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Abstract. Starting from a set of general equations governing the dyna- 
mics of a magneto-fluid around a compact object on curved space time, a 
fairly simple analytical solution for a test disc having only azimuthal 
component of velocity has been obtained. The electromagnetic field asso- 
ciated has a modified dipole configuration which admits a reasonable 
pressure profile for the case of fully relativistic treatment of Keplerian type 
of velocity distribution.
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1. Introduction 
 
One of the outstanding problems in pulsar modelling has been the structure and 
dynamics of the magnetosphere containing plasma around compact objects. Since the 
first model of the pulsar electrodynamics by Goldreich and Julian, there have been
several attempts to understand the evolution and dynamics of the pulsar magneto-
sphere, but still no comprehensive picture has come out (Michel 1987). In most of the 
discussions of the dynamics of magnetospheres, be it for pulsars or for any other high 
energy source, the emphasis has always been only on the possible plasma processes led 
and sustained by electromagnetic fields alone. The role of gravity has largely been 
ignored with the underlying assumption that it is always weak.

However, it has been shown in earlier discussions that even the most intense 
magnetic field of 1012 gauss associated with pulsar carries an energy which is very 
small compared to the gravitational potential energy on the surface of a neutron star 
of 1 solar mass (Prasanna 1980). Thus, in our opinion a fully realistic discussion 
should take into account the role of gravity in inducing possible electromagnetic 
effects due to induced currents and drifts in plasmas surrounding compact objects. 
Uchida & Low (1982) considered equilibrium configuration of the magnetosphere of a 
star loaded with accreted magnetised mass and noticed that the mass slides down 
along the field lines to the point closest to the star and is stratified in hydrostatic 
equilibrium to form a disc in the equatorial plane. The picture obtained was 
encouraging enough to look for more detailed analysis wherein one would also 
consider the relativistic equations through curved space formalism.

With this in mind we now take up the study of the dynamical equilibrium and 
stability of magnetospheric plasma around a non-rotating compact object including 
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the effects of general relativity through the analysis of fluid as well as Maxwell’s 
equations self-consistently. This obviously will not describe a model of pulsar mag- 
netospheres. However, in future, this will help us in studying a more realistic model of 
pulsar magnetosphere by including rotation and gravity. 
 
 

2. Formalism 
 
The general equations of motion for a plasma (magneto-fluid) surrounding a central
compact object in the test disc approximation on a general curved space are obtained 
through the conservation laws

(2.1) 
 with 

(2.2) 
 
alongwith the Maxwell’s equations 
 

(2.3) 
 

(2.4) 

The conservation law (2.1) when expressed in terms of currents is given by the
equation of continuity 
 
 
 
 
 
 
 

(2.5)  

and the equation of momentum balance 
 
 
 
 

(2.6) 

 
wherein Va, ρ, p denote the fluid 3-velocity, the density and the pressure respectively,
with greek indices taking values 1, 2, 3 while the latin ones take values 0, 1, 2, 3 
(x0 = ct).

If we consider the background space-time due to the compact object to be the 
Schwarzschild geometry (static, spherically symmetric) and the electromagnetic field 
as well as the matter distribution to be stationary and axisymmetric the equations 
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reduce to the form 
 
 
 
 
 
 
 

(2.7) 
 
 
 
 
 
 
 

(2.8)  
 
 
 
 
 
 
 

(2.9)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2.11) 
 
and 

(2.12) 

where m = MG/c2, Μ being the mass of the compact object, G the gravitational 
constant and c the velocity of light. 

(2.10)
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Expressing in terms of the electric and magnetic field vectors Ε and B, through their
local Lorentz components E(α), B(α) using the tetrad  
 

(2.13)  
alongwith 
 
 

(2.14) 
 
 

(2.15)  
the Maxwell’s equations reduce to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2.16) 
 
 

3. Possible solutions  
One admissible solution set of the Maxwell’s equations (2.16) is  
 
 
 
 
 
 
 

(3.1) 
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(3.2) 
 
giving rise to the currents 
 
 
 
 
 
 
 

(3.3)  

where R represents the radius of the compact object with B0 and E0 being the surface 
field strengths, and k1 and k2 are arbitrary constants (k2 = 0 in this case). Using the 
same tetrad (2.11) one can express the 3-velocity V also in terms of local Lorentz 
components as given by
 
 
 
 
 
 
 

(3.4) 

As the currents in the r and θ directions are zero, we can look for a self-consistent
solution of the fluid equations for a purely rotating fluid having only the azimuthal 
component of Va to be nonzero. Thus with Vr and V0 equal to zero the Equations 
(2.7) – (2.10) reduce to
 

(3.5) 
 
 
 
 

(3.6) 
 
 
 
 

(3.7) 
 

(3.8) 
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If we consider the case when the toroidal electric field is zero, then (3.5) and (3.8) are 
identically satisfied and thus we are left with two equations for V (φ ) , p and p.
 
 
 
 

(3.9) 
 
 
 
 
 

(3.10) 
 
Thus one would require an equation of state to close the system. 
 

3.1 Thin Disc 
 
As a test case if one restricts the discussion to matter confined to the equatorial plane 
θ = π/2, then one has 
 
 
 

and 
 

(3.11) 
 
Case 1: 

Considering the motion to be almost Keplerian as expressed by 
 
 
 
 (3.11) reduces to 

 (3.12) 

 In order to look for an exact analytic solution in closed form, one takes the 
Newtonian limit of this equation and gets 

 
(3.13) 

 
whose solution for ρ = constant is given by 
 
 
 
 

(3.14) 
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Figure 1. Magnetic field configuration in the meridional plane for a compact object having 
radius (a) R =3m and (b) R= 12m for relativistic (broken line) and Newtonian case (solid 
line). 
 
The constant of integration D may be obtained through using the boundary condition 
that at the inner edge r = ra the hydrostatic pressure p equals the magnetic pressure at
 

that surface as given by pm =               This gives the constant 
 

(3.15) 
 

where n = R/m and xa= ra / m. Fig. 2 shows the profiles of pressure in terms of pm the 
magnetic pressure for the two cases with R = 3m and R = 15m for Β = 1012 gauss
and ρ = 10.0. 
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Figure 2. Pressure profiles in the Newtonian limit for thin disc with V(φ) =√2GM/r for a 
compact object with (a) R = 3m, (b) R = 15m; comparison of the two pressure profiles is
shown in (c) by solid (R = 3m), and broken (R = 15m) lines.
 

One can in fact solve (3.12) exactly numerically and doing so for the same values of 
ρ, B, and n one gets the pressure profiles as in Fig. 3.

Case 2:  
 
 (3.16) 

With this value of V(φ) the centrifugal force is completely balanced by the gravita-
tional force and thus one has the pressure gradient to balance the magnetic stress,
giving the equation

(3.17)  

Whose solution is  

(3.18)  
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Figure 3. Pressure profiles, for thin disc with V(φ) = √ 2GM/r for a compact object with 
(a) R = 3m, and (b) R = 15m with no approximation; comparison of the two pressure profiles 
is shown in (c) by solid (R = 3m), and broken (R = 15m) lines.
 

Using the same boundary condition as above one can calculate D  and thus gets the 
pressure 
 
 (3.19) 

Fig. 5 gives the pressure profile as a function of r/m wherein again at the inner 
 

boundary the magnetic pressure pm =              matches the hydrostatic pressure. 
 
 

3.2 Thick Disc 

Case 1:  
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Figure 4. Comparison of pressure profiles for V (φ)= √2GM/r with (broken line) and without 
(solid line) approximation for (a) R = 3m, (b) R = 15m.
 

Figure 5. Pressure profile for thin disc with V (f) =√ (l – 2m/r)-1 GM/r for a compact object 
with (a) R =3m; (b) R = 15m; comparison of the two pressure profiles is made in (c) by solid 
(R =3m), and broken (R = 15m) lines. 



Magnetosphere of Compact objects                 31
 

The momentum equation would now give 
 
 
 
 

(3.20)  
 

(3.21) 
 

Integrability of these require, putting (pc2 + p) = f (r) sin2 θ with ρ being constant,
the equation for f 
 
 

(3.22) 
 
whose exact solution is 
 
 
 
 
 
 
 (3.23) 

 
D being the constant of integration. Thus one has from 
 

(3.24) 

the pressure profile for every given density distribution once the constant D is 
determined. One can use the same boundary condition as in the other case, viz., at 
the inner edge the hydrostatic pressure is equivalent to the magnetic pressure 
 
              The pressure profile as a function of r for the case θ = π/2 is as shown

in Fig. 6(a). 
 
Case 2:  
 
 
 
 
With this the momentum equation would give 
 

(3.25) 
 
 
 

(3.26) 
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Integrability requires with ρc 2 +p = f (r) sin2 θ, the equation for f to be 
 
 
 

(3.27) 
or 
 
 

(3.28) 
 
The solution therefore is given by 
 
 
 
 
 
 
 

(3.29) 
 

Using the same boundary condition one can again get the pressure profile for 
θ = π/2, as shown in Fig. 6(b). 

Fig. 6(c) shows the comparison of the pressure profiles for both the above cases. 
 

4. Discussion and conclusions 
 
Looking at the structure of magnetic field lines (Fig. 1) one finds that due to the 
presence of the gravitational field of the compact object, the field structure is modified 
to the effect that the field strength at every point increases. The pressure profiles show 
clearly the difference in the results that could arise due to varied approximation. 
Particularly in the case of Keplerian type distribution υ (φ ) = √2MG/r the difference 
between the Newtonian and the general relativistic treatment is very interesting. In the 
Newtonian treatment the solution presents a pressure profile which is increasing from 
the inner edge outwards for a short distance and then stays almost constant. On the 
other hand, in the case when no approximation was made (Fig. 3) the pressure first 
decreases, reaches a minimum and then increases just as in the earlier case. The
minimum occurs at r = 4m which is because of the general relativistic term (1 – 4m/r)
in the equation. In contrast to this when we consider the velocity distribution to be 
 

relativistic Keplerian V(φ) =                                       the pressure profile is more physi-
 
cal decreasing outwards as one would normally expect. In our opinion this shows that 
the assumption of nearly Keplerian velocity distribution is not consistent with the 
fully relativistic equations we are dealing with, and one will have to consider the 
relativistic contribution into the velocity field for getting the pressure profile.

In the case of thick discs, since the constant of integration gets multiplied by r2 for 
the Keplerian distribution and by (r – 3m) for the relativistic Keplerian, this term
dominates over the rest as could be seen in the pressure profiles (Fig. 6) which are 
monotonically increasing. If one were to choose the constant of integration as zero, 
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Figure 6. Pressure profile for thick disc with (a) V(φ) = √2GM/r, and (b) V(φ) = 
√(1–2m/r)1 GM/r for a compact object with R = 3.5m (solid line) and R = 12m (broken line); 
comparison of profiles is made in (c) for the two cases: (a) R= 3.5m (–––––), and R= 12m
(—·—·—), (b) R = 3.5m (......), and 12m (----). 
 
this would lead to negative (ρc 2 +p) thus making the solution totally unphysical. The 
increasing pressure profile also indicates an unstable (runaway) configuration and 
thus one concludes that with the type of electromagnetic field that one has considered, 
no physically meaningful equilibrium solution exists for prescribed velocity distri- 
bution as chosen above.

In spite of the reasonable pressure profile obtained in the fully relativistic treatment 
of the thin discs, there may be still an unsatisfactory element as far as Ohm’s law is 
considered, since we have not specifically made use of it It is worth noting that if one 
were to consider Ohm’s law
 

(4.1) 

alongwith the set of dynamical Equations (2.3) to (2.8) then it is clear that the electric 
and magnetic fields are coupled through the velocity field and it would not be 
consistent to choose certain component of Vα to be zero  α priori This would mean a 
more complex set of coupled nonlinear equations for which the existence of an 
equilibrium solution may not be always guaranteed.

In conclusion one finds that for a situation wherein the current contribution of the
plasma on the existing electromagnetic field of the compact object is neglected a fully
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relativistic Keplerian angular momentum distribution without radial or meridional 
velocity does admit a reasonable pressure profile in equilibrium with the electro- 
magnetic field for an incompressible fluid.
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