
V O ~ . 44 N O . 1 SCIENCE IN CHINA (series F) February 2001

SCIENTIFIC PAPERS

Reuse-based software production technology

YANG Fuqing (#I X5f) , WANG Qianxiang (E-?#) , ME1 Hong (& 2)
& CHEN Zhaoliang (f& dk, k)
Department of Computer Science and Technology, Peking University, Beijing 100871, China
Correspondence should be addressed to Yang Fuqing (emall : yang @ cs . pku . edu . cn)

Received April 9 , 2000

Abstract Software reuse is viewed as a key technology to improve software product quality and
productivity. This paper discusses a series of technologies related with software reuse and software
component technology : component model, which describes component ' s essential characteristics ;
component acquisition technology, of which domain engineering is the main approach; component
management technology, of which component library is the kernel; application integration and compo-
sition technology, of which application engineering is the main approach; software evolution technolo-
gy, of which software reengineering is the main approach, etc. This paper introduces the software de-
velopment environment : JadeBird Software Production Line System, which effectively integrates the
above-mentioned technologies.

Keywords : software reuse, software component, domain engineering, component library, application engi-
neering, reengineering.

For information technologies, microelectronics is the foundation, computer hardware and com-
munication infrastructure are the carriers, and computer software is the kernel. Software is coded
knowledge. More and more abstract experience and knowledge are accurately represented as soft-
ware. Along with the appearing of cheaper and faster microprocessors, software will take up more

[1 I and more functions. Software is becoming a new "physical infrastructure" of information age .
Although the demand for software is increasing rapidly during the information age, the ability of

software development and production is relatively insufficient. This situation means that a lot of urgent-
ly needed software cannot be developed in time, and leads to the so-called software gap. Since the
cognizance of software crisis and the introduction of software engineering in the late 1%0's, many re-
searchers and engineers have made great efforts in software development research and practice. It is
realized recently that engineering development approaches and industrialized production technology

should be adopted in order to improve software product quality and productivityr2731. This involves two
aspects: in technology, reuse-based software production technology should be adopted; in manage-
ment, multi-perspective engineering management pattern should be used.

This paper focuses on the technical issues in the industrialized software production. Sec. 1
introduces the definition of software component, and presents the Jade Bird (JB) component
model (JBCOM) . Sec . 2 discusses component acquisition, centering on domain engineering.
Sec . 3 introduces component management : Component Library Management System. Sec . 4 dis-
cusses component reuse, centering on application engineering. Sec . 5 discusses software evolution
centering, on reengineering . The last part of this paper introduces the JB project, which supports

No. 1 REUSE-BASED SOFTWARE PRODUCTION TECHNOLOGY 9

this kind of industrialized production technology, especially the concepts, activities and architec-
tures of the JB software production line system and its all-around support to software production.

1 Software reuse and software component

In recent years, it is realized that industrialized software production is the only feasible way
to solve the software crisis problem. Research on the successful modes of traditional industry and
computer hardware industry shows that these industrial development modes are all up to snuff
parts (components) production and product manufacturing (composition) based on standard com-
ponents, in which, components are the kernel and basis, and "reuse" is the necessary method.
Practice has shown that this mode is the successful way for industrialization, and will be the only

way that the software industry should go[21 .
The idea of software reuse has been popular for a time and found broad application, such as

subroutines reuse, generic classes reuse, and compilers reuse, etc . The introduction of the con-
cept of software component lays the technical foundation for software reuse, and consequently

makes software reuse attract more universal a t ten t i~n '~ ' . The component production and reuse is
the key to form large scale software industry. This paper will give a brief introduction of a series
of important concepts at first : component, component model, and component implementation,
etc .

1 .1 Component
In general, component is the system element that can be distinguished definitely ; software

component is a relatively independent constitutional element that has certain contents in software

systems. Because the software component being talked about at present mainly concerns about its
reuse aspect, software component mostly denotes reusable software component, viz. system con-
stitutional element that has relati~elyinde~endent functionality and can be reused by a number of
software systems. In the following discussion, except specially indicated, the component we talk

about all denotes reusable software component. In this paper, we define component as follows:
component is a reusable software entity, and consists of two parts-component specification and
component implementation. Component specification is mainly described by component model.

Architecture is a special kind of component. It depicts the components of the system, and

relationships among these components.

1 .2 Component model
Component model is the abstract description of component's essential characteristics. There

are many component models at present. The objective and purpose of these models are different:

some are reference models, e . g . 3cr5] ; some are description models, e . g . RESOLVE'^] and

 REBOOT'^' ; some are implementation models, of which the representative models are common

object request broker architecture (CORBA) [' I , distributed component object model

(DCOM) [91 , enterprise javabean (EJB) "01 . These implementation models effectively separate
component implementation from its specification and provide the ability for component to interact,
thus increasing the chances to reuse and accommodate to the needs of large-scale software systems
in actual networking environment.

JB component model (JBCOM) fully assimilates the merits of the above-mentioned models,
and is compatible with them. JBCOM consists of two parts-external interface and internal

10 SCIENCE IN CHINA (Series F) Yol. 44

structure-as illustrated in fig. 1 .

Fig. 1 . J H component model

r - - - - - - - - - i

' Parametrical

1 . 2 . 1 External interface. Component ' s external interface is the essential information that a

component provides for its reuser, including component name, function description, provided
function, required components, and parametetrical attributes.

Provided
functions

1 . 2 . 2 Internal structure. Component's internal structure comprises two aspects: internal

members and their relations. Internal members include concrete members and virtual members,
and member relations include the interconnections between internal members, and the intercon-

nections between internal members and external interface.

I attributes ,
Function Component FJ I - - - - - - - - - ;

Concrete Virtual
members members

r . - - . . .

Required
components

, . - - 7 . ,
- 3 I

, . 0 I . . r - '
01 :

L . - . . d

, . - - 7 , .
- 3 I

0 ' : . r - :

-0 ; :
L.-.-.,

1 . 3 Component implementation
Component implementation is the logical system (code) that implements the function of a

component concretely, which is also called coded-level component generally. The component pro-

ducer is responsible for component implementation, and the component reuser does not have to

know the implementation details of a component. When reusing a component, the reuser can cus-
tomize or specialize it .

2 Domain engineering : component acquisition

Having a large amount of reusable components is the precondition for using reuse technology

successfully. By analyzing reusable information and domains, we find"'] :

(i) Reusable information is domain specific. Reusability is not an isolated property of infor-

mation; it depends on a particular problem and problem-solving context. Therefore, domain-ori-
ented strategy should be adopted when identifying, acquiring and representing reusable informa-

tion.

No. 1 REUSE-BASED SOFTWARE PRODUCTION TECHNOLOGY 1 1

(i i) Cohesiveness and stability of domains, viz. knowledge about solutions and in the do-
mains are sufficiently cohesive and stable. So cohesiveness of specification and implementation
knowledge in a domain makes it possible to solve a large number of problems through a finite,
relatively small set of reusable information. Stability of domain makes it possible to reuse the cap-
tured information again and again over extended periods of time.

From the knowledge of these two aspects we can draw the conclusion: the components ac-

quired in domain engineering are large numbers and have high reusability[12' . More than that,
the domain-oriented software architecture acquired in domain engineering is more specific and
easier to manipulate than the general software architecture. Therefore, domain engineering is the
main approach to acquiring component and architecture.

Domain is the function area covered by a family of similar systems. Domain engineering is a
process of creating basic capability and necessary foundation for application engineering of a fami-
ly of similar systems. JB domain engineering method divides domain-engineering process into sev-
eral activities : domain analysis, domain design, domain implementation, etc . The activities and
products are illustrated in fig. 2 .

Fig. 2 . Activities and products in domain engineering.

2 .1 Domain analysis

The main activity in this stage is developing domain analysis model. It includes three sub-
activities: creating domain requirement definition, creating domain object-oriented analysis

(OOA) model and creating domain terminology dictionary, of which, creating domain require-
ment definition can be further divided into three activities: defining domain business model,
defining domain business process and defining domain requirements. Creating domain requirement
definition and creating OOA model constitute the main contents of domain analysis; if necessary,

we can define' terminologies in domain terminology dictionary at any moment during these two ac-
tivities.

During the domain analysis process, different requirements should be discovered and repre-
sented separately according to the domain characteristics. These requirements can be divided into

12 SCIENCE IN CHINA (Series F) Vol. 44

the following different classes :
Mandatory requirements : requirements that all systems in the domain must have. This kind

of requirements is the essential requirement of systems in the domain.
Opt@nal requirements: requirements that some systems in the domain may have. This kind

of requirements reflects the differences'between systems in the domain.
Alternative requirements: a set of requirements among which there exist special relations

among them. This kind of requirements also reflects the variability of systems in the domain.
Domain model depicts the common requirements of systems in the domain, including domain

terminology dictionary, domain requirement definition, and object oriented analysis model (OOA
model) , etc .

2.2 Domain design
The main activity in this stage is developing domain design model: domain specific software

architecture (DSSA) . Similar to the application design, domain design needs to consider imple-
mentation issues, e . g . operating system, programming environment, software deployment mode,
and data-accessing mode, etc . And besides, it also needs to choose architecture style (e . g . two-
tier C/S mode, B/S structure, three-tier structure, etc .) and component implementation model
(e . g. DCOM and CORBA , etc .) .

In JB domain engineering method, DSSA mainly considers the object-oriented design
(OOD) model of which basic elements are attributes, services, classes, objects, and their rela-
tions . Classes, class attributes, methods, all kinds. of relations are likely optional or alternative ;
there also exist dependency or mutually exclusion relations between these elements. There is
traceability between DSSA and domain analysis model: mandatory requirements in domain analy-
sis model must trace to the corresponding mandatory elements in DSSA; optional requirements in
domain analysis model must trace to the corresponding optional elements in DSSA; alternative re-
quirements in domain analysis model must trace to the corresponding alternative elements in
DSSA .

2 .3 Domain implementation
The main purpose of this stage is to develop domain specific components and architecture,

which can be extracted from existing systems or developed from scratch according to domain anal-
ysis model and DSSA. Traceability should be established between reusable components and DSSA
in order to connect reusable components to their specification. Black box reuse should be as con-
venient as possible in use.

Another important thing of domain implementation is component testing. It is especially im-
portant because the quality of components influences the quality of many future software systems.

Finally, we need to point out that there are iterations between the mentioned three stages,
and inside each stage.

3 Component management

Managing a large amount of components efficiently to facilitate component storage, compo-
nent searching, and component retrieval is the necessary assurance for successful component
reuse[''61 . Component management involves component description, component classification,
component library organizing, users and privileges management, and user feedback, etc .

No. I REUSE-BASED SOFTWARE PRODUCTION TECHNOLOGY 13

3 . 1 Component description
Component model is the abstract description of component ' s nature, and provides foundation

for production and reuse of components. It also needs to describe component for management, in-
cluding the following information : implementation way, implementation body, producer, data of
production, size, price, version, related components, etc . which constitutes the full description
of component together with component model.

3 .2 Component classification
JB component library (JBCL) uses facet method to classify components, including the. fol-

lowing facets :
(i) Application environment: the hardware and software platform that must be provided

when the component is used.
(i i) Application domain : the names of domains (and i t s sub-domains) that the component

is used or may be used.
(ii i) Functionality: the set of software functions provided by the component in original or fu-

ture systems.
(iv) Level: the abstraction level of component relative to the stages of software development

process, e . g . analysis, design and coding, etc .
(v) Representation: the language or medium that describes the content of the component,

e . g . programming language used in source code component, etc .

3 . 3 Component library organizing
In order to facilitate component searching and component reusing, component library builds

various relationships between component entities. These relations include:
(i) Refinement: it denotes relationships between components that are in adjacent stages in

software life cycle.
(ii) Version : it indicates relationships between components that are in the evolution series

of a component. User may find all versions of a given component through version relations.
(iii) Cooperation: The component having cooperation relation with a component that cooper-

ates with it to accomplish a certain task together.
(iv) Containment : the containment relationships between components in different forms,

e . g . a class tree component may contain one or more class components, a framework component
may contain one or more class components.

(v) Inheritance : An m: 1 directed relation. In JB component library, there may be inheri-
tance relation between components, but it is not encouraged to use complex inheritance hierarchy
or multiple inheritance.

3.4 Users and privileges management
Component library system is an open public component sharing mechanism. Any users can

access the component library through network. This is very convenient for the users, but also
brings risks to system security. Therefore, it is necessary to'properly restrict the users' accessing
privileges to ensure the data security.

Component library system involves five categories of users: registered user, guest, compo-
hent provider, system administrator and super system administrator. They have different responsi-

bilities and privileges in component library system, and cooperate together to maintain the normal

14 SCIENCE IN CHINA (Series F) Vol. 44

operation of component library system. Moreover, system defines one privilege for each opera-
tion, including providing component, managing component, querying component, and retrieving
component. To divide the work of the operation and provide flexible privileges assignment, each
user can be endowed with one or several operational privileges, which combine together to form
this user' s privilege.

3.5 User feedback
The user feedback part of component library system provides assistant decision-making sup-

port for reuser to understand and select components, and for various component library adminis-
trators to manage and improve the component library system. Its main feature is: based on data
warehouse technique, using multidimensional data model, and supporting subject-oriented and
integrated data organizing mode, which has time attribute and contains history data. Subject table
comprises multiple fact tables, dimenbion tables, and various levels of aggregation tables. It pro-
vides the basis of data storage and organizing for multidimensional analysis. To assist the users to
identify and select components, the feedback library of component library system performs multi-
dimensional analysis and measurement on component feedbacks, synthetically measures the
reusability of components from four aspects separately : component documents, component compo-
sition, component testing, and component application. The architecture of JBCL system is shown
in fig. 3 .

Fig. 3 . Architecture of JB component library.

4 Application engineering : component reuse

The process that uses the results of domain engineering to develop software systems is usual-

ly called application engineering. Similar to the common software development process, applica-

tion engineering can also be divided into several stages: analysis (requirement acquisition) , de-

No. 1 REUSE-BASED SOFTWARE PRODUCTION TECHNOI.OGY 15

sign, and implementation, e tc . The difference i s , each stage of this process can obtain reusable
domain engineering work products from component library and take it as the foundation of integra-

tion and development in this stage'15' .
The activities and products in application engineering are shown in fig. 4 .

Deliverable system
I

System design

/ I Application --_--- ---- ---------
engineering

/
System System System

-C analysis design implementation

f t t

-
I

component I I
I
I
I

------d

Fig. 4 . Activities and products in application engineering.

4 . 1 System analysis (capturing requirements)

The objective of this stage is: based on the domain analysis model acquired by domain engi-

neering, comparing with user requirements, confirming the variable requirements of domain anal-
ysis model or obtaining new requirements, to acquire the analysis model of the specific system. It

involves the following activities: confirming the specific business model, fixing the variability of

domain analysis model, adjusting domain requirement model, etc . The continuous participation

of end-users is an important factor to acquire better model.

4 .2 System design

The objective of system design is: based on DSSA acquired in domain engineering, to obtain

the design model comparing with the analysis model of the specific system. Its kernel is to fix the

corresponding variability of DSSA according to the system requirement model. This stage should

design the corresponding model for the new requirements posed by users. In addition, it is neces-

sary to make some relevant adjustment on DSSA if the domain knowledge is increased.

4.3 Implementation and testing

Based on domain architecture/components, this stage integrate and compose the components

and architecture according to the design model of the special system, and do some necessary cod-

ing so as to implement and test the final application.

Application engineering fixes the variability of domain requirements in development phase.

For a pretty matured domain, it is better to fix the variability of requirements in later stages.

These later stages include setup, startup and running, e tc . Variability can be implemented

16 SCIENCE IN CHINA (Series F) Vol. 44

through system clipping in setup stage, through parameter controlling in startup stage, and
through dynamic configuration in running stage.

5 Reengineering : software evolution

With the development of software technology and the continuous change in application re-
quirements, software should be evolotionary . It is one of the basic characteristics of software.
However, the re-development method adopted currently is time-consuming and uneconomical.
Moreover, the existing software is considered as a heavy burden. In fact, the procedure of reengi-
neering occurs to almost everything. Component technology is effectively applicable to the evolu-
tion characteristics of the software, changing the legacy software into the valuable basis on which
it develops. It not only expedites and regularizes the development procedure, but also accumu-
lates the software assets .

Software reengineering is an engineering procedure. It combines reverse engineering, recon-

structing, forward engineering, and reconstructs the existing system to a new form"'] . The foun-
dation of the reengineering is system understanding, including the comprehensive understanding to
running system, source code, design, analysis, documents, etc . However in most cases, be-
cause of the loss of various documents, the source code is the only source we can get, so program
understanding will be the only way to understand the system.

The main activities of JB software reengineering are illustrated in fig. 5 .

Fig. 5 . Software reengmeenng .

6 Jade Bird Project

Jade Bird (JB) is a national project that researches and resolves the problems of

software development and production. It began in the late stage of the National Sixth "Five-Year

plan", and has gone through the Seventh, Eighth, and the first term of the National Ninth "Five-

Year Plan". Now JB Project is in the process of the second term of the Ninth "Five-Year Plan".

The goal of JB Project is: based on the practical techniques of software engineering, to popularize

the software industrialized production technology and mode, provide necessary technology and

tools supporting industrialized production of software to software enterprises, establish the funda-

ment of Chinese software industry, and form the necessary accumulation of talents, techniques

and products.

JB Project proposes the idea of software production line, dividing software production pro-

No. 1 REUSE-BASED SOFTWARE PRODUCTION TECHNOLOGY 17

cess into three different sub- progresses : application architecture production, component produc-
tion, and component-architecture-based application composition ; application architecture library
and component library are used to store the artifacts, and connect three sub-processes. The stan-
dards and quality assurance provide support for the whole production process. The conceptual dia-
gram of JB software production line is shown in fig. 6 .

Fig. 6 . Conceptual diagram of JB software production line.

The corresponding activities in JB software production line system for the mentioned concep-
tual diagram are shown in fig. 7 .

We can make out from figs. 6 and 7 that software component and architecture technology is
the kernel of JB software production line system, of which main activities are embodied in tradi-
tional domain engineering and application engineering but endowed with new contents and organi-
cally linked up through component management and re-engineering, etc. In addition, each activi-
ty of JB software production line system has corresponding methods and tools. Combining manage-
ment issues : project management, organization management and quality management, etc . these
activities form the fully integrated software production flow.

Because of the breakthrough and development of software component technology, software
industry will be divided into three categories : software component industry, system integration
and composition industry and component service industry, following traditional industry's pat-
tern. This provides a reasonable mode for the large scale of software industry. JB software pro-
duction line will facilitate the construction of the infrastructure of software industry, and provide
direct support for the promotion of the capability of software enterprise.

7 Conclusion

This paper presents our research work on reuse-based software production technology and
discusses the issues of component acquisition, component management, component reuse, and
software evolution centering on the concept of component. The software engineering method based
on software reuse and software component technology is the hotspot of current research and prac-
tice of software community. Refs. [4,15 ,201 have shown their research work of software reuse.
Comparing with these methods, JB software production line system is more concerned with the

18 SCIENCE IN CHINA (Series F) Vol. 44

I I Configuration management guide Software testing guide I I
I I I I Component manage- 1 I .. .

Domain engin -oriented method I
t composition method I I

Describing

Management

(Organization!
I Project I

I Activities Reengineering
r

Production of

Supporting 1
1 Tools

I I 1 MI Domain-oriented exploring tool
Domain engineering test Component composition tool
Component acquisition tool Test tool I I
Configuration management tool Programming environment

Fig. 7 . Activities in J B software production line system.

production process and the maturity of production line system in order to improve the operability

and practicability of software production line system.

Besides the technical contents introduced in this paper, it is also realized that management

is an important issue of software engineering and a restraint factor of the exertion of advanced

techniques. Therefore, besides deeper research in technology, we will do more work in manage-

ment issues regarding the enterprise capability certification, and continue to cooperate with soft-

ware enterprises. Considering the features of Chinese software enterprises, we wish to explore the

software production methods to meet the needs of Chinese software enterprises.

Acknowledgements This research is supported by the Key I'roject of State Ninth "Fire-Year Plan" the 863 H~gh-'Tech Program

of CHina and the National Natural Science Founclatino of China.

References

1 . I'resi(1mt's Information Technology Advisory Committer [ntrrim Report to the Prrsident, .August, 1998.

2 . Yang E'uqing, Shao Weizong, Mei Hong, 'The design and inplementation of object oriented CASE envirnnment JBIl system,

Science in China, Ser. A , 1995, 38(5) : 600.

3 . Yang Fuqing, Mei Hong, L.i Keqin, Software reuse and software component technology, Chinese Journal of Electronics, 1999,

2 7 (2) : 200.

4. Mili , H . , Mili, I.'. , Mili , A . , Reusing software : Issues and rpsrarch dirr(:tions, IEEE Transactions on Software Enginrer-

ing, 1995, 21(6) : 528 .

5 . Tracz, W . , Implementation working group summary, in Reuse in Practice Workshop (e(1 . Bald. J .) , Pittsburgh, Pennsylva-

nia , July 1989 .

No. 1 REUSE-BASED SOFTWARE PRODUCTION TECHNOLOGY 19

Paolo , B . , Stephen, H . E . , Special feature : Component- based software using RESOLVE, ACM SIGSOFT, Software Engi-
neering Notes, 1994, 19(4) : 21.
Sindre, G. , The REBOOT approach to software reuse, System Software, 1995, 30: 201 .
OMG 99, Object Management Group, The Common Object Request Broker: Architecture and Specification, Revision 2 . 3 ,
Oct. 1999.
Dale, R . , Inside COM, New York: Microsoft Press, 1997.
Anne, T. , Enterprise JavaBean, Dec. www. psgroup. com, 1997.
Arango, G. , Prieto-Diaz, R. , Domain analysis concepts and research directions, in Domain Analysis and Software System
Modeling (eds . Prieto-Diaz, R . , Arango , G .) , Los Alamitos : IEEE Computer Society Press, 1991 , 9-32 .
Tracz, W. , Confessions of a Used Pro5am Salesman-Institutionalizing Software Reuse, New York: Addison-Wesley Pub-
lishing Co . , 1995.
NATO, "NATO Standard for Management of a Reusable Software Component Library", Vol. 2 , NATO contact number CO-
5957-ADA, 1991.
STARS, Asset library open architecture framework version 1 .2 , Informal Technical Report STARS-TC-04041/001/02, 1992/
8 .
Ivar, J . , Martin, G . , Patrik, J . , Software Reuse : Architecture, Process, and Organ~ation for Business Success, New York :
ACM Press, 1997.
Neighbors, J . M . , The Draco approach to constructing software from reusable components, IEEE Transactions on Software En-
gineering, SE- 10, September 1984, 564-573 .
Feiler, P. H . , Reengineering: An Engineering Problem (CMU/SEI-93-SR-5, ADA2671 17) , Pittsburgh, Pa. : Software En-
gineering Center, CMU, July 1993.
Ralph, J . , Foote, B . , Designing reusable classes, Journal of Object-Oriented Programming, 1988, l (2) : 1 .
Prieto-Diaz , R. , Status report : Software reusability, IEEE Software, 1993, 10(3) : 61 .
Brownsword, L. , Clements , P. , A case study in successful pmduct line development, Technical Report, CMU/SEI-96-TR-
016.

