
Korean J. Chem. Eng., 22(3), 345-352 (2005)

345

†To whom correspondence should be addressed.

E-mail: kshwang@pusan.ac.kr
‡This paper was prepared at the 2004 Korea/Japan/Taiwan Chemical En-

gineering Conference held at Busan, Korea between November 3 and 4,

2004.

A Gene Clustering Method with Masking Cross-matching Fragments
Using Modified Suffix Tree Clustering Method

Sang Il Han, Sung Gun Lee, Bo Kyeng Hou, Sunghoon Park, Young Han Kim* and Kyu Suk Hwang†

Department of Chemical Engineering, Pusan National University, Busan 609-735, Korea
*Department of Chemical Engineering, Dong-A University, Busan 604-714, Korea

(Received 17 January 2005 • accepted 16 March 2005)

Abstract−Multiple sequence alignment is a method for comparing two or more DNA or protein sequences. Most

multiple sequence alignment methods rely on pairwise alignment and Smith-Waterman algorithm [Needleman and

Wunsch, 1970; Smith and Waterman, 1981] to generate an alignment hierarchy. Therefore, as the number of sequences

increases, the runtime increases exponentially. To resolve this problem, this paper presents a multiple sequence align-

ment method using a parallel processing suffix tree algorithm to search for common subsequences at one time without

pairwise alignment. The cross-matched subsequences among the searched common subsequences may be generated

and those cause inexact-matching. So the procedure of masking cross-matching pairs was suggested in this study. The

proposed method, improved STC (Suffix Tree Clustering), is summarized as follows: (1) construction of suffix tree;

(2) search and overlap of common subsequences; (3) grouping of subsequence pairs; (4) masking of cross-matching

pairs; and (5) clustering of gene sequences. The new method was successfully evaluated with 23 genes in Mus musculus

and 22 genes in three species, clustering nine and eight clusters, respectively.

Key words: Multiple Sequence Alignment, Clustering, Sequence, Gene

INTRODUCTION

The DNA and protein data of diverse species have been daily

discovered and deposited in the public archives according to each

established format [Ostell et al., 2001; Chen and Carlis, 2003]. Those

databases provide not only an easy-to-use, flexible interface to the

public, but also in silico analysis tools of unidentified sequence data

[Mount, 2001; Salzberg et al., 1998].

Sequence alignment can be used to study the relationships among

sequences in sets of two or more sequences. It is particularly useful

when studying the relationship of similar types of gene products

that are expressed by different organisms, or when studying simi-

lar, yet divergent, sequences within the same organism. Often, a

primary purpose of a multiple sequence alignment is to identify,

within several related sequences, the regions that are highly con-

served, and therefore probably have functional and structural relat-

edness. The multiple sequence alignment of a set of sequences may

also be viewed as an evolutionary history of the sequences [Phillips

et al., 2000; Mount, 2001]. And the clusters of sequences present a

basis to deposit systemically huge data.

Being based on the pairwise alignment and progressive method,

most multiple alignment methods such as CLUSTAL [Higgins and

Sharp, 1988; Thompson et al., 1994; Higgins et al., 1996], DIALIGN

[Morgenstern et al., 1998] and SAGA [Notredame and Higgins,

1996] are not effective in comparing large number of data sets. Also,

dynamic programming algorithms [Lee and Lee, 2004; Kim et al.,

2004] such as the Smith-Waterman algorithm using sensitive pair-

wise comparison are quite exhaustive [Pearson and Miller, 1992].

The suffix tree algorithm can be appropriate to deal with huge

genomic data in linear time [Ukkonen, 1995; Gusfield, 1997; Zamir

and Etzioni, 1998]. The suffix tree clustering (STC) method was

first introduced by Zamir et al. [1997] and presented to cluster web-

documents [Zamir and Etzioni, 1998]. Zamir and Etzioni [1998]

compared the execution times (Fig. 1) on the number of snippets

Fig. 1. The runtime comparison of the several different clustering
algorithms on snippet collections as a function of each col-
lection size.

346 S. I. Han et al.

May, 2005

as a function of the collection size and the precisions (Fig. 2) in dif-

ferent clustering algorithms. As shown in Figs. 1 and 2, the STC

(Suffix Tree Clustering) method is faster and more precise than other

standard clustering methods such as Single-Pass, K-means, Buckshot,

Fractionation and GAHC (Group-average Agglomerative Hierar-

chical Clustering). Delcher et al. [1999] made MUMmer software

[Delcher et al., 1999, 2002; Hon and Sadakane, 2002] to find MUMs

(Maximal Unique Matching subsequence) between two genomes of

related species, and Volfovsky et al. [2001] made a new rice repeat

database to rapidly search the repeats in the genome by using the

suffix tree. They utilized the suffix tree algorithm to find only com-

mon subsequences. But our method not only finds common subse-

quences, but also clusters similar sequences. Kalyanaraman et al.

[2002] have developed a parallel EST clustering program, which

enables us to find the shared maximal common substrings by suffix

tree algorithm and to discover the sequence pairs sharing a maxi-

mal common substring of length greater than or equal to a thresh-

old value. But in case of gene [Shin et al., 1996] sequence, it is not

appropriate to compare sequence similarity among gene sequences

without cross-matching masking, because the sequences should be

sequentially matched. To resolve the above problem, we presented

the step of masking cross-matching fragments.

In the present paper, we have introduced an improved gene clus-

tering method based on the suffix tree algorithm. The STC devel-

oped by Zamir et al. [1997, 1998] was used to search for effec-

tively common subsequences and cluster genes with the suffix tree,

which creates clusters based on common subsequences (strings shared

among sequences).

The gene clustering program was developed with Perl (Practical

Extraction and Report Language) [Randal and Christiansen, 1997;

Tisdall, 2001] and used to search for common subsequences and

cluster similar gene sequences. The feasibility of this program was

evaluated by using twenty-three genes in Mus musculus species and

twenty-two genes in three other species retrieved from the Homol-

ogene database of NCBI.

METHOD

The aim of this paper is to present an improved gene clustering

method based on the STC, which tabulates the position informa-

tion and searches for common subsequences shared in several gene

sequences. The STC is an incremental linear time algorithm that

constructs clusters based on common substrings, and is known to

be faster than other standard clustering methods [Zamir et al., 1997;

Zamir and Etzioni, 1998]. The procedure of web document cluster-

ing by Zamir and Etzioni [1998] is as follows. (i) document cleaning

(the string of text representing each document is transformed); (ii)

identifying base clusters (searching for sets of document sharing

common phrase); and (iii) combining base clusters (merging base

clusters with a high overlap).

In the present study, the original STC of Zamir et al. [1997] was

modified to cluster similar genes of DNA sequences. In the case of

DNA sequences, document cleaning was not required. However, it

was necessary to divide the last step which combines the base clus-

ters into two steps (grouping the common subsequence pairs and

clustering the common subsequence pair groups), since the com-

mon subsequences have to be sequentially matched [McCreight,

1976] and the cross-matching subsequences of long sequences should

be avoided.

The modified method of gene clustering with a suffix tree can

be illustrated by a simple example using four sequences (ATGCA,

ACGCA, TAATC, TACTC). Fig. 3 shows the scheme of our gene

clustering tool.

1. Constructing the Suffix Tree

The suffix tree algorithm is a data structure algorithm that can be

used to solve the exact matching problem in linear time. The linear-

time suffix tree algorithm was first introduced by Weiner [1973],

and then a different, more space-efficient algorithm to build suffix

trees in linear time was given by McCreight [1976] later. Ukkonen

[1995] developed a conceptually different linear-time algorithm for

building suffix trees, which has all the advantages of McCreight’s

algorithm. We used Ukkonen’s easy-to-understand, space-efficient

suffix tree algorithm which is faster than Weiner’s method. The suffix

tree by Ukkonen has the major features as follows [Ukkonen, 1995;

Gusfield, 1997; Zamir and Etzioni, 1998].

(1) The suffix tree is a rooted, directed tree with all suffixes of a

set of strings.

(2) Each internal node has at least two children nodes.

(3) For the sequence of m length, the tree has 1~m branches.

(4) Subsequences are labeled on the branches of a suffix tree.

(5) The labels on branches are the suffixes of sequences.

(6) The branches from the same node have not the same label.

Fig. 4 shows a branching configuration of the suffix tree for the

four sequences mentioned before. To construct the suffix tree for

more than two sequences, terminal symbol $ was added to the end

of each sequence, and sequences were concatenated. The suffix tree

made in this way is called generalized suffix tree [Gusfield, 1997].

Fig. 2. The average precision comparison of the several different
clustering algorithms and the original ranked list.

Fig. 3. The scheme of our gene clustering system.

A Gene Clustering Method with Masking Cross-matching Fragments Using Modified Suffix Tree Clustering Method 347

Korean J. Chem. Eng.(Vol. 22, No. 3)

In Fig. 4, the suffix tree consists of 10 nodes including root node.

The numbers in the tetragon of the end of the suffix tree represent

a sequence number including strings between two nodes, a starting

position of the string, and an ending position of the string on the

sequence in due order.

2. Searching the Common Subsequences

The label, except for terminal symbol $, between nodes in the

suffix tree represents the common subsequence shared in more than

two sequences. Based on such common subsequences, the similar-

ity of sequences was compared and similar sequences were clus-

tered. To reduce the inefficiency caused by unrelated and useless

fragments, our method selects the minimum block size (system-

acceptable the minimum length of subsequence) according to total

sequence size. Here, the block size was set to 2 due to short sequence

length. Table 1 shows the position information of common subse-

quences using block size 2 which have been reduced by eliminating

the position information with the same starting and ending number.

3. Overlapping the Common Subsequences

As the suffix tree algorithm finds all the common subsequences

in its sequences, the overlapped subsequences including other sub-

sequences can be generated. The overlapped subsequences are inef-

ficient in the viewpoint of runtime, so the subsequences which are

found to be overlapped should be merged into the larger subsequence,

based on the position information. The rule to check the overlap of

the common subsequences is as follows.

Table 2 shows the position information of the subsequences that

exist in the each sequence before and after overlapping the subse-

quences, based on Table 1.

4. Grouping the Common Subsequence Pairs and Masking

Fragments

The common subsequence pairs which exist commonly in dif-

ferent sequences of Table 2 were grouped and two groups are shown

in Table 3. The rule grouping the common subsequence pairs is as

follows.

Once the number of the common subsequences in the pair groups

increase, the cross-matching subsequences that cause inexact-match-

ing may be generated. Hence, based on the long length subsequence,

the cross-matching fragments were masked to match common sub-

sequences sequentially [Delcher et al., 1999]. Fig. 5 shows the dia-

gram of this filtering procedure. For the example sequences, due to

short length the cross-matching fragments were not presented and

this procedure was not applied.

If the size of the longest common subsequence in a pair group

excesses the threshold size, the pair group is considered to be similar

and is directly transferred to the step of clustering the common sub-

Fig. 4. The suffix tree for sequences (1. ATGCA; 2. ACGCA; 3.
TAATC; 4. TACTC).

Table 1. The common subsequences at block size of 2 in the suffix tree of Fig. 4

Common subsequences Common subsequences at block size 2

(4,5,5) (4,3,3) (3,5,5) (1,4,5) (2,4,5)

(2,2,2) (1,3,5) (2,3,5) (3,4,5) (4,4,5)

(1,2,2) (4,1,2) (3,1,2) (1,1,2) (3,3,4)

(3,2,2) (2,1,2) (4,2,3) (1,5,5) (2,5,5)

(4,5,5) (4,3,3) (3,5,5) (1,4,5) (2,4,5)

(2,2,2) (1,3,5) (2,3,5) (3,4,5) (4,4,5)

(1,2,2) (4,1,2) (3,1,2) (1,1,2) (3,3,4)

(3,2,2) (2,1,2) (4,2,3) (1,5,5) (2,5,5)

Table 2. The common subsequences before and after the overlapping

Number of sequences Before overlapping After overlapping

Sequence 1 (1,1,2), (1,3,5), (1,4,5) (1,1,2), (1,3,5), (1,4,5)

Sequence 2 (2,1,2), (2,3,5), (2,4,5) (2,1,2), (2,3,5), (2,4,5)

Sequence 3 (3,1,2), (3,3,4), (3,4,5) (3,1,2), (3,3,4), (3,4,5)

Sequence 4 (4,1,2), (4,2,3), (4,4,5) (4,1,2), (4,2,3), (4,4,5)

Position information; (n_1, a_1, b_1), (n_2, a_2, b_2)

If n_1 == n_2 and {(a_1 <= a_2 and b_1>=b_2) or (a_1 >= a_2 and b_1<=b_2)}

then

Overlapping

※ n_1, n_2 ; sequence number

※ a_1, a_2 ; starting position

※ b_1, b_2 ; ending position

Table 3. The pair groups for the common subsequences in Table 2

Pair groups Position information

Sequence 1 and sequence 2 {(1,3,5), (2,3,5)}

Sequence 3 and sequence 4 {(3,1,2), (4,1,2)}, {(3,4,5), (4,4,5)}

Position information; (n_1, a_1, b_1), (n_2, a_2, b_2)

If n_1≠n_2 and {{string(n_1, a_1, b_1)⊃string(n_2, a_2, b_2)} or

If {string(n_1, a_1, b_1)⊂string(n_2, a_2, b_2)}} then

Grouping common subsequence pairs

348 S. I. Han et al.

May, 2005

sequence pair group without masking the cross-matching subse-

quences. Here, the threshold size was set to 40 as an optional value

based on the size and type of the sequence. The rule of masking

cross-matching subsequence is as follows.

5.Clustering the Common Subsequence Pair Groups by Sim-

ilarity

Next, for each common subsequence pair group, the pair groups

having a similarity under a setting value are considered unrelated

sequences to be eliminated. Here, the similarity is the proportion of

the common subsequences existing on the sequences in study. If

the setting value is too small or large, the sequences can be clus-

tered into false groups or not be clustered. Since the lengths of the

example sequences (ATGCA, ACGCA, TAATC, TACTC) are short,

the data are clustered by similarity criteria with 50%.

After removing the pair groups with no threshold similarity, in

order to collect similar sequence pair groups, the pair groups were

compared to each other and clustered when the sequences in any

pair group are similar to the sequences in another pair group. This

rule showed suitable results for real DNA sequences. For the exam-

ple sequences, the sequence pairs did not join to each other. Fig. 6

shows the way how to join the pair groups. The rule for clustering

the common subsequence pair groups is as follows.

Based on the position information such as {(1,3,5), (2,3,5)} and

{(3,1,2), (4,1,2), (3,4,5), (4,4,5)}, two clusters, (sequence 1 and se-

quence 2) and (sequence 3 and sequence 4), were formed, as shown

in Fig. 7.

Fig. 7 shows that the sequences are clustered by numerical infor-

mation only, without relying on character data. The unmatched strings

between common subsequences represent insertion or deletion, and

the matched strings represent the significant conserved regions.

RESULTS AND DISCUSSION

The suffix tree algorithm proposed in this study was applied to

two cases: (i) twenty three gene sequences of Mus musculus spe-

cies, and (ii) twenty two gene sequences of different species. The

data were obtained from the Homologene database of NCBI. A PC

with Intel’s Pentium 2.4 GHz processor, 1 GB RAM, and Linux

OS was used for analysis.

1. Case Study 1: Twenty Three Gene Sequences of Mus mus-

culus Species

Table 4 shows the 23 genes in the Mus musculus (house mouse)

Fig. 5. Aligning Gene A and Gene B after eliminating cross-match-
ing subsequences.

Position information; pair 1 {(n_1, a_1, b_1), (n_2, a_2, b_2)}

Position information; pair 2 {(n_1, a_3, b_3), (n_2, a_4, b_4)}

…

in two sequences (n_1 and n_2)

If the size of pair 1 is the longest, the pair 1 is the basic pair.

Using the basic pair (pair 1)

If ((a_1>=b_3 and a_4>=b_2) or (a_3>=b_1 and a_2>=b_4)) then

Masking cross-matching pair

Fig. 6. The simplified diagrammatic illustration of joining pair
groups.

Fig. 7. The two clusters for the sequences (ATGCA, ACGCA,
TAATC, TACTC).

Sequence pairs; pair 1 (n_1, n_2), pair 2 (n_3, n_4)

…

If {n_1 == (n_3 or n_4)} or {n_2 == (n_3 or n_4)} then

Clustering pair 1 and pair 2

Table 4. The 23 Genes of the Mus musculus species

Species Accession number

Mus musculus XM_204449, XM_289927, NM_027609,

XM_355690, XM_203409, XM_356889,

XM_357648, XM_357087, XM_356880,

NM_021300, XM_356386, XM_109566,

NM_013548, NM_175653, NM_178215,

XM_358107, XM_358117, NM_027650,

NM_173069, XM_355572, XM_357595,

XM_142567, XM_355567, XM_357595,

A Gene Clustering Method with Masking Cross-matching Fragments Using Modified Suffix Tree Clustering Method 349

Korean J. Chem. Eng.(Vol. 22, No. 3)

species retrieved from the Homologene database of NCBI.

The gene data have a long length of 700-2,000 bp. The mini-

mum block size for searching common subsequences was set to

10-20 bp and the similarity for clustering common subsequence

pair groups was set to 20%. Each gene sequence was concatenated

to a long sequence by adding the terminal symbol $ to the end of

each sequence, and then the suffix tree was constructed. The runt-

ime comparison on the variation of minimum block size is shown

in Fig. 8.

As the block size decreases, the runtime increases exponentially.

On the other hand, when the block size is large, sequences having

short length common subsequences are sometimes not included into

clusters. At the minimum block size of 10, most genes were prop-

erly clustered as shown in Fig. 9. The gene XM_355567 was com-

bined into the cluster 3 in the present analysis, although it was in-

cluded in cluster 2 in the Homologene database. All the clusters

except for the gene XM_355567 showed a good agreement with

the Homologene database.

In the cluster groups of Fig. 9, the cross-matching common sub-

sequences were masked since they may cause inexact-matching.

Table 5 shows the ratio of masking the cross-matching subsequences

in the clusters of Fig. 9.

Fig. 8. The relationship between runtime and minimum block size
in Case Study 1.

Fig. 9. The gene clusters for the minimum block size of 10 in Case
Study 1.

Table 5. The ratio of the cross-matching subsequences in the clus-
ters of Fig. 9

The number

of clusters

The number of

cross-matching

subsequences

The number

of total

subsequences

The ratio of

masking (%)

Cluster 1 03 022 13.64

Cluster 2 17 040 42.50

Cluster 3 19 140 13.57

Cluster 4 05 056 08.93

Cluster 5 04 029 13.79

Cluster 6 02 025 08.00

Cluster 7 49 055 89.09

Cluster 8 05 050 10.00

Cluster 9 12 029 41.38

Fig. 10. The result of alignment for group 4 at the minimum block size of 7.

350 S. I. Han et al.

May, 2005

Also, to identify the relationship between common subsequences

and minimum block size, the sequence alignments of common sub-

sequences in cluster group 4 of Fig. 9 using minimum block size 7,

10, 15, 20 were presented in Fig. 10, 11, 12, 13 respectively. The

characters except for symbol ‘*’ represent the common subsequences.

These figures show that the large number of minimum block size

causes a decrease of the number of common subsequences. So a

too large minimum block size results in a decrease of sequence sim-

ilarity and false clusters.

2. Case Study 2: Twenty Two Gene Sequences of Different

Species

The twenty two genes (Table 6) in the three species were retrieved

from the Homologene database and clustered. The length of gene

sequences was 700-3,700 bp, longer than Case Study 1. To reduce

unnecessary common subsequences, the minimum block size was

selected as 7-20. Also, the similarity threshold (a criterion for clus-

tering sequence pairs) was set to 20%.

The clustering procedure of Case Study 2 is the same as Case

Study 1. Fig. 14 shows the relationship between runtime and mini-

mum block size. Since a shorter block size results in more com-

mon subsequences to be handled, the runtime increases. Due to a

longer length and increased number of fragments, a longer runtime

was observed in Case Study 2.

Fig. 15 shows that the gene sequences were properly clustered

at the minimum block size of 10. At the minimum block size of 15

and 20, NM_001547 in the cluster 1 and NM_133492 in the clus-

ter 3 were not clustered. Also, NM_173565 in the cluster 8 was not

in the cluster in case of the minimum block size of 20. NM_003810

and NM_006926 that were not included at the minimum block size

of 10 were clustered, respectively, into cluster 2 and cluster 7 at a

minimum block size of 7. Most clusters in Fig. 15 accorded with

the clusters in the Homologene database. It is noted that as the min-

imum block size decreases, the number of matching common sub-

sequences per sequence pair increases. The cross-matching subse-

quences in the clusters of the Fig. 15 were eliminated and the ratio of

masking the cross-matching subsequences was presented in Table 7.

Fig. 11. The result of alignment for group 4 at the minimum block size of 10.

Fig. 12. The result of alignment for group 4 at the minimum block size of 15.

A Gene Clustering Method with Masking Cross-matching Fragments Using Modified Suffix Tree Clustering Method 351

Korean J. Chem. Eng.(Vol. 22, No. 3)

As shown in Fig. 8 and 14, a minimum block size of 10 was ob-

served to be suitable for the algorithm in terms of the speed and

precision. With a block size of 10 in the two Cases, the clusters ob-

tained by the present method were in good agreement with those

Homologene(http://www.ncbi.nlm.nih.gov/entrez/). As the clustered

data in the Homologene database are gene sequences having simi-

lar functions and finally identified by experiments, the clusters with

the other block size value may not be error. So the better value of

the block size would be obtained from running the clustering tool

with more gene data. It was also observed that the increases of the

length of sequence and the number of common subsequences make

the runtime longer.

Consequently, this method of performing multiple sequence align-

ment based on the sequence fragments was evaluated for two case

studies: (i) the gene sequences in a single species; and (ii) the gene

Fig. 13. The result of alignment for group 4 at the minimum block size of 20.

Table 6. The 22 Genes of the three species

Species Accession number00

Homo sapiens NM_001547, NM_003810, NM_133492, NM_052890, NM_000546, NM_173565, NM_006926

Mus musculus NM_008332, NM_009425, NM_175731, NM_011640, NM_009921, NM_023134, XM_205565

Rattus norvegicus XM_220060, NM_145681, XM_236790, XM_234838, NM_030989, XM_236642, NM_017329, XM_213713

Fig. 14. The relationship between runtime and minimum block size
in Case Study 2.

Fig. 15. The gene clusters for the minimum block size of 10 in Case
Study 2.

Table 7. The ratio of the cross-matching subsequences in the clus-
ters of Fig. 15

The number

of clusters

The number of

cross-matching

subsequences

The number

of total

subsequences

The ratio of

masking (%)

Cluster 1 28 123 22.76

Cluster 2 01 029 03.45

Cluster 3 07 056 12.50

Cluster 4 14 038 36.84

Cluster 5 21 141 14.89

Cluster 6 00 019 00.00

Cluster 7 06 046 13.04

Cluster 8 29 191 15.18

352 S. I. Han et al.

May, 2005

sequences in three species from the Homologene database, and nine

and eight clusters were presented.

CONCLUSIONS

The suffix tree algorithm has been used to cluster the search re-

sults of web documents [Zamir and Etzioni, 1998] and to find the

conserved region in the related genomes [Delcher et al., 1999, 2002;

Miller et al., 1999] or repeated region [Volfovsky et al., 2001].

The existing methods rely on pairwise comparison and progres-

sive alignment to cluster sequences and are not effective in com-

paring DNA or proteins. In this paper, a modified STC (Suffix Tree

Clustering) was proposed, which enables us to compare sequences

at once without the pairwise alignment and Smith-Waterman algo-

rithm.

The current method did not consider gap penalty or other refine-

ments. In the future, these options could be included to improve

specificity while keeping high sensitivity. Once it is done to imple-

ment performance-decisive parts of the algorithm in a lower level

language with focus on optimization [Choi and Manousiouthakis,

2002], clustering larger gene sequences will be possible. Such clus-

tered data can assist in studying sequences of unknown function or

the evolutionary history of the sequences.

ACKNOWLEDGMENT

This work was supported by Brain Korea 21 Project in 2004.

REFERENCES

Chen, J. Y. and Carlis, J. V., “Genomic Data Modeling,” Information

Systems, 28, 287 (2003).

Choi, S. H. and Manousiouthakis, V., “Global Optimization Methods

for Chemical Process Design: Deterministic and Stochastic Ap-

proaches,” Korean J. Chem. Eng., 19(2), 227 (2002).

Delcher, A. L., Kasif, S., Fleischmann, R. D., Peterson, J., White, O.

and Salzberg, S. L., “Alignment of Whole Genomes,” Nucleic Acids

Res., 27(11), 2369 (1999).

Delcher, A. L., Phillippy, A., Carlton J. and Salzberg, S. L., “Fast Algo-

rithms for Large-scale Genome Alignment and Comparison,” Nucleic

Acids Res., 30(11), 2478 (2002).

Gusfield, D., Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology, Cambridge University Press,

Cambridge, London (1997).

Higgins, D. G., Thompson, J. D. and Gibson, T. J., “Using CLUSTAL for

Multiple Sequence Alignments,” Methods Enzymol., 266, 383 (1996).

Higgins, D. G. and Sharp, P. M., “CLUSTAL: A Package for Perform-

ing Multiple Sequence Alignment on a Microcomputer,” Gene, 73,

237 (1988).

Hon, W. K. and Sadakane, K., “Space-Economical Algorithms for Find-

ing Maximal Unique Matches,” Proceedings of the 13th Annual Sym-

posium on Combinatorial Pattern Matching, 144 (2002).

Kalyanaraman, A., Aluru, S. and Kothari, S., Parallel EST Clustering,

HICOMB 2002, 185 (2002).

Kim, D. K., Lee, K. S. and Yang D. R., “Control of pH Neutralization

Proess Using Simulation Based Dynamic Programming,” Korean J.

Chem. Eng., 21(5), 942 (2004).

Lee, J. M. and Lee, J. H., “Simulation-Based Learning of Cost-To-Go

for Control of Nonlinear Processes,” Korean J. Chem. Eng., 21(2),

338 (2004).

McCreight, E., “A Space Economical Suffix Tree Construction Algo-

rithm,” Journal of the ACM, 23, 262 (1976).

Miller, R. T., Christoffels, A. G., Gopalakrishnan, C., Burke, J., Ptitsyn,

A. A., Broveak, T. R. and Hide, W. A., “A Comprehensive Approach

to Clustering of Expressed Human Gene Sequence: The Sequence

Tag Alignment and Consensus Knowledge Base,” Genome Research,

9, 1143 (1999).

Morgenstern, B., Frech, K., Dress, A. and Werner, T., “DIALIGN: Find-

ing Local Similarities by Multiple Sequence Alignment,” Bioinfor-

matics, 14, 290 (1998).

Mount, D. W., Bioinformatics : Sequence and Genome Analysis, Cold

Spring Harbor Laboratory Press (2001).

Needleman, S. B. and Wunsch, C. D., “A General Method Applicable

to the Search for Similarities in the Amino Acid Sequences of Two

Proteins,” J. Mol. Biol., 48, 443 (1970).

Notredame, C. and Higgins, D. G., “SAGA: Sequence Alignment by

Genetic Algorithm,” Nucleic Acids Res., 24, 1515 (1996).

Ostell, J. M., Wheelan, S. J. and Kans, J. A., “The NCBI Data Model,”

Methods Biochem. Anal., 43, 19 (2001).

Pearson, W. R. and Miller, W., “Dynamic Programming Algorithm for

Biological Sequence Comparison,” Methods Enzymol., 210, 575

(1992).

Phillips, A., Janies, D. and Wheeler, W., “Multiple Sequence Alignment

in Phylogenetic Analysis,” Molecular Phylogenetics and Evolution,

16, 317 (2000).

Randal, L. S. and Christiansen, T., Learning Perl, Second Edition,

O’Reilly (1997).

Salzberg, S. L., Searls, D. B. and Kasif, S., Trends Guide to Bioinfor-

matics, Elsevier Science (1998).

Shin, P. K., Koo, J. H. and Lee, W. J., “Modeling of Cell Growth and

phoA-Directed Expression of Cloned Genes in Recombinant Escher-

ichia coli,” Korean J. Chem. Eng., 13(1), 82 (1996).

Smith, T. F. and Waterman, M. S., “Identification of Common Molecu-

lar Sequences,” J. Mol. Biol., 197, 723 (1981).

Thompson, J. D., Higgins, D. G. and Gibson, T. J., “CLUSTAL W: Im-

proving the Sensitivity of Progressive Multiple Sequence Alignment

through Sequence Weighting, Position-specific Gap Penalties and

weight Matrix Choice,” Nucleic Acids Res., 22, 4673 (1994).

Tisdall, J. D., Beginning Perl for Bioinformatics, O’REILLY (2001).

Ukkonen, E., “On-line Construction of Suffix Trees,” Algorithmica, 14,

249 (1995).

Volfovsky, N., Haas, B. J. and Salzberg, S. L., “A Clustering Method for

Repeat Analysis in DNA Sequences,” Genome Biology, 2, 1 (2001).

Weiner, P., “Linear Pattern Matching Algorithms,” In Proc. of the 14th

IEEE Annual Symposium on Switching and Automata Theory, 1

(1973).

Zamir, O., Etzioni, O., Madani, O. and Karp, R. M., “Fast and Intuitive

Clustering of Web Documents,” In Proc. of the 3rd International Con-

ference on Knowledge Discovery and Data Mining, 287 (1997).

Zamir, O. and Etzioni, O., “Web Document Clustering: A Feasibility

Demonstration,” In Proc. of the 21st Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval,

46 (1998).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

