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Summary. — Two applications of the concept of soliton surfaces are discussed.
Firstly, soliton surfaces can serve as a territory of unification of four types of solvable
nonlinearities: 1) soliton, 2) strings, 3) spins and 4) chiral models. It is conjectured
that models 2), 3) and 4) associated with a given soliton system are gauge equivalent
to this soliton system. Secondly, an explicit construction of the soliton surface asso-
ciated with a given soliton solution gives simultaneously the corresponding solutions
to models 2), 3) and 4). Using the Hilbert-Riemann problem technique a construction
of N-soliton surfaces is described. Examples including new soliton systems are given.

The concept of soliton surfaces was introduced in (1). These surfaces can be asso-
ciated with a broad class of soliton systems. This association is a generalization of the
well-known connection between pseudospherical surfaces in E* and the sine-Gordon
equation (24). The Gauss-Mainardi-Codazzi (GMC) system of the theory of submanifolds
of flat spaces (°) when applied to the soliton surfaces of a given soliton system is reducible
to that soliton system. It proves a geometric nature of solitons.

Here we discuss two applications of soliton surfaces. Firstly, we show soliton sur-
faces are a proper territory of unification of four types of solvable nonlinearities:
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1) solitons, 2) strings, 3) spins and 4) chiral models, We conjecture that models 2), 3)
and 4) geometrically unified with a given soliton system are also gauge-equivalent to
that system. Secondly, as a result of the unification an explicit construction of a soliton
surface associated with a given soliton solution gives simultaneously the corresponding
solutions to models 2), 3) and 4) (geometric way to solve nonlinear models). Using the
Hilbert-Riemann problem technique (57), we deseribe general N-soliton surfaces (N -sur-
faces). An algorithm to construct N-surfaces is a purely algebraic (algebra of projectors)
and the passage from N-surface to (N + 1)-surface is a geometric interpretation of
Backlund transformations (*) in the spirit of old geometry (3?). Very recently this
sample technique allowed one to find new vortex motions of high complexity (8).
As an illustration of these concepts we give examples including new soliton systems
e.g. 3-field extension of the sine-Gordon equation and of the Lund-Regge-Pohlmeyer-
Getmanov system (1°) as well.

The conventions used in this paper are: x = a# = (a', 2?) and y , = Oy/0x# ete.
Consider a soliton system for the fields p4(z) (4= 1, 2,..., f) with the associated linear
problem

(1 Cu=9u®,
where

gul@, ) = yulp4(@), v5®), ...; {]

belongs to a d-dimensional, real, semi-simple Lie algebra g of (n X n)-matrices, provided
¢ (spectral parameter) is real, while the wave function @ = @(x, {) is a (n Xn)-matrix
function with values in G (Lie group of the Lie algebra g). For a given soliton field y4
solving eq. (1) gives the corresponding wave function D(z, {) and the {-family of soli-
ton surfaces associated with »4 is given by (V)

2) gar=1(@¢) = Oz, )Py, 7).

Soliton surfaces are embedded into g treated as a flat R¥(--+ ...—) space equipped
with the Killing-Cartan scalar product ('} z-y (z, y € g). The independent variables 2,
2% become co-ordinates upon surfaces (2).

Soliton surfaces (2) define (and also are defined by) the metric and the second fun-
damental forms denoted by I and II* (¢ =1,2,..., d —2), respectively (3),

(3) I = ds® =gy, {)derda”,
(4) 11 = d%(w, {) do do? (a=1,2,.., d—2).

From (2) the metric can be easily calculated in terms of the matrices of the linear
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problem (1):
(5) Jur(®, ) = 9,0(2, £) g, @, E)

while, generally, the forms (4) admit more complicated formulae, see (*). In the further
discussion we choose ¢ = su, , (p + ¢ = n) and assume the following structure of the
linear problem (1):

(6&) gl = C@hl + kl[QpA(w)7 7/’,‘3,(9”), "'] B

(6b) gz = C()(C)’Lhz —I_ kz[’l’d(w): ‘Pﬁ,(w), el C] B

where ih,, (m = 1, 2) are constant and commuting elements of su, , with ih,, ik, < 0
(m=1,2), e Rif e R and for w4 = 0 (identically) k,, = 0 (m = 1, 2). In this case
it is convenient to equip su,, with a new scalar product: (®,y) = x-y/ihy th,.
Of course, eq. (5) should be changed correspondingly.

The soliton surfaces (2) corresponding to a given soliton field ¢4 equipped with the
co-ordinate system x# (independent variables) carry some geometric fields: 1) guy(2, {)
and d;(z, ) (@ =1,2,..,d—2), 2) co-ordinate curves a? = const, 3) tangent vector
r,(@, ) and 4) normal vectors ni(w,) (@ =1,2,..,d—2).

The idea of geometric unification of solvable nonlinearities consists in a proper
identification of the above geometric fields as solutions to some physical nonlinear
models. Table I summarizes this idea ({-dependence is omitted). We recall the Gauss-
Weingarten (GW) equations describe the kinematics of a moving frame upon a sub-
manifold of an affine space (5).

TABLE 1. — Geomelric unification of solvable nonlinearities.

Geometric field Physical meaning Dynamies
(kinematics for strings)
1 fundamental tensors soliton fields GMC equations
Jur() (gauge equivalent to
dy(z) (@ =1,2,..,d—2) original soliton
fields »4)
2 co-ordinate curve string at a time a? gauge transformation
x% = const from moving (on sur-
r =r(el, x%) face) frame to Frenet-
Serret frame
3 Tangent vector r,(x', %) Spin field From GW equation
4 Normal vectors Chiral fields From GW equation
n(xt, x?)

@=1,2,..,d—2)

Some explanations are in order. Firstly, we note that

(7) g1 = Wie Gu,p) = (ihy, thy) =1,
that is

(8) I = ds? = (dae')? + 2gy,dat da® + ggy(da?)?.
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The above-introduced string may be interpreted as a generalization of the Lamb-
Hasimoto curves (12). For details see (13). From eq. (8) we have ds?|,_,,.. = (dz!)2.
Therefore, we can put o = s (arc length parameter along the string). Then if we iden-
tify «? as t (time), the soliton surface equation (2) reads r = r(s,t) and we are in a
position to state that the soliton surface r = (s, t) is swept out by its Lamb-Hasimoto
curve. The identification 7, as a spin field § is reasonable since (S, 8) = (v, ;) =
=g¢gn =1

The following examples of the above unification. scheme are presented in a rather
concise way. All of them concern the su,-Z8-AKNS linear problem (5:14) {except for the
Liouville equation (12)). Soliton surfaces (for particular choices of ¢) are all embedded
into su, = E3. For each example the most interesting ingredients of the unification are
listed (by the numbers 1, 2, 3 and 4 in the sense of table I).

A) 3-field extension of the since-Gordon equation

® =S8N0 —@,Y,/sinw,
(9) Paa= 0 1¥,f8in 0,
Yo = Q108D 0.
This is a soliton system: its linear problem can be easily calculated using the standard
geometric techniques (1%).
A1)
1 = (do')? + 2 cos wda’ da® + (da?)?,
(10) IT = I1' = ¢ (da')? — 2 sin o dat da? + y 5(de?)®.
A2) For the sine-Gordon egumation (p, ¥ = const) the Lamb-Hasimoto curve

has a constant torsion (Beltrami-Enneper theorem (3:9:13)).

A3) O,-invariant 2-spin model: § =7,;, T =17,.

{ §,= TxS (skew product of E3-vectors),
(11)

T,=—8xT.
A4) For the sine-Gordon equation n (normal) solves the Oj-invariant relativ-
istic o-model equation ().

B) Elliptic Liouville equation

(12) P+ Pp=—2expg.
B1)

(13)

I = exp[—¢]((de!)? 4 (d2?)?],
II = (da')®— (da?)?.
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B3) Oy-invariant 2-spin model: S = r; exp [¢/2], T = 7, exp [¢/2].

(14) So=8X(TyxT), T,;=Tx(8;:Xy).

B4) The normal » solves the Og-invariant Euclidean c-model equation as an
antiinstanton solution. We mention that in this case soliton surfaces are minimal with
the total curvature (topological charge) negative.

() Nonlinear Schrédinger equation

(15) W+ v+ PPy =0.

o1)

{ I = (da1)? + gXda?)?,
(16)

IT = g(da')? — 2¢p,, da' da? 4 (§ o — gp,,) (da?)?,

where v = g exp [ip].

(02) The motion of the vortex filament in the so-called localized induction ap-
proach (1%18) is given by

(17) T =171 X",

It is worthwhile mentioning that the vortex filament at any instant of time continues
to be a geodesic of its soliton surface (13).

03) The tangent vector »; = S solves the l-dimensional continuous Heisen-
berg ferromagnet equation (%)

(18) 8, =8%x8y.

We conjecture that the models unified in the above-described way are all gauge-
equivalent. It is suggested not only by particular examples, but also by the existence of
the so-called Pohlmeyer transformations (%:16:20),

The geometric way mentioned at the beginning to find exact solutions to models 2)
3) and 4) consists in a construetion of soliton surfaces (2). In the Hilbert-Riemann prob-
lem version of the inverse method (%7) a general formula for a matrix wave function of
N-soliton solution has been derived (7). It is a product of N+1 matrices and N of
them are built from projectors P,(z) (i = 1,2, ..., N) which can be consfructed in an
inductive way. This result allows us to write down a general formula for N-soliton sur-
faces (N-surfaces) ry = ry(x, ) in the case of our interest (s, , linear problem (6)).

For instance, the O-surface is a 2-dimensional plane, carrying Euclidean geometry,
spanned by th, (m = 1,2) matrices of the linear problem (6):

(19) 1y = #tih, + o'(§) @ik, .
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Generally, the N-surface is given by

N
(20) Ty = 2.8 T o,
k=1
(21) S = Ié____z_k_lzq;kil’l/(Pk_; Dy,
where {, (k =1,2,..., N) are discrete and z2-invariant eigenvalues of the scattering

problem (6a) localized in the upper half-plane of the complex plane, @, are SU,, wave
functions of the k-soliton solution and d, = Tr P, = dim Im P,.

It is interesting to point out that eq. (20) is a generalization of the Bianchi-Lie
transformation of the classical differential geometry (1:39), Originally, this transforma-
tion bas been introduced as a surface-geometric analog of the Bécklund transformation
for the sine-Gordon equation. Like in the classical Bianchi-Lie transformation the vec-
tors s, are of constant (Euclidean) length

 2Img, AV
lskl = -—f—lc _ Ck‘z de (1 —_ ;':)/Trkl .

Finally, we mention that formula (20) for N = 2 when applied to the non-linear
Schrodinger equation gives a new vortex motion of a high complexity (8).
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