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S u m m a r y .  - -  The motion of a particle is studied under the action of two 
types of forces, some slowly varying and others rapidly fluctuating. 
The slowly varying forces are assumed to be given in every particular 
problem. The rapidly fluctuating forces, which are unknown, are assumed 
to have a random character. I t  is shown that ~he motion of the particle 
depends on the random forces only through the diffusion effect that  they 
produce. The theory is statistical in character and only the evolution 
of a probabili ty dcnsity can be determined. A Lagrangian formalism 
is developed and from it the general equations of motion are derived. 
These turn out to be formally equivalent to the SchrSdinger equation. 
The generalization to a system of particles is straightforward if it is 
assumed that  the random forces act independently and with like intensi ty 
on every elementary particle. The expectation values of the fundamental  
dynamical variables arc obtained. The theory proves to be very similar 
to, but  not fully identical with, nonrelativistic quantum mechanics 
without spin. 

1.  - I n t r o d u c t i o n .  

A n  i n t e r p r e t a t i o n  of the  Schr6d inger  e q u a t i o n  in  t e rms  of par t ic le  t ra-  

jectories was first p roposed  b y  DE B~oGr~I]~ (~) a n d  la ter  deve loped  b y  BoH_~ (2), 

who has since m a i n t a i n e d  t h a t  the  poss ib i l i ty  of an  i n t e r p r e t a t i o n  of the  

q u a n t u m  t h e o r y  in  t e rms  of <( h i d d e n  var iab les  ~> c a n n o t  be  e:<cluded (3). On  

(1) L. ])~ BROGLIE: Compt. Rend., 183, 447 (1926); 184, 273 (1927); 185, 380 (1927); 
see also: Etude critique des bases de l'interprgtation actuelle de la Mgeanique Ondulatoire 
(Paris. 1963); La  Thermor~amique  de la partieule isolde, (Paris, 1964). 

(2) D. BOH~I: Phys.  Rev., 85. 166, 180 (1952). 
(3) D. BOH~[: Hidden variables in the quantum theory, in Quantu~n Theory, edited 

by D. R. B~TES (~%w York, 1962); D. Borzoi and J. BUB: Rev. Mod. Phys. ,  38, 
453 (1966). 
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the other hand, a formal analogy between Brownian motion and quantum 

mechanics had been noticed by Fi~RTtI (4). Combining these two basic ideas, 
F]~yYEs (~) and W~IZ~L (6) showed tha t  the Schr6dinger equation can be 

derived from the hypothesis of a random motion of the material particles. I n  

recent years, a number  of alternative derivations have been proposed (7). In  
general, the parallelism between quantum mechanics and stochastic proces- 

ses has been studied by  several authors (% 
~he picture of the atomic systems tha t  results from the hypothesis of 

random motion is very  suggestive (9). Let  us take, for instance, the ground 
state of ~he hydrogen atom. According to the picture given by the random 

mot ion theory, the electron would be a point (or a very small) particle follow- 
ing a very irregular trajectory,  similar to tha t  of a particle in Brownian motion. 

The random motion of the electron would prevent  it from falling into the 

nucleus~ but  the electrostatic at t ract ion would maintain both close together. 
I n  this way, a dynamical  equilibrium would exist, similar to the one tha t  
prevents a colloidal particle in a liquid from falling to the bot tom. 

According to this theory, the so-cMled wave-packets would represent the 

regions of space in which the probabili ty of finding the particle is greater. 
I f  a free particle is known to be in a volume element at  some time, the particle 

may  be present in any point  of space after a large enough time, due to the 
random motion. This would represent the ~( wave-packet  spreading ~> of quan- 

tum mechanics. The wave-particle duality should be discarded in this theory;  

the material  systems would consist of classical p~rticles and the radiat ion of 

classical waves. The particle appearance of waves and the wave appear- 
ance of material  particles would be complex phenomena due to quantizat ion 

of the energy~ linear m o m e n t u m  and angular momentum exchange with the 

material  particles which the measuring apparatus  consists of. This quantiza- 

t ion would be a consequence of the random motion. 
To make the comparison between the theory of random motion and 

quan tum mechanics it is necessary that  the first be developed in a more general 

(*) l~. F~RTH: Zeits. Phys., 81, 143 (1933). 
(5) I. F]~NYES: Zeits. Phys., 132, 8 (1952). 
(6) W. WEIZEL: Zeits. Phys., 134, 264 (1953); 135, 270 (1953); 136, 582 (1954). 
(7) D. KERSHAW: Phys. Rev., 136 B, 1850 (1964); J. C. AnoN: Progr. Theor. Phys., 

33, 726 (1965); E. NELSON: Phys. t~ev., 150 B, 1079 (1966); L. DE LA PE~A AUERBACIt: 
Phys. Lett., 24A, 603 (1967). 

(s) G. C. CO~[ISAR: Phys. Rev., 138 B, 1332 (1965); T. MARSHALL: PrOC. Cambridge 
Phil. Soc., 61, 537 (1965); M. BnAFFORT, M. SURDIN and A. TARONI: Comt)t. Rend., 
261, 4339 (1965); R. BOURRET: Phys. Lett., 12, 323 (1964); Canad. Journ. Phys., 43, 
619 (1965); 44, 2519 (1966); G. ])ELLA RlCClA and T. HIDA: Ann. Inst. H. Poincar~, 
vol. 4, n. 1 (1966), p. 31; G. DELLA RICCIA and N. WIENER: Joura. Math. Phys., 7, 
1372 (1966). 

(9) E. NELSOn: Phys. l~ev., 150 B, 1079 (1966). 
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fo rm than  has been done until  now. To m,tke a general formulat ion of the 
theory  s tar t ing  f rom the Lagrangian  formal ism is the purpose  of this paper .  
The mot ion of a sys tem of particles is to be studied under  the action of a 
r andom aceclarat ion plus the accelerat ion due to some known forces. The 
only condition imposed on these forces is tha t  they  be able to be  derived in 
a classical fo rm from a Lagrangian  function.  

2. - The hypothes i s  of the random m o t i o n .  

The postula tes  of the theory, besides the usual ones in all classical theories, 
are the following: 

I) 1] the ]orce ~wting on a particle is giren by the vectorial /unction f(t) ,  
the motion of the particle result.s, i~1, the compositio~, of a random motion ~,,~d the 
motion that classical dynamics predicts. 

The position, r(t)~ of the particle a t  t ime  t is determined b y  the  equat ion 

(1) i=(t) = ( 1 / m ) f ~ t )  ~ a(t) , 

where a(t) is the  r andom acceleration. The force f i t )  m a y  depend on the 
actual  posit ion and the actual  veloci ty  of the particle. 

The above  postul,~te can be considered as a modificat ion of the New- 
ton law of dynamics .  However ,  i t  is also possible to t ake  the Newton  law 
as valid and  ,q,ssume t h a t  the r andom  acceleration is due to a r andom force 
F(t), acting on the particle besides the  known force f ( t) .  Both  hypotheses  arc 
formal ly  equivalent ,  and we will adop t  the second in the  following. I n  this 
way, the theory  can be developed wi th in  Newtonian  mechanics.  Then, ins tead 
of (1), the following equat ion m u s t  be wri t ten  

(2) j'~t~ ! F(t) = mid(t), 

where r(t) gives the  actual  pa th  of the  particle. The funct ion r(t) will be as- 
sumed continuous, bu t  not  necessarily differentiable, so t ha t  F(t) and P(t) 
will be dis t r ibut ions ra ther  than  ordinary  functions. 

I I )  The stochastic parameters o] the random process represe~ted by F(t) are 
independe~tt o] the state o] ,motion o] the particle. There are neither privileged 
times, uor position, s, nor directions in spaee~ in relation to the random motion. 

I t  would be necessary to specify all the stochastic pa ramete r s  of the r andom 
force in order to develop a complete  theory.  However ,  an  app rox ima te  theory  
can be developed wi thout  such a specification. Indeed,  when the  force f ( t )  
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varies slowly enough, the observable properties of the motion depend on the 
random force F(t) only through the diffusion effect tha t  it  produces. 

In  f~ct, let r and v be the position and the velocity of the part icle at  the 
momen t  to. The velocity and the position a t  any other  time to + At will be 

to+At  to+At 
f .  f l  

(3) v(to + At)--~ v(to) -- ( l / m ) /  f( t)dt  ÷ ( l / m ) t  F(t)dt, 
~ J  

t o t o 
t o + A t  t t o + A t  t 

(,) , 

t~ t o t o t o 

Let  us now assume tha t  F(t) varies much more quickly than  f(t). Then, it  
will be possible to choose a t ime interval  T, much greater than the characteris- 
tic f luctuation time of F(t), during which the force f(t) scarcely varies. Then, 
f rom postulate  II)  it  is deduced t ha t  

to+At 

(1/At) ~ F(t) dt ~ o ,  
~2 

t o 

whenever  At ~ 1'. 
In  these conditions the eqs. (3) and (~) lead to the following equalities (in 

a statistical sense): 

(5) v(to ~ At) ~ v(to) !- (1/m)f(to)At + o(At); 

(6) r ( to  + At) ,~ r(to) -I- v(to)At + 3r ~- o(At) . 

The last integral in (4) gives rise to the random displacement 3r, and o(At) 
means << terms of order higher than At >>. F ro m postulate II)  and the central  
l imit theorem it can be deduced tha t  the probabi l i ty  distribution of 8r ap- 
proaches a Gaussian when At-~ c~. 

The approximate equalities (5) and (6), and the form of the probabil i ty  distri- 
bu t ion  of 8r when At-+  c~, are not  enough to develop a rigorous theory.  
However ,  if the equalities (5) and (6) were exact  and the distribution function 
of 8r were Gaussiun for any At, the random motion would be completely 
determined as a Wiener process. Start ing from the hypothesis tha t  the random 
mot ion  is a Wiener process, the Schr6dinger equat ion has been derived (6.7). In  
this paper  a new derivat ion will be proposed, s tart ing also from the theory  of 
Wiener processes. However,  the preceding analysis shows tha t  the Wiener 
processes have no special physical meaning. They  represent only au approxi- 
mation,  valid to subst i tute  any random mot ion  when the known force f(t) 
varies much more slowly than  the random force F(t), whenever the la t ter  fulfils 
the conditions of postulate  II) .  
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I t  is interest ing to point  out t h a t  the Wiener processes are not  suitable 
for relativist ic generalization, due to the  fac t  t ha t  infinite velocities are involved 
in them. ~ever the less ,  if the Wiener  process is only considered as an approxi-  
mat ion  of a r a n d o m  mot ion with finite velocity, the relat ivist ic generalization 
may  be possible. I t  seems also t ha t  the relativist ic formulat ion might  be easier 
s tar t ing f rom the Lagrangian  formula t ion  in a form similar to the one developed 

in this paper  for the nonrelat ivist ie  case. 

3. - E q u a t i o n s  of m o t i o n .  

Let  us take  a part icle in a given force field. The theory  t ha t  we are devel- 
oping, being classical, rests upon the hypothesis  t ha t  the part icle has always 
a definite posit ion and a definite velocity.  The problem of the  error with which 
these quanti t ies  can be measured will be considered as a pure ly  exper imenta l  
one. F r o m  the theoret ical  point  of view, the basic problem is to determine the 
position and the  velocity of the part icle a t  any  t ime t f rom data  t aken  a t  
t ime to. As a consequence of the assumed random force, the future  mot ion of 
the particle cannot  be accurately  determined,  even if i t  were possible to meas- 
ure s imultaneously the position and the veloci ty of the part icle  a t  one time. 
Only probabi l i ty  distr ibutions of the quanti t ies  can be predicted.  I n  this way, 
the theory is s tat is t ical  in character  like quan tum mechanics.  

J t  would be possible to develop a stat is t ical  theory  t h a t  could predict  the 
evolution of the prob~bi l i ty  densi ty in phase space. However ,  we intend to 
develop a more  restr ic ted theory dealing only with the probabi l i ty  distr ibution 
in configur'~tion space. This is more adap ted  to exper imenta l  si tuations in 
which only the posit ion of a part icle can be measured directly. 

Let  us consider a particle under  the action of the r andom force (without 
a, ny  other force), whose velocity be zero ~t t ime to, and whose position is ro a t  
the same time. As a consequence of the theory  of Wiener  processes, the 
probabi l i ty  dis t r ibut ion of the posit ion a t  any  later  t ime would be given by  
a function (>(r, t) fulfilling the equat ion 

(7) c~o~lSt = D V  ~o . 

I f  eq. (7) is in tegra ted  with the initial condition 

~(r ,  to) : ( 5 ( r - - t o )  , 

where ( ~ ( r - - r o )  is the Dirac 's  <~ delta ~, a Gaussian distr ibution is obtained. 
To s tudy the mot ion  of a particle under  the combined act ion of given forces 

and the rapidly  f luctuat ing r andom force, eq. (7) could be subs t i tu ted  by  
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the more  general Fokker -P lanck  equat ion ("). I n  this paper,  however,  ano ther  
procedure  will be used s tar t ing  f rom the Lagrangian  formulat ion.  To do this, 
the actual  problem of the mot ion  of a single part icle  will be replaced by  the 
fictit ious problem of the mot ion of a stat is t ical  ensemble of independent  par-  
tieles. E v e r y  one of the  particles in the ensemble should follow one of the pos- 
sible pa ths  of the aetm~l particle. Both  problems are formal ly  equivalent  if 
the  probabi l i ty  di,~tribution of the position of the actual  particle is the  same 
funct ion of r and t as the density of particles of the  stat ist ical  ensemble. The 
s tat is t ical  ensemble can be considered a fluid wi th  density o(r, t), whose mot ion 
results f rom the superposi t ion of a classical mot ion  due to the known forces~ 
plus a diffusion effect due to the r andom forces. 

I n  order to obtain the  equations of mot ion  of the stat ist ical  ttuid i t  is con- 
venient  to s tar t  with the equat ion of mot ion  of a classical fluid in Lagrangian  
formulat ion.  Let  us assume tha t  the elassic~l mot ion  (no r andom force) of 
the  ac tual  particle would be determined by  the Lagrangian  funct ion 

L [ r o ( t ) .  bo(t),  t] . 

(s) 

where 

Then, the mot ion of a elassicf~l statist ical  fluid could be obtained f rom the 
H a m i l t o n  principle 

t2 

f d t f ~ P o  dv = e x t r e m u m  

tl 

(o) cd o - o(r, t )L[r ,  v ( r ,  t) ,  t] . 

The var ia t ions of L*°o in (8) correspond to arb i t ra ry  variat ions of v, o being 

re la ted  to v by  the cont inui ty  equat ion 

(10) b --  div (~v) = 0 .  

To p rove  t ha t  the mot ion  of the classical fluid is determined by  the Lagrangian  
densi ty  £P0, we choose e ( r ,  t) in the fo rm of a Dirac 's  ~ delta ~ 

(11) o ( r ,  t) = ~ ( r  - -  ro( t ) )  . 

F r o m  (10) and (11), i t  follows tha t  

(12) v ( r ,  t) = i'o(t) . 

B y  subst i tu t ing (11) and  (12) into (9) and performing the volume integral  in 
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(S) it results t h a t  the variat iomfl equat ion  

t 2 

f L [ r o ( t ) ,  i'o(t), t] dt = 

tl 

extremum 

gives the mot ion  of every mater ia l  point  of the fluid, which completes the 

proof. 
The next  step is to modify the Lagrangian  density Lf0 in order to obtain 

a new Lggrangian density ~f, f rom which the equations of mot ion  of the 
statistical fluid can be obtained, tak ing  into account  bo th  the known and the 
r andom forces. Actually,  the diffusion effect due to the r a n d o m  force is not  
suitable for a Lagrangian  formulat ion.  I n  fact,  the process of diffusion is 
not  a mot ion  of the stat ist ical  ensemble ~s a continuous fluid, bu t  an exchange 
of particles between different volume elements. However ,  if we assume tha t  
only the densi ty  of the fluid at  every  point  is physical ly meaningful ,  we can 
subst i tute  the diffusion by  an equivalent  continuous mot ion  t h a t  carries fluid 
f rom the regions of greater  densi ty to the  regions of lower one. This mot ion  
m a y  be suitable for a Lagrangian  formulat ion.  

The actual  mot ion  of the fluid is the composit ion of two independent  
motions,  a <( classical )) one~ given by  eq. (8), and a <( diffusionlike ~) one, given 
by  eq. (7). I f  we are able to obta in  the diffusionlike mot ion  f rom a var ia t ional  
condition similar to the Ham i l t on  principle, our p rob lem will be solved. 
In  fact,  let us assume ~hst  we find a condition of the fo rm 

~2 

Idt;(1. ov  
t 1 

+ s/i) d,~ = e x t r e m u m ,  

such t ha t  i t  is equivalent  to eq. (7). Then, assuming tha t  the  classical and  the 
diffusionlike mot ions  are independent ,  the Lagra.ngian densi ty  

A ° =  ~Lfo + Jy 

should determine the  composi te  motion.  
In  order to obta in  a Lagrangian  formulat ion for the diffusionlike mot ion  

alone, we m u s t  take  into account  t h a t  eq. (7) is a stat is t ical  equation, related 
to our informat ion  about  the posit ion of the particle ra ther  than  to an object ive 
reality. Then, it  mus t  be a consequence of the condition of m a x i m u m  rate  of 
en t ropy  increase, which is 

dv m a x i m u m .  



72 ]~. SANTOS 

The increase of entropy is constrained by two additional conditions. The f i r s t  

one, which follows from the definition of probability,  is the normalization of 

~ which is 

f e  dv = 1 p 

The second condition is the conservation of energy, which follows from postu- 
late I I ) .  According to this postulate, the random force is independent of the 

state of motion of the particle, so tha t  the mean energy is conserved. However, 
when we go from the actual  problem of the motion of a particle to the fictitious 

one of the motion of a fluid, a kinetic energy term appears in the form 

I n  order tha t  energy be conserved, we must  add to the kinetic energy a kind 

of potential  energy o/[ such that ,  whenever eq. (7) is fulfilled, 

(14) ½mfev2dv +f  ,do =o. 

The term ~2! nmst  be a function of ~ and V~, bu t  it cannot be a function of v 

or 6, which are related to time evolution. I n  order to obtain $[, we compare 

(7) with (10) and we obtain, after an integration, 

v : - - D V ( , / o .  

Actually,  any vector w such tha t  

div (gw) = 0 

may  be added to v as a result of the integration. As we are considering the 

simplest motion, we will put  w = 0. In  this way, the term ¢?[ is given by 

(15) ~2[ = - -  ~ mD2(grad lno)-°~, 

because this function fulfils the equality (14) whenever the motion is given 

by (7). 
I t  is easy to prove tha t  conditions (13), (14) and (15) lead to eq. (7). I n  

making the derivation, eq. (10) and the normalization of 9 must  be taken into 

account,  from which eq. (13) is t ransformed into 

f v "  grad ~ dv = min imum . 
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Given the funct ion e, this condition, together  wi th  eq. (14), leads to a func- 
tion v which, th rough  eq. (10), gives eq. (7). In  this way, we have  t ransformed 
the diffusion eq. (7) into the var ia t ional  condition (13) constrained by  (14). 
Obviously other  var ia t ional  formulat ions can be found whish lead also to eq. (7); 

for example,  

f ( v  + grand  ~)"~odv = . D In nl ininlum 

However ,  these a l te rnat ive  conditions, not  being a consequence of general 
pr inc ip les- -as  eqs. (13) and (14) a r e - - m i g h t  not  hold in eases other than  the 

pure  diffusion represented by  eq. (7). 
I f  we in tegra te  eqs. (13) and (14) with respect  to t im% we obtain 

(16) 
f [~o(r, t~) in ~(r, tl) o(r, t~) In Q(r, t.2)] dv = m a x i m u m ,  

t2 

 f,f ~ m  d [v~--/)-~(gradln o ) ' ]~dv  = 0 . 

t I 

These conditions are a generalization of eqs. (13) and (14) and therefore they 
imply  eq. (7). Now, f rom a formal  point  of view, the following two var ia t ional  

problems are equivalent :  

a) the first integral  of eq. (16) be  ex t remal  whilst  the second be a 

constant,  

b) the second integral  of eq. (16) be ext remal  whilst  the first be "~ 

constant.  

Prob lem a) is re lated to the case in which we known (with some uncer- 
ta inty ,  maybe)  tlle position of the part icle at  t ime tl and we are asking for 
tile probabi l i ty  distr ibution of the posit ion at  any  t ime t2 > t l ,  Problem b) 
is related to the case in which we know the positions of the particle at t imes tl 
and t2 and we are asking for the probabi l i ty  distr ibution a t  in termedia te  
t imes t ( t l<  t <  t2). Actually,  the difference between these two cases is only 
subjective, the object ive reali ty being' the same in bo th  eases, tha t  is, a particle 
moving under  the action of a r andom  force. This is consistent with the fact  

t ha t  the general  var ia t ional  s t a t ement  is formally identieM in both  pro- 

blems a) and b). 
Luckily,  the  var ia t ional  problem b) is of the form of the Hami l ton  prin- 

ciple if we assume tha t  the functions o(r, t,) and ~(r, t~)--and therefore the first 
integral  of eqs. (16)--are  given. However ,  if we use the var ia t ional  formula-  
t ion b), we no longer can calculate the funct ion 0 a t  any  t ime  f rom the knowl- 
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edge of this function at one time (as in problem a) or through eq. (7)) but  we 
need the function ~ at two different times. This is necessary because any pro- 

blem of motion in Newtonian mechanics needs two conditions to be determined 

(position at two times or position and velocity at one time) and, on the other 

hand, we must  deM with the diffusionlike motion of the fictitious fluid as if 
it were a Newtonian motion. 

When the diffusion is formally considered as a Newtonian motion of a fluid, 
some properties appear which do not seem to be inherent to the theory of 

random motion. For  instance, as we will see later, the equation of motion 
of the fluid turns out to be the equation of SehrSdinger, from which- -as  is 

well k n o w n - - t h e  Heisenberg uncer ta inty relations follow. In  this way, the 

lheory that  we are developing seems too restrictive, because all problems are 

excluded in which both the position and the velocity of the particle are known 
with great accuracy at a time. Clearly, the uneer tMnty relations do not  follow 

from the postulates I) and II) ,  as was stated at the beginning of this Section. 

Actually,  the restriction imposed by the uncer ta in ty  relations does not  mat te r  

in practice. In  fact, any praeticM measurement of the position and the velocity 
of the particle must  be made through some interaction with a measuring 

apparatus.  If  the inter't.ction forces are slowly varying, the position and the 

velocity measured will be averages over t ime intervals large in comparison 
with the fluctuation time of the random force. Then some uncertainties will 

appear which well be, at  least, of the order 

A x  ~ ( D A t )  ~ , Av ~ A x / A t  = (D/At)  t ; 

from which the uncer ta inty  relations follow: 

A x  A v  ~ ]i/2m : h = 2 r o d .  

On the other hand, if the interaction forces were rapidly varying, the uncer- 

t a in ty  relations should not  appear, but  the theory which we are developing 
would not hold at all, because eqs. (5) and (6) should not be fulfilled. 

Having  obtained the equations of the diffusionlike motion in the form 

t~ 

t I 

In ~)2] ~ dv - e x t r e m u m ,  

it is enough to substitute the Lagrangian density (9) instead of the kinetic 

energy term ½,mv2~ in it, in order to obtain the equation of motion under 

the action of both the random force and another given force. The correctness 
of  this s tatement  rests upon the hypothesis tha t  the random and the known 
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forces act on the particle with total  independence. This may not be the case 
if the known forces are velocity-dependent,  because the motion produced by 

the random force may lead to forces of the known type very different from 

those calculated from the "~verage motion of the particle. This possibility 
will not be studied in this paper, and the total independence of the forces will 

be assumed in the foliowing. In  this way, the generM eqm~tions of motion 
can be obtained from the Hamil tonian principle (8) wflh the Lagrangian density 

c~ = (~[L(r, v ,  t) - -  ~ m l)~(tzrad In ~)~-] . 

Condition (10) c.~m be taken into account by the method of Lagrange 

multipliers. So, Hamil ton ' s  principle nmst be applied to the function 

1 t~'t D2(tzTad hi [))2 ] F ,~,'[9 i div (ov)] , ~CP_~ o i L ( r ,  v ,  t ) - . ,  

where 8 is a function of r and t~ at first unknown. After' substi tution of this 

function in eq. (8)~ it follows that  

t._ 

| d ,  v ,  ,) - In  V,"l d,, =: c x t r e m u n , ,  
d ! 

where the last two terms come from an integration by parts. The v~riations 

of ~ and v are now independent. For  a variation of v,  this equMion leads to 

{17) c~L/c ?v ~ lp - V N ,  

where the part ial  derivation means the gradient with respect to the compo- 

nents of v. Hence results tha t  the first and the last terms of the integral can 
be combined to give the classical Hamil tonian function. I n  this way, the 

vectorial funct ion v can be taken out of the integral and the variationM pro- 

blem is wri t ten 

(~s) 

t 2 

f dtf ~[ H(r~ V~b', t ) - - ½ m D 2 ( o ' r a d  

t I 

In ~)~ ,~']dv e x t r e m u m .  

The integral must  be stat ionary with respect to arbi t rary variations of 0, 

whereas S is related to ~ by the equalities (10) and (17). 
I t  is easy to prove tha t  this relation between S and ~ is the same tha t  is 

obtained by equating to zero the variations of (18) corresponding to arbitrary 
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var ia t ions  of N. To do this, we mus t  t ake  into account  the Hami l ton  equat ion 

(19) v - -  
~H (r, Vs, t) 

In  this way, the equations of mot ion  of the s tat is t ical  fluid can be obta ined  f rom 
the single variat ional  p rob lem (18), taking ~ and  S as independent .  

I t  is useful to combine bo th  real functions ~ and ~, in the single complex 

funct ion 

(20) ~P --  ~/~ exp [ i,'¢ /h ] ; h = 2m, D. 

I n  t e rms  of this funct ion it  is possible to write, instead of (18), 

12 

(21) f d iTJ*[ ih~ / c~ t -  H ( r , -  ihV, t)](/j dv ~-- ex t r emum , 

t I 

where T*  is the complex conjugate  of T and the  usual  rules of opera tor  a lgebra 
are assumed. The proof of the  equivalence between (18) and (21) is e~sy if it 
is assumed tha t  H(r,  p,  t) is quadrat ic  in p ,  which is the case in all problems of 
pract ica l  interest .  In  (21) i t  is indifferent to v a r y  the funct ion T or its complex 
conjugate.  By  equat ing to zero the var ia t ion corresponding to T*, the equat ion 
of mot ion  of the stat is t ical  ensemble results to be given by  

(22) 
• c 2 T  
.~h ~ = H(r, --i~.V, t ) T ,  

which is identical to the Schr6dinger equation. 
The derivat ion of the equat ion of mot ion for a sys tem of N particles is 

s t ra ightforward.  We need only assume now t h a t  the  vectors  r and v are in the 
configuration space of 3N dimensions. I n  order to obtain,  in this case also, the 
Sehr6dinger equat ion of 5" particles,  it is necessary to m'~ke the following 
hypotheses  : 

] I I )  The raw, dora motion o/ every particle is independe~t o] that o] the 
others. 

IV) The product o] the mass m o] every particle times its di]]usion para.meter 
D equals l~/2. 

These postulates  complete  the  many-par t ic le  theory.  
As in quan t um  mechanics,  it is easy to prove  t h a t  the equat ion of ~ sys tem 

of part icles e~n be separa ted  into an equat ion of the relative mot ion plus an 
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equat ion for the  mot ion  of the centre of mass.  This result  is interest ing because 
it  shows t h a t  to obta in  the  SchrSdinger equat ion for every  body,  it  is not  ne- 
cessary to assume t h a t  a r andom force acts on the body as a whole, bu t  only 
on a number  of e lementa ry  particles~ which we m a y  assume all mater ia l  bodies 
consist of. 

4. - E x p e c t a t i o n  v a l ue s .  

In  order to tes t  the  theory  with experiments ,  i t  is necessary to calculate the 
expecta t ion values of the fundamenta l  quanti t ies  in terms of ei ther the functions 

and S or the  functions T and  kP*. Actual ly,  the main interest  of the theory  of 
r andom mot ion  is due to its formal  analogy with q u a n t u m  mechanics and, to 
see whether  the analogy is complete,  i t  is also necessary to know how the 
expecta t ion values mus t  be calculated.  I n  order to make  tho development  
clearer we will work with a single particle.  The general izat ion to a sys tem of 
particles is s t ra ightforward.  

The stat is t ical  meaning of the funct ion ~ in the developed theory  is such 
tha t  the expecta t ion  value for the posit ion of the part icle  m u s t  be  calculated 
by  means of the integrM 

(23) ( r = f r e d v  frT*~d, , .  

Generally, the expecta t ion  value of any  funct ion of r can be calculated by  means 
of the integral  

(24) (](r) = f f(r)edv 

The expecta t ion  value of the veloci ty  can be obtained h 'om the integral  (19)~ 
which gives the  veloci ty of the s tat is t ical  fluid in every point  of space. So, 

f ~H(r, VS, !! dv (25) < ( v ) =  ~o ~ ( v S )  " 

From this equali ty,  taking into account  (10), i t  is easy to show tha t  

d 
( v ) ,  = d t  ( r )  , 

as it  should, the  derivat ion being a linear operation. The expecta t ion vMue 
of v can also be obta ined f rom the  function ~, which gives 

(26) 
[" , ~H(r, -- i?iV, t) 

. . . .  . 
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In this equality, H is considered a linear operator,  function of the variables r 
and t and of the differentiM operator  V, which acts on the function F. The proof 
of the equivalence of (26) and (25) is e~sy, taking into account tha t  H is quadrat ic  
in p .  In  fact, the equali ty (26), after  the subst i tut ion of ~P by the expression (20) 
leads to 

f eH(r, VS, t) f <ivl : o ~(VS) d r - -  (ili/2m)Vgdr , 

where 1/2m is the coefficient of the te rm quadrat ic  in p .  The first integral  is 
identicM with (25), and the  la.st is zero if i t  is assumed tha t  Q decreases rapidly 
enough at infinity. 

The expression under  the integral in (21) can be considered formally as a La- 
grangian density. However,  this function is complex and the imaginary terms 
were introduced ra ther  artificially in going from (18) to (21). This shows tha t  
we mus t  tal:e ,~,s a Lagrangian density only the real part ,  which is identicM with 
the expression under the integral (18). F rom this Lugrangiaa density the fol- 
lowing Hamiltoni,~n density is obtained for the ~ statistical fluid: 

(27) Y{' ~2[H(r, VS, t) + (]i2/2m)(grad In Q)2] . 

By  integrat ing (27), the expectat ion value of the Hamil tonian funct ion is 
obtained. In  terms of F, the expectat ion value is 

(2s) <H> =f•*H(r,  - ihv,  t)~dv, 

which is equal to the integral  of (27). 
:Now, it  is necessary to obtain the expectat ion values of the linear and angular 

momenta .  Equat ion  (17) leads to the following expression for the density of 
linear momentum 

whence results the expecta t ion value 

<p: =fovb'1 dv . 

In  terms of T,  this integral  can be wri t ten as 

(29) < p  = f T * ( - -  ihV ) ~P dv . 

The real par t  of this integral  equals (29) and the imaginary par t  is zero. Simi- 
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lady,  the expecta t ion  value of the angular  m o m e n t u m  is given by  

(3o) <l  = I r.=dt~ = * [ r . ( - -  i/~V)]Tdr . 
,2 

The equalities (24) to (30), generalized for a system of particles, can be con- 

sidered condensed in the following rule: 
A qua.~dity defined in classical mechanics by a function 1,'(q~, p~, t) of a system 

o/ orthogo~al co-ordinates q~: and conjugated momenta p~.,, quadratic at most in th( ~ 
momenta, has the operator /;(q~.,--iliS:/~qA, t) associated with it. The expectatiott 
valq~e el the quantity i.~ given by the integral 

(31) T * F  q , - - i ? i ~  , t  T d v .  
c,'qk 

5 .  - D i s c u s s i o n .  

The equat ion of SchrOdinger and the general rule for calculat ing the expec- 
ta t ion  values of the quantities,  derived in the preceding Section. seem identieaI 
with the postula tes  of nonrelat ivist ic  q u a n t u m  mechanics (without spin), t tow- 
ever, the paral lel ism is not  complete  for two reasonsj which we mus t  analyse: 

a) :Not all the solutions of the Schr6dinger equat ion valid according to 
quan tum mechanics,  are acceptable  in the  theory  of r andom motion.  

b) I n  q u a n t u m  mechanics i t  is assumed tha t  the  expecta t ion  value of 
any  funct ion of q~ and p~ is given by  the integral  (31), bu t  in the theory  developed 
here, i t  is val id only for polynomials  in Pk of degree two or less. 

Le t  us analyse the  first point .  I n  q u a n t u m  mechanics,  some bound states 
of a particle are associated with functions T tha t  have  nodal  surfaces. For  
instance, the electron of a hydrogen a t o m  in the s tate  2s is associated with a 
funct ion which has a spherical nodal  surface. To in terpre t  this fact  in keeping 
with  the theory  of r andom motion,  we should assume tha t  the  electron is some- 
t imes in the in ternal  region and somet imes in the external  one wi thout  ever 
crossing the nodal  surface, which is absurd.  This shows t h a t  some solutions 

of (22) are no t  acceptable  in the  theory  of r andom motion.  
As it is well known, every solution of (22) can be expressed as ~ linear com- 

binat ion of complex par t icular  solutions which have  a cons tant  modulus  and 
a phase propor t iona l  to the time. I f  a solution is obta ined b y  combining only 
eigenfunetions of the  discrete spectra,  this solution represents  also a bound 
state. In  the theory  of r andom mot ion  the only ~cceptable functions are those 
which can be ob ta ined  by  continuous evolut ion f rom the funct ion 

~(r, to) = c S ( r -  ro).  
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T h i s  f u n c t i o n  r e p r e s e n t s  a p a r t i c l e  loca l i zed  in  t h e  p o i n t  r0 a t  t i m e  to. I t  is 

a l w a y s  poss ib le  to  a s s u m e  t h a t  t h e  p o s i t i o n  of t h e  p a r t i c l e  was  m e a s u r e d  a t  

a t i m e  to, howeve r  r e m o t e .  The  e v o l u t i o n  of ~ f r o m  t h a t  t ime  on, w o u l d  be  

g i v e n  b y  the  e q u a t i o n  of F o k k e r - P l a n c k ,  g e n e r a l i z a t i o n  of (7). I t  is n o t  e~sy 

to  see w h e t h e r  b y  cons ide r ing  on ly  so lu t ions  of th i s  t y p e  i t  is poss ib l e  to  ex- 

p l a i n  t he  e x p e r i m e n t u l l y  o b s e r v e d  t r a n s i t i o n s  b e t w e e n  d i sc re te  levels .  So, no 

d e f i n i t e  conclus ion  can  be  o b t a i n e d  in  r e l a t i o n  to  th is  p o i n t  w i t h o u t  a m o r e  

ca re fu l  tmalys is .  

L e t  us discuss  now t h e  second  po in t .  I n  q u a n t u m  mech~mics t h e  so lu t ions  

theft c o r r e s p o n d  to a def in i te  ene rgy  fulfil t h e  c o n d i t i o n  

(H~}  = . . ' i t 2 ,  

~ n d  these  func t ions  a r e  so lu t ions  of t he  t i m e - i n d e p e n d e n t  S c h r 5 d i n g e r  equa-  

t ion .  H o w e v e r ,  in  t h e  t h e o r y  t h a t  we are  deve lop ing ,  i t  is n o t  pos s ib l e  to  

def ine  t h e  e x p e c t a t i o n  v a l u e  of t he  squa re  of H ,  be c a use  th i s  vu lue  shou ld  

d e p e n d  on the  a c t u a l  f l u c t u a t i o n  of t h e  r a n d o m  force  a n d  n o t  on ly  on t h e  dif- 

f u s ion  p a r u m e t e r .  

I n  conclus ion,  t h e  t h e o r y  of r a n d o m  m o t i o n ,  r e s t i ng  u p o n  t h e  fou r  p o s t u -  

l a t e s  s t a t e d  above ,  is n o t  fu l ly  e q u i v a l e n t  to  n o n r e l a t i v i s t i c  q u a n t u m  

mechan i c s .  H o w e v e r ,  w i t h o u t  a m o r e  ~;areful ana lys i s ,  i t  is n o t  poss ib l e  to  de- 

c ide  whe the r ,  a f t e r  all ,  t h e  t h e o r y  could  i n t e r p r e t  a l l  t h e  k n o w n  e x p e r i m e n t a l  

f a c t s  in  t h e  l o w - e n e r g y  d o m a i n ,  as  n o n r e l a t i v i s t i c  q u a n t u m  m e c h a n i c s  does.  

R I A S S U N T 0  (*) 

Si s tudia il  moto di una part icel la  sotto l 'azionc di due t ipi  di forze, le une che variano 
lcn tamentc  c le altre chc fluttuano rai)idamertte. Si suppon~ che le forze lentameate  
var iant i  siano date in ogni part icolare problcma. Si suppone che le forze f lut tuant i  
rapidamentc,  che sono sconosciute, abbiano un carat tere  casuale. Si d imostra  cite il 
moto della part icella dipende dalle forze casuali solo at traverso l 'effetto di diffusione 
che esse producono. La  t.eoria 5 di carat tere stat ist ico e si pub determiimre solo l 'evo- 
luzione di una densit5 di probabil i t£.  Si sviluppa un formalismo lagrangiano e da esso 
si dcducono le equazioni generali  del moto. Questi r isul ta t i  sono formalmente equivalenti  
aWequazione di SchrSdinger. La  generalizzazione ad un sistema di particelle 5 immedia ta  
se si suppone che le forze casuali agiscano indipendentemente e con uguale intensit~ 
su ogni part icella elcmcntare. Si ottengono i valori di at tesa delle variabil i  dinamiche 
fondamentali .  La  tcoria si dimostra molto simile, ma non completamente identica, 
,~lla mcccanica quantist ica non reiat ivist ica senza spin. 

(*) T r a d u z i o n e  a c u r a  d e l l a  Redaz io l~e .  
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~IarpaH~uaHuaa dpopMyAupOB~a TeOpaH e~yqafinoro ~BH~eHH~. 

Pe3mMe (*). - -  IdccJle~yeTcs ~BH)KeH~e qaCTHl~bI IIO)I ~e!4CTBHeM CHYl )IByx THrIOB, 

O2IHHX Mej/~eaHo MeH~rOILIHXC~ ~ a p y r n x  6blCTpO qbnyKTynpyromnx, glpe;~no~araeTcs,  

qTO Meju~eHHO MeH~IOHIHeC~ CHJ1bI 3a;/aHt,I B Ka~KJIOM qaCTHOM cJay•ae. TaKxe  npe~no -  

n a r a e r c s ,  qTO 6blCTpO qbJlyKTyHpyroul!4e C~JIbl, KOTOpble HeH3BeCTHbI, HMetOT cJ1yqa~HbI~ 

xapaKTep. IIoKa3blBaeTc~, qTO ;/BH~KeHHe qaCTHttb~ 3aBHCHT OT cayqa~HblX CHJ~ TOYlbKO 

~epe3 3qbqbeKx ~lHqbqby3urI, KOTOpbI~ Oaa  x e  o6ycJmBaUBaIOT, r I o  CBOeMy xapaKTepy 

TeopHJt SB~eTC~ CTaTHCTHqecKOft, H e)IUHCTBeHHO BO3MO)KHO onpejleJaI4Tb rl3MeHeHHe 

ILrlOTHOCTH BepO~THOCTH. Pa3BHBAeTC~ JlarpaH~KHaHHbffi qbopMaJ~H3M, H B3 Hero BbI- 

BO~ITCII O6IIIHe y p a B H e H ~  )IBH~KeaH~I. OKa3b~BaeTcs, qTO ypam~eHt4g ~opMaO~bHO 

3KBHBa.rIeHTHbI ypaBHeHHrO IIIpe~laHrepa. O 6 0 6 m e H g e  ~2iit CHCTeMbI qacrrHl HpoII3BO- 

RHTC~I Hertocpe~CTBeHHO, ecnn  n p e a n o n a r a e T c n ,  HTO cnyqa~nbte  cnnbt  )leftcTnyrOT He3a- 

BHC~MO H C OJlHgaKOBOfi HHTeHCHBHOCTbIO Ha ~ a x n y r o  3SleMenTapHyrO qacYntty. Flony-  

qaroTc~t oxn)laeM~,ie BeJIHqHHbl ~lJ31t OCHOBHblX ~HHaMHqecKHX IlepeMeHHblX. I1oKa3bI- 

Baexc~, qTO TeopHff OqeHb rIOXO~Ka, HO rlOJ~HOCTbrO HeHJleHTHqHa, Ha HepeJ~aTHBHCTCKyrO 

KBaHTOByIO MexaHHKy 6e3 CrIHHa. 

( ' )  I l e p e e e O e u o  pe3atcque f i .  

6 - I1 Nuovo Cimento B. 


