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Abstract. We derive some new exact 7-dimensional cosmological solutions 
⎜R  I  N, where N = I, II, VI0, VII0, VIII and IX are the various 3- 
dimensional Bianchi models. The solutions given are higher-dimensional 
generalizations of the mixmaster cosmologies. There is a strong influence of 
the extra spaces N, which results in a fundamental change of the 3- 
dimensional cosmology. 
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1. Introduction 
 
The topic of higher-dimensional cosmologies is of much interest in view of the modern 
Kaluza–Klein picture of the universe (Lee 1984). In this approach the basic world 
manifold is of type Mn =⎜R  Pd  QD, where Pd, QD are some d, D-dimensional
spaces. By taking d = 3, D     1, the three-space P3 should be identified with one of the 
isotropic Friedmann–Robertson–Walker (FRW) models or with one of their aniso- 
tropic generalizations of the various Bianchi types I–IX (Ryan & Shepley 1975; Kramer 
et al. 1980). The internal (or extra) space QD must be some higher-dimensional 
generalization of the Kaluza–Klein S1 sphere. For instance, in d = 11 supergravity a 
natural candidate for QD is one of the various S7-spheres (Lorenz-Petzold 1985; Alvarez 
1984; Fujii & Okada 1984; Gleiser, Rajpoot & Taylor 1984). However, there are an 
embarassingly large number of other solutions with other topologies (Bais, Nicolai & 
van Nieuwenhuizen 1983; Castellani, Romans & Warner 1984).

Recently, some 1 + 3 + 3 = 7-dimensional Bianchi–mixmaster cosmologies of types 
I  IX (Furusawa & Hosoya 1984) and IX  IX (Tomimatsu & Ishihara 1984) have 
been constructed on the basis of higher-dimensional gravity. In (1+3)-dimensions, 
type-I leads to the well-known Kasner solution while type-IX is known as the 
mixmaster model (Misner 1969; Barrow 1984). It is well known that the original 
mixmaster model shows a chaotic behaviour near the initial singularity (Barrow & 
Tipler 1979; Barrow 1981; 1982; 1984; Chernoff & Barrow 1983; Elskens 1983; Zardecki 
1983; Lifshitz et al. 1983). However, there are also some controversial results concerning 
the possibility of ‘mixing’ (Doroshkevich & Novikov 1970a, b; MacCallum 
1971; Doroshkevich, Lukash & Novikov 1971). It is now interesting to see that the 
influence of the extra dimensions may prevent the chaotic behaviour near the initial 
singularity (Furusawa & Hosoya 1984; Tomimatsu & Ishihara 1984). 
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In view of this it becomes interesting to study some more general higher-dimensional 
cosmologies of type I  N, where Ν denotes one of the Bianchi types I, II, VI0, VII0, 
VIII and IX with different topologies (The (1 + 3)-dimensional type-VIII has been first 
considered by Lifshitz & Khalatnikov 1970; for types VI0, VII0 see Khalatnikov & 
Pokrovski 1972; Lukash 1974; Ruban 1978; Belinskii, Khalatnikov & Lifshitz 1982; 
Lorenz-Petzold 1984; Jantzen 1984). In this paper we solve the corresponding field 
equations in 7-dimensions.  
 
 

2. Field equations and solutions 
 
In choosing a local orthonormal basis σµ, we can put the metric on ⎜ R       I     N in the
form  
 

(1a) 
 
where ηµν = (– 1, 1, . ., 1) is the seven-dimensional Minkowski metric tensor. We have 
 

(1b) 
 
where ri = ri(t) are the cosmic scale functions on type-I, Ri = Ri(t) are defined on 
type-N, ωi — dxi, ωj(i,j = 1, 2, 3) are time-independent differential forms for the 
Bianchi types I, II, VI0, VII0, VIII and IX (see Kramer et al. 1980). The corresponding 
vacuum field equations to be solved are given by
 

(2a) 
 

(2b) 
 
 
 

(2c)  
 
where ri = ri(t), Ri = Ri(t), hi = (lnri),. Hi = (lnRi)., 3h = Σhi, 3H = ΣΗi, r3 = r1r2r3, 
R3 = R1R2R3, dt = (rR)3 dη, ( ) = d/dt, ( )' = d/dη, ni are the structure constants 
of the various Bianchi types given by
 

 
and i, j, k are in cyclic order. 
The general solutions of Equation (2a) are of the Kasner-type: 
 

(3) 

    

.

D.
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where ri0, ki, k = const. We obtain the following results: 
 

(1) N = I:  
(4a)

 

(4b)
 
This is the seven-dimensional generalization of the Kasner-solution in four dimensions. 
Equation (2b) yields Ri = Ri0 exp (Κiη) and (4a) is obtained by setting pi = ki ⎜ (k + K), 
qi = Ki /(k +K), where ΣΚi = Κ. Our solution (4a) turns out to be identical with the 
IX  IX solution (Tomimatsu & Ishihara 1984) when the spatial curvature terms of the 
right-hand side of (2b) are ineffective, which is characteristic for the original Bianchi 
type-IX mixmaster cosmology. 
 
(2) Ν = II: 
 

(5a) 

(5b) 
(5c) 

(5d) 
 
where R12, R13, p, q, a = const, and Hi = (In Ri )'. We obtain two different kinds of 
solutions: 
 

(i) the general solution with k = 0; 
 
 
 
 
 

(6a) 
 

(ii) the special power-type solution 
 
 
 
 
 
 
 
 
 
 

(6b) 
 
where R2, R3, Ri0, c = const.  

Our solution (6a) is the generalization of the vacuum Bianchi type-II solution in four 
dimensions first given by Taub (1951) (see also Lorenz 1980a). Our solution (6b) obeys 
the relation q1 +1 = q2+ q3, from which it follows that no Kasner conditions are 
satisfied if k ≠ 0.  

We now turn to the spaces I  VI0 and I   VII0. In considering first the LRS case 
(see Ellis & MacCallum 1969) R = R1 = R2, S = R3, the Bianchi type-VII0 model 
reduces to a special Bianchi type-I model. We thus consider only the Bianchi type-VI0  

~~ ~
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space. The corresponding field equations to be solved are
 

(3)  N = VI0: 
 

(ln R2)''  = 0, (7a) 
(ln S2)''  – 4r6 R4 = 0. (7b) 

 
From (7a) we obtain the solution 
 

R2 = exp bη, (8a)
 
where b = const, and (7 b) gives now 
 

(ln S2)” = 4α2 exp2(k + b)η  (8b) 
 
It can be shown that the case k + b = 0 is not compatible with Equation (2c). For 
k + b ≠ 0 it is more convenient to consider Equation (2c) instead of (8b). The field 
equation to be solved is given by  
 

(9) 
 

where H3 = (In S)’, ( ) = d/dη. The solutions can now be easily completed in terms of 
the generalized Ellis-MacCallum (1969) parameter u = r3R2:  
 
 
 
 
 
 

(10) 
where  
 

(11) 
 

By setting ki = 0, a = b = 1, we rediscover the (1 + 3) dimensional solution first given 
by Ellis & MacCallum (1969) (Note that this solution is incorrectly given by Kramer et 
al. 1980; in Ellis & MacCallum (1969) q0 should be replaced by q2).  

We next consider the non-LRS case R1 ≠ R2 ≠ R3. Introducing the new variables 
ui = ui(η) by  
 

(12)  
the corresponding field equations can be decoupled and partially integrated to give 
 

(13a) 

(13b) 

(13c) 
 

where b, η0 = const. and δ = (n ) = – (VI0), δ = 1 (VII0). After solving Equation
(13b)  to give u = ιι(η) the most general Bianchi type-VI0 and type-VII0 solutions would 
arise. We will now show how the solutions can be expressed in terms of a particular form 
of the third Painleve transcendents (Ince 1956). Introducing the time variable ζ by 
 

(14) 

0

2

~
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can transform the system (13) to obtain 
 

(15a)

 

(15b)
 

 
(15c) 

 

 

(15d) 

 

 

 
 
where ( )·= d/C.ζ In the limit k = ki = 0 we rediscover the field equations first given 
by Belinskii & Khalatnikov (1969) (for type-IX) and Lifshitz & Khalatnikov (1970) (for 
type-VIII) and later by Khalatnikov & Pokrovski (1972). The connection with the 
Bianchi type-VI0 and type-VII0 spaces has been first observed by Lorenz-Petzold (1984) 
and independently by Jantzen (1984) (Note that there are some errors in the papers of 
Belinskii & Khalatnikov, Lifshitz & Khalatnikov, and Lorenz-Petzold).

If we put 
 

(16) 
 
Equation (15a) becomes  
 

(17) 
 
This equation is a particular form of the nonlinear equation of second order which 
defines the third Painleve transcendent (Ince 1956). The Bianchi types-VI0, VII0 
solutions are completed by Equations (15b), (15c) and (15d) to give ui  = ui (w(z)). A 
solution of Equation (15a) in terms of elliptic function was given by Khalatnikov & 
Pokrovski (1972). The scale functions ri are given by 
 

(18) 
 

We finally consider the spaces I  VIII and I  IX. By setting R = R1 = R2, S = R3,
g = RS, f = (RV, d = n3, z = S2, the field equations (2a-2c) can be decoupled to give 
 
(4) N = VIII, IX: 
 
(i) k = 0: 

 

(19a) 

(19b) 
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where d τ = gdη, ( )’. = d / dτ, ( )’ =d/dη and
 

(ii) k ≠ 0: 
 

(20a) 
 

(20b)  
 

where ζ = exp (2kη), dζ = 2kζdη, ( )’ = d/dζ. From Equation (19a) we obtain the 
solutions 
 

(21a) 

(21b) 
 

where A = const. It is now an easy matter to solve Equation (19b) to give S = S(τ). The 
results are  
 

 

 

 

(22a)

 

 
 

 

(22b)

where 
 
 
 

Our solutions (22) are the generalizations of the (1 + 3)-dimensional vacuum 
solutions first given by Taub (1951) (only the type-IX solution was given explicitly by 
Taub; for type-VIII see Lorenz 1980b). No such explicit solutions are possible in the 
more general case k ≠ 0. Equation (20a) defines a special kind of a third Painleve 
transcendental function (Ince 1956) f = f(ζ), which also determines z = z(ζ) via 
Equation (20b). 

 
 

3. Conclusions 
 
We have given a complete discussion of the higher-dimensional vacuum Bianchi- 
mixmaster cosmologies of types |R  I  Ν, Ν = I, II, VI0, VII0, VIII, IX. Only the 
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Kasner solution I I (4) was known (Tomimatsu & Ishihara 1984). There is a strong 
influence of the spaces Ν on the Bianchi type-I model and vice versa. This can be seen 
explicitly by our new solutions of types-II (Equation 6b), VI0 (Equations 10, 15), VII0 
(Equation 15), VIII and IX (Equation 20). However, due to the great numbers of 
solutions it remains a problem for the near future to discuss our solutions in adequate 
detail. A next step into some more general cosmologies would be to construct some 
perfect fluid solutions. It is also worth investigating the mixmaster cosmologies of 
type-N  N (besides the IX  IX model of Tomimatsu & Ishihara 1984).
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