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Abstract. We make a statistical analysis of the periods Ρ and period- 
derivatives Ρ of pulsars using a model independent theory of pulsar flow 
in the P–P diagram. Using the available sample of Ρ and Ρ values, we 
estimate the current of pulsars flowing unidirectionally along the P-axis, 
which is related to the pulsar birthrate. Because of radio luminosity 
selection effects, the observed pulsar sample is biased towards low Ρ and 
high P. We allow for this by weighting each pulsar by a suitable scale 
factor. We obtain the number of pulsars in our galaxy to be 6.05–2.80

 

× 105 and the birthrate to be 0·048–0.011 pulsars yr–1 galaxy–1. The quoted 
errors refer to 95 per cent confidence limits corresponding to fluctuations 
arising from sampling, but make no allowance for other systematic and 
random errors which could be substantial. The birthrate estimated here 
is consistent with the supernova rate. We further conclude that a large 
majority of pulsars make their first appearance at periods greater than 
0·5 s. This ‘injection’, which runs counter to present thinking, is prob- 
ably connected with the physics of pulsar radio emission. Using a variant 
of our theory, where we compute the current as a function of pulsar ‘age’ 
( ½Ρ/P), we find support for the dipole braking model of pulsar evolution 
upto 6 × 106 yr of age. We estimate the mean pulsar braking index to 
be 3.7–0.8. 
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1. Introduction 
 
Neutron stars are widely believed to be born in supernova explosions (Baade and 
Zwicky 1934). The matter in the envelope of the star forms the expanding super- 
nova remnant (SNR) while the core of the progenitor star is compressed into the 
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highly magnetised and rapidly rotating neutron star which, is believed to manifest
itself as a pulsar (Gold 1968). If the above scenario is true, one expects to find a 
strong association between pulsars on the one hand and Supernovae and SNRs on 
the other. However, observations have failed to bring this out. On the contrary, 
there seem to be two important discrepancies: 

(a) The birthrates of pulsars and Supernovae in the galaxy are apparently in dis-
agreement. Pulsars are believed to be born once every six to eight years (Taylor
and Manchester 1977; Phinney and Blandford 1981). On the other hand, estimates 
of the birthrate of Supernovae, while varying over a wide range of values (Ilovaisky 
and Lequeux 1972; Tammann 1974; Clark and Caswell 1976), seem to be converging 
to one supernova every thirty years (Clark and Stephenson 1977; Srinivasan and 
Dwarakanath 1981). 

(b) Among the 300 or more pulsars and 120 SNRs known, positional associations 
have been reliably established only in two cases (the Crab and Vela pulsars). 

In this paper, the main thrust of our calculations is towards obtaining a more 
reliable pulsar birthrate. Usually, the birthrate of pulsars is computed by the simple 
argument that, in steady state conditions, the total number of pulsars    in our galaxy 
should be equal to the birthrate Β multiplied by the mean lifetime of pulsars  Ƭ m.  
is obtained by using the inferred space density of potentially observable pulsars in our 
galaxy, and multiplying it by a ‘beaming-factor’ Κ which accounts for those pulsars 
which are not beamed towards the earth. It is believed (Taylor and Manchester 1977) 
that      5 ×  105 pulsars. By assuming the dipole model for pulsar braking (Ostriker
and Gunn 1969), Ƭm can be estimated through the relation Ƭ = ½ P/P where Ƭ is the 
present age of a pulsar, Ρ is its period and Ρ is its (dimensionless) period derivative. 
Alternatively, Ƭm can also be estimated by dividing the mean height 〈z〉 of pulsars
above the galactic plane by their mean z–velocity 〈Vz〉 (〈Vz〉 can be obtained 
indirectly from the proper motions which have been measured for a few pulsars). 
This ‘kinematic’ age has the advantage of being independent of errors in pulsar 
distances. By using a combination of both values of Ƭm, Taylor and Manchester  
(1977) computed a birthrate of one pulsar every six years in our galaxy. 

In this paper, we have adopted an entirely different approach to the birthrate cal- 
culation. We use the concept of pulsar current in the P–P diagram which has been 
recently introduced by Phinney and Blandford (1981) and Narayan and Vivekanand 
(1981). We show that the birthrate can be related to the component of current JP 
parallel to the Ρ axis. JP can be estimated from pulsar data independently of any model 
of pulsar evolution. This is a powerful advantage in our calculations since, as men- 
tioned above, previous attempts usually require postulating the dipole model for pulsar 
braking. The second new feature in our analysis is that we have treated luminosity 
selection effects in detail. All earlier calculations assumed that selection effects 
could be handled with a single scale factor from the observed pulsars to the total 
population in the galaxy. However, it is known (Lyne, Ritchings and Smith 1975) 
that the luminosities L  of pulsars are correlated with Ρ and Ρ (hence Ƭ also). Conse- 
quently, the necessary scale factor differs from one pulsar to the other (Taylor 1981, 
personal communication). We have carried out this more detailed analysis and find 
that it makes a significant difference to the answers. We now obtain a mean pulsar 
birthrate of one pulsar every 21 years which is in comfortable agreement with current 
estimates of supernova explosion rates. 
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The paper is divided into two parts (Sections 2 and 3). In Section 2, our analysis
is model free and we make very few approximations. The numbers we obtain from 
these calculations are therefore unbiased. Unfortunately, in the process, we lose in 
Statistical significance (as anticipated by Phinney and Blandford 1981) and the ex- 
pected errors on the estimated quantities are very large. A preliminary version of 
these results was recently published (Narayan and Vivekanand 1981).  

Section 3 deals with an ‘improved’ analysis whose main attempt is to reduce
the statistical errors. This we have achieved by modelling the dependence of radio 
luminosity upon Ρ and Ρ by the following functional form (first used by Lyne, 
Ritchings and Smith 1975) 
 

(1)
 
where L′ is the ‘mean’ luminosity of pulsars of a given Ρ and P. By making certain
further approximations, which are discussed in Section 3.2, we have computed the 
scaling factor as a function of Ρ and Ρ alone. Using a fairly stringent statistical test, 
we have verified that equation (1) and the approximations made are a fair and un- 
biased representation of the data. Furthermore, the pulsar birthrate we compute 
with the new scales is statistically consistent with the result in Section 2, thus increasing 
our confidence in the new results. As anticipated, there is a significant improvement 
in the confidence limits of our results, the error bars being reduced by more than a
factor of three. 

The results of Section 3 are sufficiently accurate to enable us to investigate in coarse 
detail the variation of JP s a function of P. Surprisingly, we find that JP is quite 
low at small values of Ρ and picks up significantly at Ρ > 0·5 s. The startling impli- 
cation of this is that a number of pulsars are ‘born’ in the P–P diagram with fairly 
large periods. This is totally contrary to the current belief that most neutron stars, 
and therefore pulsars, are born with periods of the order of a few milliseconds. We 
therefore conclude that although neutron stars may be born with very short periods 
(which seems to be suggested by angular momentum considerations), many of them 
probably turn on as pulsars only somewhat later in their life. Apart from explaining 
the ‘injection’ of pulsars at higher periods, this suggestion would also naturally 
account for the lack of many pulsar-SNR associations, which is the second discre- 
pancy mentioned earlier. Of course, we also need to assume that neutron stars cool 
quickly after birth to explain the lack of X-ray emission from the (hot) surface. 

Lastly, we have computed an average value for the ‘braking-index’ n. By compa- 
ring JP with the current JƬ parallel to Ƭ, we estimate the braking index to be n   3.7–0.8.
This result, which is not inconsistent with the dipole model for pulsar braking (n = 3), 
is important because all earlier studies on pulsar evolution have neglected selection 
effects as well as pulsar injection and could therefore be seriously in error. 
 
 

2. Model-free approach 
 

2.1 Introduction 
 
In this section we present the basic theory of pulsar current JP parallel to the P-axis 
and its connection with pulsar birthrate. We introduce the scale factor S(L), which 
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gives the ratio of all potentially observable pulsars of luminosity L in the galaxy to
those observed, and describe how it is computed. We apply the theory to the Ρ, Ρ 
and L  data of 210 pulsars (Although more than 300 pulsars have been detected so 
far, we have ‘pruned’ the data to 210 pulsars for reasons that are given later). Using 
the theory, we estimate the number of pulsars in our galaxy and also make a model- 
independent estimation of pulsar birthrate. Finally, we calculate the current JƬ
parallel to Ƭ and find that the dipole model for pulsar braking is a reasonable descrip- 
tion of ‘young’ pulsars. 
 

2.2 Theory of Pulsar Current 
 

We make the following two postulates:
(a) The distribution of pulsars in the Galaxy is in a steady state. This is reasonable 

since the lifetimes of pulsars, believed to be a few million years, are much smaller 
than the lifetime of our galaxy. 

(b) The period of a pulsar always increases with age. In support of this is the fact
that every observed Ρ is positive. 

Let   (P, P, L) dP dP dL be the number of pulsars in our galaxy in the period range
Ρ to Ρ + dP, period derivative range Ρ to Ρ + dP, and radio luminosity range L 
to L + dL. Since Ρ is the component of pulsar ‘velocity’ parallel to the P-axis, the
‘current’ of pulsars (number per unit time) at any Ρ moving from lower values of Ρ 
to higher values is evidently given by 
 

(2) 
 

It turns out that the statistics are too poor for us to compute the function JP with any 
reliability from the available data. Hence we consider an average of JP over a range 
of period from Pmin to Pmax 
 
 

(3) 
 
 

Fig, 1 illustrates the relation between JP and B, the birthrate of pulsars. Since all 
Ρ are positive, the continuity equation implies that JP (P) is identically equal to the 
total birthrate of pulsars in the period range 0 to P, minus the death rate in the same
 

 
Figure 1. Qualitative plot of pulsar current JP against period P. B is the total birthrate of pulsars.
All births occur for 0 < Ρ < P1 while all deaths occur for Ρ > P2. (a) P2 > P1; (b) P2 > P1. 
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range. Let all births occur between 0 and P1 and all deaths occur beyond P2. If, 
as in Fig. 1(a), P2 > P1, then there is a plateau in JP between P1 and P2 where the
function is equal to the total birthrate B. However, if there is an overlap of births 
and deaths as in Fig. 1 (b) (i.e. P2 < P1), then JP is less than Β at all P. By the above
arguments, it is clear that JP (Pmin, Pmax ) defined in equation (3) is always a lower
bound on Β whatever Pmin and Pmax we may choose. In practice, we closely examine
the noisy JP calculated from experimental data and compute Jp for values of Pmin 
and Pmax selected at the two edges of the apparent plateau. It is then reasonable to
expect that the value of JP so obtained is a close estimate of Β itself and not just a 
lower bound. 

The total pulsar density ρ(Ρ, Ρ, L) is not directly available. It is related to the
observed density function ρ0 (P, P, L) by two factors: 

(a) There is a ‘beaming-factor’ Κ which arises because many pulsars may not be 
beamed towards us. Κ is generally assumed to be 5 (Taylor and Manchester 1977).

(b) There is a scale factor S(L) which arises because pulsars of a given L can be 
detected only upto a certain maximum distance by the instruments currently avail- 
able. S(L) also allows for those parts of the sky which have not been searched by the 
various surveys. We discuss S(L) in further detail in the next section. 

Therefore, 
 

(4) 
 

The observed density function ρ0(P, P, L) is not known as a continuous function.
Instead we have Ρ, Ρ and L values for Ν pulsars. We therefore approximate equa-
tion (4) by the following expression  
 
 

(5) 
 

 
where δ (x) is the Dirac delta function at x = 0. We may point out that JP is evalu- 
ated as an integral over Ρ, Ρ and L and therefore the δ-functions in equation (5) are 
always integrated out in the quantities of interest to us. Substituting equation (5) 
in equation (3), we obtain an estimate of JP in the form 
 
 

(6) 
 
 

In Appendix A, we have shown that the variance of this estimator is
 
 

(7) 
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Equation (7) allows for errors arising from fluctuations in the observed sample but 
does not take into account possible errors in Κ and S(Li). 

As mentioned before, JP, est would be an unbiased estimator of the birthrate Β if
Pmin and Pmax correspond to the true plateau region of JP and if the birth and
death domains are non-overlapping as in Fig. 1(a). If not, JP, est is, in any case, an 
estimator of a rigorous lower bound on B. 

Before closing this section, we briefly discuss the convergence of the integral in 
equation (2). Phinney and Blandford (1981) claim (i) that the observed distribution of 
pulsars is free of selection effects (i.e. in our notation, ρ(P, P, L) ≡ Κ 〈S〉 ρ0(Ρ, Ρ, L) 
where 〈S〉 is a constant scale for all pulsars), (ii). that at large P, ρ0(P, P) ∝ P–1/2, 
(iii) that therefore the integral in equation (2) is divergent. On these grounds they 
expect ‘kinematic approaches’ such as ours to be ‘doomed to failure’ and have 
instead attempted a ‘dynamical approach’. We, however, find a systematic varia- 
tion of L over the P–P plane (see Section 3.2). Therefore our scale factors S(L) are a 
necessary and important input for the evaluation of the integral in equation (2). Very 
roughly, S(L) is seen to vary as P–1/2 . While this anticorrelation of S(L) with Ρ does 
not remove the apparent divergence noted by Phinney and Blandford (1981), it cer- 
tainly improves matters. Moreover, we show in Section 3.4 that there is a cut-off 
value of Ρ above which pulsars apparently do not function. Such a cut-off will 
obviously cure all divergence problems. Finally, in the event that there really is a 
long tail in the distribution of pulsars at high values of P, we are left with the  
implication that there are many unseen pulsars in the top region of the P–P diagram. 
If so, all forms of analysis including the dynamical approach are bound to be 
incomplete. 
 

2.3 Scale Factors 
 
We have computed the scale factors, S(L), using the parameters of the three major 
pulsar surveys viz. the Jodrell Bank survey (Davies, Lyne and Seiradakis 1972,1973), 
the Arecibo survey (Hulse and Taylor 1974, 1975) and the II Molonglo survey 
(Manchester et al. 1978). We used the following equation for S(L) 
 
 

(8) 
 
 
where ρR g describes the variation of pulsar density with galactocentric radius Rg and 
ρz describes the density as a function of height z above the galactic plane, θ is the 
polar angle defined with respect to the galactic centre. The parameter  (L, Rg,, θ, z) 
is set to the value 1 if a pulsar of luminosity L  at coordinates Rg, θ, z  can be detected 
by any of the three surveys. Otherwise, it is set to zero. Therefore, the denominator 
of equation (8) is proportional to the number of pulsars of radio luminosity L which 
can be detected by the three reference surveys while the numerator is proportional 
to all potentially observable pulsars in the galaxy with luminosity L. In computing 
S(L) through equation (8), we have adopted an exponential form for ρz with a scale 
height of 350 pc (Manchester 1979). For ρRg, we have fitted the experimental histo 
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gram of number of pulsars against Rg given by Manchester (1979) to obtain the
following gaussian form  
 

(9)
 
where Rg is measured in kpc. It is interesting that the scale length of 10·9 kpc is 
close to the radial distance of the sun from the galactic centre. This illustrates the 
well-known fact that the density of pulsars falls off rapidly with galactocentric radius 
in the solar neighbourhood. The function (9) is probably incorrect in the range 
0  Rg  4 kpc where observations seem to suggest a deficit of pulsars. However,
this region is only about 10 per cent of the volume of the galaxy and can cause a 
systematic error of at most 20 per cent in our calculations. 

S(L) was calculated at a number of selected values of L  using a Monte Carlo method 
to evaluate the integrals in equation (8). The luminosities of the observed pulsars were 
calculated from their radio fluxes and estimated distances. Following the convention 
of Taylor and Manchester (1977), we have evaluated L in units of mJy kpc2. Distances 
were calculated from the observed dispersion measures, assuming the interstellar 
electron density n e in the plane of the galaxy to be 0·03 cm–3 and taking a scale height
of 1 kpc for decay of ne in the z direction (Taylor and Manchester 1977). We have 
corrected for intervening H II regions using a modification of the Prentice and ter Haar 
(1969) correction, which is discussed in Appendix Β. For some pulsars, independent 
estimates of distance are available (Manchester and Taylor 1977), and these have
been adopted in preference to the distances derived from the dispersion measure.

Out of the total of 302 pulsars detected, we have selected a ‘pruned’ list of 210 
pulsars so as to obtain a uniform sample of pulsars consistent with the scale factors 
S(L). The pruning was done on the basis of two criteria: 

(a) The pruned list should contain only those pulsars which were detected by the
three reference surveys. This precaution is necessary since we have computed S(L) 
using only these three surveys. 

(b) In computing S(L) we have used the published parameters (such as sensitivity, 
sky coverage etc.) of the three surveys. Since the data base should also be consistent 
with these parameters, we have omitted those pulsars whose radio fluxes were below 
the quoted minimum flux detection levels of the surveys. At this stage, it would have 
been ideal to take into account the intrinsic intensity variations displayed by many 
pulsars. This would further affect the observability of pulsars by the three surveys, 
thereby affecting the computation of S(L). However, this would require detailed 
information such as the phase of the intensity variation of each pulsar at the time 
of search. For lack of information, we have chosen to ignore this complication.

After pruning, we were left with 210 pulsars, of which we knew the Ρ values of 185 
pulsars and L  values of 207 pulsars. Individual scale factors S(L) were then computed 
for all the pulsars with known L values by suitably interpolating in the table of S(L) 
values which we had calculated earlier. 
 

2.4 Number of Pulsars in the Galaxy 
 
The total number of pulsars in the galaxy is given by
 

(10) 
 

⋝ ⋝ 
.
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which can be written in terms of the observed ρ0 as 
 

(11)
 
Using equation (5) for ρ0, we obtain the following estimate for     . 
 
 

(12) 
 

The standard deviation σ      of     est can be shown to be given by (Appendix A)
 
 

(13)
 

Using the data on 210 pulsars, we obtain   est to be 6·05 (± 1·88) × 105 pulsars.
Now, the error limits specified by ± σ  , ± 2σ   , etc., have well defined meanings
 

only if the distribution of   est is gaussian. This is not so in the present case because
S(L) is spread over five orders of magnitude. The bulk of    est in equation (12) is
actually contributed by only a few of the highest values of S(L). We can therefore 
expect the distribution of    est to be highly asymmetric and non gaussian. Conse-
quently, a more meaningful concept in the present case is the confidence limit. We 
have derived the following upper and lower bounds on    est at a 95 per cent confidence
level (the method of calculating these confidence limits is briefly given in Appendix C). 
 
    est | 95 per cent, lower= 3·19 × 105 pulsars, (14) 
 

     est | 95 per cent. upper = 9.·37 × 105 pulsars. (15) 
 
The limits in equations (14) and (15) are formal estimates of fluctuations arising from 
the Poissonian nature of the observed sample of pulsars. In addition, there could be 
significant errors in S(Li), arising from uncertainties in the distances of pulsars (ne 
is not known reliably) and in K. It should be remembered that these unestimated 
errors could be comparable to if not larger than the formal errors quoted here and in 
all subsequent sections of the paper. Arnett and Lerche (1981) have, in fact, concluded 
that the uncertainties in Κ and ne are so large and certain other details, not relevant 
in our analysis, are so poorly understood that any statistical analysis of pulsar data 
is meaningless. We take a more optimistic view. 

Our results for    are in good agreement with the currently accepted value (Taylor
and Manchester 1977) of      5 × 105. This is an independent check on our analysis 
and, in particular, on our values of S(L). 
 

2.5 Pulsar Birthrate 
 
We estimate the birthrate by the ‘plateau-value’ of JP, est (Pmin, Ρmax) as described
in Section 2.2. Fig. 2 shows the values of JP, est in various 0·5 s bins of period. The
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Figure 2. Plot of estimated mean pulsar current JP, est against period P. Error limits are specified 
at a 95 per cent confidence level. JP has been averaged over period intervals of 0·5 s. However, 
the qualitative nature of the histogram remains unchanged under finer binning in period. Scale 
values S(L) (derived from observed luminosities) have been used. 
 
bin size was selected so as to have the best combination of good resolution in period 
and good error estimates. It would appear from Fig. 2 that a plateau exists from 
Pmin = 0·5 s to Pmax = 1·5 s. We thus estimate the birthrate of pulsars to be  
 

(16) 
 
or one pulsar born every 14+33 years, where the error limits correspond to the lower 
and upper bounds at 95 per cent confidence. The above result is slightly different 
from, but consistent with, the value we had published earlier (Narayan and Vive- 
kanand 1981). The difference arises because Pmin was earlier taken to be 0s. Keep- 
ing in mind that the error bounds refer to the 95 per cent confidence limits, and that 
the present analysis is approximation free and model independent, we consider the 
results satisfactory. However, we obtain tighter estimates in Section 3 
 

2.6 Birthrate on the Basis of α Dipole Model of Braking 
 

We briefly discuss a modification of our theory which permits us to estimate the
birthrate assuming the dipole braking model of pulsar evolution.

Let ρ′0 (Ƭ , L) dƬdL be the observed density of pulsars with radio luminosity between 
L and L + dL and age (Ƭ = ½P/P) between Ƭ  and Ƭ + dƬ. If Ƭ is true age, then the
‘velocity’ of pulsars along the Ƭ axis is Ƭ = 1. Therefore, the current JƬ of pulsars 
at an age Ƭ   parallel to the Ƭ -axis is given by 
 

(17) 
 
As before JƬ is equal to the birthrate of pulsars in the age range from 0 to Ƭ minus
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the deathrate in the same range. Once again, for better statistics, we average JƬ from 
Ƭ min to Ƭ max. 
 

(18) 
 
 
An estimator of this quantity is
 

(19) 
 
 
Equation (19) is similar to the birthrate formula of Davies, Lyne and Seiradakis 
(1977) except that we use individual scales for the pulsars and also introduce finite 
Ƭ min  which is 0 in their analysis.  

In Fig. 3 we have shown JƬ, est in bins of 3 × 106 years. Since the error bars on 
J , est are rather large, it is difficult to locate the plateau region with any confidence. 
If we take the plateau to extend from 0 to 6 million years, we obtain a birthrate of 
0·04+0.04 pulsar yr–1 galaxy–1, or one pulsar every 25+45 years. This result is consistent 
with our earlier result (Section 2.5), suggesting that young pulsars upto 6 million 
years of age may be evolving according to the dipole braking law. Fig. 3 shows a 
 

 
Figure 3. Plot of estimated mean pulsar current JƬ, est against apparent pulsar age Ƭ = ½P/P. JƬ 

has been averaged over age intervals of 3 million years. Error limits are specified at a 95 per cent 
confidence level. JƬ definitely drops from the first to the third bin, although JƬ in the second bin is 
not determined clearly. There is no detectable change in JƬ for bins of higher apparent ages.
Scale values S(L) have been used. 
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significant drop in the value of JƬ, est after 6 million years. This suggests that,
beyond 6 million years, either pulsars could be dying or the relation, age ≡½P/P, 
may no longer be valid (say, due to magnetic field decay). 
 

2.7 Importance of Radio Luminosity Selection Effects 
 
Is the radio luminosity selection effect important for the computation of the birth- 
rate? We can answer this by comparing the birthrate of Section 2.5 with a second 
calculation where all pulsars are weighted by a single average scale 〈S(L)〉. 
Equation (6) would then become 
 
 

(20) 
 
 
We have made a thorough statistical comparison of the currents calculated by equa- 
tions (6) and (20) on the basis of which we can state with greater than 80 per cent 
confidence that the two quantities are not the same. The analysis of Section 3 rein- 
forces this statement with much greater confidence. We are therefore quite certain 
that radio luminosity selection effects are vitally important and should not be 
neglected. This calls for a re-examination of all earlier analyses of pulsar data.
 
 

3. Luminosity model approach 
 

3.1 Introduction 
 
In Section 2, we computed the pulsar birthrate from JP, est (equation 6) using the
scale factors S(L) derived from the observed radio luminosities. Since the values of L 
are spread over four to five orders of magnitude, S(L) is spread over a similar range. 
This results in a high variance for JP, est. In this section we have used new scales
whose variance is smaller. This we have achieved by modelling the dependence of radio 
luminosity upon Ρ and Ρ as specified in equation (1). We have thus derived ‘mean’ 
radio luminosities L′ which have a ‘smooth’ dependence upon Ρ and P, in contrast 
to the old L  values. Furthermore, we have allowed for the fact that, at a given Ρ 
and P, there is a distribution of L around L’. Using this distribution we calculate a 
mean scale value S′ (P, P) at any Ρ and P. The scatter in these new scales is reduced
from five to three orders of magnitude. Consequently, there are much smaller statis- 
tical errors in the new estimates for the birthrate and other quantities. On the other 
hand, the assumed luminosity model could lead to systematic errors. 

From a detailed analysis of the pulsar current JP, we reach the important conclu- 
sion that a significant fraction of pulsars are ‘born’ in the period range 0·5 s to 1·0 s.
This result, which we describe as ‘injection’, could have strong implications for 
theories concerning the birth of pulsars, their radiation mechanism and their 
evolution in the P–P diagram. We have approximately identified the area of the P–P 
diagram where injection is the strongest, and have suggested a possible explanation.
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Finally, we have derived a mean value for the braking index of pulsars. We find
it not inconsistent with the values in current use. 
 

3.2 Model for Luminosity Correlations 
 
We have fitted a least squares plane to the data of log L  against log Ρ and log Ρ avail- 
able for 242* pulsars to obtain the ‘mean’ luminosity L′ (see equation 1) in the form 
 

(21) 

 
where the numbers in brackets represent 1σ errors, computed in the usual way for 
correlated parameters. Lyne, Ritchings and Smith (1975) did a similar exercise and 
obtained L′ ∝ P–1·8 P0.88. However, they did not fit a least-squares plane but in- 
stead arrived at their result by maximizing a correlation coefficient between L  and a 
known function of Ρ and P. This may explain the discrepancy between their results 
for the exponents and ours. To check this we fitted a least squares plane to the data 
of 84 pulsars used by them and obtained L′ ∝ P–.79(±.30) P.36(±.11) which is con- 
sistent with our result in equation (21). 

We now make the crucial approximation that the observed density distribution of 
pulsars   0 (P, P, L) can be separated into the product of two functions in the form 
 

(22) 
 

where 1 is the density of pulsars in the P–P plane, ρ2 is normalized to 1 and L′ (P, P)
is defined in (21). We are thus assuming that the distribution of log L is the same at 
all points in the P–P plane except for the shift given by log L'(P, P). We have made
the following sensitive statistical test of this hypothesis. We divided the P–P plane 
into four quadrants, each containing approximately the same number of pulsars.
In each quadrant we separately tabulated the values of [log L — log L'(P, P)] of
the observed pulsars. Taking five bins in this variable, we carried out a χ2–test to 
verify that the distributions in the four quadrants are the same. We obtained a χ2 

value of 13·6 while the number of degrees of freedom of the test is 12. There is thus 
very good statistical evidence for supporting the hypothesis in equation (22). 
 

Equation (22) can be written in the equivalent form
 

(23) 
 

where again ρ′2 is normalized to 1. The mean scale factor S′(P, P) at a given (P, P) 
is then obviously given by 
 

(24) 
 
*To date, Ρ values have been measured for 256 pulsars. But L values are not available for 14 of 
them. 
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where S(L) is the old scale factor defined in Section 2.2. S′(P, P) can be approxi-
mately calculated in terms of the data on the 242 pulsars (for which Ρ, Ρ and L are 
available) by means of the expression 
 
 

(25) 
 
 
where 
 

(26) 
 
We have computed S’(Pi, Pi) for each of the 185 pulsars in the pruned list (of 210 
pulsars) for which Pi are available and these have been used in the calculations 
discussed in the rest of Section 3. 

To summarize, in this section we calculate the scale factor of a pulsar, not in terms
of its observed luminosity but in terms of the expected distribution of luminosity at the 
particular values of Ρ and P. At the heart of this approximation is the basic assump- 
tion (equations 21 and 22) that the luminosity distribution is the same at all Ρ and Ρ 
except for the scaling by L' (P, P). We are convinced of the validity of this assumption
on the basis of the statistical test that we have conducted. With the new scales 
S'  (Pi, Pi) we are able to make a much more thorough analysis of the data than was
possible in Section 2 with the old scales S(Li). 
 

3.3 Pulsar Birthrate 
 
Using the new scales, equation (6) becomes 
 
 

(27) 
 
 
We have plotted J′P, est in Fig. 4. Comparison with Fig. 2 shows that the new scales
have significantly improved the error limits. The plateau appears to extend from 
Ρ = 0.5s to Ρ = 1·5s. The mean value of J′P, est in this range is 0.048+0.014 giving
a birthrate of one pulsar every 21+6 years in the galaxy. This is consistent with the 
number derived in Section 2.5, but has much smaller error limits. It now becomes 
meaningful and interesting to compare our estimated pulsar birthrate with the 
supernova rate. 

Unfortunately, a reliable estimate of the supernova rate is not available. It is 
obtained both from direct observations of supernova explosions in external
galaxies and from a study of historical Supernovae and SNRs in our galaxy. 
Estimates from studies of external galaxies range right from one explosion in 359 
years (Zwicky 1962) to one every 11 years (Tammann 1977). Studies of historical 
Supernovae in our galaxy have yielded one explosion every 30 years (Katgert and 
Oort 1967; Clark and Stephenson 1977). Studies of SNRs in our galaxy have given 
one explosion every 60 years (Poveda and Woltzer 1968; Milne 1970; Downes 1971) 
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Figure 4. Same as Fig. 2, but with improved scale values S′ (P, P) derived from Ρ and P. JP 
increases in the second bin, drops only marginally in the third, and drops significantly in the fourth 
bin, closely following Fig. 1 (a). 
 

However, a recent work (Srinivasan and Dwarakanath 1981) on SNRs has estimated 
that supernova explosions in the Galaxy occur once every 25 years. If we accept 
this number, there is no significant discrepancy between the birthrates of pulsars and 
Supernovae. 

The dramatic reduction in the error limits from equation (6) to equation (27) is 
easily understood. Both S(Li)and Pi in (6) vary over many orders of magnitude 
(almost independently). On the other hand, as a consequence of the luminosity model 
which we have introduced, S′(Pi, Pi) varies approximately as P–1/2 and is therefore 
anticorrelated with P. Thus the range of values in the summation in equation (27) 
is several orders of magnitude less than in equation (6), leading to much improved 
Statistical significance. Another way of stating it is that the effective number of pulsars 
contributing, to equation (16) [computed by the approximate. expression (B/σΒ)

2] is 
only 6 while it is nearly 60 for equation (27) 
 

3.4 Injection 
 

We now discuss a very important result of our analysis. We see in Fig. 4 that J′P, est is
significantly higher in the second bin, compared to the first. The mean value is four 
times higher and even the 95 per cent lower limit in bin 2 is higher than the 95 per cent 
upper limit in bin 1. It is clear that such a situation can arise only if some pulsars 
make their appearance in bin 2 without 'flowing’ through bin 1. In other words,
some radio pulsars are apparently being ‘born’ in the period range of 0·5 to 1·0 s. We 
have verified that this ‘injection’ is not sensitive to the particular choice of bin size. 
It is also not an artifact of the new analysis with S′ (P, P) since there is compelling
evidence for injection even in the rigorous analysis of Section 2 (see also Fig. 1 of 
our earlier publication, Narayan and Vivekanand; 1981). 

In order to understand the details of injection, we have subdivided each bin in
Fig. 4 into three further bins in P. The estimated: mean current J′P in. the various 
bins are shown in Table 1, along with the 95 percent confidence limits in some cases. 
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Table 1. Estimated mean, pulsar, current J′P, est .in various bins of the P–P diagram. The 95 per 
cent upper and lower limits to the current are also specified in the important bins. Ρ is in units of 
seconds, and Ρ in units of seconds per second. 
 

 
There seems to be strong evidence that injection occurs at high values of Ρ in the 
period range 0·5 s to 1·0 s and possibly even in the 1·0 s to 1·5 s range. We have 
outlined this high injection region by means of the box in Fig. 5. 

The injected pulsars are unlikely to be the ‘recycled’ pulsars formed in massive 
close binary systems (de Loore, de Greve and de Cuyper 1975), because of the 
following reasons. 

(a) Even if all pulsars are born in massive close binary systems, the recycled pulsars
cannot be more than 50 per cent of the total population. A more realistic estimate 
based on the actual number of such binary systems (van den Heuvel 1977) would be 
a few per cent. But the 95 per cent lower bound of J'  P, est in bin 2 (Fig. 4) is more
than twice the 95 per cent upper bound of J′P, est in bin 1, indicating that much more 
than 66 per cent of the pulsars are injected. 

(b) There is no compelling reason to expect predominantly high values of Ρ in 
such pulsars. On the contrary, low values of Ρ are likely to occur if the magnetic 
field of pulsars decays on a time scale of    5 × 106 years, which is the estimated time
between the two explosions (de Loore, de Greve, de Cuyper 1975). Injection, on 
the other hand, occurs at high values of Ρ as shown by Table 1. 

Having rejected the ‘recycled’ pulsars, another possibility is that neutron stars 
may be born with large periods of the order of 0·5 s. However, it is widely believed 
(see, for example, Manchester and Taylor 1977) that there are some theoretical diffi- 
culties in getting stars to shed most of their angular momentum either before, during, 
or shortly after collapse (into a neutron star). Therefore we may expect neutron 
stars to be born with periods of the order of tens of milliseconds. There appears 
to be some observational support for this, in that at least a certain category of pulsars 
(i.e. those which are not injected) are born with small periods, viz. the Crab and Vela 
pulsars*. Therefore, we may expect the injected pulsars also to start their careers 
with low periods, say 10 ms. Now, the dipole model of pulsar braking would predict 
(in the absence of magnetic field decay) that the pulsars in the injection box in Fig. 5  
would have had initial P values     5 × 10–12 s s–1 which is an order of magnitude more 
than the Ρ of the Crab pulsar. It is therefore surprising that we do not see more 
pulsars with small values of Ρ and high values of P. 
 
*Incidentally, since the injected pulsars form the hulk of the pulsar population, the Crab and Vela 
pulsars are by no means prototypes of young pulsars. 
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A close examination of Fig. 5 shows that there is apparently an abrupt cut-off
of pulsars above a certain value of P. We have made the following statistical test 
to determine whether the scarcity of pulsars at high values of Ρ is indeed significant. 
We tentatively placed the cutoff line at log Ρ = — 12·5 (Fig. 5). We assumed a 
dipole braking model without field decay (which is reasonable for this part of the 
P–P diagram), and a pulsar ‘ death’ line of the form Ρ P–5 = constant (Ritchings,
1976 has shown that at small values of P P–5

, pulsars spend increasing lengths of
time in the nulled state, apparently as a prelude to death). Assuming the period at 
birth to be 10 ms, we computed the birthrate of pulsars in various bins of Ρ using the 
observed sample of pulsars and the scale factors S′(P, P). We then evolved the pul- 
sars according to the dipole braking model and computed the number of pulsars we 
should have observed above the cut-off line. This turns out to be 6·6 pulsars. Since 
some of these might have been missed by the various pulsar surveys due to their 
having very low periods, we also computed the expected number of pulsars above the 
cut-off line with Ρ > 100 ms. Our calculations show that we ought to have seen 
2·9 pulsars in this region whereas we actually see none. We can therefore state with

 

Figure 5. Ρ and Ρ plotted on log-log scale for 256 pulsars. Pulsars appear to be missing above a 
critical value of P, tentatively represented by the dashed ‘cut-off’ line. Pulsars are born in the top
left part of the diagram (the majority, being born apparently above the cutoff line), and evolve 
towards the bottom right of the diagram. Most of the pulsar injection occurs in the box at the top 
of the diagram. 
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94·5 per cent confidence (100 {1 — exp (— 2·9)}) that there is a genuine deficit 
of pulsars above the cut-off line in Fig. 5. We have verified that the above results 
are not very sensitive to the exact location of either the cut-off line or the death line.
However, we cannot reject the possibility that the injection line is actually a more 
complicated curve than a single horizontal line. For instance, the distribution of 
points in Fig. 5 might suggest a line with negative slope in the period range from 0 
to ~ 0·3 s and a second line with positive slope beyond 0·3 s at the top of the P–P
diagram; there could also be an injection line with negative slope at the left of the 
P–P diagram. Some of these possibilities have been discussed by Radhakrishnan 
(1981) on the basis of an interesting model. 

We would like to offer the following tentative explanation of injection. It is possible 
that neutron stars do not radiate in the radio region immediately on birth but do so 
later in their life. We suggest that neutron stars with Ρ greater than the critical value 
are unable to radiate in the radio. They switch on as pulsars when their Ρ decreases 
to the appropriate value. Therefore, neutron stars with initial Ρ values above the 
cut-off line will ‘enter’ the pulsar P–P diagram at higher periods, thereby giving rise 
to injection. At present, we have no theory or mechanism of pulsar radiation which 
could explain an upper cut-off line in P. This is currently under investigation. 

The above scenario also explains why there are so few pulsar-SNR associations. 
Our data suggests that pulsars could spend ~ 104 year or more above the cut-off line. 
If SNRs dissolve into the interstellar medium on time scales comparable to the 
switching-on times of pulsars (there is good evidence for this in the work of Srini- 
vasan and Dwarakanath 1981), there would be very few observable associations 
between pulsars and SNRs. As mentioned earlier, in this picture we also require 
that neutron stars should cool rapidly after birth to avoid radiating thermal X-rays.
 

3.5 Braking Index 
 
The braking index n is defined by the equation
 

(28) 
 
where the angular velocity Ω =  2π/P. In the dipole braking theory, n = 3. The
age Ƭ of a pulsar, assuming the initial period to be 0 s, can be expressed in terms of
the braking index as 
 
 

(29) 
 
 
where Ƭ′ is the characteristic time, P/P The ‘velocity’ of a pulsar parallel to Ƭ′ is 
Ƭ′= (n — 1). Hence, the mean pulsar current parallel to Ƭ′ can be written, as in earlier
sections, as 
 
 

(30) 
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If we define 〈n〉 as the mean braking index of the pulsars in the Ƭ′ range defined 
in equation (30), then the equation can be written as 
 
 
 
 
 

(31) 
 
We have plotted X (Ƭ′min, Ƭ′max) in bins of 2 million years in Fig. 6. The curve
appears to be essentially constant (barring the fluctuation in bin 3) up to about 12 ×106 

yr, and falls thereafter. If we assume the dipole model and take the age as Ƭ′/2, 
then it would appear that up to about 6 × 106 yr, the current is constant. Incidentally, 
in terms of Ƭ′′, injection occurs below 105 yr and can therefore be neglected in the
discussion here. 

Since the histogram in Fig. 6 does not change from Ƭ′ = 0 to Ƭ′ = 12 ×106 yr,
this strongly suggests that the mean braking index 〈n〉 is essentially constant in this 
range. Moreover, one can further conclude that there are probably no significant 
pulsar births or deaths. By an argument similar to that in Section 2.2 one therefore 
arrives at the interesting result that JƬ′, est (0, 12×106 yr) should be comparable to the 
birthrate Β of pulsars. Since we have an independent estimate of Β in Section 3.3, 
we can therefore use quotation (31) to obtain an estimate of 〈n〉. We obtain 
〈n〉 = 3.7–0.8 where the error limits are the 95 per cent confidence limits. It is 
interesting that our independent estimate of 〈n〉, based only on observational 
 

 

Figure 6. Plot of modified pulsar current X  against apparent age Ƭ′ =  P/P. X has been averaged
in �’ intervals of 2 × 106 yr upto Ƭ′ = 20 × 106 yr, and in intervals of 4 × 106 yr thereafter. There
appears to be no apparent change in the current upto 12 × 106 yr. 
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data, is fairly consistent with, the dipole model value of n = 3. Incidentally, if we 
assume the death line of Ritchings (1976), it will be seen that some of the high 
magnetic field pulsars would die at Ƭ′ values smaller than 12 × 106 yr. In that case  
JƬ′, est (0, 12 × 106 yr) would be smaller than Β and the above value of 〈 n 〉 would
be an overestimate. This strengthens the argument in favour of dipole braking in 
young pulsars (with ages upto 6 ×106 yr). 

The braking index has been measured independently only for the Crab pulsar
(Groth 1975), yielding the value 2·515. We do not consider this to be inconsistent 
with our 〈 n 〉 because, by our results, the Crab belongs, to a minority class of un- 
injected pulsars. Further, we have estimated only the mean braking, index for the 
whole pulsar population. We have no information on the individual variations in 
n from one pulsar to the other. 
 
 

4. Conclusions 
 
We may identify the following important sources of error in our calculations.

(a) All our results are based on the observed pulsars. Since the observed sample 
could differ from the true distribution due to sampling fluctuations, there are statistic- 
cal uncertainties associated with our numerical results. We have estimated these on 
a Poissonian assumption and quoted them as 95 per cent confidence limits wherever 
applicable. 

(b) We have assumed the beaming factor Κ to have a value 5. However, the true 
value could be significantly different (e.g. Kundt 1981). 

(c) We have taken the mean interstellar electron density ne to be 0·03 electrons cm–3. 
Since this is used in all distance calculations, it is a highly important input. There 
could be some uncertainty in the value of ne though the value we have adopted is 
generally accepted as a good estimate over a large portion of the galaxy. Fluctuations 
in ne in different parts of the galaxy could also contribute to the error. 

(d) The calculations in Section 3 critically depend on the luminosity model, equa- 
tions (21) and (22). This could introduce some error in the results. However, since 
all the major conclusions of Section 3 are consistent with the results of Section 2 
where no model is assumed, we believe this error is quite small. 

(e) There may be some errors in the computed scaling factors S(Li) and also in 
the manner of pruning the data, arising from possible faulty interpretations of the 
parameters and selection effects of the three pulsar surveys. 

Of the above, errors (d) and (e) are probably not very significant. Errors of the type 
(a) can be calculated and have been quoted throughout. Errors (b) and (c) have not 
been estimated though they could be quite large. These errors are present in all 
earlier analyses, of pulsar data as well. It is also important to note that among our 
major conclusion listed below, errors (b) and (c) affect only our estimate of pulsar 
birthrate and have little or no bearing on the rest. 

The main conclusions of our study are: 
(a) A significant fraction of pulsars are born with initial periods > 500 ms. There-

fore the conventional picture of pulsar evolution in the P–P diagram may require 
significant modifications. The injection of pulsars at high periods should be related 
to the physics of pulsar radio emission. We suggest that neutron stars probably 
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switch on as pulsars only when log Ρ < — 12·5. This hypothesis would also explain 
the lack of SNR—pulsar associations. Our demonstration of injection is based on 
the rigorous, model independent calculations of Section 2 (see Fig. 2), Section 3 
serving as a confirmation. Moreover, the result is independent of the particular 
choice of Κ and ne. 

(b) The birthrate of pulsars is estimated to be 0·048–0.011
 (one pulsar every 21–5 yr), 

which appears to be consistent with the rate of supernova explosions if (i) every 
explosion results in a neutron star, and (ii) every neutron star becomes a pulsar some- 
time in its life. Our estimate is really a lower bound, but we expect it to be close to the 
actual birthrate because the ‘plateau’ in Fig. 4 shows some resemblance to Fig. 1(a). 
However, it should be noted that our result depends upon the values chosen for Κ 
and ne, neither of which is known with great precision. 

(c) The number density of pulsars in the P–P diagram is significantly affected by 
radio luminosity selection effects which cannot, therefore, be neglected in studies of 
pulsar evolution in the P–P diagram, birthrate studies, etc. This, coupled with the 
injection which we have demonstrated, would cast doubts on earlier analyses of 
pulsar data. A complete re-examination is called for. 

(d) The mean braking index of pulsars is estimated to be 3·7–0·.8
 this value being 

probably an overestimate. Hence the dipole braking model value of n = 3 is prob- 
ably close to the truth. Also, Ƭ = ½P/P appears to be a good indicator of pulsar age 
upto 6 × 106 yr, which might be a lower limit for the decay time of the magnetic 
field or possibly the age at which pulsars begin dying. These results do not depend 
upon our choice of Κ and ne. 
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Appendix A 
 
In various sections of this paper, we are interested in evaluating quantities of the form 

 

(32) 
 
where x is some property of pulsars and p(x) dx is the probability of observing a 
pulsar having a value of this property in the range x to x + dx. For instance, in 
Section 2(b), x = PS(L), in Section 2·4, x = S(L), etc. We estimate Q by means of 
the following sum over the Xi of the observed pulsars 
 

(33) 
 

.

+0.014 +6

.

.

.

+0.8

.



Pulsar statistics—birthrate and injection 335 
 
Now, the probabilities of observing pulsars in different ranges of x are independent 
of one another. Hence, Q in equation (32) is the weighted integral over independent 
Poisson variables (of mean p(x) dx). The variance of Q is then clearly given by
 

(34) 
 
This can be estimated in terms of the observed pulsars by means of
 
 

(35) 
 
 
which is the formula used throughout the present paper.

The form of V in equation (34) is different from the following more usual form
 
 
 
 

(36) 
 

The difference arises because the variance in the present case (equation 34) has two 
contributions. 

(a) There is one contribution arising from the distribution of values of x, giving an 
expression exactly of the form equation (36). 

(b) Secondly, being a Poisson process, the total number of observed pulsars
 

(37) 
 
can itself fluctuate i.e. there can be fluctuations in the number of terms in equation
(33). It is easily verified that this contribution cancels the second term in equation 
(36), leading to equation (34). 
 
 

Appendix B 
 
If an Η II region lies along the line of sight to a pulsar, it contributes to the dispersion 
measure (DM), Since pulsar distances are derived using DM, the Η II region contri- 
butions must be subtracted. Prentice and ter Haar (1969) have given a scheme for 
estimating the corrections. However, their results might be inaccurate because of 
unknown parameters, such as the Strömgren radii and electron densities of the Η II 
regions. The inaccuracies could be particularly serious if the Η II region contribution 
is a major fraction of the pulsar’s DM. Therefore, we have ‘softened’ the Prentice- 
ter Haar correction using the following scheme. 

We postulate that the dispersion measure correction of an Η II region has a rect-
angular probability distribution as shown in Fig. 7 where Η is the correction given 
by Prentice and ter Haar. We average the calculated distance to the pulsar over this 
probability distribution and use the averaged distance in our studies. Let d be the 
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Figure 7. Assumed probability distribution of the dispersion measure correction (H) due to Η II 
regions. 
 
DM left to be accounted for just at the front face of the Η II regions. It is easy to see 
that whenever d   3H/2 or d    H/2, the present scheme gives practically the same 
distance as the old scheme (which directly used the single value of H). For the 
case H/2 < d < 3Η/2, the new scheme gives a larger estimate for the pulsar distance 
than the old. A larger distance implies a larger estimate for the pulsar luminosity 
L and hence a smaller estimate of the scale factor S(L). We are thus, in a sense, being 
conservative and erring on the side of slightly underestimating the quantities 
of interest. 
 
 

Appendix C 
 
As already mentioned in the text, we expect the distribution of Qest (equation 33)
to be asymmetric, with a long tail, because only a few top values of Xi usually con- 
tribute to the result. Therefore we prefer to use confidence limits rather than the 
Standard deviation. In computing the confidence limits, we assume that our esti- 

mator Qest = 
 
Xi is the sum of Ν random Poisson variables (vi) of mean equal 

to 1, each weighted by the respective Xi 
 
 

(37) 
 
 
By numerically generating Ν random variables between 0 and 1, we generate N ran 
dom Poisson variables with mean 1 and therefore a random value of Qest· By gene
rating many random values of Qest, we then estimate the probability distribution of
Q. The confidence limits are then easily marked off .by measuring areas under this 
probability curve. 
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