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Summary.  In analogy to the well-known tilings of the euclidean plane E 2 by Penrose 
rhombs (or, to be more precise, to the equivalent tilings by Robinson triangles) we give a 
construction of an inflation rule based on the n-fold symmetry D. for every n greater than 
3 and not divisible by 3. For given n the inflation factor ~ can be any quotient #n.~ := 

"~rn/2 at sin(k~r/n)/sin(n/n) as well as any product l h = 2  #. . t ,  where ct2, tr3 . . . . .  ~ 1~1 U 101. The 
construction is based on the system ofn  tangents of the well-known deltoid 79, which form 
angles with the ~-axis of type v~r/n. None of these tilings permits two linearly independent 
translations. We conjecture that they have no period at all. For some of them the Fourier 
transform contains a Z-module of Dirac deltas. 

1. T h e  C o n s t r u c t i o n  

1.1. The Deltoid D and Its Tangents 

I f  a uni t-circle  S l is rolled around inside a circle of  radius  3, a point  x(~0) fixed on S 1 
will move  along a hypocyclo id  ~D, which can be descr ibed in parametr ic  form by 

x(tp) : =  (~(tp), r/(tp)) ~, 0 < ~p < 2:r, 

where  

(r : =  2 cos tp + cos(2r 17 (~o) : =  2 sin cp - sin(2~p). 

* Editors" note: This paper was accepted for the special issue of Discrete & Computational Geometry 
(Volume 13, Numbers 3-4) devoted to the I.Aszl6 Fejes T6th Festschrift, but was not received in final form in 
time to appear in that issue. 

Research supported by the DFG and the Fritz Thyssen Stiftung. 
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Fig. 1. The deltoid D. 
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D is a quartic as its implici t  equation 

(x 2 + 12x + 9 + y2)2 = 4(2x + 3) 3 

shows (for the sequel see Fig. 1). We define the segment 

G(~o) : =  x(~o); x(~o + zr), 0 < ~o < 27r. 

Obvi ously G (~p) = G (~o+rr). We are mainly  interested in the segments  whose parameters  
~o are of  the form vzr/n. Provided n is odd, we mark G(orr/n) with an arrow aiming from 
the even to the odd vertex. For brevity we write xo, G~, so, and co instead ofx(v~r/n), 
G(vTr/n), sin(vrr/n), and cos(vrr/n). Final ly we put  lZ~.k : =  sk/sl for 1 < k < n/2. 
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Fig. 2. The rule for the arrows. 
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1.2. The Family ~n of Prototiles 

Throughout this paper---except Section 4 let n = 2m + 1 be an arbitrary but fixed 
odd natural number, n > 5 and n ~ 0 (rood 3). Whenever /z ,  v, k are natural numbers 
summing up to n there is a triangle A with angles #~r/n, vzr/n, krr/n and opposite sides 
of  lengths 4sls~, 4sls~, 4SlS~. We may put arrows on the sides of  A, and since n is odd 
we can do this in exactly two ways according to the rule shown in Fig. 2. I f  A is isosceles 
the angle at its apex is odd and even the two arrowed triangles are congruent. In this case 
we choose one of them as a prototile T. Otherwise # ,  v, ~. are pairwise distinct and we 
receive from A two incongruent arrowed triangles T and T' ,  and we take both of them 
as prototiles. The family of all these prototiles is denoted by ~n. Its cardinality turns out 
to equal (n - 1)(n - 2)/6.  

In Fig. 1 for n = 7 all five prototiles/ '1,  T2 . . . . .  T5 are shown./ '2  and T3 differ only 
in the arrows. 

2. The Geometric Properties 

The following properties, (1)-(11), a re - - in  this order--a l l  proved in Section 5. The argu- 
ments are rather straightforward and the calculations use only the well-known formulae 
of trigonometry and the identity 

k~l Y/" 
#~.k �9 sin (~--~) = E s i n  ((X + 1 - k + 2v) n )  �9 

v=O 

(*) 

(1) G(~o) touches D at x(-2~o)  (not really essential). 
(2) I G (~0) I = 4 (length of the segment). 
(3) The angle between G(0) and G(9)  equals rr - 9. 
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(4) I f 0  < ~o < ~ < X < rr ando9 :=  ~p+ ~ + X, then 

IG(~o) N G(X)  - G(~0) N G(O) I  = 41 sinwl �9 sin(x - ~ ) .  

(5) q~ + ~ -t- X ------ 0 (mod: r )  implies G(~0) tq G ( ~ )  tq G(Z) ~ ~. 
(6) I f 0  < /z < v < )~ < n ( /z ,v,~.  e N U { 0 } )  a n d t r  :=  / z + v + L  then 

IG~ r3 Gx - G .  A G~I = 41s.lsx_~ and G . ,  Gz are either concurrent (see (5)) 
or form a triangle A ( # ,  v, ~.) congruent to/zn,k �9 T for some T e .Try, where 

sk = Isol  > 0 .  
(7) The system ~ :=  {G~ I v = 1, 2 . . . . .  n} makes up a triangular pattern 7" inside 

~9. Every elementary triangle is of  the type described under (6) with t7 --  4-1 
(rood n). Every interior vertex is shared by exactly six triangles. 

(8) Every segment G .  is cut by the other segments Gv into pieces whose lengths 
form---independent of  # - - - ~ e  sequence shown in Fig, 3 (see ( . )) .  Obviously,  
read from right to left, the points have distances 2cl,  2c2 . . . . .  2c~ = - 2  from 
the center of  ~ , .  

(9) Given integers tr and or, fl, y with ct +/3 + y ---- 0 (mod n) the number  of  triangles 
in 7" with angles or,/3, g and the given tr (see (6)) equals one, if  a ,  fl, y are not 
pairwise distinct (the triangle then is isosceles), and equals two otherwise, and 
the two triangles then differ with respect to the arrows. 

(10) If  two triangles as described under (6) (t7 ~ 4-1 (modn) )  are c o n g r u e n t - -  
including the a r rowing- - they  are dissected in the same way. (In Fig. 1 the 
triangles corresponding to (0, 2, 3) and to (1,2,  6) have tr ---- - 2  and tr ---- 2, 
respectively. They have congruent carriers, but are dissected in different ways.)  

Defini t ion 1. Given n = 2m + 1 and k, where 2 < k < m, for every T ~ ~'~ we define 
infln,k,+ (T) by dissecting/z~,k T according to (9) and infl~,k._ (T)  :=  infln.k,+ (T ' ) ,  where 
T '  is congruent to T except for the arrows, which are reversed. 

Hence for every isosceles T infl~.k.+(T) ----- infl~.k._(T). For example,  in Fig. 1 the 
triangle 0T2 formed by Go, G2, G3 carries infl7,2,+(T2) --~ inflT.2 -(T3).  

(11) infln,k.~(T) (e = + or e = --) is always a face-to-face patch of  triangles, each 
congruent to some member  of  .~'n; and even if several of  these inflations are 
applied one after the other the resulting patch is face-to-face. 
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Definition 2. By S(~'~; infln.k,~) (e ----- 4-) we denote the species of  all tilings 7 9 o f  the 
entire plane, where every patch ,4 of  79 is congruent to some patch in some infl~.k, ~ (T) 
with T E ~n. 

Originally infl is defined only for members of  .7". However, using routine arguments 
and well-known techniques, unlimited iteration of the inflation finally leads to filings of 
the entire plane, and these are exactly described by Definition 2. Thus we have arrived 
at: 

Theoreml.  Assumem ~ N , m  > 2, n = 2 m + l , n  ~ 0 ( m o d 3 ) , 2  < k < m, 
e ~ {+, - } .  Then the species S(,T'~, infln.k.~) (see Definition 2) is not empty. It consists 
of face-to-face tilings o f E  2 by tiles being congruent to members of :Vn; and the arrows 
match. Every such tiling can be considered as a tiling of  patches, each of  which is of  type 
infl,.k.E(T) for some T E ~ .  The inflation factor equals lZ,.k. 

A protoset ~" is called minimal with respect to an inflation infl if, for no proper subset 
of.7 r and no j ,  every member T of  ~ has as the j th  inflation a patch, where every tile 

is congruent to a member of  ~. In other words, no member of  ~r is avoidable. Standard 
arguments of  inflation theory lead to: 

Coro l la ry  1. I f  .~n is minimal with respect to infl~.~.~, then the species S(.~'~, infl~.k.~) 

--consists of  only one local isometry class, 
- - i s  repetitive, 
--consists of  2 ~~ (uncountably many) congruence classes. 

Two filings 7 9 and Q are said to be locally isometric if to every patch .,4 contained in 
79 there is an isometric patch/3 in Q and vice versa. A species S is said to be repetitive 
if to every radius r there is an R such that to every patch .,4 of  circumradius r, which 
occurs in some member 79 of  S, a congruent copy can be found in every ball of  radius R 
in any member Q of  S. 

Because of  (1 1) not only can every inflation of  type infln,~.~ be iterated, but they can 
even be combined in any order. This leads to: 

Coro l la ry  2. Let m and n be as in Theorem 1. Assume 2 < k~ < m and e# E {+, - }  
for  cr = 1, 2 . . . . .  s. Then the s inflations can be composed (i.e., can be applied one after 
the other). Thus the inflation 

infl :=  infln.~,.e, o �9 �9 �9 o infln.~z.e 2 o infln.k, ,~1 

defines a nonempty species S(~n, infl) with inflation factor 

r I : l~n.k, �9 .... l~n.k= �9 l~n.kl. 
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3. Some Algebraic Properties 

For a protoset Jr  = {Ta, T2 . . . . .  Ts} and an inflation infl the inflation matrix M :=  
M(.7 r, infl) = (ai.j) is defined by 

ai.j :=  #{T I T C infl(Tj), T --~ T,-}, i, j = 1 ,2  . . . . .  s. 

For instance, 

M(jr7, infl7,2,+) = 

1 1 0 0 0 / 
1 1 0 0 1 
0 0 2 1 0 , 
0 0 1 1 1 
0 1 0 1 2 

M(.TrT, infl7.2._) = 

1 0 1 0 0 / 
1 0 1 0 1 
0 2 0 1 0 . 
0 1 0 1 1 
0 0 1 1 2 

If I/is the inflation factor and d is the dimension of  the space considered, the roxf-vector 
(vl, v2 . . . . .  v~), where vj :=  vol(Tj), obviously is an eigenvector to 0 d, hence r/d is an 
eigenvalue of M. By our assumption on n and k: 

(12) r/d = 1/2 = # 2  necessarily is an irrational algebraic number. 

The column-vector ( f l ,  f2 . . . . .  fs) ,  where fi  is the relative frequency of  Ti, almost 
as obviously is also an eigenvector to r/d. Hence, if I/d is irrational, f l ,  f2 . . . . .  fs cannot 
all be rational (since the aid are integers) and this implies that S(9 r, infl) cannot contain 
any tiling, which is invariant under d linearly independent translations. So we deduce 
from (11): 

Coro l la ry  3. If  79 ~ S(~'n, infl~.k.~), 7 9 is not crystallographic (i.e., does not permit 
two linearly independent translations). 

Every tiling in S(~n, infln.k.~) can be trivially deflated, that is to say (see Theorem 1), 
it can be considered as a face-to-face tiling of  patches of type infl (/~). If this deflation is 
unique (literally, not only up to rigid motions), the tiling cannot be periodic at all. The 
deflations with respect to infl7.2 + and infl7.3 + are indeed all unique. So we get: 

Coro l l a ry4 .  / f79 E S(.7:'7, infl7.k.e) (k = 2 , 3 ; e  = + , - ) ,  7 9 does not permit any 
translation. In other words, these four species are aperiodic. 
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The Fourier transform of  a filing I defined by some inflation (see Definition 2) will 
show Dirac deltas if and only if the inflation factor r/is a PV number; i.e., if 1/ > 1, but 
laj(tl)l < 1 for all algebraic conjugates aj(rl) different from ~7 (see [1]). Therefore, in 
physics inflations whose factors are PV numbers are of  special interest�9 

Let K be the maximal real subfield of  the cyclotomic field Q ( ( )  (degree �89 
Denote by al :=  id, tr2 . . . . .  am the automorphisms of  K with 

O' j ( lZn ,k  ) : ( - -1 ) ( J  +l)(k+l) IZn,J k " 

/~n, j 

From algebraic number theory (see [2] and [3]) we know that if n is a prime, then the 
matrix 

L :=  (log(lai(#n.j)[) (2 _< i, j _< m) 

is regular. So 

(13) there is a PV number of  the form 

i2 i3 im 
17 = lZn.2 . ]~tn, 3 . . . . .  ~ n , m  (/J �9 Z ) ,  

which is also a unit in the ring Or of all algebraic integers of  K. 

Proof. The first statement comes from algebraic number theory. For the second state- 
ment we choose a real solution x of  

L x  

(1) 
- 1  

Approximating x by a rational vector x '  �9 Q,~-I close enough, we still have Lx' < 0 
(componentwise). Multiplication with a positive common denominator o f  the coeffi- 
cients yields an integer vector y with Ly < 0. Now we simply take i2, i3 . . . . .  im as 

Yl, Y2 . . . . .  Ym-l. [] 

Due to Minkowski 's theorem on lattice points in a centrally symmetric convex body 
we also have 

(14) a PV number 1 / �9  ~'~kml Z/z~ = Ok with 0 < I? _< p(m-l)/2. 

The following factors turn out to be PV numbers: #5�9 (=  r) ,  #7.3, # l  1.3- ~11.5, ]-Zll.4" 
]AI 1�9 "/2,13.6. Hence the corresponding species of  tilings (see Definition 2) based on 
5-fold, 7-fold, 11-fold, and 13-fold rotational symmetries and defined by inflation have 
Fourier transforms with a Z-module of  Dirac deltas. Of  course, the Fourier transform of  
any tiling P 6 S(~'n, infln.k.~) shows n-fold dihedral symmetry. 

I To be more precise: the Fourier transform of the distribution, which is the sum of the countably many 
Dirac deltas placed at the vertices of the tiling. 
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In contrast, for n = 19 we have 

10"2(/.s 5" O'3(/ZI9.k) 4 �9 O'5(/.Z19.k) 4] > 1 

for all k e {2, 3 . . . . .  9}. 2 So there cannot be a PV number according to (13) with only 
nonnegative exponents ij and therefore the inflation rules of  Corol lary  2 give no PV 
number as an inflation factor. 

4. Examples 

4.1. The Case n = 5 

Here we have two tiles A, B. For  the corresponding 7" see Fig. 4. The only poss ible  
inflation factor of  the form #5,k is 

1+.e5 
1 / =  #5.2 = 2 = r. 

In this case there are two possibi l i t ies  of  defining an inflation rule: The first one reversing 
and the second one preserving the arrows as in Fig. 4. We obtain the Penrose t i l ing i f  we 
use a "mixture"  of  both: A is replaced by infl2.+(A) and B by infl2._(B ). For  all three 
inflations we have the same inflation factor and the same substitution matrix (I ~)" 

T 

A 

B 

Tiles 

A 

infl2.- infl2.+ 

f f 

Fig. 4. Inflation rules for A, B; n ----- 5. 

2 Private communication by Walter Parry, Department of Mathematics, Ea.stem Michigan University. 19 is 
the smallest such prime. 
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4.2. The Case n = 6 

229 

Fig. 5. The triangular patterns for n = 6. 

Though n = 6 is not included in Theorem 1, a similar construction will work. Since 
n ---- 0 (mod 3) there are two triangular patterns ~ and T2, the second corresponding to 
G(kzr/6 + zr/12) as shown in Fig. 5. First we consider the factor r / =  #6,2 = ~/c~. There 
are (at least) two possibilities of  how to define an inflation (see Fig. 6). We consider 
especially infll. In the resulting tiling we observe the patches P and Q shown in Fig. 7. 
Their second inflations are completely composed of  patches of  the same type. Hence we 
obtain an equivalent tiling by the files P '  and Q'  defined by their inflation, which is also 
given in Fig. 7. Figure 8 shows a part of  the resulting global filing. 

For the inflation factor 0 =//,6.3 = 2 we obtain an inflation for three tiles as given by 
Fig. 9(a). For the patches R and S (Fig. 9(b)) the same procedure works as for P and Q 
above (Fig. 10). 

(a) (b) 

Fig. 6. (a) infll for ~ =/,/,6.2 and (b) infl2 for r/:/z6.2. 
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P 

infl~-(p) 
infl2 (Q') / 

X"X"} 
."X Y 

Q 

infl2(Q) 

p, A 

i n f l 2 ( P ~  

Fig. 7. The patches P, Q, P', Q' from infl] for//.6. 2. 

m m B I B I m l !  B I m m DIO.'Q.'O'.O:O'., 
~ ' 0 . ' 0 : 0 : 0 : C  
m m m m m m ~ a m m Eo.-o:o..-o:o-., 
~ "  - O:O,'O:O:G 
mIB / m m m m m m r i m  ~ .  O.'O:0:O~ 
B m m m / m m m m ! EO:O:O:O:0,~ 

~ ~ v ~ v ~ v l v ~  ,v~v~ ,vi Lv~ 

Fig. 8. AlargerpatchfromS({P',Q'},infl~), 
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A "A 

(a) (b) 

Fig. 9. An inflation for//,6,3, 
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sAX 

Fig. 10. Part of a global tiling by R' and S'. 

4.3. T h e  C a s e  n = 7 

For r/ = tz7.2 see Fig. 1 and the inflation matrices given in Section 3. For  r/ = /z7,3 
(which is a PV number) we have 

M(7-7, infl%3,+) = 

O 1 0 1 O )  
1 0 1 0 2 
0 1 1 1 1 
1 0 1 1 2 
0 2 1 2 2 
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and 

M(~'7, infl7,3,-) = 

0 0 1 1 O )  
1 1 0 0 2 
0 1 1 1 1 . 
1 1 0 1 2 
0 1 2 2 2 

K.-E Nischke and L. Danzer 

Fig. 11. A patch from S(~-7, infl7.3.+). 

Finally we give an impression of the species S(~'7, infl7,3.+), which is--after the Penrose 
species--the first to be called quasiperiodic (see Fig. 11). 

5. Proofs  o f  S ta tements  (1) - (11)  

In this section every variable that refers to a multiple of :r/n is considered as a residue 
class modulo n; especially, the index of our Gu is taken modulo n. 

Ad (1). The tangent t o / )  at x(-2~o) is given by 

(15) ~ sin~o - r/cos~o = sin(3~o). 

This equation is satisfied by x(~o) as well as by x(-~o). Hence (15) is also the equation 
of G (~o). 

Ad (2). Trivial trigonometry. 



A Construction of Inflation Rules Based on n-Fold Symmetry 233 

Ad (3). By (15) G(~0) has slope tg(tp), while G(0) is horizontal. 

Ad (4). 

(16) The point 

3 - 4(sin 2 ~p - sin 2 ~0 sin 2 X + sin2 ~( + sin~p sin X cos~p cos X) 

P (~P, X) := - 4  sin q9 sin(~p + Z ) sin 2( ) 
satisfies (15) and is symmetric  in cp and ~(, hence lies in G(~p) tq G(X ). 

By the assumption of  (4) G (~o) # G (X), whence 

{p(tp, X)} = G(~0) n G(X);  

analogously 

{p(tp, ~)}  = G(go) t"l G(Cr). 

Standard trigonometry yields 

(p(~0, X) - p(~0, ~))2  = 16 sin2(~o + r + X) sin2(x - ~0). 

Obviously, 

(17) p(cr r is :r-periodic in either variable. 

Ad (5). This is an immediate consequence of  (4). 

Ad (6). The angle of  the triangle A(u.~.x ) at Gx tq Gv equals (~ - v)(rr /n) .  The op- 
posite side on G u has length 41So Isx-o (by (4)). The other angles are (v - I.t)(Jr/n) and 
(~  - k ) ( n / n )  + rr, and the corresponding edge lengths now of  course equal 4[So Is~-# 
and 41s~, Is~+u-x. 

Ad (7). Given/z  e I :=  {0, 1, 2 . . . . .  n - 1 }, tz ~ 0, choose v from I,  different from 
#,  - 2 # ,  - � 8 9  (modn) ;  then there is exactly one ~. such that 

# + v + X ~ 0  (medn)  

and/z ,  v, ~. are pairwise distinct. So, by (5), G , ,  G~, Gz are three different segments 
meeting in p~,.~ = p~.x = px.g, where pu.~ stands for p ( # r r / n ,  on~n) ,  and in general 
we obtain 1/2(n - 3) such points on G~,. The only two segments of ~ not yet used are 
G-2u and G-~1/2)~. The former meets G~, in its tangent point to ~D; the tangent point of  
the latter is the endpoint of  G~, whose index is even (the one where the arrows come 
from). For ~t --: 0, the two special points coincide and there are 1/2(n - 1) triple points. 

Thus all points p, .~,  which are on only two of  our segments, lie on :D and we have 
proved the last statement of  (7), of  which the first is an immediate consequence. 

Ad (8). Consider the triangle A(/z, v, )~) in 7": either P , . -g-~+1 or Pu . -u -~ - i  is on the 
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half ray Pu.~Pu,~,. Since by (6)[Pu.v - Pu,x[ = 4ls~lsx-~ and Iv[ = 1 by (7), the proof  
of  (8) is completed. Clearly, 

(18) adjacent elementary triangles in 7" have opposite signs of  a .  

Ad (9). Because n ~ 0 (mod 3) we may assume 7 / r  or,/3. Any triangle A in 7" with 
angles or,/3, y satisfies 

[ A ( u ,  u + ce, ~ - / 3 )  

A =  I o r  

A ( # , t z  - m ~z + /3 ) .  

So we have to solve the congruences # + / z  4- ot + #+f l  = a (mod n). The unique 
solutions are 

a =t=oe 4-/3 / z - -  
3 

In case A is isosceles, i.e., ot = fl, this is one solution. Otherwise we get two triangles 
with different arrowings. Since there are altogether ((n + 1 )(n - 1)) /12 similarity classes 
of  triangles (arrows neglected) and (n - 1) /2 belong to the isosceles case, and since er 
varies from 1 to n - 1, we arrive at 

(19) 7" contains exactly 

(n - 1) 2 + 2  (n - 5 ) ( n  -- 1) 2 n - 2  (n 1) 2 
2 12 6 

triangles and exactly 

( n - 2 ) ( n -  1) 2 [ n - 1  
/ 

3 ----3 ~ 2 ) 
elementary triangles (a = 4-1). 

Ad (10). By (9) there are exactly two congruent triangles with the same a and the 
same arrowing. Since every triangle in T can be reflected in Go, they have to be mirror  
images of  each other and hence are dissected in the same way. 

Ad (11). 
(8) and 

(20) 

The first statement is included in (7), while the second is a consequence of  

Izk . 4 s l s j  = 4s~ (sj+l-k + Sj+3-k + ' ' "  + Sj+k-l)  (see(*))  

= 4s t (Sn- j - I+k  + Sn-j-3+k "Iv' '" "['-Sn-j-k+l). 

In case j --  k (mod2)  the first sum represents - -af te r  canceling terms like st + s - l - -  
a unique interval on every G u, in case j ~ k (mod 2) the second expression does. 
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6. Concluding Remarks and Open Questions 

6.1. 

and 

The whole construction can be extended to the cases 

n --  3, 6, 9 (mod 12) (with two different ~ ' s )  

n - -  2, 6, 10 (mod 12) (with lack of  some arrows), 

but then becomes more complicated.  The case n = 6 has been treated in Section 4. 

6.2. For  the construction of  the system ~ of  segments (see (7)) the deltoid ~D is not 
really necessary. One may instead begin with one segment satisfying (8) and then apply 
tr igonometry in order to meet (3)-(6).  A check of  all possible  combinations shows ~ to 
be unique (for (3)-(8)).  

6.3. There are other inflation rules for triangles with angles of  type vrc/n, especial ly 
for n = 7. One of  them (see Fig. 12) even permits  a perfect  1.m.r. (local matching rule). 
In fact the 29 vertex stars may serve as such. These filings are exotic also in that the 
relative frequencies of  the prototiles are not proport ional  to their areas. 

.Tr := 1/':, T4, 7s} 

<- 

= ~/.23h.s = 1 + /Z7.2 ~ 2,802 

i ~ )  

Fig. 12. The inflation for n = 7, which permits a local matching rule. 

6.4. We do not know whether any one of  the species given by Definition 2 does permit  
a l.m.r. In all cases where we have pursued this question it was easy to show that no 1.m.r. 
can exist. 
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6.5. It is very easy to check whether #'~ is minimal with respect to infl~.k., (see Corol- 
lary 1). In all cases for which we have done this (including n = 5, 7, 11 with all k and 
e), .T'n turned out to be minimal. However, we should not be surprised if some .T~ are 
not minimal with respect to some/Z~.k, especially if  n is not a prime. 

6.6. The inflation matrices M (.Tn, infln.t,+) seem to be symmetric, but we lack a proof 
for the general case. I f  M is symmetric, this implies that the relative frequencies of  
the prototiles are proportional to their volumes (areas). Since reversing arrows does not 
change areas this applies also to the case e = - .  

6.7. Whether a species S possesses a unique deflation is not so easily decided. For 
n _> 11 it is an open question. 

6.8. In the case n = 5 the most interesting species was a result of  our constructions 
only indirectly (see Section 4.1). It may well be that also for other pairs (n, k) "blending" 
of  infln,t,+ with infln.k.- yields species with special properties. 

6.9. The authors do not claim priority for statements (1)-(8); probably most of  these 
facts were already known to Jacob Bernoulli. 
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