J. Astrophys. Astr. (1985) **6,** 137-144

Higher-Dimensional Vacuum Bianchi-Mixmaster Cosmologies

D. Lorenz-Petzold *Fakultät für Physik*, *Universität Konstanz*, *D-7750 Konstanz*, *FRG*

Received 1985 February 19; accepted 1985 May 28

Abstract. We derive some new exact 7-dimensional cosmological solutions $\vert R \otimes I \otimes N$, where $N = I$, II, VI₀, VII₀, VIII and IX are the various 3dimensional Bianchi models. The solutions given are higher-dimensional generalizations of the mixmaster cosmologies. There is a strong influence of the extra spaces *N*, which results in a fundamental change of the 3 dimensional cosmology.

Key words: cosmology, vacuum Bianchi type — cosmology, higher dimensional

1. Introduction

The topic of higher-dimensional cosmologies is of much interest in view of the modern Kaluza–Klein picture of the universe (Lee 1984). In this approach the basic world manifold is of type $M^n = R \otimes P^d \otimes Q^p$, where P^d , Q^p are some *d*, *D*-dimensional spaces. By taking $d = 3$, $D \ge 1$, the three-space P^3 should be identified with one of the isotropic Friedmann–Robertson–Walker (FRW) models or with one of their anisotropic generalizations of the various Bianchi types I–IX (Ryan & Shepley 1975; Kramer *et al.* 1980). The internal (or extra) space Q^D must be some higher-dimensional generalization of the Kaluza–Klein S^1 sphere. For instance, in $d = 11$ supergravity a natural candidate for Q^D is one of the various S^7 -spheres (Lorenz-Petzold 1985; Alvarez 1984; Fujii & Okada 1984; Gleiser, Rajpoot & Taylor 1984). However, there are an embarassingly large number of other solutions with other topologies (Bais, Nicolai & van Nieuwenhuizen 1983; Castellani, Romans & Warner 1984).

Recently, some $1 + 3 + 3 = 7$ -dimensional Bianchi–mixmaster cosmologies of types I \otimes IX (Furusawa & Hosoya 1984) and IX \otimes IX (Tomimatsu & Ishihara 1984) have been constructed on the basis of higher-dimensional gravity. In (1+3)-dimensions, type-I leads to the well-known Kasner solution while type-IX is known as the mixmaster model (Misner 1969; Barrow 1984). It is well known that the original mixmaster model shows a chaotic behaviour near the initial singularity (Barrow & Tipler 1979; Barrow 1981; 1982; 1984; Chernoff & Barrow 1983; Elskens 1983; Zardecki 1983; Lifshitz *et al.* 1983). However, there are also some controversial results concerning the possibility of 'mixing' (Doroshkevich & Novikov 1970a, b; MacCallum 1971; Doroshkevich, Lukash & Novikov 1971). It is now interesting to see that the influence of the extra dimensions may prevent the chaotic behaviour near the initial singularity (Furusawa & Hosoya 1984; Tomimatsu & Ishihara 1984).

138 *Lorenz-Petzold D.*

In view of this it becomes interesting to study some more general higher-dimensional cosmologies of type I \otimes *N*, where *N* denotes one of the Bianchi types I, II, VI₀, VII₀, VIII and IX with different topologies (The $(1 + 3)$ -dimensional type-VIII has been first considered by Lifshitz & Khalatnikov 1970; for types VI₀, VII₀ see Khalatnikov & Pokrovski 1972; Lukash 1974; Ruban 1978; Belinskii, Khalatnikov & Lifshitz 1982; Lorenz-Petzold 1984; Jantzen 1984). In this paper we solve the corresponding field equations in 7-dimensions.

2. Field equations and solutions

In choosing a local orthonormal basis σ^{μ} , we can put the metric on $|R \otimes I \otimes N$ in the form

$$
ds^2 = \eta_{\mu\nu}\sigma^{\nu}\sigma^{\mu},\tag{1a}
$$

where $\eta_{\mu\nu} = (-1, 1, \dots, 1)$ is the seven-dimensional Minkowski metric tensor. We have

$$
\sigma^0 = \omega^0 = dt, \quad \sigma^i = r_i \omega^i, \quad \sigma^j = R_j \omega^j \text{ (no sum)}, \tag{1b}
$$

where $r_i = r_i(t)$ are the cosmic scale functions on type-I, $R_i = R_i(t)$ are defined on type-*N*, ω^i — dx^{*i*}, $\omega^j(i,j = 1, 2, 3)$ are time-independent differential forms for the Bianchi types I, II, VI₀, VI₀, VIII and IX (see Kramer *et al.* 1980). The corresponding vacuum field equations to be solved are given by

$$
(\ln r_i)'' = 0,\tag{2a}
$$

$$
(\ln R_i^2)'' = r^6 \left[(n_j R_j^2 - n_k R_k^2)^2 - n_i^2 R_i^4 \right],\tag{2b}
$$

$$
9hH + h_1h_2 + h_1h_3 + h_2h_3 + H_1H_2 + H_1H_3 + H_2H_3
$$

= $(1/4R^6)[n_1^2R_1^4 + n_2^2R_2^4 + n_3^2R_3^4$
 $- 2{n_1n_2(R_1R_2)^2 + n_1n_3(R_1R_3)^2 + n_2n_3(R_2R_3)^2}].$ (2c)

where $r_i = ri(t)$, $R_i = R_i(t)$, $h_i = (\ln r_i)$, $H_i = (\ln R_i)$, $3h = \sum h_i$, $3H = \sum H_i$, $r^3 = r_1r_2r_3$, $R^3 = R_1 R_2 R_3$, $dt = (rR)^3 d\eta$, () = d/d*t*, ()' = d/d*n*, *n_i* are the structure constants of the various Bianchi types given by

and *i, j, k* are in cyclic order.

The general solutions of Equation (2a) are of the Kasner-type:

$$
r_i = r_{i0} \exp(k_i \eta), \quad \Sigma k_i = k,\tag{3}
$$

where r_{i0} , k_i , $k =$ const. We obtain the following results: (1) $N = I$:

$$
r_i = \tilde{r}_{i0} t^{p_i}, \quad R_i = \tilde{R}_{i0} t^{q_i}, \quad \tilde{r}_{i0}, \quad \tilde{R}_{i0} = \text{const}, \tag{4a}
$$

$$
[\Sigma(p_i + q_i)]^2 = \Sigma(p_i^2 + q_i^2) = 1, p_i, q_i = \text{const.}
$$
 (4b)

This is the seven-dimensional generalization of the Kasner-solution in four dimensions. Equation (2b) yields $R_i = R_{i0}$ exp ($K_i \eta$) and (4a) is obtained by setting $p_i = k_i / (k + K)$, $q_i = K_i / (k + K)$, where $\Sigma K_i = K$. Our solution (4a) turns out to be identical with the IX \otimes IX solution (Tomimatsu & Ishihara 1984) when the spatial curvature terms of the right-hand side of (2b) are ineffective, which is characteristic for the original Bianchi type-IX mixmaster cosmology.

(2)
$$
N = \Pi
$$
:

$$
R_1 R_2 = R_{12} \exp (p\eta), \quad R_1 R_3 = R_{13} \exp (q\eta), \tag{5a}
$$

$$
r^3 = a \exp(k\eta),\tag{5b}
$$

$$
\tilde{H}_1^2 + k \tilde{H}_1 - b^2 + (1/4)r^6 R_1^4 = 0,
$$
\n(5c)

$$
2b^2 = k^2 + 2[k(p+q) + pq] - \Sigma k_i^2,\tag{5d}
$$

where R_{12} , R_{13} , p , q , $a =$ const, and $H_i = (\ln R_i)'$. We obtain two different kinds of solutions:

(i) the general solution with $k = 0$;

$$
R_1^2 = (2b/a)(\cosh 2b\eta)^{-1},
$$

\n
$$
R_2^2 = \tilde{R}_2 \exp (2p\eta) (\cosh 2b\eta)^2,
$$

\n
$$
R_3^2 = \tilde{R}_3 \exp (2q\eta) (\cosh 2b\eta)^2,
$$

\n
$$
r_i = \tilde{r}_{i0} \exp (k_i\eta),
$$

\n(6a)

(ii) the special power-type solution

$$
r_{i} = \tilde{r}_{i0}t^{p_{i}}, \quad R_{i} = \tilde{R}_{i0}t^{q_{i}},
$$

\n
$$
p_{i} = \frac{2k_{i}}{2(p+q)+3k}, \quad q_{1} = \frac{-k}{2(p+q)+3k},
$$

\n
$$
q_{2} = \frac{2p+k}{2(p+q)+3k}, \quad q_{3} = \frac{2q+k}{2(p+q)+3k},
$$

\n
$$
a^{2}c^{4} = 4b^{2} + k^{2},
$$
\n(6b)

where \widetilde{R}_2 , \widetilde{R}_3 , \widetilde{R}_{i0} , $c = \text{const.}$

Our solution (6a) is the generalization of the vacuum Bianchi type-II solution in four dimensions first given by Taub (1951) (see also Lorenz 1980a). Our solution (6b) obeys the relation $q_1 + 1 = q_2 + q_3$, from which it follows that no Kasner conditions are satisfied if $k \neq 0$.

We now turn to the spaces I \otimes VI₀ and I \otimes VII₀. In considering first the LRS case (see Ellis & MacCallum 1969) $R = R_1 = R_2$, $S = R_3$, the Bianchi type-VII₀ model reduces to a special Bianchi type-I model. We thus consider only the Bianchi type- VI_0 space. The corresponding field equations to be solved are

(3) $N = VI_0$:

$$
(\ln R^2)'' = 0,\t(7a)
$$

$$
(\ln S^2)'' - 4r_6 R_4 = 0. \tag{7b}
$$

From (7a) we obtain the solution

$$
R^2 = \exp b \eta,\tag{8a}
$$

where $b =$ const, and (7 b) gives now

$$
(\ln S^2)^{\prime\prime} = 4\alpha^2 \exp(2(k+b)\eta) \tag{8b}
$$

It can be shown that the case $k + b = 0$ is not compatible with Equation (2c). For $k + b \neq 0$ it is more convenient to consider Equation (2c) instead of (8b). The field equation to be solved is given by

$$
\hat{H}_3 = [1/(b+k)]r^6R^4 - [1/4(b+k)][b(b+4k) - 2(\Sigma k_i^2 - k^2)],
$$
\n(9)

where $\tilde{H}_3 = (\text{In } S)$ ², () = $d/d\eta$. The solutions can now be easily completed in terms of the generalized Ellis-MacCallum (1969) parameter $u = r^3 R^2$:

$$
R^{2} = ur^{-3},
$$

\n
$$
S^{2} = u^{-A^{2}/[2(b+k)]} \exp((a^{2}/(b+k))u^{2},
$$

\n
$$
r_{i} = r_{i0} (ur^{-3})^{k_{i}/b},
$$

\n
$$
r^{3} = a \exp k\eta,
$$
 (10)

$$
A^{2} = b(b + 4k) - 2(\sum k_{i}^{2} - k^{2}).
$$
 (11)

By setting $k_i = 0$, $a = b = 1$, we rediscover the $(1 + 3)$ dimensional solution first given by Ellis & MacCallum (1969) (Note that this solution is incorrectly given by Kramer *et al.* 1980; in Ellis & MacCallum (1969) q_0 should be replaced by q_0^2).

We next consider the non-LRS case $R_1 \neq R_2 \neq R_3$. Introducing the new variables $u_i = u_i(\eta)$ by

$$
R_i = \exp u_i, \quad u = 2(u_1 - u_2), \tag{12}
$$

the corresponding field equations can be decoupled and partially integrated to give

$$
u_1 + u_2 = b(\eta - \eta_0), \tag{13a}
$$

$$
u'' + 4a^2 \exp\left[2(k+b)\eta - 2b\eta_0\right] \sinh u = 0,\tag{13b}
$$

$$
u'_3(k+b) = -u'_1u'_2 - kb + \frac{1}{2}(\sum k_i^2 - k^2) + \frac{1}{4}[\exp 2u_1 - \delta \exp 2u_2]^2, \qquad (13c)
$$

where *b*, η_0 = const. and $\delta = (n_2) = -$ (VI₀), $\delta = 1$ (VII0). After solving Equation (13b) to give $u = u(\eta)$ the most general Bianchi type-VI₀ and type-VII₀ solutions would arise. We will now show how the solutions can be expressed in terms of a particular form of the third Painleve transcendents (Ince 1956). Introducing the time variable *ζ* by

$$
\zeta = \frac{2a}{k+b} \exp\left[(k+b)\eta - b\eta_0\right],\tag{14}
$$

can transform the system (13) to obtain

$$
\ddot{u} + \frac{1}{\zeta} \dot{u} + \sinh u = 0,
$$
\n(15a)\n
$$
u_1 = \ln \left[\frac{k+b}{2a} \zeta \exp(-k\eta_0) \right]^{b/2(k+b)} + \frac{u}{4},
$$
\n(15b)

$$
u_2 = \ln \left[\frac{k+b}{2a} \zeta \exp(-k\eta_0) \right]^{b/2(k+b)} - \frac{u}{4},
$$
 (15c)

$$
\dot{u}_3 = \frac{\zeta}{16} (t^2 - 4b^2) - \frac{1}{(k+b)^2 \zeta} \left[kb + \frac{1}{2} (k^2 - \Sigma k_i^2) \right] + \frac{1}{4a(k+b)} \left[\frac{(k+b)}{2a} \zeta \right]^{(b-k)/(b+k)} \left[\cosh u + \delta \right] \exp \left[-\frac{2kb\eta_0}{k+b} \right],
$$
\n(15d)

where () = $d/C \, \zeta$ In the limit $k = k_i = 0$ we rediscover the field equations first given by Belinskii & Khalatnikov (1969) (for type-IX) and Lifshitz & Khalatnikov (1970) (for type-VIII) and later by Khalatnikov & Pokrovski (1972). The connection with the Bianchi type-VI₀ and type-VII₀ spaces has been first observed by Lorenz-Petzold (1984) and independently by Jantzen (1984) (Note that there are some errors in the papers of Belinskii & Khalatnikov, Lifshitz & Khalatnikov, and Lorenz-Petzold).

If we put

$$
w = \exp u, \quad z = \frac{\zeta^2}{4}, \quad w = w(z), \quad (\quad)' = d/dz,
$$
 (16)

Equation (15a) becomes

$$
w'' = \frac{w'^2}{w} - \frac{1}{z} \bigg[w' + \frac{1}{2} (w^2 - 1) \bigg].
$$
 (17)

This equation is a particular form of the nonlinear equation of second order which defines the third Painleve transcendent (Ince 1956). The Bianchi types-VI₀, VII₀ solutions are completed by Equations (15b), (15c) and (15d) to give $u_i = u_i$ (w(*z*)). A solution of Equation (15a) in terms of elliptic function was given by Khalatnikov & Pokrovski (1972). The scale functions r_i are given by

$$
r_i = r_{i0} \left[\frac{k+b}{2a} \zeta \exp(b\eta_0) \right]^{k_i(k+b)} \tag{18}
$$

We finally consider the spaces I \otimes VIII and I \otimes IX. By setting $R = R_1 = R_2, S = R_3$, $g = RS$, $f = (RV, d = n_3, z = S^2)$, the field equations (2a-2c) can be decoupled to give (4) *N* = VIII, IX: (i) $k = 0$:

$$
\ddot{g} + \delta a^2 g = 0,\tag{19a}
$$

$$
z'^2 - 2[2(g^2 + \delta a^2 g^2) - \Sigma k_i^2]z^2 + a^2 z^4 = 0,
$$
 (19b)

where d $\tau = g d\eta$, ()'. = d / d τ , ()' =d/d η and (ii) $k \neq 0$:

$$
f'' = \frac{f'^2}{f} - \frac{1}{\zeta} (f' + \delta c^2 f^2),
$$
 (20a)

$$
z'^2 + \frac{1}{\zeta}zz' + \frac{c^2}{2}z^4 + 2[(\ln f)' - \frac{1}{2(k\zeta)^2}(k^2 - \Sigma k_i^2)]z^2 = 0,
$$
 (20b)

where $\zeta = \exp(2k\eta)$, $d\zeta = 2k\zeta d\eta$, ()' = d/d ζ . From Equation (19a) we obtain the solutions

$$
g = A \sin (a\tau), \quad \delta = 1,
$$
 (21a)

$$
g = A \sinh (a\tau), \quad \delta = -1,
$$
 (21b)

where $A = \text{const.}$ It is now an easy matter to solve Equation (19b) to give $S = S(\tau)$. The results are

$$
R^{2} = (A^{2}a/2D)\sin^{2}(a\tau)\cosh\left[\ln\left(\tan\frac{a}{2}\tau\right)^{2D/Aa}\right],
$$

\n
$$
S^{2} = (2D/a)\cosh^{-1}\left[\ln\left(\tan\frac{a}{2}\tau\right)^{2D/Aa}\right],
$$

\n
$$
r_{i} = r_{i0}\left(\tan\frac{a}{2}\tau\right)^{k_{i}/Aa}, \qquad \text{type-VIII}, \qquad (22a)
$$

\n
$$
R^{2} = (A^{2}a/2D)\sinh^{2}(a\tau)\cosh\left[\ln\left(\tanh\frac{a}{2}\tau\right)^{2D/Aa}\right],
$$

\n
$$
S^{2} = (2D/a)\cosh^{-1}\left[\ln\left(\tanh\frac{a}{2}\tau\right)^{2D/Aa}\right],
$$

\n
$$
r_{i} = r_{i0}\left(\tanh\frac{a}{2}\tau\right)^{k_{i}/Aa}, \qquad \text{type-IX}, \qquad (22b)
$$

where

$$
2D^2 = 2A^2a^2 - \Sigma k_i^2.
$$

Our solutions (22) are the generalizations of the $(1 + 3)$ -dimensional vacuum solutions first given by Taub (1951) (only the type-IX solution was given explicitly by Taub; for type-VIII see Lorenz 1980b). No such explicit solutions are possible in the more general case $k \neq 0$. Equation (20a) defines a special kind of a third Painleve transcendental function (Ince 1956) $f = f(\zeta)$, which also determines $z = z(\zeta)$ *via* Equation (20b).

3. Conclusions

We have given a complete discussion of the higher-dimensional vacuum Bianchimixmaster cosmologies of types $|R \otimes I \otimes N$, $N = I$, II, VI₀, VII₀, VIII, IX. Only the

Kasner solution I \otimes I (4) was known (Tomimatsu & Ishihara 1984). There is a strong influence of the spaces *N* on the Bianchi type-I model and vice versa. This can be seen explicitly by our new solutions of types-II (Equation 6b), VI_0 (Equations 10, 15), VII_0 (Equation 15), VIII and IX (Equation 20). However, due to the great numbers of solutions it remains a problem for the near future to discuss our solutions in adequate detail. A next step into some more general cosmologies would be to construct some perfect fluid solutions. It is also worth investigating the mixmaster cosmologies of type- $N \otimes N$ (besides the IX \otimes IX model of Tomimatsu & Ishihara 1984).

References

- Alvarez, E. 1984, *Phys. Rev*., **D30,** 1394; Errata: 1984, *Phys. Rev*., **D30,** 2695.
- Bais, F. Α., Nicolai, Η., van Nieuwenhuizen, P. 1983, *Nucl. Phys*., **B288,** 333.
- Barrow, J. D. 1981, *Phys. Rev. Lett*., **46,** 963; Errata: 1981, *Phys. Rev. Lett*., **46,** 1436.
- Barrow, J. D. 1982, *Phys. Rep*., **85,** 1.
- Barrow, J. D. 1984, in *Classical General Relativity*, Eds W. B. Bonnor, J. Ν. Isham & Μ. Α. Η. MacCallum, Cambridge Univ. Press.
- Barrow, J. D., Tipler, F. J. 1979, *Phys. Rep*., **56,** 372.
- Belinskii, V. A, Khalatnikov, I. M., Lifshitz, E. M. 1982, *Adv. Phys*., **31,** 639.
- Castellani, L., Romans, L. J., Warner, N. P. 1984, *Ann. Phys*., New York, **157,** 394.
- Chernoff, D. F., Barrow, J. D. 1983, *Phys. Rev. Lett*., **50**, 134.
- Doroshkevich, A. G, Lukash, V. N., Novikov, I. D. 1971, *Zh. Eksp. Teor. Fiz*., **60,**1201; 1971, *Sov. Phys. JETP*, **33,** 649.
- Doroshkevich, A. G., Novikov, I. D. 1970a, *Astr. Zh*., **47,** 948.
- Doroshkevich, A. G., Novikov, I. D. 1970b, USSR Academy of Sciences, Institute of Applied Mathematics, Moscow, Preprint. No. 20.
- Ellis, G. F. R., MacCallum, M. A. H. 1969, *Commun. Math. Phys*., **12,** 108.
- Elskens, Y. 1983, *Phys. Rev*, **D28,** 1033.
- Fujii, Y., Okada, Y. 1984, Univ, Tokyo, Preprint UT-Komaba 84-18.
- Furusawa, T., Hosoya, A. 1984, Hiroshima Univ. Preprint R R K 84-20.; 1985, *Prog. Theor. Phys*., **73,** 467.
- Gleiser, M., Rajpoot, S., Taylor, J. G. 1984, *Phys. Rev*., **30D,** 756.
- Ince, E. L. 1956, *Ordinary Differenial Equations*, Dover, New York.
- Jantzen, R. T. 1984, in *Cosmology of the Early Universe,* Eds L. Z. Fang & R. Ruffini, World Scientific, Singapore.
- Khalatnikov, I. M., Pokrovski, V. L. 1972, in *Magic without Magic*, Ed. J. R. Klauder, Freeman, San Francisco, p. 289.
- Kramer, D., Stephani, H., MacCallum, M. A. H., Herlt, E. 1980, *Exact Solutions of Einstein's Field Equations,* Cambridge Univ. Press.
- Lee, H. C. 1984, *An Introduction to Kluza-Klein Theories*, World Scientific, Singapore.
- Lifshitz, E. M., Khalatnikov, I. M. 1970, *Pisma Zh. Eksp. Teor. Fiz*., **11,** 200; 1970, *J ETP Lett*., **11,** 123.
- Lifshitz, E. M., Khalatnikov, I. M.s Sinai, Ya. G., Khanin, K. M., Shchur, L. N. 1983, *Pisma Zh. Eksp. Teor. Fiz*., **38,** 79; 1983, *JETP Lett*., **38,** 91.
- Lorenz, D. 1980a, *Phys. Lett*., **79A,** 19.
- Lorenz, D. 1980b, *Phys. Rev*., **22D,** 1848.
- Lorenz-Petzold, D. 1984, *Acta phys. Pol*., **B15,** 117.
- Lorenz-Petzold, D. 1985, *Phys. Lett.*, **151B,** 105.
- Lukash, V. N. 1974, *Astr. Zh*., **51,** 281;1974, *Sov. Astr*., **18,** 164.
- MacCallum, M. A. H. 1971, *Nature*, **29,** 112.
- Misner, C. W. 1969, *Phys. Rev. Lett*, **22,** 1071.
- Ruban, V. A. 1978, Leningrad Institute of Nuclear Physics, B. P. Konstantinova, Preprint No. 411.
- Ryan, Jr. Μ. P., Shepley, L. C. 1975, *Homogeneous Relativistic Cosmologies*, Princeton Univ. Press.
- Taub, A. H. 1951, *Ann. Math*., **53,** 472.
- Tomimatsu, Α., Ishihara, H. 1984, Hiroshima Univ. Preprint R R K 84-20.
- Zardecki, A. 1983, *Phys. Rev*., **D28,** 1235.