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Abstract.  In this paper we have considered the structure of a thick perfect
fluid disk of constant density rotating around a Schwarzschild black hole 
and its stability under axisymmetric perturbation. The inner edge of 
such disk cannot lie within 4m. The critical c for neutral stability
is found to be much less than 4/3 indicating that the disks are generally 
stable. 
 
Key words:  fluid disks—general relativity—stability 

 
 
 
 

1. Introduction 
 
Recent developments in the study of high energy emission from cosmic sources has 
emphasised quite frequently the importance of the study of structure and stability 
of accretion disks around compact objects. After the early analysis of Pringle and 
Rees (1972), Novikov and Thorne (1973), Shakura and Sunyaev (1976), the subject 
has been treated in a more detailed way by many authors with the analysis of both 
thin and thick disks. Subsequent to the review of Lightman, Shapiro and Rees (1978), 
the Polish school has considered several aspects of accretion disk models, a reference 
to which may be seen in Paczynski (1980). It is now well known that if the accretion 
rate exceeds the critical limit the inner regions of the disk render a thick structure as 
first pointed out by Shakura and Sunyaev (1973), and thus it is very relevant to 
consider the detailed analysis of the structure and stability of thick disks in the same 
spirit as has been done earlier for thin disks. However almost all these analyses 
restricted themselves to the study of disks under equilibria with respect to the gravi- 
tational, centrifugal and pressure gradient forces only. Prasanna and Chakraborty 
(1981; hereafter referred to as Paper I) emphasised the necessity of considering the 
analysis including the self-generated electromagnetic fields also and they showed that 
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pressureless thin disks of charged perfect fluid are indeed generally stable under 
radial pulsations. However an analysis of the thick disks under the action of all the 
four forces (gravitational, electromagnetic, centrifugal and pressure gradient) has been 
quite formidable and as such we consider the detailed structure and stability of thick 
disks around Schwarzschild black hole without the electromagnetic field. The 
analysis of such disks in Newtonian formulation showed that both under radial as 
well as axisymmetric perturbation there are large regions of stability (Chakraborty 
and Prasanna 1981, hereafter referred to as Paper II). We present in this paper the
analysis of similar disks with a fully relativistic treatment. 
 
 

2. Steady state solutions 
 
The general set of equations governing the dynamics of a non-self-gravitating perfect
fluid disk can be obtained from the general momentum equations (Paper I, Equations 
2.15 – 2.17) and are given by 
 
 
 
 

(2.1) 
 
 
 
 
 

(2.2) 
 
 
 
 
 

(2.3) 
 
 

the continuity equation (Paper I, Equation 2.6) is given by
 
 
 
 
 (2.4) 
 
the equation of baryon conservation (nui); i = 0, as given by 
 
 
 
 

 (2.5) 
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and the equation for the adiabatic flow 
 

(2.6)
 

where p, ρ, n and V( ) are the pressure, density, baryon number density and the
components of 3-velocity in the local Lorentz frame and 
 
 
 
 
 
 

(2.7) 
 

Restricting ourselves to the case of an axisymmetric disk in pure rotational flow as 
expressed by V0

(r)  = 0, V0
(θ)  = 0, V0

(φ)  = V0, the equations governing the steady 
state reduce to 
 
 

(2.8) 
 
 

 
(2.9) 

 
 

the remaining equations being identically satisfied. The above two equations can be 
solved exactly for the special case, ρ 0 = constant. Using this in Equations (2.8) and 
(2.9), we obtain 

 
(2.10) 

 

whose solution is given by 
 

(2.11) 
 
A being a constant. Substituting this in Equations (2.8) and (2.9), we get 
 
 
 
 
 

(2.12) 
 
 
 

(2.13) 
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whose solution may be obtained as 
 
 

(2.14) 
 

 
where Β is another constant. Using the boundary condition p0 = 0 at ra and rb, the 
inner and outer edges at the plane θ =  /2 we obtain the solutions of steady state as
 
ρ 0 = constant,                                                                           (2.15)
 
 

(2.16) 
 
 

 
(2.17) 

 
 
wherein 
 
 
 
 
 
 
 
 

(2.18) 
 
 

The solutions obtained above are physically acceptable if p0 > 0 throughout the
interior of the disk and it goes over to zero at the boundary. The former condition 
leads us to the constraint that the inner edge cannot lie within 4m and further 
 

(2.19) 
 
There is no restriction on outer edge if a   6. The latter condition (p0)b =  0 gives
the edge of the disk θe (and    – θe) on the meridional plane as given by 
 

(2.20)
 
Fig. 1 shows the profiles of velocity and pressure as the functions of equatorial 
distance while Fig. 2 shows the meridional section of the disk.
 
 

3. Stability analysis 
 
We consider the axisymmetric perturbations of the disk as described above and use 
the normal mode analysis restricting the perturbations to linear terms only; the gene- 
ral procedure of the analysis remains the same as used in Paper II which is based on 
 

π 

π 



Structure and stability of relativistic disks. II. 197
 
the technique developed by Chandrasekhar and Friedman (1972a, b). The set of
equations governing the perturbations are obtained from Paper I, Equations (3.1)–
(3.4) as given by 
 
 
 
 
 

(3.1) 
 
 
 
 
 
 

(3.2) 
 
and 
 
 
 
 
 

(3.3) 
 

 
while Equations (2.4) – (2.6) yield 
 
 
 
 
 
 
 
 

(3.4) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3.5) 
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(3.6) 
 
Defining the Lagrangian displacement ξ α, ( α = r, θ) through 
 
 

(3.7) 
 

 
we obtain from Equations (3.1) – (3.6) 
 
 

(3.8) 
 
 
 
 
 
 

(3.9) 
 
 
 
 
 
 
 
 
 

 
(3.10) 

 
 
 
 

(3.11) 
 
 
 
 

(3.12) 
 
 
 
 
 
 

(3.13) 
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wherein 
 
 

(3.14)
 

 
and all the perturbed variables represent only the spatial parts. Equations (3.8)– 
(3.11) are the initial value equations while (3.12) and (3.13) are the pulsation equations. 
In the above treatment, we have dropped out those terms which become zero 
because of the steady-state solutions and also we have integrated the initial-value 
equations with respect to time. Equation (3.9) together with (3.10) yields 
 
 

(3.15) 
 

 
while Equation (3.11) can be rewritten as 
 
 

(3.16) 
 

 
in terms of Lagrangian perturbations. From Equations (3.9)–(3.11), we obtain
 
 
 
 
 
 
 
 

 
(3.17) 

 
 
 
 
 
 

(3.18) 
 
 
 
 
 
The problem is then to solve Equations (3.12) and (3.13) as the eigen-value equa- 
tions, consistently with the initial value equation (3.17) and (3.18) and the appro- 
priate boundary conditions. 

As we did in Paper II, we define ‘ trial displacements’ξr and ξθ, multiply Equa-
tion (3.12) by ξ and Equation (3.13) by ξθ, add and integrate over the range of r
and θ. In order to bring the resultant expression in a symmetrical form in barred 
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and unbarred variables, we limit ourselves to the class of perturbations such that 
δp = 0 at the boundary of the disk. This in turn requires that both ξr and ξθ be
zero at the boundary. Performing several integrations by parts and using Equation 
(3.8) and the steady state equations we finally obtain 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

(3.19) 
 
 
where δρ and δp are variations in perturbed density and pressure obtained by using the
trial displacements in initial-value equations. As it was shown in Paper II the sym- 
metrical expression of σ2 implies a variational principle: identifying barred variables 
with the unbarred ones in Equation (3.19), we write the expression for σ2 and calcu-
late σ2 by using two trial displacements ξα and ξα + δ ξα. If we now demand that the
resultant variation δσ2 in σ2 is zero, then it amounts to solving the original eigen- 
value equations (3.12) and (3.13). To calculate the critical value of adiabatic index 
for neutral stability we limit ourselves to the situations where (

0 + p0/c2)–1 is very small compared to unity so that we can write Equations (3.17)
  p0 / c 2 ) ( V 2 / c 2 )

× (ρ
and (3.18) in the form 
 
 
 
 
 

 
(3.20) 
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and 
 
 
 
 
 

(3.21) 
 
 
and using these we obtain 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3.22)
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wherein 
 
 
 
 
 
 
 

(3.23) 
 
We chosse a function q as 
 

(3.24) 
 
Which is zero at the boundary of the disk and the take 
 

(3.25) 
 
wherein α and β are constants determined by extremising σ2 as calculated by using 
these trial displacements in Equation (3.22). For such choice of ξ r and ξ θ we calculate 
critical value γc of the adiabatic index for the neutral stability. 

Table 1 shows the values of γc for the onset of instability (γ < γc for instability)
for different values of ‘a’ and ‘ b’ for general-relativistic as well as for the Newtonian 
case. It turns out that the coefficients of γ2, γ3 and γ4 on the right-hand side of
Equation (3.22) are very small as compared to the first two terms and therefore in 
the calculation of γ c we can drop them out. The critical g for the Newtonian case is
calculated by taking the limit c → ∞, of Equations (3.17), (3.18) and (3.19). In this
case we obtain 
 
 
 
 
 
 
 

(3.26) 
 

 
Table 1.  Values of c and θe (min) for different choices of a and b. 
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where 
 
 
 
 

 
(3.27) 

 
 
with the steady state solutions as 
 
 
 
 

 
(3.28) 

 

 
We note that the σ2 equation obtained here for the Newtonian case has a different 
form than that reported in Paper I. This is because of the different boundary condi- 
tions used for ξ r and ξ θ in the two sets of calculations. 

 

As a special case we find that in case p0 =  0, the disk collapses to θ =   plane, 
rotating with velocity 
 
 

(3.29) 
 

 
as may be seen from Equations (2.8) and (2.9) . Considering further the radial oscil- 
lations of such disk ξ θ = 0, ξ  r ≠ 0 with δp = 0, we have 
 
 

(3.30)
 
 

 
(3.31) 

 

 
as the equations governing the radial perturbations appropriate to this case. Com-
bining these, we get 
 
 

(3.32) 
 

 
which shows that such disks are stable for r > 6m. 
 
 

4. Results and discussion 
 
The steady-state parameters of velocity and pressure as a function of radial distance 
along the equatorial plane for a constant-density thick disk rotating around a 
Schwarzschild black hole is presented in Fig. 1 while Fig. 2 shows the meridional 
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Figure 1. Profiles of pressure (left) and velocity (right) for relativistic (circles) and for Newtonian 
(crosses) disks along the equatorial plane α=4·1, b=100.  
 
section of such a disk. The corresponding plots in the Newtonian formulation for the 
same values of inner and outer radii a and b (and for a constant density mode) are 
also shown in these figures. We find that for the same a and b  the Newtonian disk 
occupies more volume than the relativistic one. It seems that the relativistic disks 
show a formation of cusp at the inner edge specially when it is near 4. For a New- 
tonian disk the pressure at any point is higher while the velocity at any point is lower 
at the equatorial plane, than in the case of a relativistic disk. 

For the case of a relativistic disk we find a constraint that the inner edge cannot 
be less than 4*. Further, if 4 < a < 6, then b = 2a/(a – 4). For a   6, any b > a
gives rise to a plausible disk. No such restriction appeared in the Newtonian formu- 
lation indicating a pure general-relativistic origin of the present constraint. 

From the values of γc as tabulated in Table 1 we find that the disks considered 
here represent stable configurations (γc < 4/3). In calculating γc through Equation 
(3.22) we have used the approximation that (V2/c2) (p0/c2) (ρ0 + ρ0/c2)–1     1,  which  
is quite justified from the values of V0/c and p0/c as we obtained. There is a 
qualitative agreement between the γc calculated for relativistic and the corresponding
Newtonian disks. In these two cases, although the inner and outer radii a and b 
are the same, the regions occupied by the disk in the two cases are not the same. In 
general, Newtonian disks are thicker [minimum angular elevation= π – 2θe (min)]. 
We also find from the numbers that γc depends upon the size of the disk. In the 
calculation of γc, the effects due to general relativistic convections and that due to 
the difference in sizes contribute simultaneously and therefore the agreement between 
the general relativistic γc and the Newtonian γc is no better than a qualitative one. 
 
* The fact that the inner edge rα of the disk should always be greater than 4m is consistent with 
the general proof given by Kozlowsky, Jaroszynski and Abramowicz (1978) that Ri     Rmb for 
the marginally bound orbit. 
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Figure 2. Meridional section of the disk in general relativistic (solid curves) and of corresponding 
Newtonian case (dashed curves). Top: Various choices of a, b = 100; inner portion of the disk
Bottom: a = 4·1, b = 100. 
 
It does not seem to be possible to identify separately the contributions from general 
relativity, in the present formulation. 

Starting from the general equations, if we take p0 = 0, we found that the disk col- 
lapses on to θ = π /2 plane and is stable under radial perturbation only if the inner 
edge is beyond 6m as its local frequency is [mc2 (r – 6m)/r4]1/2. Now, since a pressure- 
less fluid is essentially an aggregate of non-interacting particles, the above conclu- 
sion can be regarded as an alternative derivation of the well-known result that the last 
stable circular orbit for Schwarzschild geometry is at 6m. 
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The general conclusion that the perfect-fluid thick disk rotating around Schwarzs-
child black hole is generally stable under axisymmetric perturbation, at least when 
the density is constant (or a function of r when considered in Newtonian framework)
may have important significance in the study of the models of accretion disks deve- 
loped for explaining the radiation from high-energy sources. 
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