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Summary. — The motion of a particle is studied under the action of two
types of forces. some slowly varying and others rapidly fluctuating.
The slowly varying forces are assumed to be given in every particular
problem. The rapidly fluctuating forces, which are unknown, are assumed
to have a random character. It is shown that the motion of the particle
depends on the random forces only through the diffusion effect that they
produce. The theory is statistical in character and only the evolution
of a probability density can be determined. A T.agrangian formalism
i3 developed and from it the genecral equations of motion are derived.
These turn out to be formally equivalent to the Schrodinger equation.
The generalization to a system of particles is straightforward if it is
assumed that the random forces act independently and with like intensity
on every elementary particle. The expectation values of the fundamental
dynamical variables are obtained. The theory proves to be very similar
to, but not fully identical with, nonrelativistic quantum inechanies
without spin.

1. — Introduection.

An interpretation of the Schrodinger equation in terms of particle tra-
jectories was first proposed by DE BROGLIE (1) and later developed by Bomx (2),
who has since maintained that the possibility of an interpretation of the
gquantum theory in terms of «hidden variables » cannot be excluded (?). On
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the other hand, a formal analogy between Brownian motion and quantum
mechanics had been noticed by FUrTH (*). Combining these two basic ideas,
FinvEs (5) and WEIZEL (°) showed that the Schrddinger equation can be
derived from the hypothegis of a random motion of the material particles. In
recent years, a number of alternative derivations have been proposed (7). In
general, the parallelism between quantum mechanics and stochastic proces-
ses has been studied by several authors (%).

The picture of the atomic systems that results from the hypothesis of
random motion is very suggestive (°). Let us take, for instance, the ground
state of the hydrogen atom. According to the picture given by the random
motion theory, the electron would be a point (or a very small) particle follow-
ing a very irregular trajectory, similar to that of a particle in Brownian motion.
The random motion of the electron would prevent it from falling into the
nucleus, but the electrostatic attraction would maintain both close together.
In this way, a dynamical equilibrium would exist, similar to the one that
prevents a colloidal particle in a liquid from falling to the bottom.

According to this theory, the so-called wave-packets would represent the
regions of space in which the probability of finding the particle is greater.
If a free particle is known to be in a volume element at some time, the particle
may be present in any point of space after a large enough time, due to the
random motion. This would represent the « wave-packet spreading » of quan-
tum mechanics. The wave-particle duality should be discarded in this theory;
the material systems would consist of classical particles and the radiation of
clagsical waves. The particle appearance of waves and the wave appear-
ance of material particles would be complex phenomena due to quantization
of the energy, linear momentum and angular momentum exchange with the
material particles which the measuring apparatus consists of. This quantiza-
tion would be a consequence of the random motion.

To make the comparison between the theory of random motion and
quantum mechanics it is necessary that the first be developed in a more general
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form than has been done until now. To make a general formulation of the
theory starting from the Lagrangian formalism is the purpose of this paper.
The motion of a system of particles is to be studied under the action of a
random accelaration plus the acceleration due to some known forces. The
only condifion imposed on these forces is that they be able to be derived in
a classical form from a Lagrangian function.

2. — The hypothesis of the random motion.

The postulates of the theory, besides the usual ones in all classical theories,
are the following:

1) If the foree acting on « particle is given by the veclorial function fit),
the motion of the particle resulis tn the composition of a random motion and the
motion that classical dynamics predicts.

The position, r(f), of the particle at time ¢ iy determined by the equation
(1) F(t) = (1/m) fit) -+ alt)

where a(t) is the random acceleration. The force f(f) may depend on the
actual position and the actunal velocity of the particle.

The above postulate can be considered as a modification of the New-
ton law of dynamics. However, it is also possible to take the Newton law
as valid and assume that the random acceleration is due to a random force
F(t), acting on the particle besides the known force f(¢). Both hypotheses are
formally equivalent, and we will adopt the second in the following. In this
way, the theory can be developed within Newtonian mechanics. Then, instead
of (1), the following equation must be written

(2) .f\(/ o Fkt) = '"l":(t) ’

where r(?) gives the actual path of the particle. The function r(¢) will be as-
sumed continuous, but not necessarily differentiable, so that F(f) and #(¢)
will be distributions rather than ordinary functions.

II) The stochastic parameters of the random process represented by F(t) are
independent of the state of motion of the particle. There are neither privileged
times, nor positions, nor directions in space, in relation to the random motion.

It would be necessary to specify all the stochastic parameters of the random
force in order to develop a complete theory. However, an approximate theory
can be developed without such a specification. Indeed, when the force f(?)
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varies slowly enough, the observable properties of the motion depend on the
random force F(#) only through the diffusion effect that it produces.

In fact, let r and v be the position and the velocity of the particle at the
moment %,. The velocity and the position at any other time 1,4+ A¢ will he

tyrAL tt At
(3) olto + 80 = vltg) + (1fm) [ fioya— @m) | Finar,
o t, At t N 1, +At t

(4) rlty + At) = r(ty) + v(t)AL -+ (1/m)f at| fe'yde' + (l/m)f at| Fyar' .

0 ty ty

Let us now assume that F(f) varies much more quickly than f(#). Then, it
will be possible to choose a time interval 7, much greater than the characteris-
tiec fluctuation time of F(t), during which the force f(f) scarcely varies. Then,
from postulate 1I) it is deduced that

ty+At
(I/At)f F@)di ~0,
tﬂ
whenever At T.
In these conditions the eqs. (3) and (4) lead to the following equalities (in

a statistical sense):
(d) vit, — At & vlty) -+ (1/m) ft,) At + o(At);

(6) rit, + At} =~ r{ty) - v, AL = 3r 4 o(At) .

The last integral in (4) gives rise to the random displacement 3r, and o(Af)
means «terms of order higher than A¢». From postulate 1I) and the central
limit theorem it can be deduced that the probability distribution of dr ap-
proaches a Gaussian when A?— oco.

The approximate equalities (5) and (6), and the form of the probability distri-
bution of 3r when Al — oo, are not enough to develop a rigorous theory.
However, if the equalities (5) and (6) were exact and the distribution function
of 3r were Gaussian for any A¢, the random motion would be completely
determined as a Wiener process. Starting from the hypothesis that the random
motion is a Wiener process, the Schriodinger equation has been derived (7). In
this paper a new derivation will be proposed, starting also from the theory of
Wiener processes. However, the preceding analysis shows that the Wiener
processes have no special physical meaning. They represent only an approxi-
mation, valid to substitute any random motion when the known force f({)
varies much more slowly than the random force F(t), whenever the latter fulfils
the conditions of postulate II).
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It is interesting to point out that the Wiener processes are not suitable
for relativistic generalization, due to the fact that infinite velocities are involved
in them. Nevertheless, if the Wiener process is only considered as an approxi-
mation of a random motion with finite velocity, the relativistic generalization
may be possible. It seems also that the relativistic formulation might be easier
starting from the Lagrangian formulation in a form similar to the one developed
in this paper for the nonrelativistic case.

3. — Equations of motion.

Let us take a particle in a given force field. The theory that we are devel-
oping, being classical, rests upon the hypothesis that the particle has always
a definite position and a definite velocity. The problem of the error with which
these quantities can be measured will be considered as a purely experimental
one. From the theoretical point of view, the basic problem is to determine the
position and the velocity of the particle at any time ¢ from data taken at
time ¢,. As a consequence of the assumed random force, the future motion of
the particle cannot be accurately determined, even if it were possible to meas-
ure simultaneously the position and the velocity of the particle at one time.
Only probability distributions of the quantities can be predicted. In this way,
the theory is statistical in character like quantum mechanics.

It would be possible to develop a statistical theory that could predict the
evolution of the probability density in phase space. However, we intend to
develop a more restricted theory dealing only with the probability distribution
in configuration space. This is more adapted to experimental situations in
which only the position of a particle can be measured directly.

Let us consider a particle under the action of the random force (without
any other force), whese velocity be zero at time %, and whose position is r, at
the same time. As a consequence of the theory of Wiener processes, the
probability distribution of the position at any later time would be given by
a function ¢(r, f) fulfilling the equation

(¥) cofct = DV?o .
If eq. (7) is integrated with the initial condition
o{r, fo) = 0(r—ro},
where ¢(r—r,) is the Dirac's « delta», a Gaussian distribution is obtained.

To study the motion of a particle under the combined action of given forces
and the rapidly fluctuating random force, eq. (7) could be substituted by
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the more general Fokker-Planck equation {°). In this paper, however, another
procedure will be used starting from the Lagrangian formulation. To do this,
the actual problem of the motion of a single particle will be replaced by the
fictitious problem of the motion of a statistical ensemble of independent par-
ticles. Every one of the particles in the ensemble should follow one of the pos-
sible paths of the actual particle. Both problems are formally equivalent if
the probability distribution of the position of the actual particle is the same
function of r and ¢ as the density of particles of the statistical ensemble. The
statistical ensemble can be considered a fluid with density o(r, ¢}, whose motion
results from the superposition of a classical motion due to the known forces,
plus a diffusion effect due to the random forces.

In order to obtain the equations of motion of the statistical fluid it is con-
venient to start with the equation of motion of a clagsical fluid in Lagrangian
formulation. Let us assume that the classical motion (no random force) of
the actual particle would be determined by the Lagrangian function

L[ro(tﬁ rylt), tJ .

Then, the motion of a classical statistical fluid could be obtained from the
Hamilton principle

ty

(8) {dt ¥, dv= extremum,
%

where

(9) Lo=op(r, t) Lr,vir t),t].

The variations of %, in (8) correspond to arbitrary variations of v, ¢ being
related to v by the continuity equation

(10) o+ div (pv) = 0.

To prove that the motion of the clagsical finid is determined by the Lagrangian
density %,, we choose p(r, t) in the form of a Dirae’s « delta »

(11) olr, t) = d(r—ry(1)) .
From (10) and (11), it follows that
(12) o(r, 1) = F,(t) .

By substituting (11) and (12) into (9) and performing the volume integral in
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(8) it results that the variational equation

t

fL[ro(t), ry(t), t1dt = extremum

L2

gives the motion of every material point of the fluid, which completes the
proof.

The next step is to modify the Lagrangian density %, in order to obtain
a new Lagrangian density &, from which the equations of motion of the
statistical fluid can be obtained, taking into account both the known and the
random forces. Actually, the diffusion etfect due to the random force is not
suitable for a Lagrangian formulation. In fact, the process of diffusion is
not a motion of the statistical ensemble as a continuous fluid, but an exchange
of particles between different volume elements. However, if we assume that
only the density of the fluid at every point is physically meaningful, we can
substitute the diffusion by an equivalent continuous motion that carries fluid
from the regions of greater density to the regions of lower one. This motion
may be suitable for a Lagrangian formulation.

The actual motion of the fluid is the composition of two independent
motions, a « classical » one, given by eq. (8), and a « diffusionlike » one, given
by eq. (7). If we are able to obtain the diffusionlike motion from a variational
condition similar to the Hamilton principle, our problem will be solved.
In fact, let us assume that we find a condition of the form

t

[‘dtf(%’m@vz + %) dv = extremum ,

t

such that it is equivalent to eq. (7). Then, assuming that the classical and the
diffusionlike motions are independent, the Lagrangian density

L= LU

should determine the composite motion.

In order to obtain a Lagrangian formulation for the diffusionlike motion
alone, we must take into account that eq. (7) is a statistical equation, related
to our information about the position of the particle rather than to an objective
reality. Then, it must be a consequence of the condition of maximum rate of
entropy increase, which is

13) %f{~~ ¢ Ino)dv = maximom .
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The increase of entropy is constrained by two additional conditions. The first
one, which follows from the definition of probability, is the normalization of

0, which is
fg dv=1.

The second condition is the conservation of energy, which follows from postu-
late IT). According to this postulate, the random force is independent of the
state of motion of the particle, so that the mean energy is conserved. However,
when we go from the actual problem of the motion of a particle to the fictitious
one of the motion of a fluid, a kinetic energy term appears in the form

In order that energy be conserved, we must add to the kinetic energy a kind
of potential energy # such that, whenever eq. (7) is fulfilled,

(14) {;mfgv?dv —#JL’?/dv =0.

The term % must be a function of ¢ and Vg, but it cannot be a function of v
or ¢, which are related to time evolution. In order to obtain %, we compare
(7) with (10) and we obtain, after an integration,

v=—DVplo.
Actually, any vector w such that
div (ow) = 0

may be added to v as a result of the integration. As we are considering the
simplest motion, we will put w = 0. In this way, the term # is given by

(15) # = — tmD*grad Ing)?p,

because this function fulfils the equality (14) whenever the motion is given
by (7).

It is easy to prove that conditions (13), (14) and (15) lead to eq. (7). In
making the derivation, eq. (10) and the normalization of p must be taken into
account, from which eq. (13) is transformed into

fv grad pdv = minimum .
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Given the function g, this eondition, together with eq. (14), leads to a func-
tion v which, through eq. (10), gives eq. (7). In this way, we have transformed
the diffusion eq. (7) into the variational condition (13) constrained by (14).
Obviously other variational formulations can be found whish lead also to eq. (7);
for example,

f(v + D grand In g)?pdv = minimum .

However, these alternative conditions, not being a consequence of general
principles—as eqs. (13) and (14) are—might not hold in cases other than the
pure diffusion represented by eq. (7).

If we integrate eqs. (13) and (14) with respect to time, we obtain

f[g(r, ) Inp(r, t,)— o!r, t,) In o{r, ¢,)}dv = maximum ,

(16) , t,
5mfdtf[v2~l)z(grad In p)*odr =190 .
tl

These conditions are a generalization of eqs. (13) and (14) and therefore they
imply eq. (7). Now, from a formal point of view, the following two variational
problems are equivalent:

@) the first integral of eq. (16) be exiremal whilst the second be a
constant,

b) the second integral of eq. (16) be extremal whilst the first be a
constant.

Problem a) is related to the case in which we known (with some uncer-
tainty, maybe) the position of the particle at time 7, and we are asking for
the probability distribution of the position at any time t, >#,. Problem b)
is related to the case in which we know the positions of the particle at times 7,
and f, and we are asking for the probability distribution at infermediate
times t (f;<< t<C1,). Actually, the difference between these two cases is only
subjective, the objective reality being the same in both cases, that is, a particle
moving under the action of a random force. This is consistent with the fact
that the general variational statement is formally identical in both pro-
blems a) and b).

Luckily, the variational problem b) is of the form of the Hamilton prin-
ciple if we assume that the functions g(r, ¢,) and p(r, t.)—and therefore the first
integral of eqs. (16)-—are given. However, if we use the variational formula-
tion b), we no longer can calculate the function ¢ at any time from the knowl-
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edge of this function at one time (as in problem a) or through eq. (7)) but we
need the function g at two different times. This is necessary because any pro-
blem of motion in Newtonian mechanics needs two conditions to be determined
(position at two times or position and velocity at one time) and, on the other
hand, we must deal with the diffusionlike motion of the fictitious fluid as if
it were a Newtonian motion.

When the diffusion is formally considered as a Newtonian motion of a fluid,
some properties appear which do not seem to be inherent to the theory of
random motion. For instance, as we will see later, the equation of motion
of the fluid turns out to be the equation of Schriédinger, from which—as is
well known—the Heisenberg uncertainty relations follow. In this way, the
theory that we are developing seems too restrictive, because all problems are
excluded in which both the position and the velocity of the particle are known
with great accuracy at a time. Clearly, the uncertainty relations do not follow
from the postulates 1) and IT), as was stated at the beginning of this Section.
Actually, the restriction imposed by the uncertainty relations does not matter
in practice. In fact, any practical measurement of the position and the velocity
of the particle must be made through some interaction with a measuring
apparatus. If the interaction forces are slowly varying, the position and the
velocity measured will be averages over time intervals large in comparison
with the fluctuation time of the random force. Then some uncertainties will
appear which well be, at least, of the order

Ar~ (DAY,  Ava Azx/At = (D/AN};
from which the uncertainty relations follow:
AxAv =~ fif2m ; fi=2mD.

On the other hand, if the interaction forces were rapidly varying, the uncer-

tainty relations should not appear, but the theory which we are developing

would not hold at all, because eqs. (5) and (6) should not be fulfilled.
Having obtained the equations of the diffusionlike motion in the form

t,

%mfdtf[vL—I)Z(gmd In g)*]pdv = extremum ,
tl
it is enough to substitute the Lagrangian density (9) instead of the kinetic
energy term imwvig in it, in order to obtain the equation of motion under
the action of both the random force and another given force. The correctness
of this statement rests upon the hypothesis that the random and the known
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forces act on the particle with total independence. This may not be the case
if the known forces are velocity-dependent, because the motion produced by
the random force may lead to forces of the known type very different from
those calculated from the average motion of the particle. This possibility
will not be studied in this paper, and the total independence of the forces will
be assumed in the following. In this way, the general equations of motion
can be obtained from the Hamiltonian principle (8) with the Lagrangian density

&L= o[ L(r,v,1)— L mD*(grad Inp)?] .

Condition (10) can be taken into account by the method of Lagrange
nmultipliers. So, Hamilton's principle must be applied to the function

E = o[ L(r, v, t)— L mD*(grad In p)*] -+ N[p + div (ov)],

where 8 is a function of r and ¢, at first unknown. After substitution of this
function in eq. (8), it follows that

i,

fdt[g [(r, v, 1) — } mD2(grad In g)* — N— v-VN]dv == extremum ,

where the last two terms come from an integration by parts. The variations
of ¢ and v are now independent. For a variation of v, this equation leads to

a7 ALjtv =p = VN,

where the partial derivation means the gradient with respect to the compo-
nents of v. Hence results that the first and the last terms of the integral can
be combined to give the classical Hamiltonian function. In this way, the
vectorial function v can be taken out of the integral and the variational pro-
blem is written

tZ
(18) fdtfg [ H(r, VS, t)— s mD*(grad In p)*— S]de = extremum .
tl

The integral must be stationary with respect to arbitrary variations of o,
whereas S is related to o by the equalities (10) and (17).

It is easy to prove that this relation between § and g is the same that is
obtained by equating to zero the variations of (18) corresponding to arbitrary
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variations of S. To do this, we must take into account the Hamilton equation

oH(r, Vs, t)
19 = T
(19) v (V)
In this way, the equations of motion of the statistical fluid can be obtained from
the single variational problem (18), taking ¢ and S as independent.

It is useful to combine both real functions p and S, in the single complex
function

(20) ¥ =0 exp[iNjh]; h=2mD.

In terms of this function it is possible to write, instead of (18),

by
(21) fdt YHikd/ct — H (r, — ihV, 1)]¥ dv = extremum ,

ty

where P* is the complex conjugate of ¥ and the usual rules of operator algebra
are assumed. The proof of the equivalence between (18) and (21) is easy if it
is assumed that H(r, p, t) is quadratic in p, which is the case in all problems of
practical interest. In (21) it is indifferent to vary the function ¥ or ity complex
conjugate. By equating to zero the variation corresponding to #*, the equation
of motion of the statistical engsemble results to be given by

C

(22) ih e H(r, — iV, )¥,
which is identical to the Schrodinger eguation.

The derivation of the equation of motion for a system of N particles is
straightforward. We need only assume now that the vectors r and v are in the
configuration space of 3N dimensions. In order to obtain, in this ecase also, the
Schrodinger equation of N particles, it is necessary to make the following
hypotheses:

I1I) The random motion of every particle is independent of that of the
others.

IV) The product of the mass m of every particle times its diffusion parameter
D equals 1/2.

These postulates complete the many-particle theory.
As in quantum mechaniecs, it is easy to prove that the equation of a system
of particles can be separated into an eguation of the relative motion plus an
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equation for the motion of the centre of mass. This result is interesting because
it shows that to obtain the Schrodinger equation for every body, it is not ne-
cessary to assume that a random force acts on the body as a whole, but only
on a number of elementary particles, which we may assume all material bodies
congist of.

4, — Expectation values.

In order to test the theory with experiments, it is necessary to calculate the
expectation values of the fundamental quantities in terms of either the functions
¢ and S or the functions ¥ and ¥*. Actually, the main interest of the theory of
rahdom motion is due to its formal analogy with quantum mechanics and, to
see whether the analogy is complete, it is also necessary to know how the
expectation values must be calculated. In order to make the development
clearer we will work with a single particle. The generalization to a system of
particles is straightforward.

The statistical meaning of the function ¢ in the developed theory is such
that the expectation value for the position of the particle must be calculated
by means of the integral

(23) Wre :frg do :frl}/*?[fd’v .

Generally, the expectation value of any function of r can be calculated by means
of the integral

(24) iry = f firjodo = f P ds .

The expectation value of the velocity can be obtained from the integral (19),
which gives the velocity of the statistical fluid in every point of space. So,

. o ﬂ}I(r, Vs, t)
(,35) v *J\Q a(VS) dv

From this equality, taking into account (10), it is easy to show that

a$ it should, the derivation being a linear operation. The expectation value
of v can also be obtained from the function ¥, which gives
OH (ry — th 1)
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In this equality, H is considered a linear operator, function of the variables r
and ¢ and of the differential operator V, which acts on the function . The proof
of the equivalence of (26) and (25) is easy, taking into account that H is quadratic
in p. In fact, the equality (26), after the substitution of ¥ by the expression (20)
leads to

o
(v = f oo (8'( ’V%‘)q D f (ifi[2m)Vpdr ,

where 1/2m is the coefficient of the term quadratic in p. The first integral is
identical with (25), and the last is zero if it is assumed that p decreases rapidly
enough at infinity.

The expression under the integral in (21) can be considered formally as a La-
grangian density. However, this function is complex and the imaginary terms
were introduced rather artificially in going from (18) to (21). This shows that
we must take as o Lagrangian density only the real part, which is identical with
the expression under the integral (18). From this Lagrangian density the fol-
lowing Hamiltonian density is obtained for the;statistical fluid:

(27 H= o[H(r, VS, 1) + (2/2m)(grad 1n p)?] .

~~

By integrating (27), the expectation value of the Hamiltonian funetion is
obtained. In terms of v, the expectation value is

(28) {H> = |¥Y*H(r, —ihV, )}V de ,

which is equal to the integral of (27).

Now, it is necessary to obtain the expectation values of the linear and angular
momenta. Equation (17) leads to the following expression for the density of
linear momentum

7= gp=0VS,
whenece results the expectation value

(p.= (QVS dv .
In terms of ¥, this integral can be written as

(29) {p- :J‘SP*(— V)P do .

The real part of this integral equals (29) and the imaginary part is zero. Simi-
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larly, the expectation value of the angular momentum is given by

(30) A = ‘ r-wde :J Vi r(—ihV)WPde .

The equalities (24) to (30), generalized for a system of particles, can be con-
sidered condensed in the following rule:

A quantity defined in elassical mechawics by a function F{q,, p,. t) of a system
of orthogonal co-ordinates q, and conjugated momenia p,, quadratic at most in the
momenta, has the operator F(q., —ific|Cqy, t) associated with it. The expectation
value of the quantity is given by the integral

c
(31) fY’*F(q,—iﬁ,\L,t) Y.
qu

5. — Discussion.

The equation of Schrodinger and the general rule for caleulating the expec-
tation values of the quantities, derived in the preceding Section, seem identical
with the postulates of nonrelativistic quantum mechanics (without spin). How-
ever, the parallelism is not complete for two reasons, which we must analyse:

a) Not all the golutions of the Schrodinger equation valid according to
quantum mechanics, are acceptable in the theory of random motion.

b) In quantum mechanies it is assumed that the expectation value of
any function of ¢, and p, is given by the integral (31), but in the theory developed
here, it is valid only for polynomials in p, of degree two or less.

Let us analyse the first point. In quantum mechanics, some bound states
of a particle are associated with functions ¥ that have nodal surfaces. For
ingtance, the electron of a hydrogen atom in the state 2s is associated with a
function which has a spherical nodal surface. To interpret this fact in keeping
with the theory of random motion, we gshould assume that the electron is some-
times in the internal region and sometimes in the external one without ever
crossing the nodal surface, which is absurd. This shows that some solutions
of (22) are not acceptable in the theory of random motion.

Ag it is well known, every solution of (22) can be expressed as a linear com-
bination of complex particular solutions which have a constant modulus and
a phase proportional to the time. If a solution is obtained by combining only
eigenfunctions of the discrete spectra, this selution represents also a bound
state. In the theory of random motion the only acceptable functions are those
which can be obtained by continuous evolution from the function

p(r, ty) = o(r —ry) .
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‘This function represents a particle localized in the point r, at time ¢,. It is
always possible to assume that the position of the particle was measured at
a time 1,, however remote. The evolution of p from that time on, would be
given by the equation of Fokker-Planck, generalization of (7). It is not easy
to see whether by considering only solutions of this type it is possible to ex-
plain the experimentally observed transitions between discrete levels. So, no
definite conclusion can be obtained in relation to this point without a more
careful analysis.

Let us discuss now the second point. In quantum mechanics the solutions
that correspond to a definite energy fulfil the condition

CHE = CH*,

and these functions are solutions of the time-independent Schrédinger equa-
tion. However, in the theory that we are developing, it is not possible to
define the expectation value of the square of H, because this value should
depend on the actual fluctuation of the random force and not only on the dif-
fusion parameter.

In conclusion, the theory of random motion, resting upon the four postu-
lates stated above, is not fully equivalent to nonrelativistic quantum
mechanics. However, without a more careful analysis, it is not possible to de-
cide whether, after all, the theory could interpret all the known experimental
facts in the low-energy domain, as nonrelativistic quantum mechanics does.

RIASSUNTO (%

Si studia il moto di una particella sotto 1'azione di due tipi di forze, le une che variano
lentamente e le altre che fluttuano rapidamente. Si suppone che le forze lentamente
varianti siano date in ogni particolare problema. 8i suppone che le forze fluttuanti
rapidamente, che sono sconosciute, abbiano un carattere casuale. Si dimostra che il
moto della particella dipende dalle forze casuali solo attraverso l'effetto di diffusione
che esse producono. La teoria & di carattere statistico e si pud determinare solo I'evo-
luzione di una densitd di probabilita. Si sviluppa un formalismo lagrangiano e da esso
si deducono le equazioni generali del moto. Questi risultati sono formalmente equivalenti
allequazione di Schrodinger. La generalizzazione ad un sistema di particelle ¢ immediata
se si suppone che le forze casuali agiscano indipendentemente ¢ con uguale intensita
su ogni particella clementare. Si ottengono i valori di attesa delle variabili dinamiche
fondamentali. La teoria si dimostra molto simile, ma non completamente identica,
alla meccanica quantistica non relativistica senza spin.

(*) Traduzione a cura della Redazione.
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JlarpamknanHas GOpMYJIHPOBKA TEOPHH CIAYYAHHOr0 IABH)KEHHS.

Pesiome (*). — Hccneayercss OBMXKEHUE YacTULBI MOJ ASHCTBUEM CHJI JIBYX THIIOB,
OOHUX MENIEHHO MEHSIOLIUXCS WM ApYIrux ObicTpo duykTyupyroimux. [lpeanonaraetcs,
4TO MEJIEHHO MEHSIONINECS CHJIbI 3aJIaHBl B KAXIOM YaCTHOM ciyvae. Takxke mpeznno-
yaraercs, 4TO OBICTPO GIYKTYMPYIOIIHE CUIBI, KOTOPbIC HCH3BECCTHBI, HMEIOT CTyYalHbIi
xapakTep. I[loka3pIBaeTcs, YTO MBIDKEHHE YACTHMLBL 3aBUCHT OT CIIy4alHBIX CHUJ TOJBKO
yepes shdext auddysuu, koropsiii ouu ke obycnaBauBaror. Ilo cBOoeMy XapakTepy
TEOpUs ABIAETCSA CTATHCTHUYECKON, M €JMHCTBEHHO BO3MOXHO OIPEJE/IUTb W3MEHCHHE
TOTHOCTH BEPOSATHOCTH. Pa3BUBAETCs JArpaHXHMAHHEIN (GOpManui3M, M W3 HEro BHI-
BOnsATCa oOmme ypaBHeHus aBmxeHus. Oxas3biBaeTcs, 4TO ypaBHeHHs (OPManbHO
okBuBalleHTHBI ypasHeHuro MHIpegwnrepa. OG6oluienne sl CUCTEMBI YaCTHL IPOH3BO-
JUTCA HEMOCPENCTBEHHO, €C/IM MPEANOJIaraeTcs, 4YTO Cliy4aiiHble Cuibl XEHCTBYIOT He3a-
BHCHMO K ¢ OJUHAKOBOM HMHTEHCHBHOCTHIO HA KAXAYIO 3MEMeHTapHyio uacTuily. [lonmy-
YaloTCd OXUIAEMBIE BEJMYHMHBI 711 OCHOBHBIX AMHAMMYECKHX IlepemMeHHbIX. Ilokasbl-
BAETCsl, YTO TEOPHS OYEHL MTOXOXKA, HO TIOJIHOCTHIO HEWIEHTHYHA, HA HEPEISATHBHUCTCKYIO
KBAaHTOBYIO MEXaHHKy 0e3 CIuHa.

(*) IIepesedeno pedaryueii.

6 — Il Nuovo Cimento B.



