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Abstract This paper presents a new kind of uniform spline curve, named trigonometric polynomial

B-splines, over space Ω = span{sint, cost, tk−3, tk−4, · · · , t, 1} of which k is an arbitrary integer

larger than or equal to 3. We show that trigonometric polynomial B-spline curves have many similar

properties to traditional B-splines. Based on the explicit representation of the curve we have also

presented the subdivision formulae for this new kind of curve. Since the new spline can include both

polynomial curves and trigonometric curves as special cases without rational form, it can be used as

an efficient new model for geometric design in the fields of CAD/CAM.
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In most current CAD/CAM systems, NURBS (non-uniform rational B-splines) curves and
surfaces have become the de facto standard primarily because they encompass under a uni-
fied mathematical model both freeform and some traditional analytical shapes, such as conics.
However, there are several limitations of the NURBS model for shape design and analysis. For
example:

• The differentiation of a rational polynomial of degree k is another rational curve of degree
2k generally. Rational curves and surfaces of high degree cannot always be dealt with in some
CAD systems. Even if they can be dealt with, rational curves and surfaces can bring about
uncertainties in numerical computation, difficulties for bounds estimation, etc.

• This model cannot encompass transcendental curves, such as the helix and the cycloid
which have been used frequently in many CAD/CAM systems.

• Rational models need additional parameters, namely the weights for each control point,
whose selection is not always clear.

For more limitations of NURBS model, please refer to refs. [1—4,11—14].

To overcome the shortcomings of NURBS model, several alternatives have been proposed
for curves and surfaces modeling purpose recently. Among the known examples of such splines
are certain non-polynomial counterparts to B-spline curves, for example exponential splines
in tension[5] and C-B-splines[6,7]. All these curves belong to the class of Chebyshevian spline
curves[5,8,9]. There is an extensive theory of T-spline functions[10].

In refs. [6,7], Zhang proposed C-B-spline curves based on the linear combination of {sin t,



336 SCIENCE IN CHINA (Series F) Vol. 45

cos t, t, 1}. C-B-spline curves are an extension of uniform B-spline curves, and they have many
similar properties for shape modeling. On the other hand, the C-B-spline curve can express
ellipse, circular arc exactly, which make it a potential tool for geometric design in CAD/CAM
systems. However, the C-B-spline can only encompass linear polynomial curves, which restricts
its application in CAD/CAM. In this paper we present an explicit construction of a kind of
generalized curve over space Ω = span{sin t, cos t, tk−3, tk−4, · · · , t, 1}. This kind of curve also
has many similar properties to B-spline curves. It encompasses C-B-splines as a special case
k = 4 and polynomial curves up to degree k − 3.

Throughout this paper, we call the linear combination of {sin t, cos t, tk−3, tk−4, · · · , t, 1}
trigonometric polynomial of order k. At the same time, we call a set of piecewise continuous
trigonometric polynomial curves of order k trigonometric polynomial splines of order k. The rest
of the paper is organized as follows. The definition of order-k trigonometric polynomial splines
and its properties are given in section 1. In section 2 we show that trigonometric polynomial
curves have many similar properties to B-splines. In section 3 we explain that trigonometric
polynomial curve can be generated by subdivision algorithm, and consequently we obtain the
V.D. and convex-preserving properties of this kind of curve. The conclusion is given in section
4.

1 The construction and properties of basis

Let ti = iα (i = 0,±1,±2, · · ·) (α is the interval length, 0 � α � π) be knots of a uniform
partition of parameter-axis t and we denote the collection of all trigonometric polynomial of order
k defined on [ti, ti+1](i = 0,±1,±2, · · ·) by Ωk,α, where each function is k− 2 times continuously
differentiable at the knot ti(i = 0,±1,±2, · · ·). It can be easily observed that operations of
addition and scale multiplication of functions over Ωk,α are closed, i.e. Ωk,α is a linear space. In
this section we will show that, for k that is equal to or larger than 3, there exists a set of basis
functions defined over Ωk,α, for which the properties are similar to B-spline basis. The set of
bases are then called trigonometric polynomial B-spline basis throughout this paper.

Theorem 1.1. There exists no trigonometric polynomial B-spline basis over Ω2,α.

Proof. Assume there exist trigonometric polynomial B-spline bases over Ω2,α. Then each
basis should be a linear combination of {sin t, cos t} on each interval, and all bases should sum
up to one. This implies that 1 is also a linear combination of {sin t, cos t}, which contradicts the
fact that {sin t, cos t, 1} are linear independent. This proves the proposition.

To construct the bases in space Ωk,α for k � 3, we first define a set of functions over Ω2,α

N0,2(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− α

2(cosα − 1)
sin t, 0 � t � α,

− α

2(cosα − 1)
sin(2α − t), α � t � 2α,

0, elsewhere,

(1)

and

Ni,2(t) = N0,2(t − iα) (i = 0,±1,±2, · · ·). (2)
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And for k � 3 let

Ni,k(t) =
1
α

∫ t

t−α

Ni,k−1(x)dx (i = 0,±1,±2, · · ·). (3)

It can be easily derived that Ni,k(t) (i = 0,±1,±2, · · ·) possess the following properties, from
which we conclude that Ni,k(t) (i = 0,±1,±2, · · ·) constitute a set of bases in Ωk,α for k � 3.
Then, we call Ni,k(t) (i = 0,±1,±2, · · ·) a trigonometric polynomial B-spline bases of order k.
Trigonometric polynomial B-spline bases of order 3—8 are illustrated in fig. 1.

Fig. 1. Trigonometric polynomial B-spline basis of order 3—8 (α = π/2).

Some basic properties of trigonometric polynomial B-spline basis of order k are listed as
follows, and these properties can be easily derived from formulae (1)—(3):

Property 1.1. Non-negative: Ni,k � 0, t ∈ (−∞, +∞).

Property 1.2. Local support: Ni,k

{
> 0, t ∈ (iα, (i + k)α),

= 0, elsewhere.

That is to say, the local support of Ni,k(t) is k intervals. This is one reason why we say its
order is k.

Property 1.3. Partition of unity:
∑

i

Ni,k(t) ≡ 1. (4)

Property 1.4. Linear independence: Ni,k(t)|+∞
−∞ are linear independent on (−∞, +∞).

Specially, Ni,k(t), Ni+1,k(t), · · · , Ni+n,k(t)(n � k) are linear independent on interval [(i + k −
1)α, (i + n + 1)α].

Property 1.5. Derivative formula: N
′
i,k(t) = 1

α (Ni,k−1(t) − Ni+1,k−1(t)).

Property 1.6. Symmetry: Ni,k(iα + kα − t) = Ni,k(iα + t) t ∈ [0, kα].

Proof. Since Ni,k(iα + t) = N0,k(t), t ∈ [0, kα], we only need to show N0,k(kα − t) =
N0,k(t). For k = 3

N0,3(3α − t) =
1
α

∫ 3α+t

2α−t

N0,2(x)dx =
1
α

∫ 3α+t

2α−t

N0,2(2α − x)dx

=
1
α

∫ t

t−α

N0,2(y)dy = N0,3(t), t ∈ [0, 3α].
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Now assume the property holds for k = l − 1. For k = l we have

N0,l(t) =
1
α

∫ t

t−α

N0,l−1(x)dx =
1
α

∫ t

t−α

N0,l−1((l − 1)α − x)dx

=
1
α

∫ −t

−t−α

N0,l−1(lα − (α + x))dx

=N0,l(lα − t).

This completed the proof.

Property 1.7. Continuity: Ni,k(t) is k − 2-differentiable on the whole parameter space.

2 Trigonometric polynomial B-spline curves

With the basis defined in the above section, we can define trigonometric polynomial B-spline
curves over the whole parameter space. However, in practical geometric modeling applications,
the span of parameter t is always restricted to a finite interval such as [a, b] (a < b).

We denote the space of trigonometric polynomial B-splines of order k defined over [a, b]
as Ωk,α[a, b]. If a = kα, b = (n + 1)α, then N1,k(t), N2,k(t), · · · , Nn,k(t)(n � k) are the bases
of space Ωk,α[a, b] (cf. fig. 2). Therefore, we can define spline curves in Ωk,α[a, b], with bases
Ni,k(i = 1, 2, · · · , n) as:

pk(t) =
n∑

i=1

PiNi,k(t), kα � t � (n + 1)α (n � k), (5)

Fig. 2. Nl,k(α, t), · · · , Nn,k(α, t) are basis of the space Ωk,α[kα, (n + 1)α].

Fig. 3. Trigonometric polynomial B-spline curve

of order 6 (α = π/2).

where Pi(i = 1, 2, · · · , n) are the control points,
and P = [P1, P2, · · · , Pn] stands for the con-
trol polygon. Fig. 3 illustrates an example of
trigonometric polynomial B-spline curve of or-
der 6.

In a similar way to B-spline curves,
trigonometric polynomial B-spline curves have
the following properties:

Property 2.1. Convex hull property:
A curve defined on [iα, (i + 1)α], namely
pk(t)(iα � t � (i + 1)α, i = k, · · · , n), must
lie inside the convex hull Hi of control points
Pi−k+1, · · · , Pi, and the entire curve (5) lies
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inside H =
n⋃

i=k

Hi, which is union of Hi.

This follows, since the trigonometric polynomial B-spline basis is nonnegative. They sum
to one as shown in (4).

Property 2.2. Geometric invariance: Because pk(t) is affine combination of the control
points Pi(i = 1, · · · , n), the shape of trigonometric polynomial B-spline curves is independent of
the choice of coordinate.

Property 2.3. Local control property: Change of one control vertex will alter at most k

segments of trigonometric polynomial B-spline curve of order k, then, local adjustment can be
made without disturbing the rest of the curve.

Property 2.4. Symmetry: Just like the curve in fig. 3, it is clear that the control points
can be labeled P1, P2, · · · , Pn or Pn, Pn−1, · · · , P1 without changing the shape of the curve. They
differ only in the direction in which they are traversed. If we do not consider the direction of a
curve, we have

n∑

i=1

PiNi,k(iα + t) =
n∑

i=1

Pn−iNi,k(iα + kα − t) t ∈ [0, kα].

Property 2.5. The derivative of a trigonometric polynomial B-spline curve:

d
dt

pk(t) =
1
α

n∑

i=2

Ni,k−1(t)ΔPi (kα � t � (n + 1)α), (6)

where ΔPi = Pi − Pi−1.

Corollary. The rth derivative of a trigonometric polynomial B-spline curve:

dr

dtr
pk(t) =

1
αr

n∑

i=r+1

Ni,k−r(t)ΔrPi, r = 0, 1, · · · , k − 2, (7)

where ΔrPi = Δr−1Pi − Δr−1Pi−1.

The proof of (7) is by repeated application of (6).

Property 2.6. Continuity: pk(t) ∈ Ck−2[kα, (n + 1)α].

Proof. pk(t) is defined as (5), i.e. pk(t) =
n∑

i=1

PiNi,k(t) (kα � t � (n + 1)α), in other

words pk(t) is a linear combination of Ni,k(t). And from Property 1.7, we have Ni,k(t) is k − α-
differentiable on the parameter space, hence pk(t) ∈ Ck−2[kα, (n + 1)α].

3 Subdivision formulae for trigonometric polynomial B-splines

In this section, we will discuss the subdivision formulae for trigonometric polynomial B-
spline curves. Let Ni,k(α, t)(i = 0,±1,±2, · · ·) denote the basis of order k based on a set of
uniform knots ti = iα (i = 0,±1,±2, · · ·) as defined in (1)—(3). If we partition the parameter-
axis t with unit interval length α

2 , that is take t′i = iα
2 (i = 0,±1,±2, · · ·) as knots, we have a new

set of bases with this new set of knots. Consequently, we denote these new bases of order k as
Ni,k(α/2, t) (i = 0,±1,±2, · · ·) (see fig. 4).
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Fig. 4. Trigonometric polynomial B-spline

basis of order-4. (a) Interval length is α; (b)

interval length is α/2.

From the above sections we know that
Ωk,α[kα, (n+1)α] is a space consisting of trigono-
metric polynomial B-spline curves of order k

which are k − 2 times continuously differentiable
at knots ti = iα(i = 0,±1,±2, · · ·). Similarly,
Ωk,α/2[kα, (n + 1)α] is another space consisting
of trigonometric polynomial B-spline curves of
order k defined with knots t′i = iα

2 on interval
[kα, (n + 1)α]. It is clear that Ωk,α[kα, (n + 1)α]
is a subspace of Ωk,α/2[kα, (n + 1)α], and then
curves in Ωk,α[kα, (n + 1)α] can be expressed by
Ni,k(α/2, t). When a curve in Ωk,α[kα, (n + 1)α]
has been expressed by Ni,k(α, t) and Ni,k(α/2, t),
respectively, the relationship between their con-
trol points is based on the following theorem (see
fig. 5 and fig. 6).

Fig. 5. The recursion of the control points Fig. 6. Subdivision of trigonometric polynomial

on subdivision. B-spline curve (α = π/2).

Theorem 3.1 (Subdivision). Order-k trigonometric polynomial B-spline curve pk(t) can
be expressed by Ni,k(α, t) and Ni,k(α/2, t) respectively as follows:

pk(t) =
n∑

i=1

PiNi,k(α, t)

=
2n−k+1∑

i=1

P k
i Ni,k(α/2, t), t ∈ [kα, (n + 1)α],

where

P 3
i =

{
((1 + 2 cos(α/2))P(i+1)/2 + P(i+3)/2)/(2(1 + cos(α/2))), i odd,

(Pi/2 + (1 + 2 cos(α/2))Pi/2+1)/(2(1 + cos(α/2))), i even,
(8)

i = 0, 1, 2, · · · , 2n− 2,

P k
i = (P k−1

i + P k−1
i+1 )/2, i = 1, 2, · · · , 2n − k + 1, k > 3. (9)
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Proof. (By induction on k) Let k = 3,
n∑

i=1

PiNi,3(α, t) =
n∑

i=1

Pi ·
(

1
α

∫ t

t−α

Ni,2(α, x)dx

)

=
n∑

i=1

Pi

(
1
α

∫ t

t−α

(
1

1 + cos(α/2)
N2i−3,2(α/2, x) +

2 cos(α/2)
1 + cos(α/2)

N2i−2,2(α/2, x)

+
1

1 + cos(α/2)
N2i−1,2(α/2, x)

)

dx

)

=
n∑

i=1

Pi

(
1

2(1 + cos(α/2))
N2i−3,3(α/2, t) +

1 + 2 cos(α/2)
2(1 + cos(α/2))

N2i−2,3(α/2, t)

+
1 + 2 cos(α/2)
2(1 + cos(α/2))

N2i−1,3(α/2, t) +
1

2(1 + cos(α/2))
N2i,3(α/2, t)

)

.

Since N−1,3(α/2, t) = N0,3(α/2, t) = N2n−1,3(α/2, t) = N2n,3(α/2, t) = 0 for t ∈ [3α, (n + 1)α],
we have

n∑

i=1

PiNi,3(α, t) =
n−1∑

i=1

(
(1 + 2 cos(α/2))Pi + Pi+1

2(1 + cos(α/2))
N2i−1,3(α/2, t)

+
Pi + (1 + 2 cos(α/2))Pi+1

2(1 + cos(α/2))
N2i,3(α/2, t)

)

=
2n−2∑

i=1

P 3
i Ni,3(α/2, t).

Thus, (8) holds. Now assume (9) holds for all l, 3 � l < k. For l = k we have
n∑

i=1

PiNi,k(α, t) =
n∑

i=1

Pi

(
1
α

∫ t

t−α

Ni,k−1(α, x)dx

)

=
1
α

∫ t

t−α

( n∑

i=1

PiNi,k−1(α, x)dx

)

(10)

for t ∈ [kα, (n + 1)α]. Now by our induction hypothesis, (10) reduces algebraically to

n∑

i=1

PiNi,k(α, t) =
1
α

∫ t

t−α

( 2n−k+2∑

i=1

P k−1
i Ni,k−1(α/2, x)

)

dx

=
1
2

(
1

α/2

( ∫ t

t−α/2

+
∫ t−α/2

t−α

) 2n−k+2∑

i=1

P k−1
i Ni,k−1(α/2, x)dx

)

=
1
2

( 2n−k+2∑

i=1

P k−1
i Ni,k(α/2, t) +

2n−k+2∑

i=1

P k−1
i Ni,k(α/2, t − α/2)

)

.
(11)

Since N2n−k+2,k(α/2, t) = N1,k(α/2, t − α/2) = 0 for t ∈ [kα, (n + 1)α], and after dropping
terms concerning these basis functions and rearranging the remaining term in (11), we have

n∑

i=1

PiNi,k(α, t) =
1
2

( 2n−k+1∑

i=1

P k−1
i Ni,k(α/2, t) +

2n−k+2∑

i=2

P k−1
i Ni,k(α/2, t − α/2)

)

=
2n−k+1∑

i=1

(

P k−1
i + P k−1

i+1

)/

2 · Ni,k(α/2, t)

=
2n−k+1∑

i=1

P k
i · Ni,k(α/2, t).

This proves the theorem.
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This theorem indicates that new control polygon can be generated by the old polygon after
one subdivision. We can repeatedly apply subdivision to the consequent control polygon, and
generate a series of control polygons.

For convenience of description, we use Bk(P ; 1, n)(t) to denote k-order trigonometric poly-
nomial B-spline curve pk(t), where P = Φ0[P ] = [P1, P2, · · · , Pn] is control polygon. Define
Φ1[P ] = [P k,1

1 , P k,1
2 , · · · , P k,1

n ], where P k,1
i = P k

i is given by (8), (9) and Φl[P ] = Φ[Φl−1P ] =
[P k,l

1 , P k,l
2 , · · · , P k,l

r(l,k)] for r(l, k) = 2l+1(n − k + 1) + k − 1, l � 1, where Φl[P ] denotes the con-
trol polygon after l times of subdivision. In fact, we can show that when the subdivision time
increases, the control polygon series will converge to the spline curve.

Theorem 3.2. Let Bk(P ; 1, n)(t) and Φl[P ] be defined as above. Then

lim
l→∞

Φl[P ] = Bk(P ; 1, n)(t).

Proof. From Theorem 3.1 and simple induction on l we have

Bk(Φl[P ]; 1, n)(t) = Bk(P ; 1, n)(t).

Now let M = max
i

|Pi+1 − Pi|. It can be easily derived that

|P k
i+1 − P k

i | � 1
1 + cos(α/2)

M,

and therefore
|P k,l

i+1 − P k,l
i | � 1

(1 + cos(α/2)) · · · (1 + cos(α/2l))
M.

Since 0 < α < π, 0 < α/2 < π/2, we have

|P k,l
i+1 − P k,l

i | � 1
(1 + cos(α/2))l

M.

That is, lim
l→∞

|P k,l
i+1 − P k,l

i | = 0, and then

lim
l→∞

|P k,l
i+j − P k,l

i | = 0 (12)

for ∀i ∈ {1, · · · , r(l, k)}, j = 1, · · · , k, i + j � r(l, k).
From the convex hull property we know Bk(P ; 1, n)(t0), ∀t0 ∈ [kα, (n + 1)α] lies within the

convex hull of P k,l
i , P k,l

i+1, · · · , P k,l
i+k for some i. But with (12) we can then conclude

lim
l→∞

Φl[P ] = Bk(P ; 1, n)(t).

Theorem 3.2 indicates that subdivision of control polygon can lead to its corresponding
trigonometric polygon B-spline curve. And the following theorem describes such a curve possesses
variation diminishing property (V.D. property), which is critical for work in CAD since it prevents
the curve from wiggling too much.

Theorem 3.3 (V.D. Property). No plane has more intersections with the curve than
with the control polygon in a trigonometric polynomial B-spline.

Proof. For arbitrary selected plane P , the intersections between the plane P and control
polygons will not increase after subdivision. And because the series of control polygons converge
to the trigonometric polynomial B-spline after repeated subdivisions in the end, the V.D. property
comes true.

Theorem 3.4 (Convexity preserving). If the control polygon is convex, the corresponding
trigonometric polynomial B-spline curve is convex.
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Proof. The convex control polygon preserves convex after every subdivision, so from the
converge property the corresponding trigonometric polynomial B-spline curve is also convex.

4 Conclusion

In this paper we have obtained a general piecewise trigonometric polynomial B-spline basis
of order k(k � 3) over the space Ω = span{sin t, cos t, tk−3, tk−4, · · · , t, 1}, and trigonometric
polynomial B-spline curve models are presented simultaneously. Trigonometric polynomial B-
spline curves not only inherit the advantage of the polynomial curve, but have the property of
the trigonometric curve. In addition to the ellipse, they can be used to represent remarkable
transcendental curves, such as the cycloid, graph of sinusoidal functions[4]. Trigonometric poly-
nomial B-spline curves have nearly all the same properties as uniform B-splines. The subdivision
formulae of this kind of curve are given, and therefore the curve can be derived from repeated
subdivisions.

In fact, we can construct tensor product trigonometric polynomial B-surfaces just like B-
spline surfaces. Therefore, trigonometric polynomial B-spline model is a new powerful tool for
constructing free-form curves and surfaces in CAGD. Because trigonometric polynomial B-spline
curves are defined over space Ω mixed by trigonometric function sin t, cos t and polynomial, Ω is
closed for the integral operation, that is to say, for ∀f(t) ∈ Ω , we have

∫
f(t) ∈ Ω .
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