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Summary. — The concept of singular response is defined and used for the
investigation of the Bose-Einstein condensation of an ideal gas. It is shown
that, apart from the well-known symmetry that is broken by the transition
by the state with k=0, also states with k54 0 participate in the con-
densation. The new condensed state is shown to possess off-diagonal long-
range order and to be a product of Glauber coherent states with k=0
and k= 0.

1. — Introduction.

We define singular response of the expectation value of an observable R
to an external probe 7 by

(1) lim R(n)  R(0) .

In words, we calculate R in the presence of #, then let 5 go to zero. Next we cal-
culate B with no external probe. If these two results are not the same we
say that R responded in a singular way to the probe 7. Singular response can
be used for the investigation of phase transitions. A simple example for this
is the case where eq. (1) holds for all temperatures (I') lower than some critical
temperature (7.), while the response is nonsingular, <.e.

lim R(y) = R(0)

n—>0

for T'>T.. Note that if the response is singular for all temperatures, it
reflects the sensitivity of the system to the probe and the technigque can be
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used to obtain a dispersion relation for internal excitations of the system. The
latter case is sometimes used (') to obtain the plasma-frequency branch of the
spectrum for electron-ion system. In general a singular response reflects in-
trinsic properties of the system on which the probe is applied.

In this paper we wish to study the Bose-Einstein condensation (BEC) from
the point of view of singular response (SR). Preliminary results along this
spirit were presented elsewhere (2). In Sect. 2 the early results are rederived
in a slightly different way and we show the nonanalytic dependence of the
chemical potential x on the external probe as the latter is set equal to zero
at the end of the calculations. The SR for our case of BEC is summarized
in Sect. 8. In this Section one sees the reflection of the singular response in
broken symmetry. This latter term means, in the present context, a special
case of SR, viz. it implies the existence of a quantity K that

lim K(7) # 0,

n—>?

while K(0) = 0. The results of the SR for the BEC are shown to imply the
important consequence, which is true alro for interacticg bosons (*) namely,
that for T << T, the system hag a finite fraction of particles in a coherent state
as defined by GLAUBER (4). (Note that everywhere we deal in the limit of
particle number N — oo while N/V << co with V the volume of our system.)
The manner of the approach to zero of 4 in BEC in our case is dealt with in
more detail in Sect. 4 where we show that the SR of the free Bose particle im-
plies that the condensation is of the form of a generalized Bose Einstein con-
densation (GBEC) as ws introduced by GIRARDEAU (%)). It is shown that at
the GBEC the system possesses an off-diagonal long-range order (ODLRO),
a concept that was introduced by YanG (¢) and discussed extensively since, in
particular with its connection to superfluidity (*). The ODLRO of free bose
system for 7> T, was discussed earlier (}). In Sect. 5 we conclude and make
contact between our discussion of the particular phase transition considered
and the general discussion of phase transition as was given by EMcH (°).
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2. — Bose-Einstein condensation in the presence of an external source.

In this Section a brief resume of the result obtained in a slightly different
way in CR (2) is given. This will fix the notation and will define the problem.

Consider an ideal Bose gas subject to an external field. (It is tempting to
associate the helium vapour with the external field when the helium problem
is considered; here, of course, the gas is ideal and the physical meaning of the
external source is obscure.) The Hamiltonian of the system is

(2) H= z a,ca, + z 7]% + 7 *ay) .

Here a is the creation operator for a particle in the plane-wave state, &, the
kinetic energy of the free particle

_ hik?
Ep — 2—/’; y
with m the mass of the particle; and # is a fixed, but arbitrary, parameter
which, for simplicity, is taken as independent of the wave number %. The
operators obey the Bose-Einstein commutation law.

We wish to calculate the Gibbs potential (£,) of this system,

exp[—p2,] = Tr [exp [—pH]]= Z,,

where § = (k5 Z)~* with T the temperature and kg being Boltzmann’s constant;
Tr stands for the trace over all states and all particle numbers. Upon diago-
nalization, the Hamiltonian becomes

2
3) H=73 (e,— p)e'aiae™ — it ,
T Ex— U

with

(4) A:;{

n o+ /- Oht} .
& — U Exr— U

Now because of the invariance of the trace with respect to cyelic permuta-
tion we obtain the exact result

(5) exp[— p2,] = exp[— A2, exp [z ﬂ"”ﬂ]

Here £, is the Gibbs potential in the absence of the external source.
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The number of particles which are expected to be in the state k is

Tr [ata, exp [— BH]]
Z, ’

(6) Ny = <a;‘:ak>,, =

this quantity must be positive definite. Simple calculation yields

In? 1
(8 — p)? + exp[Bler—m)]—1"

(M Ny =

If we assume x>0 we arrive at the relation that ply|2>u and since 7
though fixed is arbitrarily small u must satisfy u<0 for T'#0. For u<o0,
ni{p) 18 a monotonically increasing function of u, as is in the usual case (*°).
The total number of particles N is

In? 1

® N=2m= 2 el —1

Now, as usual (), we demand that o, = N/V remain finite with both
N, V —oo. This with u<0 and ¢,>0, implies that 4 —0 for large enough o,.
For very large V we can transform the second sum on the right-hand side of
eq. (8) into an integral. (If we leave out the first term there (or some terms)
we see that for it to contribute y must go to zero as 1/V but then the term
In|2/u® will diverge; thus, this procedure is incorrect here.) We get in the
limit y—0

) D T
with

1
(10) Vo= [k

The apparently (see below) dominant term in the sum that appears in eq. (8)
is |n|*/u? and since N,/V < oo we have that |n|2/u*~ N/V, i.e. u~1/vV. This
result is true if only one term is kept. However, we see directly that for
p~1/V/V all terms for which &, < 1/v/V are of the same order of magnitude
as the original term for which %= 0. Hence the correct procedure is the
retention of the added term,

_ Inf?
% (e — ,u)2 ’

(1°) F. Lonpon: Superfluidity (New York, 1954),
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which when summed must be of the order N. This is dealt with in Sect. 8.
In the next Section we list the results of the naive approach which serves to
show the nonanalytic behaviour of the various quantities with respect to a
perturbation of the type nai-+7*a,.

3. — Singular response of the condensed system.

We refer in this Section to the S8R to an external probe naj-+n*a,. This
is a special case of the general probe eq. (2). Although it is expected that
the SR to the general probe reflects the true nature of the condensation, the
results of the special case probe serves to show the presence of singular response
in the system. The analysis of the previous Section leads to the following
results, all valid for temperatures below the transition temperatures, viz. with
u—0.

1) }71_1,51 2,= 4,
j.e. the Gibbs potential is continuous in # for #-—>0. This follows from the
result that |5|*/u2+= 0 in the limit, while £ has [5|*/u. Physically this is equiv-

alent to 2 being essentially an energy and although there are many particles
in the state k= 0, their energy is still zero.

1 .
2) My ppmo ~ B"“; y ]7111_3.} {ngy~ |77]2/:“2 .

Thus the average number of particles in the k =0 state reacts in a singular
manner to the external field #.

3) plg = 0)~1(V,  limum) ~1V.

1 behaves in a nonanalytic way as a function of 7.

a i
4) <a°>""° =0, <0/o>'1 = 5;7; In Zn = £_> \/7'/0 ’

i.e. {a,> expresses the broken symmetry that occurs at BEC,

*

11 1= {agon= 1~
(11) gy = <@y, P

5) In the limit x->0; N, V' — oo considered here we get

(12) Catags = lady<ay™,
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i.e. the particles in the k=0 state must be in the coherent state of
Glauber (%), viz.

(13) olatg) = 2 loto) -

This follows from Schwarz’s inequality. Thus we have a more physical meaning
to the term broken symmetry: here like a small magnetic field that picks up
a direction in the 3-dimensional space, the probe picks up the phase of the
Glauber coherent state (2).

In the next Section we discuss the important question of the states with
k0.

4, — Condensation of states with %20,

The results of the previous Section are strictly valid only for perturbation
H' = yal + y*a,.

This led to u~1/VV. We now recall that the argument for BEC being a
condensation into one state with k¥ =0 is based on the result that pu~1/V
and hence negligible when compared with even the lowest single-particle exei-
tation which has a 7~* volume dependence. Our new result, namely u~1/vV
drastically alters this, in fact occupation of the states with momentum %, is of
the order |n|?/(e,— u)? rather than the usual {exp [f(e,—pu)]—1}~ for small &,
since now V% is negligible when compared with 7+ This is the central result
of this paper, so we wish to restate this point; in the thermodynamic limit
(V—co) and with condensation (u4—>0) and with a fixed 5 to be set equal
zero at the end we get that, for g < }71_1}.} u{n) the result

(14) lim =

7, being the number of particles per unit volume in the state k.

Now by similar argument to the oune that led to eq. (10) we conclude that
all the states with &, <p, are in the Glauber (%) coherent state. Although there
are in the thermodynamic limit many (infinite) such states, they all shrink to
lim k — 0 in the sense that the integral, N, eq. (10), is now a principle value
integral. This type of condensation is the one introduced by GIRARDEAU (5).
We have shown thus that even the condensation of the ideal Bose gas is, from
the view adopted here, a « generalized Bose-Einstein condensation» (3). For
convenience we shall replace the sum of these states by an integral with the
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upper limit & — co. This seems reasonable because states with large g, will
contribute little to the integral (the integral ~¢;® for large &). If we now
consider the high-density limit where the term N, (eq. (10)) is negligible, we
get (A=2m=1)

[

N k2dk m?
- — 24 —_—— — e
(15) v n| ﬂf (k* — p)? Il v—p’

]

which gives the dependence on [n]2 of v/—pu for g—0".
We can now calculate the spatial off-diagonal matrix elements of the
density operator

(16) (ololey = V-1 nyexp [tk (x —a')]

The result is (r = |x —a'[, r=0)

In the limit x4 —0~ we see that the system possesses an off-diagonal long-
range order (ODLRO). Note that the u—>0 must be taken before the
7—>oco limit since the limit x4 —0 is associated with the thermodynamic
(V — o0) limit.

The fact that the calculations were carried out in the high-density limit
(N> N,) does not affect the result that ODLRO exists in our system even
at lower densities (but with BEC, of course). This is so because retention of
the term N, will not affect the caleulations apart from replacing N/V in eq. (15)
by (N—XN,)/V. It is perhaps satisfying that the result for the general probe
{all %) leads to an intensive g, as it should.

5. — Concluding remarks.

The theory of singular response has not as yet been formulated in its full
generality in the literature. Nonetheless as a calculational technique the
method has been used extensively. In this paper we investigated the well-known
Bose-Einstein condensation of an ideal gas from the point of view of the SR.
We obtained in agreement with a previous result (2) that the phase transition
that occurs here breaks a symmetry in the phase of the wave functions, whose
mode, k, participates in the condensate. It was shown that the onset of the
condensation leads to the coherent state of Glauber (*). The result for the
simple Bose-Einstein condensation was generalized to systems of interacting
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bosons (). The results are basically the same. It is believed that also the
generalized BEC could be formulated for the case of interacting bosons.

Central to the discussion was the manner of approach to zero of the chem-
ical potential. In fact upon reflecting on the mathematics used, one sees that u
played a role as a part of the Hamiltonian of the system. Thus the phase
transition here fits the general discussion of phase transition that is given by
EnMcH (°) in that the elements of the diagonalized Hamiltonian are temperature-
dependent. Here this was so even for 7> T, but the temperature-depen-
dence at 7> T, of u is not important.

ook ok
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RIASSUNTO (%)

8i definisce il concetto di risposta singolare e lo si usa per lo studio della condensa-
zione di Bose-Einstein di un gas ideale. Si dimostra che, oltre alla ben nota simmetria
infranta dalla transizione dello stato econ k= 0, anche stati con k s 0 partecipano alla
condensazione. Si dimostra che il nuovo stato condensato possiede fuori della diagonale
un ordine di lungo raggio che & il prodotto di stati coerenti di Glauber con k=0 e
k0.

(*) Traduzione a cura della Redazione.

CunryjsipHoe noseJenne uaeaabhoro Boze-rasa.

Pesiome (*). — OnpenenseTcss KOHUENIMSA CHHTYJISPHOTO HOBEIEHUSA, KOTOPAA MCIONb-
3yeTcst OJisl UCCneNoBaHus koHaeHcanuu bose-DiHinTeiiHa B ciyyae HAeanpHOrO Trasa.
Iloka3piBaeTcs, YTO KPOME XOPOILIO W3BECTHONW CHMMETPHH, KOTOpas HapyllaeTcs nepe-
X0OOM B cocTostaue ¢ k=0, Tdkxe cocrosHus ¢ k40 yvactByroT B xoHaeHcaimu. OTMme-
Ya€TCsI, YTO HOBOE KOHICHCHPOBAHHOE COCTOSHME HMEET IHATOHANBHBIA IOPAOOK B
B Oonbmioit o6nacTu M ABISAETCA NPOM3BEAEHMEM KOTE€PEHTHBIX cocTosHui Inaybepa ¢
k=0 u k0.

(*) Ilepesederno pedaryueii.



