Zondon Set . .4 ,  167, 148 (1938). 
(6) J. D. JACKSON: Classical Electrodynamics (New York, N.Y.,  1962). 
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to  recover covariance, eq. (4) must  be modified to become 

(5) p.= ~ f T..n,d~r , 

where n = (7(v/c),  i7); this eliminates the undesired factor  ~ (6). 

iv) A part icle moving with constant  acceleration should radiate,  ac- 
cording to the Larmor  formula, bu t  for this case the Abraham-Lorentz  equation 
admits solutions with vanishing radiat ion reaction. 

v) An extra  boundary  condition is needed for a third-order  equation 
such as (1), though the exact  original problem does not. (I t  is sometimes stated, 
erroneously, t h a t  such an addit ional  boundary  condition conflicts with ~'ew- 
tonian mechanics.) 

vi) The solutions to eq. (1) can exhibit  (, run-away ~) behaviour,  with 
an acceleration increasing exponential ly  even in the absence of external  forces. 

vii) The solutions to eq. (1) can show the  so-called preacceleration which 
occurs in t ime before the corresponding force appears. 

One of the  last two problems, bo th  of which imply a noncausal behaviour,  
can be el iminated by  a suitable choice of the initial value for the  acceleration, 
bu t  not  both.  Thus i~(0) ---- 0 avoids preacceleration, while 

co 

i:(O) = ~ xp [ - - t / v]F ,~dt ) t i t ,  

0 

apparent ly  proposed first by IVA.~-v..~KO and SOKOLOV (7) and HAAG (8) (see 
also PL•SS (2) and ROHRLICH (9)), removes the run-away solutions. The fully 
covariant  version of the theory  due to Dm~tc solves automat ical ly  difficulty iii) 
and sidesteps difficulty it) by  using both  advanced and re tarded potentials to 
cancel out the  divergent terms;  it offers the possibility of a final boundary  
condition to eliminate the run-away solutions, but  preaccelerat ion remains a 
feature of it  ('). I t  is, in fact,  generally ag~'eed tha t  lhere  is no satisfactory 
classical equat ion of motion for a radiat ing point charge moving in an ex- 

ternal  field. 

(~) D. IVANESKO and A. A. SOKOLOV: Klassische Eeldtheorie (Berlin, 1953) (translated 
from the Russian edition (1949)). 
(8) R. HAAG: Z. s Tell A,  10, 752 (1955). 
(9) F.  ROHRLICH: Classical Charged Particles (Reading, Mass., 1965). 
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I t  is, therefore,  reasonable to consider the  a l te rnat ive  extended model  and 
a t t e m p t  the construct ion of a consistent classical theory, wi thout  all these 
drawbacks .  The idea goes back  to LORE.~TZ and has usually been explored in 
a relat ivist ic f ramework  (9.~3). In  the  present  pape r  we shall develop a co- 
herent  though simple description of the  mot ion  of an extended charge with 
a comple te ly  caused behaviour .  Our model  is not  new, having been to some 
e x t e n t  ant ic ipa ted  by  KAvP (~-), but  our approach is essentially nonrelativist ic,  
though  formula ted  in such a way  tha t  the  ent i re  effect of the  re ta rded  self- 
in te rac t ion  of the  extended charge is t aken  into account;  the  requirements  
t h a t  come f rom Lorentz  cov~riance discussed in point  iii) ~bove are also satisfied. 

I t  mus t  be stressed tha t ,  in allowing for the  s t ructm'e  of the  particle,  even 
in the  nonrelat ivist ic approximat ion ,  we comple te ly  recover causality,  con- 
~rary to  a common belief t h a t  in this way only a finite e lectromagnet ic  mass 
is achieved. Hence  a theory  of this kind satisfies a physical  desideratum: to 
offer an e lementary  solution to an e lementa ry  problem.  

The equ'~tion of mot ion  t h a t  we de~ive in sect. 2 predicts a number  of new 
proper t ies  for the  mot ion ;  these will be discussed in sect. 3 to 5. Among 
other  significant points,  the  theory  contains three  different mass parameters ,  
r a the r  t h a n  the  usual two, of which only one corresponds to the :Newtonian 
mass.  :Furthermore, the  extended s t ructure  of the  charged particle gives rise 
to  a t  least  one character is t ic  oscillation frequency,  together  with u corresponding 
dec~y t ime.  Moreover, it is interest ing to  ment iou  tha t ,  to gmarantee causali ty,  
the  effective radius of the  charge distr ibution cannot  be less t h a n  ~ certain 
m i n i m u m  of the  order of the  classical radius of the  electron. 

Section 4 explores the  behaviour  of the  part icle  for u par t icular  model,  
name ly  when the  charge distr ibution is of u  type .  This appears  to 
be physical ly more convincing t h a n  other  models such as the  rigid shell of 
charge t h a t  have  been considered (12) and lends itself to a simple ma thema t i ca l  
t r e a tmen t .  I n  sect. 5 we discuss the  possibili ty of relat ing the character is t ic  
f requency  to t ha t  of the  z i t terbewegung or pair  creation f iequency 2mc~/h; 
with this criterion the  size of the  electron comes out  to be just  t h a t  predic ted 
b y  q u a n t u m  elcctrodynamics.  

The  theory  as developed here has several  l imitat ions.  First ly,  we have  
considered the  charge dis tr ibut ion to be rigid ~ud neglected nonlinear cor- 
rections. Secondly, we ignore the  possibility of the  charge distr ibution ro ta t ing ;  
t ak ing  rotat ions into account  m a y  prove  to be far  f rom simple, but ,  since the  
theory  in its nonrelat ivist ic  form will apply  above  all to fairly slowly changing 

(lo) j .  S. NODWK: Ann. Phys. (N. I'.), 28, 225 (1964). 
(11) j .  D. KAUP: Phys. Rev., 152, 1130 (1966). 
(12) II. I,EVI~>:, E. J. MONIZ and 0. II. SIIARP: Am. J. Phys.,4$, 75 (1977); E. J. Mo~Iz 
and 0. H. SnARr: Phys. liev. D, 15, 2850 (1977). 
(x3) H. M. FRAXqA, G. C. MARQUES and A. J. DA SILVA: N~OV0 Ciraento A, 48, 65 (1978). 
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forces, the torques developed over the diameter  of an cleci, ron should be sma.ll, 
and neglecting them a realistic approximation.  

The theory  should in principle apply to  any charged lepton;  because of 
their  fundanlental  importance, we shall, however, most ly  consider electrons. 
The  electric~l s t ructure of leptons is essentially unknown, hence special care 
is taken  to show tha t  the fundamenta l  properties of the motion of the ex- 
tended particle are largely independent  of the details of this structure.  The 
Yukawa- type  model described in sect. 4 is, therefore, in tended chiefly as an 
illustrative case; but,  because of its physically pleasing nature,  we propose 
to use it in our fu ture  work (~4). 

2. - The equation o f  mot ion  for extended particles. 

Our s tar t ing point  is the expression tha t  gives the self-force or radiat ion 
reaction force for an extended particle,  according to the Lorentz  model. If  we 
neglect nonlinear terms in t ime derivatives of v - -wh ich  are all of order (v/c) ~- 
t imes the l inear terms or smaller-- ,  this expression is (v) 

(6) F.~. . . . .  3c0".~o2e~ ~ (-n!c.il" \et"l [~-~ fd~rf d'r'Ir-r'I'-~~176 

where the charge density ~(r) is normalized to  unity.  This force is found by 
direct calculation of the rate  of change of the momen tum of the particle, this 
last being given by  eq. (3), i.e. the  nonrelativistic approximat ion to eq. (4). 
~'ow, as s ta ted above, eq. (4) lacks the appropriate Lorentz  t ransformat ion 
properties and must  be replaced by  eq. (5). The nonrelativistic approximation 
to  the spatial components  of eq. (5) is (6) 

(7) p = (S ~- T . v ) d 3 r .  

Thus we must  add to eq. (6) the contr ibut ion of the t e rm (1/c~)fl~'.vd3r. A 
direct calculation of this contr ibution,  according to, e.g., JACKSON (s), shows 
tha t  this te rm contr ibutes -- ~ t imes the  n = 0 term in eq. (6) for spherically 
symmetr ic  charge distributions. In  fact,  we have tha t  for a spherically sym- 
metric field, the  first t e rm in 

f fIZEIE'v)--E v)d r 
(14) L .  D~ LA 1)E?~A : Stochastic electrodynamics ]or the ]ree particle, preprint IFUNAM 80-21 
(to be published). 
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gives two-third~ of the  second; thus one gets 

-af~.vd.r-- v fE',l~r c 2 24~c2 

Since E is the  self-field produced by  the  charge distr ibution o(r), we can 
write 

E 2 = --  E .  Vq~ ----- q~V. E -  V. (q~E) ---- 4 r t e o ~ -  V. (~vE), 

where 9 is the  scalar po ten t ia l  of the self-field. Thus we get finally 

f~" ~ f ~ ,,fotr)-~ ('')d",.d',.' T ' v d 3 r  = 6-~2 v o e f d 3 r  - -  ~-~, .1  ir _ r, I 

as s ta ted  above. Hence,  for a spherically symmet r i c  charge distr ibution and 
b y  considering only l inear t e rms  in v and its t ime  derivatives,  the  self-force 

becomes 

2e~ ~( - -1)"~"6 r r 
= . _~ Id3r Id3r 'Iv - -  r '  (8) F . . , ,=  3c~.~=o n T ~  ct . ]  3 ]" - '~  § 

+ ~ 6fd"rfd3r'ir--r'[-'e(r)o.(r'). 

F r o m  a more p ragmat ica l  point  of view, we m a y  consider eq. (8) jus t  to 
be eq. (6), bu t  with a correct  e lect romagnet ic-mass  t e r m  with which the  un- 
desired ~a factor  disappears.  The series in eq. (8) m a y  be easily summed ;  in 
fact ,  writ ing for simplici ty /~ = I v - - r ' [ ,  we have  

( - 1 ) "  R.  o,, . ( , )  = exp - -  a(,) = .  
~o-~.-We~ ' 

where a s tands for acceleration: 

(9) a ( t )  = iJ(t) . 

Thus eq. (8) is equivalent  to  

(lo) F,..=--ZeJfd3rfd"r'l [a(t -~ 1 3 e  2 ~_~ ~ ( r ) Q ( r ' )  ~ - -  c ] - - - ~  a(t)] 

and  the  equat ion of mot ion  for the  particle,  if we assume t h a t  the  external  
force remains  essentially unchanged within the  dimensions of the  charge, is 

1 
(11) J R a ( , ) ,  ] 
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where /~ is the mechanical (bare) mass. By adding to both sides the term 
(e*/2c~)fd3rfd3r'R -~ o(r)~(r') and deiining 

e 2 
(12) m ~-- /a -]- - - -  Id3r ld3r  '(J'r'~" (r'' 

2c- ' J  J R ' 

eq. (11) t ransforlns into 

(13) 
2e 2 ~" ~, 

m a :  F , ~ t - - ~ f i J d a r J d 3 r ' ~ ) ( r ) ~  
R 

This is the desired equ'~tion of motion.  In  the limit of a point  particle, it re- 
duces to the Abraham-Lorentz  equation,  as a Taylor expansion of a ( t - -  R/c) 
uround t shows. Thus, in this limit, m becomes the dressed (cl'tssical) mass 
of the particle, as will be shown below. Equat ion (13) has been derived by 
K hw,  ('~), bu t  using a much more cumbersome procedure. 

Equat ion  (13) shows tha t  the self-force of an extended particle produces 
retarded effects on i tself--as  it shotfld do since we h~ve explicitly used re- 
tarded potentials in its derivation. This means Shat its present motion de- 
pends on all past  accelerations and hence on the whole t ra jec tory ;  thus the 
particle possesses memory.  

Equat ion  (13) m a y  be somewhat simplified by  writing it in terms of the form 
factor  of the  churgc distribution, 

(14) ~(/,;) --  (21)~ f ~ ( r ) e x p  [-- i k . r ] d 3 r .  

Since we assume spherical symmet ry  for the charge distribution,  all angular 
integr~tions can be explicitly performed and eq. (]3) reduces to 

(15) 
t 

ma(t)  = F , ,  t --  16~" -mvc~ fg (e ( t -  t ' ) ) [ a ( t ' ) -  a(t)] dr ' ,  

wheze the s t ructure  factor  g(r) is given by  

(16) 
co 

g(r) : f k]5(k) 12 sin kr dk . 
0 

Now eq. (15) still contains an explicit mass correction with 

(17) 
co 

am : 16z 2 mvcfg(r )  d r .  
0 



7 8  L .  D ~  L A  P : E N A ,  J .  L .  J [ M ] ~ N E Z  a n d  R .  M O N T E M A Y O R ~  

Hence, introducing mo (to be carefully distinguished from /t, the bare mass  r 
see eqs. (11) and (12)) given by  

(18) m o = m - -  8m, 

we can recast eq. (15) in its simplest form 

t 

(19) moa(t)--:  F , ~ -  m o ~ . ( g ( c ( t -  t ' ) ) a ( t ' ) d t ' ,  
- - v o  

where 

m 
(20) v] = 16~t~vc 2 -  . 

m o  

I t  is possible to  express 8m in another  form by combining eqs. (16) and (17~ 
and using the formula (P stands for principal value) 

One obtains 

(21) 

co 

f s i u  kr dr = lim k _ p 1 _ _  _ ~ 

~--~0 k ~ § a~ k 
o 

I k2 S m = lim16u2mvc - -  ]~(k)12dk 
~-~o 3 k ~  § a~ " 

0 

3. - General  properties o f  the  mot ion.  

Here  and in the following sections we shall assume tha t  the external  force- 
depends only on time. We demonstra te  that ,  in general, the  acceleration a(t) 
has causal behaviour and investigate some propert ies of the motion. For  this- 
purpose a formal  solution of the  integro-differential equat ion (18) is convenient .  
We define 

(22) go(t) = H( t )g( t )  , 

where H(t)  is the Heaviside step function;  then  the integral in (18) may  b~  
extended,  so tha t  we have 

(23) moa(t) --= F(t )  - -  mov f go(c(t - -  t') ) a(t ')  dr ' .  
- - o n  

:Fourier t ransforming this equat ion and solving for ~ yields 

(24)  
~(~) _ 1 1 - ~ ( ~ )  - 0 ( ~ ) ~ ( ~ ) .  

mo 1 § V ~ ( ~ )  
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Here  the  entire effect on thc  response of the  s t ructure  of the  part icle is con- 
ta ined in ~(w), which is somewhat  like a generalized inverse-mass operator- 

1 1 
(25) ~ (~ . )  = - -  

mo 1 § V 2 - ~ o ( o ~ )  " 

The force fac tor  if(e)), on the  other hand,  is determined by  the  action of the- 
surroundings on the  particle. The Fourier  invcrse of eq. (24) is 

(26) a(t) --  

co 

f e (t - -  t ' )  F ( t ' )  d t '  . VN 
- - c o  

Here  G(t) plays  the  role of a response or t ransfcr  function,  in the  language of  
l inear-rcsponse theory .  Thc acceleration will show a causal  behaviour  if 

(27) G(t) = 0 for t < 0,. 

since then  eq. (26) predicts a re tarded  response: 

(28) a(t) --  

t 

1 fG(t--t')F(t')dt'. 
- -  o o  

Tha t  the  causal i ty  condition (27) is actual ly  satisfied under very  mild con-  
ditions has been shown previously by  Mo~'IZ and StIARI" (,2) and,  more ex- 
plicitly, by  FRANqA et al. (13); we outline their  a rgument  in the appendix,  fo r  
completeness '  sake. The conditions referred to are t ha t  the  form factor  5(k) 
should have  no poles for Re k >  0 and  t h a t  the  mass correction ~m of eq. (17) 
should be posi t ive;  the  la t ter  imposes significant conditions on the  m i n i n m m  
radius of the  ex tended  charge, as discussed in the  appendix.  Here  we shall_ 
considei only the  causal case. 

Tha t  then  nei ther  preaccelerat ions nor run-away  solutions appear  m a y  be- 
seen b y  considering a force t ha t  acts only for the  finite in terval  to < t < tt.. 
5"ow eq. (28) m a y  be rewri t ten  as 

(29)  a ( t )  - -  

v o  

1 fG(t')F(t--r 
0 

= ~ / : ~ i  ~. t~es O ( z . ) f F ( t -  t ' ) exp  [ico.t'.] exp [--  ~. V].dt' ,, 

0 
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where we have  expressed G ( t ' )  in te rms  of the  poles z . - :  02. q - i n .  of 0(z). 
I f  t ~ to, the a rgument  of F is always less t h a n  to and  all contr ibut ions to  the 
force vanish,  and  so there  is no preacceleration.  On the other  hand,  for t > t~ 
the  acceleration does not  immedia te ly  drop to  zer% there  are appreciable  
m e m o r y  effects, since the  domain  of F is comple te ly  contained in the  in terva l  
of in tegra t ion and, in general,  the  dynamics  of the  extended charged p~rtic]e 
differs significantly f rom t h a t  of a ~ewtonJan  one, though (as will be seen 
in the  nex t  section) it  can be essentia]ly recovered in the l imit  t -+ c~. :Now, 
as is shown in the  appendix ,  the  imaginary  pa r t s  a .  of the  poles of 0(z) are 
s tr ict ly posit ive;  hence, for a force t h a t  stops act ing a t  ta, the  values of t' t h a t  
cont r ibu te  to the  integral  in (29) increase wi th  increasing t, the acceleration 
decreases more and more near ly  in exponent ia l  fashion and  there are no run- 
away  solutions. 

4 .  - T h e  Y u k a w a  d i s t r i b u t i o n .  

A specific example  is helpful at  this point.  I n  the  preceding section we 
saw t h a t  the  mot ion depends on the  poles of 0(w);  to simplify mat te r s ,  we 
chose a case with only one pole pair,  namely  a u  distr ibution for the  
charge:  

fi2 exp [-- fir] 
(30) q(r) -- 4~ r 

For  this Off), we h~ve 

and  

(31) 

f12 1 
5(k) - ('2~)~ fl~ + k, ' g ( r )  = 32z--  2 r exp [ - - f i r ]  

~o((O) - -  
fl3c 1 

3 2 ~ x / ~  (tic + i02V" 

I t  is the  ma thema t i ca l  simplici ty and  fast  convergence of g ( r ) ,  as well as 
the physical  plausibil i ty of ~(r), tha t  give to this distr ibution a special appeal  
as a model  of the  extended particle.  In t roduc ing  eq. (31) into eq. (24), we get 

(32) ~(o2) P(~o) (fie -4- i~)~ 
= m ifl  + 

whele  

(33) 02~ - -  ~)fl3c - -  1 rc3f l  3 m = e*fl 3 
32~ ~ 2 mo 3too " 
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E q u a t i o n  (32) t h e n  yields  acce lera t ion ,  ve loc i ty  and  pos i t ion  vec to r s :  

(34) a(t) - -  - -  1 f (~c + ira)' ~ 
V'T~mo (tic--+ ~ 2  m~ F(m) exp  [imt]dm, 

(35) 

and  

(36) 

~_ t ~  +__~) .  
v(t) =- vz V ~ m o  ,] m[(flc + iw) 2 + m~] F(m) exp  [imt]do) 

- - c o  

t~ 

1 f (fie + ira) 2 F(m) exp  [imt] din. 
,(t) = r , +  vlt  + ~/~mo _~m'E(N--~;;Y~+ m'~] 

I n  addi t ion  to  t h e  k i n e m a t i c  poles a t  m = 0 for  r a n d  v ,  t he  poles  of t h e  in- 

t eg rands  a re  loca ted  a t  

(37) m~ = ia 4- m R 

wi th  

(38) a = tic. 

W e  e v a l u a t e  t h e  in tegra ls  b y  ana ly t i c  con t inua t ion  to  the  complex  p lane  z. 
As before,  for  t < 0  the  in tegra ls  cancel  out ,  b u t  for  t > 0  the  c o n t o m  of integ-  
r a t i on  lies in t h e  u p p e r  ha l f  of t he  complex  p lane  a n d  the  in tegra ls  do not  

van ish .  Thus ,  for  t > 0 ,  one ob ta ins  

t 

(39) a(t) -- F(t)__mo m~2mR (~ + m~)fF(t') exp [--  ~(t - -  t')] sin mR(t - -  t') dr',  
--oo 

t 

(40) v(t) = vl + ~t (t') dr' + 

t 

m~ fF( t ' )  cxp  [ - -  ~(t - -  t ' )]  [mR COS mR(t - -  t') + cr sinmR(t - -  t ' )]  d t ' ,  
+ ma----- ~ 

t t ~ 1))  
(41) r(t) = rl + v~t + ~ t' t"F(t") + 

m 

t t 

ma(m~ + ~') (U)dt' m.  m,~(w ~ + a.) (t') exp  [ - -  a(t - -  r  

--oo --co 

�9 [(02 - -  ~o~) sin o~R(t - -  t ') + 2crwR cos mR(t - -  t ')] d r ' .  

6 - 2l N u o v o  Oimento Bo 
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In  writ ing these equations we have taken  into account  t ha t  

(42) 

and hence tha t  

(43) 

v o  

~m = 16~mvcfg(r)dr-~  �89 
o 

( m=mo-~m=mo 1+~-1. 

We see tha t  the solution is given in each case by  the sum of Newtonian- 
type  terms plus ~ t ransient  te rm tha t  oscillates with the characteristic fre- 
quency ~% determined through (33) by  the parameter  fl tha t  measures the  size 
of the particle. We shall come back to this point  in the next  section. 

I t  is worth noting here tha t ,  by  using (31) in eq. (A.3) of the appendix,  the 
poles m a y  be found as functions of fl only; the imaginary par t  is given by  (38) 
and the  real par t  by  

(44) co~ - -  I - -  12 Vc~" 

Hence the poles remain in the  upper half-plane only, while the (, radius ~ fl-~ 
satisfies 

(45) t~ -~ > �89 +c.  

Thus the  charge distribution must  be larger t han  the  classie~l radius re for the  
part icle to show causal behaviour;  and the peculiarities of preacceleration and 
run-away solutions appear  well before the point  part icle limit (18). Similar 
results may  be obtained for other  charge distributions and are discussed else- 
where (12). 

To get a bet ter  insight into these results, it seems worthwhile analysing 
them both  in time and f requency domains. 

A) To s tudy the spectral properties of the asymptot ic  solution, we take 

F(t) = FoH(t) sine or 

and consider the case t >>a-l; the  results are 

i) for m<<co S 

a(t) F(t) 
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ii) for oJ ~ wa 

F(t) [ ~,)~ 3(o~ ] 1 (a~+ (o~)(a~-{ - 2(o~) d F  
a ( t )  - -  -m- 1 -~- ~ -a2}_  4w~J m(~ 3 a2-~ - 4(o2 d-t'; 

iii) for co >>wR 

a ( t )  - -  - -  
F(t) 1 a 2 + w~ d F  
mo m a a  2 ~ w 2 d t "  

In  general, the  response of the  extended particle is far f rom being New- 
tonian,  even in the  asymptot ic  region. The classical behaviour  is only ob- 
tained in the case e)<< wa for sufficiently large times. 

B) To s tudy the t ime response, let  us take 

F(t) = Fo (5(t). 

The solution is now 

a( t )  -= Fo  6( t )  - -  eo__~_~ (a 2 -~ co~)Fo exp [-- at] s i n ~ o ~ t ,  
mo ma 2 

Fo H ( t )  . ~- ~ Foil(t) exp  [ - -  at] [wa cos ~or~t + a s in o~Rt], v ( t )  = v~ + m 

( r ( t )  = r~ A- v ,  + -m t -~  

2co~ coR 
-f- m ~  Fo H ( t ) - -  -~3  Fo H ( t ) exp [-- at] [a sin ~o~t -f- 2o~B cos wat] .  

Thus the acceleration produced by  the impulsive force corresponds to the 
mass too, not  to m, in agreement with case A). At t ime t = 0 there appears 
an impulsive acceleration and then an oscillatory negative t ransient  (an under- 
shoot) begins to develop. Both  the frequency w R and the decay constant  a 
of this t ransient  are determined by  the size of the particle. The velocity has 
a more complicated behaviour;  for t >> a -1, v(t) has the classical form vl A- Fo/m, 
which ascribes to the  particle the <~ classical ~) m~ss m. However,  for very  
short times, the  velocity may  be approximated  by 

Fo o4~, Fo 

where we have used eq. (43) ; thus, if we measure the mass of the particle through 
its velocity immediate ly  after  the  application of the impulsive force, we will 
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get the value m0, not m. The Newtonian p~rt of r(t) is also characterized by 

the classical mass m for all t )~>0; however, there is a non-~Xewtonian contri- 

but ion to r(t) tha t  never disappears, namely the te rm (2w~/maa)Fo. 

5. - Po~ible  connection with quantum dynamics. 

So far the ((radius ~> of the particle r0 ~ fl-~ has remained as a free para- 
meter except for the lower bound (45). We may  a t tempt  to fix it by  argu- 

ments  like those used in quan tum electrodynamics (~5). I t  seems, however, 
more natltral to determine re by  assigning a (~ reasonable ~ value to r there 

exists a general characteristic frequency of oscillation of the free electron, 

namely tha t  associated with the zit terbewcgung predicted by  the Dirac theory.  
We, therefore, propose the identification 

2 m c  2 
(46) eo~ = 

To investigate the radius predicted by this assumption, we substitute (46) 

in (44) ~nd express the result in terms of the fine-structure constant a = e2/~v 

and the Compton wave-length ].c = ~/mc. We get after simple algebraic ma- 

nipulations 

. + = 

This equation has a single real root near ~/~ Y'ofl -~ 1 ; hence we may  neglect 

tim second term to get 

o r  

r~ = r ~,c, 

wheie r = e2/mc 2 = ~ o  is the classical electron radius. Equat ion (46) implies 

tha t  the  electron radius is equal to the geometric mean of the classical radius 
and Compton wave-length, just the radius t ha t  quantum electrodynamics 

assigns to the electron due to the radiative corrections (~,~s). This most  

(is) N. N. BOGOI.IU:BOV and S. V. TYABLIKOV: IZV. A];ad. dVauk Ukr. SSR, 5, 10 (1946). 
(16) The argument goes essentially as follows. The Lamb shift for the ground state 
of a harmonic oscillator is, in order of magnitude, :(h'~o3/~mc~; if we ascribe this 
energy to vibrations of the oscillator with amplitude a, so that it equals mo)2a 2, 
then a is to be interpreted as an effective radius of the electron. One gets 
a2~ ah2/~m~c2~,adf~, which is the result referred to above. 
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g~'atifying result  seems to  just i fy  the  use of eq. (46). The pic ture  t ha t  emerges 
is interesting,  because the theory ,  in spite of its classical (nonquanta l  and 
nonrelativist ic)  nature ,  gives acceptable  results. 

The above  hypothesis  m a y  be used to make  some other  est imates .  F rom 
eq. (42) we get  

8 m  ~ ~ 
mo - -  ~--~- z 4 ~ ,  

which shows t h a t  the mass renormal izat ion is of order a. 
lat ion will now be 

2~ 3~ 
TR ---: - -  2~ ~ ~ 650v, 

(Dlt 

The period of osci]- 

t ha t  is a lmost  three  orders or magni tude  larger t h a n  the  radia t ion t ime v. 
:Finally, these results also show t h a t  the  ampl i tude  of the  t rans ien t  pa r t  of 
the  velocity is ra ther  small compared  wilh the  corresponding classical con- 
r For  example ,  f rom eq. (40) we see t h a t  this ra t io  is of order 
oJ~/a2~---~m/mo or 3%.  Moreover,  the  logari thmic decrement  is (l/w~, so t ha t  
this ra ther  small oscillation is dam ped  to 1/360 of its ampl i tude  in a single 
period. 

6 .  - C o n c l u d i n g  r e m a r k s .  

The preceding results show tha t  t ak ing  into account  the s t r u c t m e  of the 
classical self- interacting part icle is enough to solve all fundamen ta l  problems 
characteris t ic  of the  Abrah,~m-Lorentz theory.  More specifically, we have  
seen tha t  the  theory  applies for all F(t), including the  free part icle;  tha t ,  for 
physically acceptable  charge distributions,  all the mass  pa ramete r s  /a, m, mo 
and ~m are finite and  the  annoying fac tor  4/3 relating # and m does not appear ;  
t h a t  the response is causal (retarded and  finite), which implies freedom f rom 
preaccelcrat ion and run-away  solutions. Thus all the  discussions about  the 
need of modificat ion of our usual points  of view in connection wi th  causal i ty (~7) 
within the classical cow,text are a t  ]east unnecessa~T: preaccelerat ion is the  
price for a bad  approximat ion ,  not  a physical  phenomenon.  

Another  interest ing result  of the  theory  is related to  the  propert ies  of the  
mass parameters ,  which seem to be less simple than  is normal ly  assumed from 
our naive generalizations f rom ~ e w t o n i a n  physics. I n  part icular ,  we have  
seen t h a t  the  Newtoni,%n mass is the  low-frequency, long-t ime mass, as meas- 
ured by  the  veloci ty  or the  acceleration. A point  of principle t h a t  mus t  not  

(17) See, e.g., A. GRi)~'~AUM and A. JANIS: Am. J. Phys., 46, 337 (1978). 
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pass unnot iced in connect ion with this discussion is the  following. I n  clas- 
sical dynamics ,  there  is no conceptual  problem in tu rn ing  off or on the  externa l  
force, b u t  then  the  mass of the  extended part icle  is undefined. However ,  when 
we go to  deeper theories, like quan t um  elect rodynamics  for example,  we re- 
cognize t h a t  the  (( free ,) par t ic le  is just  a concept  t h a t  has no physical  counter-  
pa r t ,  since all particles in te rac t  at  least  with the  residual (stochastic) v a c u u m  
of each fundamen ta l  field. Therefore,  the  part icle presents  itself always dressed 
and  no conceptual  unce r t a in ty  appears.  

The  infinite m e m o r y  shown by  the  ex tended  electron endows its mot ion  
with  specific and  complex propert ies  t h a t  make  the  dynamica l  p rob lem far  
richer t h a n  its corresponding structureless approximat ion .  These complexit ies 
m a y  reveal  themselves  even more  impor t an t  for a confined particle due to  the  
cumula t ive  effects of the  memory ,  which could produce essentially new re- 
sults, unknown to  the  Newton ian  theory.  This is one of the  reasons why  we 
consider this theory  i m p o r t a n t  in connection with  approaches  such as stoch- 
astic e lectrodynamics  (~8), bu t  we reserve the  discussion of these problems for 
a for thcoming  publication.  

* * *  

The authors  acknowledge m a n y  valuable  suggestions and  comments  f rom 
their  colleague and  friend, Prof.  T. A. BRODY. 

APPENDIX 

We have  

o~ 

(A.1) G(t) 1_ f ~  = ~,~T~ ((o) exp [-4- icot]dw. 
--i:o 

To eva lua te  this for t > 0, the  contour  in the complex plane is bes t  closed b y  
a semi-circle a t  infinity in the  upper  half-plane,  while for t ~ 0 the  lower half- 
p lane  is used. Thus condit ion (27) is equivalent  to the  condition t h a t  all the  
poles of G(z) at  which z ---- ~ ~- ia  lie in the  uppe r  half-plane.  

Using (16)~ (22) and  the  inverse t r ans form to (A.1)~ we have  

(A.2) 
co 

=fdt exp [--i t]exp [ t]fki (k)l  sin ktdk. 
0 o 

(18) A brief survey by T. H. BOYER is to be found in Foundations of Radiation Theory 
and Quantum Electrodynamics, edited by A. O. BARUT (New York, N.Y.,  1980); 
P. CLAVERIE and S. DI~'ER: Int. J. Quantum Chem., 12, Suppl. 1, 41 {1977); L. DE LA 
I)E~A and A. YI. CETTO: J..Math. Phys. (N. Y.), 18, 1612 (1977); 20, 469 (1979). 
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For  negat ive a, the  integrat ion over  t can be carried out,  yielding 

co 

f k [o(k)l*dk ~o(Z) = c ~ k ~ - -  z '  
o 

If ,  in eq. (25), m0 > 0, the  poles of (~(z) are the  solutions of 

(A.3) 1 + V~V~o(Z) = o .  

Separa t ing  the  real  and  imag ina ry  par t s ,  we have  the  equations 

(AA) 

and 

(A.5) 

0 

d k  = - 0  

co (c~k ~ __ co2 + a~)2 + co2a--2 dk  = 0 . 
o 

Since the in tegral  in (A.5) is posi t ive definite, co mus t  vanish  for a solution to 
exist  when a < 0. ;But;, for co = 0, tile integral  in (A.4) is also posit ive definite 
and no solution exists if ~ > 0. There  are no poles in the  lower half-plane. ~N'or 
are there  a n y  on the  real  axis if one assumes t h a t  g(r) has suppor t  on a set of 
nonzero measures,  for then  (A.3) becomes 

co 

go(co) - -  V ~  o(t) exp [--  icot] dt  = V727~ , 

the  only solution of which is go( t ) ,~  ~(t). :But this is not  physical ly  plausible:  
as eq. (16) shows, an infinitely extended uniform charge would have  this 
behaviour .  Hence,  if ~(k) has no poles for k > O ,  then  nei ther  (~(z) has poles on 
the  real axis and  all poles lie s t r ic t ly  in the  upper  half-plane;  the only pos- 
sible exception to this  result  demands  the  use of very  peculiar  charge distri- 
but ions (~3A~). 

Equa t ion  (A.2) shows tha t ,  whenever  co + ia is a. pole, then  so is - -  co + ia, 
for this changes only the  sign of the  imaginary  pa r t  of ~o(z), which f rom (A.5) 
mus t  vanish.  Thus the  poles occur in pairs  in the upper  half-plane,  a r ranged 
symmetr ica l ly  around the  imag ina ry  axis. ~N'ote tha t ,  in genera.l, the  origin 
does not represent  a pole pair ,  t hough  there  are forms of o(r) for which it can 
be reached;  thus  the  point  part icle  is not  necessarily the  l imit ing case of tho 
extended charge distr ibution.  

('~) These exceptional charge distributions that generate poles on the real axis ( a=  0) 
and hence correspond to stationary oscillations have been used as models to explain 
the atomic stability. See, e.g., D. Boii)i and M. WEI.NSTEI.N : Phys.  Rev., 74, 1789 (1948); 
G. H. GOEDECKE: Phys.  Rev. Sect. B,  135, 281 (1964). 
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The  above  d e m o n s t r a t i o n  heav i l y  depends  on  t h e  a s s u m p t i o n  7 > 0 .  This  
c o n d i t i o n  character izes  w h a t  we m a y  cal l  t he  zone of defined causa l i t y ;  i t  can  
be expressed  in  a p h y s i c a l l y  more  t r a n s p a r e n t  form as follows. Accord ing  to 
eqs. (17) a n d  (20), ~ is g i v e n  b y  

o 0  

0 

in  t e r m s  of the  cha rac te r i s t i c  r ad ius  ~ of the  charge  d i s t r i bu t ion ,  def ined b y  

co 

~-i  = 16z~fg(r) dr,  
0 

t h e  c o n d i t i o n  r / > 0  is t h u s  expressed  as 

(A.6) , ~ >  re = i r e .  

This  is t he  m i n i m u m  size t h a t  a charge d i s t r i b u t i o n  m u s t  possess to  g u a r a n t e e  
t h a t  i ts  m o t i o n  is causal .  F o r  the  Y u k a w a  d i s t r i b u t i o n  eq. (A.6) reduces  to 
eq. (45) i n  the  t ex t .  

�9 R I A S S U N T O  (*) 

Si analizza il moto di una particella non relativistiea estesa autointeragente. L'equazione 
di moto ~ integrodifferenziale e genera, diversamente dal caso puntiforme, un  compor- 
tamento strettamcnte causale, cosi superando tu t t i  gli svantaggi fondamentMi della 
teoria di Abraham-Lorentz. I1 moto ~ dotato di memoria, ehe genera effetti totalmente 
assenti nel easo senza strut tura,  come l'esistenza di earatterestiche oscillazioni smor- 
zate, la frequenza e il numero delle quali sono determinati  dalla s t rut tura specifica. 

(*) Traduzione a cura della Redazione. 

I, CYmccHqecKoe ~BH~KeHHe IIpOTHM~eHHO~ 3apsDKeHH0~ qaCTmlbl. 

Pe31oMe (*). - -  AHaym3~pyeTc~ ,lmmKelme Itepc.IIHTHBHCTCKO~ IIpOT~Kel~Ol~i CaMO- 
B3anMo~e~CTBylOIIIel~ qaCTHIIBI. YpaBHeHHe ~BIt~eHH~I flBYl~leTCfl HHTerpo~ltqbdpepeHiiltaylb- 
HblM H, B npoTRBOpeqRR C TOqemaO-nO]IO6mbLM c~rJqaeM, Hprmo/InT x CTpOFO npH~Ha- 
ttOMy noBe~ieh'~io, TeM CaMbIM ycrpaHamrcu Bce OCHOBHI, Ie He~oCTaTKa TeopnH A6paraMa- 
J/opeaua. ~smreHae o6~a~aeT IIaMHTBIO, ~ITO HpHBOjIHT K BO3HHKHOBeHHIO 3d~dpeKTOB, 
nOJl~OCTb~O OTCyTCTBy~omRx B 6eccTpyKTypHOM cny~ae, Taxnx KaK rta~HqHe xaparre- 
pacTrraecrdax 3aryxamm~x ocua~naRm~, ~acrora a ~ucno roTop~g~ onpenenaeTc~ cne- 
Lraa-rmHOlt crpyrrypo~. 

(*) Hepeeec)eno pec)ar~lueS. 


