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II. - Geometric Unification of Solvable Nonlinearities (*). 
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S u m m a r y .  - Two applications of the concept of soliton surfaces are discussed. 
Firstly, soliton surfaces can serve as a terr i tory of unification of four types of solvable 
nonlinearities: 1) soliton, 2) strings, 3) spins and 4) chiral models. I t  is conjectured 
that  models 2), 3) and 4) associated with a given soliton system are gauge equivalent 
to this soliton system. Secondly, an explicit construction of the soliton surface asso- 
ciated with a given soliton solution gives simultaneously the corresponding solutions 
to models 2), 3) and 4). Using the Hilbert-Riemann problem technique a construction 
of N-soliton surfaces is described. Examples including new soliton systems are given. 

The concept of soliton surfaces was introduced in (1). These surfaces can be asso- 
ciated with a broad class of soliton systems. This association is a generalization of the 
well-known connection between pseudospherical surfaces in E a and the sine-Gordon 
equation (2.~). The Gauss-~Mnardi-Codazzi (GMC) system of the theory of submanifolds 
of flat spaces (5) when applied to the soliton surfaces of a given soliton system is reducible 
to that  soliton system. I t  proves a geometric nature of solitons. 

Here we discuss two applications of soliton surfaces. Firstly, we show soliton sur- 
faces are a proper terr i tory of unification of four types of solvable nonlinearities: 

(*) Research supporte4 in  par t  by  Polish Ministry of Science, Higher Educat ion  and Technology. 
Grant  M.R.I.7. 
(**) On leave of absence from Ins t i t u t e  of Theoretical  Physics of Warsaw Universi ty ,  ul. Ito~a 69, 
00-681, Warsaw, Poland (present address). 
(1) A. SYH: Lett. Nuovo Cimento, 33, 39~ (1982). 
(2) G . L .  LAMB: in Bdcklund Transformations, edited by R. M. MIUI~A (Berlin, Heidelberg and New 
York, N. Y., 1976). 
(a) L. p.  EISENHART: .4 Treatise on the Dif]erentia~ Geometry el Curves and Sur]aces (New York, 
N .Y . ,  1960). 
(~) R. SAS~KI: Phys. Left. A,  71, 399 (1979); R. SASAKI: Nucl.  Phys.  B, 154, 3~3 (1979). 
(5) L. P. EISENHXRT: Riemaunian Geometry (Princeton, N . J . ,  1949). 
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1) solitons, 2) strings, 3) spins and 4) chiral models. We conjecture that  models 2), 3) 
and 4) geometrically unified with a given soliton system are also gauge-equivalent to 
tha t  system. Secondly, as a result of the unification an explicit construction of a soliton 
surface associated with a given soliton solution gives simultaneously the corresponding 
solutions to models 2), 3) and 4) (geometric way to solve nonlinear models). Using the 
Hilbert-Riemann problem technique (~,7), we describe general Y-soliton surfaces (N-sur- 
faces). An algorithm to construct N-surfaces is a purely algebraic (algebra of projectors) 
and the passage from N-surface to (_AT + 1)-surface is a geometric interpretat ion of 
B~eklund transformations (1) in the spirit of old geometry (3,9). Yery recently this 
sample technique allowed one to find new vortex motions of high complexity (s). 
As an i l lustration of these concepts we give examples including new soliton systems 
e.g. 3-field extension of the sine-Gordon equation and of the Lund-Regge-Pohlmeyer- 
Getmanov system (lO) as well. 

The conventions used in this paper are: x = x~ = (x% x 2) and ~p,~ = ~ f / ~ x v  etc. 
Consider a soliton system for the fields ~X(x) ( A =  1, 2, ..., ]) with the associated linear 
problem 

(1) ~,~ = g ~ ,  

where 

g,(x, ~) ;~v[~A(x), = ~.Jx) .... ; ~] 

belongs to a d-dimensional, real, semi-simple Lie algebra g of (n • n) -matrices, provided 
(spectral parameter) is real, while the wave function (~ = @(x, ~) is a (n •  

function with values in G (Lie group of the Lie algebra g). For a given soliton field ~a 
solving eq. (1) gives the corresponding wave function a)(x, ~) and the S-family of soli- 
ton surfaces associated with ~ is given by (~) 

(2) g ~ r = r(x ,  ~) = O - l ( x ,  ~) #,r ~). 

Soliton surfaces are embedded into y treated as a flat Ra(+ + . . . - -)  space equipped 
with the Killing-Cartan scalar product (11) x. y (x, y ~ g). The independent variables x 1, 
x 2 become co-ordinates upon surfaces (2). 

Soliton surfaces (2) define (and also are defined by) the metric and the second fun- 
damental  forms denoted by I and I I  a (a = 1, 2 .. . . .  d - -  2), respectively (5), 

( 3 )  I = d s  2 = ga~(x, ~) d x ~ d x  ~, 

(4) I I  ~ = d ~ ( x ,  ~) d x ~ d x v  (a = 1, 2 . . . . .  d - -  2). 

From (2) the metric can be easily calculated in terms of the matrices of the linear 

(6) S. V.  )r S. P .  NOVIKOV, L .  P .  PITAIEVSKY a n 4  V.  E.  ZAKHAROV: Theory  of Sol i lons  

(Moscow,  1980).  
(v) D.  LEVI, O. RAGNISOO a n d  M. BRVSC~I: N u o v o  Cimento A,  58,  56 (1980).  
(s) D. LEV1, A.  SYM a n d  S. WOJCIECHOWSKI: N-sol i tons  on vortex ] i lament ,  p r c p r i n t ,  R o m e  U n l v e r -  
siLy, Istituto di Fisiea, No. 321, 20 December 1982. 
(~) L.  BIANOHI: Lez ion i  di geometria di/]erenziale (P i sa ,  1922).  
(10) F .  LU~D a n d  T. REGGE: P h y s .  Rev.  D,  14, 1524 (1976).  
(zl) B.  GWYBORNE: Classical  Groups ]or Phys i c i s t s  (New Y o r k ,  N.  Y. ,  L o n d o n ,  S y d n e y  a n d  T o r o n t o ,  

197~).  
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problem (1) : 

(5) g~(x,  ~) = g~,:(x, ~)'g~,r $),  

while ,  general ly,  the  forms (4) admi t  more  compl ica ted  formulae ,  see (1). I n  the  fu r the r  
discussion we choose g = su~,~ (p + q = u) and assume the  fo l lowing s t ruc tu re  of t he  
l inear  p rob lem (1): 

(6a) gl = ~ihl ~ - / q [ ~ ( x ) ,  ~r . . . .  ] ,  

(6b) g~ = w(~)ih 2 ~- k2[~P~(x) . . . .  ~f,~(x), ; ~] , 

where  ihm (m = 1, 2) are cons tan t  and c o m m u t i n g  e lements  of su,,~ wi th  ihm.ih~ < 0 
(m = 1,2) ,  ~ o E ~  if  ~E /~  and for ~ = 0 ( identical ly)  k,, = 0 (m = 1,2).  I n  th is  case 
i t  is conven ien t  to equip  su~,q with  a new scalar  p roduc t :  (x ,y)  = x ' y / i h l ' i h  ~. 
Of course, eq. (5) should  be changed  correspondingly.  

The  sol i ton surfaces (2) corresponding to a g iven  soli ton field ~ equ ipped  wi th  the  
co-ordinate  sys tem x~ ( independent  variables)  ca r ry  some geomet r ic  fields: 1) g~,(x, ~) 
and d~(x,  ~) (a = 1, 2 . . . . .  d - -  2), 2) co-ordinate  curves  x 2 = const,  3) t angen t  vec tor  
r,l(x, ~) and 4) no rma l  vec tors  ua(x, ~) (a = 1, 2 . . . . .  d - -  2). 

The  idea  of geomet r ic  unif icat ion of solvable  nonl inear i t ies  consists in a proper  
ident i f ica t ion  of the  above  geomet r ic  fields as solutions to some phys ica l  nonl inear  
models.  Tab le  I summar izes  th is  idea  (~-dependence is omit ted) .  W e  recal l  t he  Gauss- 
We inga r t en  (GW) equa t ions  describe the  k inemat ics  of a m o v i n g  f rame upon a sub- 
mani fo ld  of an affine space (~). 

TABLE I.  -- Geometric uui/ication of solvable nonlinearities. 

Geometr ic  field Phys ica l  mean ing  Dynamics  
(k inemat ics  for strings) 

1 f u n d a m e n t a l  tensors  soli ton fields GMC equat ions  
gz:(x) (gauge equ iva len t  to 
d~:(x) (a = 1, 2, ..., d - - 2 )  original  sol i ton 

fields ~ )  

2 co-ordinate  curve  s t r ing at  a t i m e  x ~ gauge t r ans fo rmat ion  
x ~ =  const  f rom m o v i n g  (on sur- 
f = r(x 1, x 2) face) f r ame  to Frene t -  

Serre t  f r ame  

3 T a n g e n t  vec to r  r,l(x', x 2) Spin field F r o m  G~cV equa t ion  

4 N o r m a l  vec tors  Chiral  fields F r o m  GW equa t ion  
n~ 1, x ~) 
(a  = 1, 2 . . . . .  d - - 2 )  

Some explana t ions  are in order.  F i rs t ly ,  we note  tha t  

(7) gll = (g1,r gl,~) = (ihl, ihl) = 1, 

t ha t  is 

(8) I = ds 2 = (dxl) 2 q- 2912dx 1 dx 2 q-g2~(dx2) 2 . 
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T h e  a b o v e - i n t r o d u c e d  s t r i n g  m a y  be  i n t e r p r e t e d  as a g e n e r a l i z a t i o n  of t h e  L a m b -  
H a s i m o t o  cu rves  (~2). F o r  de ta i l s  see (13). F r o m  eq. (8) we h a v e  ds~]~ . . . . .  t = (dx~) ~- 
The re fo re ,  we can  p u t  x ~ = s (arc l e n g t h  p a r a m e t e r  a long  t h e  s t r ing) .  T h e n  if  we iden-  
t i~y x ~ as t ( t ime) ,  t h e  so l i ton  sur face  e q u a t i o n  (2) r eads  r = r ( s ,  t )  a n d  we are  in  a 
pos i t i on  to s t a t e  t h a t  t h e  so l i ton  sur face  r = r(s, t) is swep t  ou t  b y  i t s  L a m b - H a s i m o t o  
curve .  T h e  i d e n t i f i c a t i o n  r,~ as a sp in  f ield S is r e a s o n a b l e  s ince  (S, S) = (r,~, r,~) = 
= g~ = 1. 

T h e  ~ollowing example s  of t h e  a b o v e  u n i f i c a t i o n  scheme  are  p r e s e n t e d  i n  a r a t h e r  
concise  way .  Al l  of t h e m  conce r n  t h e  su~-ZS-AKNS l i n e a r  p r o b l e m  (~,~) ( excep t  for  t h e  
L iouv i l l e  e q u a t i o n  (12)). Sol i ton  surfaces  (for p a r t i c u l a r  choices  o~ ~) are  al l  e m b e d d e d  
i n t o  s %  ~ E ~. F o r  each  e x a m p l e  t h e  m o s t  i n t e r e s t i n g  i n g r e d i e n t s  o~ t h e  un i f i c a t i on  a re  
l i s t e d  (by  t h e  n u m b e r s  1, 2, 3 a n d  4 in  t h e  sense  of t a b l e  I ) .  

A) 3-field e x t e n s i o n  of t h e  s ince -Gordon  e q u a t i o n  

(9) 

co, x~ = s in  *o - -  9,1~p,~/sin co, 

~o,12 - -  o),l~f,2/sin co, 

~P,12 = ~~ o). 

T h i s  is a so l i ton  s y s t e m :  i t s  l i n e a r  p r o b l e m  can  be  eas i ly  ca l cu l a t ed  us ing  t h e  s t a n d a r d  

g e o m e t r i c  t e c h n i q u e s  (1~). 

A1)  

I = (dxl) 2 § 2 c o s ~ o d x l d x  e + (dx~) ~, 

(10) I I  ~ I I  1 = ~,l(dXl) 2 -  2 s in  co dx 1 dx ~ ~- ~,~(dxS) s . 

A2)  F o r  t h e  s i ne - G or don  e q u a t i o n  (~, ~ = const)  t h e  L a m b - H a s i m o t o  c u r v e  
h a s  a cons tan~  to r s ion  ( B e l t r a m i - E n n e p e r  t h e o r e m  (s,9,~a)). 

A3)  Oa- invar ian t  2-spin  m o d e l :  S = r,1, T ~ L2. 

{ S~ ~ T •  (skew p r o d u c t  of E 3 - v e c t o r s ) ,  

(11) T,~ = - -  S x T .  

Ad)  F o r  t h e  s i ne - G or don  e q u a t i o n  n (normal )  solves t h e  0 3 - i n v a r i a n t  r e l a t iv -  

i s t ic  a -mode l  e q u a t i o n  (~6). 

B) E l l i p t i c  L iouv i l l e  e q u a t i o n  

(12) ~,11 + ~~ ~ --2 exp 9 .  

(13) 

B1) 
I = e x p [ - - ~ ] [ ( d x l )  2 § (dx~)2], 

I I  : (dx~) 2 -  (dx~) 2 . 

(1~) G. L. LAMB: J. Math. Phys. ,  18, 1654: (1977). 
(i~) A. SYM: Soliton theory is sur/ace theory, prepr int  I F T ( l l )  (1981). 
(14) M. Jo ABLOWITZ, D. J. KAUP, A. O. NEWELL and H. SEGUR: Stud. Appl .  Math., 53, 249 (1974). 
(15) ]~. LUND" Ann.  Phys.,  115, 251 (1978). 
(la) K. POHLMEYER.* CO~m. Math, Phys. ,  46, 207 (1976). 
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B3) O3-invariant 2-spin model :  S = r,1 exp [~/2], 5" = r,2 exp [~/2]. 

(14) S,e = S • 2 1 5  T,~ = T • 2 1 5  

B4) The normal  n solvcs t he  Oa-invariant  Euc l idean  a -model  equa t ion  as an 
an t i ins tan ton  solution.  W e  men t ion  tha t  in th is  case sol i ton surfaces are m i n i m a l  wi th  
t he  to t a l  cu rva tu re  ( topological  charge) negat ive .  

c)  Nonl inear  SchrSdinger  equa t ion  

(15) 

(16) 

c1) 

i~, ,  + ~,~ + } l~ i"~  = 0 .  

I = (dxl) 2 § ~2(dx") 2, 

I I  = ~(dxl) 2 - -  2 ~ , 1  dx I dx 2 ~- (�89 ~a __ ~,2)(dx~) 2 , 

where  ~ = ~ exp [i~]. 

C2) The  mot ion  of the  v o r t e x  f i lament  in t he  so-called local ized induc t ion  ap- 
proach (12,1s) is g iven  by  

(17) r,~ : T,1 XT,11 . 

I t  is wor thwhi l e  men t ion ing  t h a t  the  v o r t e x  f i lament  at any ins t an t  of t i m e  cont inues  
to be a geodesic of i ts  sol i ton surface (13). 

C3) The  t angen t  vec to r  r,~ = S solves t he  1-dimensional  cont inuous  Heisen- 
berg fe r romagne t  equa t ion  (~9) 

(18) S,2 : S X S,11 �9 

W e  conjec ture  t h a t  the  models  unif ied in the  above-descr ibed way  are al l  gauge- 
equiva len t .  I t  is suggested not  only by par t i cu la r  examples ,  bu t  also by  the  exis tence of 
t he  so-called P o h l m c y e r  t r ans format ions  (1,16,20). 

The  geomet r ic  w a y  men t ioned  at the  beg inn ing  to find exac t  solut ions to models  2) 
3) and 4) consists in a cons t ruc t ion  of sol i ton surfaces (2). In  the  H i l b e r t - R i e m a n n  prob-  
lem vers ion  of t he  inverse  m e t h o d  (,,7) a general  fo rmula  for a m a t r i x  w a v e  func t ion  of 
N-so l i ton  solut ion has  been der ived  (7). I t  is a p roduc t  of N + I  mat r ices  and N of 
t h e m  are  bu i l t  f rom pro jec tors  Pk(x) (i = 1, 2 . . . . .  N) which  can be cons t ruc ted  in an 
induc t ive  way.  Th is  resul t  al lows us to wr i t e  down a genera]  fo rmula  for N-so l i ton  sur- 
faces (N-surfaces) r~ = ra(x, ~) in t he  case of our  in te res t  (S%,q l inear  p rob lem (6)). 

F o r  ins tance,  the  0-sur face  is a 2-dimensional  plane,  car ry ing  Euc l idean  geometry ,  
spanned  by  ih~ (m = 1, 2) mat r ices  of the  l inear  p rob lem (6): 

(19) r o = x l i h l +  ~'(~)x2ih2. 

(17) A. A. BELAVIN a n d  A. M. I~OLYAKOV: Pis 'ma Z. ~ksp.  Teor. Fiz. ,  22, 503 (1975). 
(18) 1K. 1KXSIMOTO: J. Fluid Mech., 51, 477 (1972). 
(19) M. L~KSI~MANAN: Phys. Left. _4, 61, 53 (1977). 
(s0) S. J .  ORFANIDIS: Phys.  Rev. D, 21, 1513 (1980). 
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Generally, the iv-surface is given by 

27 

(20) r~ = Z sk + to, 
k = l  

(2U 

where ~ (k = 1, 2 .. . . .  iV) are discrete and x2-invariant eigenvalues of the scattering 
problem (6a) localized in the upper half-plane of the complex plane, q~k are SU~q wave 
functions of the k-soliton solution and dk = Tr Pk = dim I mP k .  

I t  is interesting to point out that  eq. (20) is a generalization of the Bianchi-Lie 
transformation of the classical differential geometry (1,3,9). Originally, this transforma- 
t ion has been introduced as a surface-geometric analog of the B/~cklund transformation 
for the sine-Gordon equation. Like in the classical Bianchi-Lie transformation the vec- 
tors sk are of constant (Euclidean) length 

18~1 - I t -  ~1  ~ 

Finally,  we mention that  formula (20) for N = 2 when applied to the non-linear 
SchrSdinger equation gives a new vortex motion of a high complexity (s). 
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