
J. Astrophys. Astr. (1981) 2, 405–419
 
 
 
 
Equilibrium Configuration of the Magnetosphere of a Star
Loaded with Accreted Magnetized Mass
 
 
Yutaka Uchida and B. C. LOW* Tokyo Astronomical Observatory,
University of Tokyo, Mitaka, Tokyo, 181 Japan 
 
 
Received 1981 June 29; accepted 1981 October 14
 
 
 
 
Abstract. Equilibrium configuration of the magnetosphere of a star 
loaded by the gravitationally accreted plasma having its own magnetic 
field is investigated. Axisymmetry around the star’s magnetic axis is 
assumed for simplicity. It is seen that two distinct configurations appear 
for the cases of parallel and antiparallel magnetic field of the accreted 
plasma with respect to the star’s magnetic moment. If the external field 
is antiparallel to the star’s magnetic moment, the stellar magnetosphere is 
confined within a spherical region surrounded by the external field with a 
separatric surface between them. This is an extension of the case of the 
spherical accretion of non-magnetic plasma dealt with thus far in connec- 
tion with the mass accretion by the degenerate stars in X-ray binaries. 
It is noticed that the mass slides down along the field lines to the point 
closest to the star and is stratified hydrostatically in equilibrium to form a 
disk in the equatorial plane. The mass loading compresses the sphere 
as a whole in this case. If, on the other hand, the external field is parallel 
to the star’s magnetic moment, there appears a ring of magnetic neutral 
point in the equatorial plane. Polar field is open and extends to infinity 
while the low-latitude field is closed and faces the external field of oppo- 
site polarity across the neutral point. The increase of the loaded mass in 
this case causes a shrink of the closed field region, and the open polar 
flux is increased. Therefore, the transition between equilibria with small 
and large amount of the loaded mass requires the reconnection of magne- 
tic lines of force, and the reconnection of the flux through the magnetic 
neutral ring is proposed as the mechanism of the steady or the intermittent 
mass leakage like the ones postulated for some X-ray bursters.
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1. Introduction
 
The magnetosphere of a celestial object treated as a physical system is a useful con-
cept encountered in diverse astrophysical circumstances. Examples of it include the
magnetospheres of the earth and planets, the magnetospheres of the stars ranging
from that of the sun to that of degenerate objects such as white dwarfs and neutron
stars, and the ‘ magnetospheres ’ of the galaxies, i.e. galactic magnetic halos. The
magnetosphere embodies the physical interaction between the central object and its
environment through the magnetic field of the celestial body. Depending on the nature
of the central object and its environment, quite different physical situations exist.
For example the underlying effect in the case of earth’s magnetosphere is the inter
action between the slowly rotating earth and the directed flow of plasma in the solar
wind. Stellar magnetosphere may involve the trapping of the heated plasma (corona) 
and the control of the outflow of the plasma by magnetic field (stellar wind). In con-
trast, the magnetosphere of a neutron star in X-ray binaries embodies the interaction 
of the gravitationally accreted plasma with rapidly rotating star having a strong
magnetic field.

Although there have been discussions of the phenomena occurring in these
magnetospheres and a considerable progress has been achieved, only few attempts
have been made to obtain the self-consistent configurations of the global magnetic
field structure in them. It is needless to say, however, that the global model field is 
important because it provides the stage for those various physical processes and
may affect even the physical interpretation of the observed phenomena.

In the present paper we confine ourselves to the problem of the axisymmetric non-
rotating magnetosphere in equilibrium with the magnetized mass accreted by the
central gravitating star, as a first step to more complex problems. This situation
may correspond to a magnetic star embedded in a dense cloud of interstellar matter 
which has its own large-scale weaker magnetic field, as an example. In Section 2, 
we derive the basic equation describing the axisymmetric magnetosphere with loaded 
mass. A class of exact solutions are obtained and analysed in Section 3. In Section 
4, we give discussion and mention the implication and the application of the results 
obtained. 
 
 

2. Axisymmetric magnetostatic equilibrium
 
Consider an axisymmetric plasma surrounding a spherically symmetric star which
has the gravitational potential,
 

(1) 
 
where G is the gravitational constant, Μ is the mass of the star and r is the distance 
from the centre. The magnetostatic equilibrium of the plasma is governed by the
equation, 
 

(2) 
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where Β is the magnetic field, p  and ρ are the pressure and the density of the plasma, 
respectively. Β fulfils·∇ Β = 0, and p = ℛ ρ T, where T is the temperature and 
ℛ is the gas constant. The task at hand is to derive the solution of equation (2)
with these auxiliary relations*. 

Let us use the spherical coordinate (r, θ, φ) with the pole coinciding with the axis 
of symmetry. Then, the condition ∇ B = 0 and the assumption of axisymmetry 
imply that Β is expressible as
 

(3)
 
 
where Αφ is the φ−component of the magnetic vector potential. Note that the
magnetic field Β is defined in terms of two scalar functions, namely, Αφ and Βφ the 
current density j is given by
 
 
 
 

(4) 
 
 
Substituting equations (3) and (4) into equation (2) and considering the force balance 
in the azimuthal direction, we have
 

(5)
 
 
and this demands that
 (6)

 
where A = Αφ  r sin θ and Β=Βφ r sin θ (Lust and Schlüter 1954; Chandrasekhar
1956). 
 
 

(7) 
 
 

(8) 
 

*Comfort, Tandberg-Hanssen and Wu (1979) and Hundhansen and Zweibel (1981) have recently
dealt with this problem in a different approach. Approaches in these are ultimately equivalent to
ours, as they should be, but we believe that our formulation is more convenient in having insight
into the type of the problem to be dealt with in this paper. 

Α.–5
 

~ ~

·

By using this, the r and   -components of eqution (2) then take the form,

θ 

θ 
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respectively. Multiplying equation (7) by ∂A/r∂θ and equation (8) by ∂A/∂r and 
subtracting one from the other, we obtain
 

(9) 
 
 
 
The magnetic field is now expressed in terms of A and Β in the form,
 

(10) 
 
 
and the magnetic lines of force are given by integrating the line-of-force equation,
 

(11)
 
 
where dx/ds ≡ (dr/ds, rdθ, r sin θ dφ/ds) and s is the length measured along the
field line. If we look at this equation in a meridional plane, φ = const, it is easy to
see by using equations (10) and (11) that dA = 0 along the projection on this plane of
each field line. In other words, the curves A(r, θ ) = const represent the lines of
force projected on the rθ−plane.

Given A(r,θ), we may transform an arbitrary function of r and θ into a function
of r and A. We denote by ∂/∂ A r the partial derivative with respect to r in this
transformed system. This technique of transformation was used by Low (1975)
for a magnetostatic problem in the planar geometry.

Transforming p (r, θ) into p(r, A), we have from equation (9),
 
 

(12)
 
which may be integrated to obtain
 
 

(13)
 
 

In deriving equation (13) we made use of the ideal gas law p= ℛ   T and transformed
T (r, θ) into T (r, A). The integration is to be carried out with A held constant, r0 

 

is a constant and p(r0 ,  A) is a free function of A  arising from the integration with
respect to r. Substituting equation (12) into equations (7) and (8), we obtain 
 

(14)
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where
 

(15)
 
 
µ ≡ cos θ, and ∂/∂A is the partial differential operator with respect to A when r 
and A are taken to be independent variables.

In our approach to the magnetostatic problem, we must specify a priori the func- 
tional forms of Β (Α), p (r0 , A) and Τ (r, A). Then equation (13) fixes the functional 
form of p(r, A) and equation (14) poses a problem for A as an unknown. In the 
final step, the quantities B, p, ρ and T are expressed in terms of the spatial coordinates 
through the explicit solution A (r, θ). In principle, the functional forms of Β (A), 
p (r0 A) and Τ (r, A) should be determined in an unambiguous way from some 
initial dynamical state if we perform an integration of the equations of motion, 
mass conservation, energy conservation, and magnetic induction, which govern the 
dynamical evolution of the system. For the present, however, we shall confine 
ourselves to a simple approach in which we deal with the equation of the mechanical 
equilibrium by specifying the functional forms of Β (Α), p(r, A) and Τ (r, A) in a 
reasonable manner and investigate what magnetostatic states are generated by 
them. 
 
 

3. A class of exact solutions 
 
For a given set of field lines A = const, the functions Β (A) and p(r, A) describe
the amount of the φ-component of the magnetic field and the pressure along the 
individual field lines. Let us consider a simple case in which B ≡ 0 and
 

(16)
 
where Q (r) and S (r) are free functions. This example leads to analytic solutions 
and is best suited for demonstrating the basic behaviour of magnetostatic solutions. 
Substituting for p(r, A) in equation (14), we obtain the linear equation,
 

(17) 
 
 
The density and temperature are given from equations (12) and (16) as
 

(18)
 
 
And
 
 

(19)
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where A  is to be a solution of equation (17).

To solve equation (17), we obtain a particular solution of equation (17) and add 
it to the general solution of the homogeneous version of equation (17),
 

(20)
 
 
The particular solution A1 of equation (17) can be obtained by introducing the
transform A1 to u, 
 

(21)
 
Equation (17) then reduces to
 

(21)
 
 
which can be shown to have a particular solution of the form
 
 

(23)
 
 

Equation (20) is just the equation for a potential magnetic field. The complete
set of solutions to equation (20) corresponds to the set of multipole potential expan-
sion in an axisymmetric system (Marion 1965). For the purpose of this paper, we
consider the case where the solution of equation (20) is made of only the dipole and
the uniform field. This solution represents the situation of a stellar dipole field
superposed on a uniform interstellar magnetic field in vacuum. The solution of
equation (20) which we want is,
 

(24)
 
 
where C1 and C2 are constants. Direct substitution into equation (10) shows that
the terms C1/r. and C2 r2 represent a dipole and a uniform field, respectively. The
solution to equation (17) that we seek is then
 
 
 

(25)
 
 
where we define
 
 

(26)
 
 

~
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By substituting A into equation (10), we have,
 
 
 
 
 
 

(27)
 
 
 
 
 

(28)
 
where
 
 

(29)
 
 
The current density is given from equation (4) as
 

(30)
 
Other components of B and j all vanish.

Boundary conditions to be set are: (a) The distribution of the magnetic flux on the
stellar surface is not altered from the original one since the field lines are anchored
by the heavy stellar material at its surface,
 

(31)
 
where Bp is the field strength at the star’s magnetic pole, and (b) the field at infinity
is not affected by the mass-loading around the star,
 

(32)
 
These boundary conditions demand that
 
Ψ1 (r) converges to a finite value as r→ ∞, (35)
 
Ψ2 (r) converges to zero as r → ∞ (36) 
 
and 
 

(35) 
 
 
 

(36) 

~
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We finally have the magnetic field components fulfilling the boundary conditions as 
 

(37) 
 
 
 
 
 

(38) 
 

We discuss simple illustrative examples in the rest of this section in order to demon-
strate the properties of our solution. We first note that S (r) does not come into 
equation (17) for the magnetic vector potential, A The effect of the mass loading
comes only through Q (r). A simple interpretation of this may be that S (r) represents 
the background distribution of the mass in the absence of the magnetic field. S(r)
and — dS/dr are required to be positive so that the background pressure and density
are positive. The field-related portion of the pressure and the density, A Q (r) and
—(r2/GM) A dQ/dr, can be either positive or negative, corresponding to the enhance-
ment over, or depletion below the background. If we assume that the field-related 
component of the density is positive outside the boundaries between the stellar and 
the accreted field, dQ/dr should be negative outside these boundaries and vanish 
inside, if we want to consider the accreted mass piling up outside these boundaries,
deforming the magnetic field due to the effect of the gravity on it.

A simple example of Q(r) fulfilling these conditions may be given by connecting
a constant to an inverse-a power function smoothly across the boundary region as
 
 

(39)
 
 
and we may assume S(r) to be an inverse-a power function as
 

(40)
 
 
as an example, where rb is the distance to the boundary from the centre of the star, d 
is the thickness of the transition between internal and external regions across the 
boundary and Q0 and ; are constants. The sign of Q0 is chosen to make the addi- 
tional component of the density positive in the external region so that it represents 
the mass pile-up by accretion.

Two cases arise corresponding to the signs of B∞ relative to Bp which is assumed to
be positive and ⎪Bp⎪   ⎪B∞⎪, ⎪8π ψ1 (∞)⎪. For the convenience of computation,
we assume a ratio of ⎪ Bp ⎪ /⎪ B∞ ⎪ of the order of 103 ~ 104 in the following calculation.
Much larger ratio of ⎪ Bp ⎪ /⎪ B∞ ⎪ of degenerate star case is equally permissible except
that the calculation requires more time and accuracy.
 

>>
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Case A: B ∞ > 0
 
A neutral point in r -plane (actually a ring in three dimensions) appears at r = rn

and θ = π/2. In particular, for the case without mass loading (Q0=0, ψ1 = ψ2= 0),
rn turns out to be
 
 

(41)
 
 
For Q0 ≠ 0 (> 0 in this case to make the additional density positive), we solve an
equation,
 
 

(42)
 
to obtain rn. This equation comes from the condition that the coefficient of sin θ 
in Bθ vanishes. An iterative method is adopted in finding rb and rn by assuming
rb = (1 + ∊) rn, where ∊ is a small positive constant.

The field lines in the meridional plane for a typical set of parameter values are
given by integrating equation (11) with Br and Bθ given in equations (37) and (38),
and are shown in Figs 1(b), (c). This is to be compared with the case of no mass-
loading (Q0 = 0) as given in Fig. 1(a). It is seen that rn decreases as Q0 increases,
as expected from the gravitational effect of the additional mass introduced by nonzero
Q0. The density and the temperature distributions in rθ-plane are calculated from
equations (18) and (19) by using the solution for A and expressions (39) and (40) 
for Q and S. The distributions of A, p, and T in r, for given θ for the case of 
Fig. 1(c) are given in Fig. 2 as examples. It is seen that the present solution has a
concentration near the equatorial plane of the mass component due to Q, which 
interacts with the magnetic field.
 
Case B: B∞ < 0
 
A different type configuration appears in this case; singular points occur above the
poles. Now the coefficient of cos θ in Br has a zero point which in the mass-free
case occurs at r = r s0 and θ = 0 and π, where
 

(43)
 
 
In this case, it is seen from equation (25) that A changes sign from positive to negative
as r increases, and we set Q0 < 0 in. order to make the additional density in the region
r   rs,  positive. In order to obtain rs in the mass-loaded case, Q0 ≠ 0 (< 0),
we solve an. Equation
 

(44)
 
 

~

~
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Figure 1. Magnetic field configuration in the meridional plane for Case A with Bp = 3 X 103

and B∞ , = 1. (a) Q0 = 0, (b) Q0 = 1 x 10–2, (c) Q0 = 4 x 10–2. In this figure and in the
following, a and b in expressions (39) and (40) are both taken to be 4 and   ∈≡ (rblrn —1) is 0.2, to
show an example.
, 
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Figure 2 Distributions in r of (a) A, (b) the total density, ρ, and the density related to the
magnetic field, — (r2/GM) A dQ/dr, and (c) the temperature, T, for the case of Fig. I. (c), all
normalized to the values at the equatorial surface. Curves (a) through (e) in the figures are for 
θ= 90°, 67.5°, 45°, 22.5° and 0°, respectively. 
 
which comes from the condition that the coefficient of cos θ in Br vanishes. rs is
rs is obtained by the same iterative scheme as in Case A. Fig. 3(a) (Q0 = 0) and 3(b), (c)
(Q0 ≠ 0) show that the field configuration in Case B is very different from that in 
Case A. The distance to the singular point is seen to decrease with increasing Q0 
also in this case due to the shrink of the domain of the stellar field by mass-loading.

Fig. 4 shows the distributions of A ρ and T for the case of Fig. 3(c) as examples. 
The mass slides down along the field lines to the closest point from the star and 
distributes itself hydrostatically, and thus its distribution becomes disk-like in the 
equatorial plane in this case also. 

~

~
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Figure 3. The same as Fig. 1 for Case B, with Bp = 3 × 103 and B ∞ = 1; (a) Q0 = 0 
(b) Q0 = 1 × 10–2 and (c) Q0 = –4 × 10–2. 
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Figure 4.   The same as fig. 2 for Case B.

 
4. Discussion

 
We have demonstrated simple solutions for the axisymmetric magnetogravitational
equilibrium governed by equation (14) in order to obtain the global self-consistent
magnetic field configuration of a star loaded by the mass which is, for example,
accreted from dense (magnetic) cloud surrounding the star*. It is noteworthy that
the inclusion of the axisymmetric magnetic field alone results in the formation of a
disk-like density structure. Physically, this is due to the fact that the mass slides down
along the field lines to the closest possible points which are—in both Cases A and B
—in the equatorial plane. The density is stratified hydrostatically along each tube
of force with a scale height corresponding to the temperature given by equation (19),
and it has a concentration in the equatorial plane as seen from Figs 2 and 4.

Many models of ‘spherical accretion’ have been discussed (see review by Lamb
1979) in the context of mass accretion by neutron stars in X-ray binaries, but the
global solution of the self-consistent field was not dealt with in full. The configuration
 

*The situation may also be applicable to a degenerate magnetic star in the companion’s magnetic
atmosphere if the effect of both rotation of the degenerate star and revolution of the accreted gas
around the degenerate star be small. It is, however, likely that these effects are important in this
case and we intend to take into account these effects in later papers in certain approximate way.
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derived in Case B is related to the shielded-dipole type model argued by Midgley
and Davis (1962). They considered no external field, and sought the shielding current
layer which cuts off the effect of the internal field to zero beyond certain radius, 
representing the effect of the gas pressure of the external plasma. Models of the 
closed magnetosphere extended to include the effect of the accretion disk have been 
discussed after the introduction of the notion of the accretion disk by Pringle and 
Rees (1972) and Shakura and Sunyaev (1973). Inoue (1976) and Ghosh and Lamb 
(1978) have assumed the formation of the indentation of the field configuration at 
the equator due to the gravity effect on the disk material. It may be noted in this 
context, however, that the disk-like structure, at least in our solution, squeezes the 
stellar field as a whole rather than pushing into it like a sharp knife-edge as assumed
by them. 

In relation to the problem of the mass take-in into the stellar field region, it is often
suggested that the mass flows into the polar region. It may be pointed out, however,
that the singular openings above the poles are covered up by the field lines in the
presence of the external field, and this may affect the mass flow into the polar region
assumed in some models. Magnetic field lines should be reconnected in order to
allow the mass infall into the closed field region. An alternative mechanism, the 
Rayleigh-Taylor instability, is proposed to play a role in the process of the mass take- 
in (Arons and Lea 1976, Elsner and Lamb 1977, Baan 1977). In their models, how- 
ever, the unmagnetized plasma-blob falling across the star’s field will be resisted by
the inverse melon-seed effect and may lose the kinetic energy of the free fall.

An interesting situation occurs in our Case A in this context, namely, the field
line reconnection can take place at the magnetic neutral ring in the equatorial
plane in a very natural way. In this context, note the difference between Figs 1(a)
and 1(c) which is due to the difference in the loaded mass. The, open part of the stellar 
magnetic flux is larger in Fig. 1(c). No dynamical or time-dependent behaviour can be 
argued from the sequence of the equilibrium models, but it is clear that there should 
be some reconnection of the field if the state is to change from that of Fig. 1(a) 
to that of Fig. 1(c) as the result of the increase of the loaded mass. The mass loaded 
on the external tube of force around the equatorial plane can be transferred to the 
stellar field by reconnection and can fall to the stellar surface at the edge of the polar 
cap area along the field lines passing through the neutral point. The reconnected part 
of the stellar field is now added to the open part of the stellar field. Interchange 
instability in the neutral sheet region was proposed to play an important role in the 
case of solar flares (Uchida and Sakurai 1977, 1981). The same mechanism may be
relevant to the self-quenched mass leakage in a rapid burster type object (Lewin and 
Joss 1977). We consider this process in some more detail in a following paper. A
more detailed discussion in this direction requires the inclusion of the effect of 
rotation of both the central star and of the accreted mass. The rotation of the
disk introduces the pulling of the field lines into φ-direction and complicates the 
problem, but some part of the effects may be represented by B which we ignored
in the present paper for simplicity.
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