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S u m m a r y .  - -  The concept of singular response is defined and used for the 
investigation of the Bose-Einstein condensation of an ideal gas. I t  is shown 
that ,  apar t  from the well-known symmetry  tha t  is broken by  the transit ion 
by the s ta te  with k = 0, also states with k # 0 par t ic ipate  in the con- 
densation. The new condensed state is shown to possess off-diagonal long- 
range order and to be a product  of Glauber coherent s tates  with /~ = 0 
and b #  0. 

1. - I n t r o d u c t i o n .  

W e  def ine  s i n g u l a r  r e sponse  of t h e  e x p e c t a t i o n  v a l u e  of a n  o b s e r v a b l e  

to  an  e x t e r n a l  p r o b e  ~ b y  

(~) ~ R(v) # ~(o)  

I n  words ,  we c a l c u l a t e  R in t h e  p r e s e n c e  of ~, t h e n  l e t  ~] go to  zero.  N e x t  we cal-  

c u l a t e  R w i t h  no  e x t e r n a l  p r o b e .  I f  t h e s e  two  r e su l t s  a r e  n o t  t h e  s a m e  we  

say  t h a t  R r e s p o n d e d  in a s i n g u l a r  w a y  to  t h e  p r o b e  ~. S i n g u l a r  r e sponse  can  

b e  used  for  t h e  i n v e s t i g a t i o n  of p h a s e  t r a n s i t i o n s .  A s imp le  e x a m p l e  for  th i s  

is t h e  case  w h e r e  eq. (1) ho lds  for  a l l  t e m p e r a t u r e s  (T) lower  t h a n  some c r i t i ca l  

t e m p e r a t u r e  (T0), whi l e  t h e  r e s p o n s e  is nons ingu la r ,  i.e. 

l i r a  R ( ~ )  = / ? ( 0 )  
~/--+0 

for  T >  T~. :~o te  t h a t  if  t h e  r e s p o n s e  is s i ngu la r  for  a l l  t e m p e r a t u r e s ,  i t  

ref lec ts  t h e  s e n s i t i v i t y  of t h e  s y s t e m  to  t h e  p r o b e  a n d  t h e  t e c h n i q u e  can  b e  
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used to obtain a dispersion relation for internal  excitations of the system. The 

la t ter  case is sometimes used (1) to obtain the plasma-frequency branch of the 
spectrum for electron-ion system. In  general a singulur response reflects in- 

trinsic properties of the system on which the probe is applied. 
In  this paper  we wish to s tudy the Bose-Einstein condensation (BEC) from 

the point  of view of singular response (SLY). Prel iminary results along this 

spirit were presented elsewhere (2). In  Sect. 2 the early results are rederived 

in a slightly different way  and we show the nonanalyt ic  dependence of the 

chemical potential  # on the external probe as the lat ter  is set equal to zero 

at the end of the calculations. The SR for our case of BEC is summarized 

in Sect. 3. I n  this Section one sees the reflection of the singular response in 

broken symmetry.  This la t ter  term means, in the present context,  a special 

ease of SlY, viz. it implies the existence of a quan t i ty  K tha t  

lim K(U ) ¢ 0 ,  

while K(0) = 0. The results of the SR for the BEC are shown to imply  the 

impor tan t  consequence, which is t rue also for in te rac t i rg  bosons (a) namely, 

t ha t  for T ~ To the system has a finite fraction of particles in a coherent state 

as defined by  GLAUBER (4). (lqote tha t  everywhere we deal in the limit of 
part icle number  IY-+c~  while N / V <  c~o with V the volume of our system.) 

The manner  of the approach to zero of # in BEC in our case is dealt  with in 

more detail in Sect. 4 where we show tha t  the SR of the free Bose particle im- 

plies t ha t  the condensation is of the form of a generalized Bose Einstein con- 

densation (GBEC) as ws introduced by  GIRARDEAU (5). I t  is shown tha t  at  

the GBEC the system possesses an off-diagonal long-range order (ODLEO), 

a concept tha t  was in t roduced by  ¥A~G (6) and discussed extensively since, in 

part icular  with its connection to superfluidity (7). The ODLRO of free bose 

system for T >  T~ was discussed earlier (8). I n  Sect. 5 we conclude and make 

contact  between our discussion of the part icular  phase transit ion considered 

and the general discussion of phase transi t ion as was given by  EMCH (9). 

(1) p. NOZI~RES and D. PINES: Nuovo Cimento, 9, 470 (1958). 
(~) A. CASHER and M. REVZEN: Am. Journ. Phys., 35, 12, 1154 (1967). 
(s) A. CASHES and M. R~VZEN: to be published in Ann. o] Phys. 
(4) R. J. GLAUBER: Phys. Rev., 136, 2766 (1963). 
(~) M. GIRARDEAU: Journ. Math. Phys., 6, 1083 (1964). 
(~) C. N. YANG: Rev. Mod. Phys., 34, 694 (1962). 
(7) F. BLOCH: Phys. Rev., 137, A 787 (1965). 
(s) M. LVBAN and M. REVZEN: tO be published in Journ. Math. Phys. 
(9) G. G. EMCH: Teeh. Note BN-433 University of Maryland (1966). 
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2. - B o s e - E i n s t e i n  condensat ion  in  the  presence  of an external  source .  

In  this Section a brief  resume of the  result  obta ined  in a slightly different 
way in CR (2) is given. This will fix the  nota t ion  and  will define the  problem.  

Consider an ideal Bose gas subject  to an external  field. ( I t  is t empt ing  to 
associate the  hel ium vapour  with the  external  field when the  hel ium problem 
is considered; here, of course, the  gas is ideal and the  physical  meaning  of the 
external  source is obscure.) The Hami l ton i an  of the  sys tem is 

(2) H = ~. (ek-- #)a~a~ + ~. (~aT, + ~*ak). 
k I¢ 

Here  a~ is the  creat ion operator  for a part icle  in the p lane-wave  state,  sk the  

kinet ic  energy of the  free par t ic le  

/ik 2 

2 m '  

with m the  mass  of the par t ic le ;  and  V is a fixed, b u t  a rb i t ra ry ,  p a r a m e t e r  
which, for simplicity,  is t aken  as independent  of the  wave  number  k. The 
operators  obey the  Bose-Einstein commuta t ion  law. 

We wish to calculate the Gibbs poten t ia l  ( ~ )  of this system, 

exp [ - -  f l~,]  ~- Tr  [exp [ - -  fill]] ~ Z , ,  

where fl = (k B T) -~ with T the t e m p e r a t u r e  and k B being Bo l t zmann ' s  constant ;  
Tr  s tands for the  t race  over all s ta tes  and  all part icle  numbers .  Upon  diago- 
nalization, the  Hami l ton ian  becomes 

(3) H =  ~ (ek-- /u)e~a~ake -~ I~12 , 
k e k -  ju 

with 

(4) A = ~  I ek ~]*-/~ a l : + ~ a ~ }  " e k  -- # 

l~ow because of the invar iance of the  t race  with respect  to cyclic pe rmuta -  

t ion we obtain  the  exact  result  

(5) 
r _  7 

exp [-  = exv [-- ZPo] exp f 5  / .  
L ~ e~-- #.I 

Here  /}o is the  Gibbs potent ia l  in the  absence of the external  source. 
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(6) 

The  number  of part icles  which are expected  to be  in the  s ta te  k is 

nk = (aga~, =-- Tr [aC~ak exp [--  flH]] 
Z~ 

this quan t i ty  mus t  be posi t ive  definite. Simple calculation yields 

_ i ,; i  ~ + 1 
(7) n~ ( ~ -  #)~ exp [ # ( ~ -  # ) ] -  1 

I f  we assume # ~ 0  we ar r ive  a t  the relat ion t ha t  fllU]2~/t and  since 
though  fixed is a rb i t ra r i ly  small  # mus t  sat isfy /~<0 for T ¢  0. Fo r  t t < 0 ,  
n~(#) is a monotonical ly  increasing funct ion of /t, as is in the usual  case (10). 

The to ta l  num be r  of part icles  2V is 

1 

Now, as usual (lo), we dem and  tha t  ~ o = N / V  r emain  finite wi th  bo th  
2~, V - *  c~. This w i t h / ~ < 0  and sk>0,  implies t h a t  # - -~0  for large enough e,- 
Fo r  v e r y  large V we can t r ans fo rm the  second sum on the  r igh t -hand  side of 
eq. (8) into an integral.  ( I f  we leave out the  first t e r m  there  (or some terms)  

we see t h a t  for it  to cont r ibu te  ,u mus t  go to zero as 1/V bu t  then  the  t e r m  
]U]2/# 2 will diverge; thus,  this procedure  is incorrect  here.) We get  in the  

l imit  /~ --> 0 

(9) Y = Z  I~1~ 2 ~ N c  ( ~  - # )  

with 

g (10) Nc = d3k exp [fl(?~k~/2m)] -- 1 

The a p p a r e n t l y  (see below) dominan t  t e r m  in the  sum tha t  appears  in eq. (8) 
is [~[2/# ~ and since No~V< co we have  t ha t  [U[~//~2NN/V, i.e. # N I / V / Y .  This 
resul t  is t rue  if only one t e r m  is kept .  However ,  we see di rect ly  t h a t  for 
# ~ 1 / V ~  all t e rms  for which ek ~ 1 /V/~  are of the  same order of magn i tude  
as the  original t e rm  for which k = 0. Hence  the  correct procedure  is the 

re ten t ion  of the  added te rm,  

r~] 2 

(lO) F. LonDoN" Super]luidity (New York, 1954). 
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which when s u m m e d  mus t  be of the  order N.  This is deal t  wi th  in Sect. 3. 
In  the  nex t  Section we list the  resul ts  of the  naive approach  which serves to 
show the nonana ly t ic  behaviour  of the  various quant i t ies  wi th  respect  to a 

pe r tu rba t ion  of the  type  Va~o+V*ao. 

3. - Singular response of the condensed system. 

We refer  in this  Section to the  SI~ to an external  probe  ~a~o-~*ao. This 
is a special case of the  general  p robe  eq. (2). Al though it  is expected tha t  
the  St~ to the  general  probe reflects the  t rue  na ture  of the  condensation, the 

results of the  special case probe serves to show the presence of singular response 
in the  system.  The  analysis of the  previous  Section leads to the  following 
results, all val id  for t empera tu res  below the  t ransi t ion tempera tures ,  v/z. with 

# - + 0 .  

1) l im D n = Do 
rt__> o 

i.e. the  Gibbs poten t ia l  is continuous in ~ for ~ ~ 0. This follows f rom the 

result  t h a t  1~12/#2v~ 0 in the  l imit ,  while /2 has [~l~[ff. Phys ica l ly  this is equiv- 
alent  to D being essentially an energy and  a l though there  are  m a n y  particles 

in the  s ta te  k----0, the i r  energy is still zero. 

1 
2) <~0>,:o ,~ ~ ,  lim~__>. <*~o> ~ ,  I n l ~ l f f  ~ • 

Thus the  average  n u m b e r  of part icles in the  k = 0 s ta te  reacts  in a singular 

manner  to the  externa l  field ~/. 

3) V ( t = O ) N l t V ,  ~iom¢(~),-~lf~/~.  

ff behaves  in a nonanaly t ic  way  as a funct ion of ~. 

i.e. (ao) expresses the  broken s y m m e t r y  t h a t  occurs a t  BEC, 

(11) (a.+), = <ao), = - - .  
ff 

5) In  the  l imit  #--> 0; 2¢, V--> c~ considered here we get  

(12) <~o~°~ = ~oo ~) <~o", 



134 ~. REVZE-N 

i.e. the particles 

Glauber (4), viz. 

in the k = 0  state must  be in the 

(13) ao[~o> =-I~o>. /x 

coherent state of 

This follows from Schwarz's inequality. Thus we have a more physical meaning 

to the te rm broken symmet ry :  here like a small magnetic  field tha t  picks up 

a direction in the 3-dimensional space, the probe picks up the phase of the 

Glauber coherent state (2). 
I n  the next Section we discuss the impor tan t  question of the states with 

kV:0.  

4.  - C o n d e n s a t i o n  o f  s t a t e s  w i t h  k V= 0.  

The results of the previous Section are strictly valid only for per turbat ion  

This led to / ~ I / V / - F .  We now recall tha t  the a rgument  for BEC being a 

condensation into one state with k = 0 is based on the result tha t  / ~ , ~ I / V  

and hence negligible when compared with even the lowest single-particle exci- 

ta t ion which has a V -~ volume dependence. Our new result, namely # ~ 1/~Z-V 

drastically alters this, in fact  occupation of the states with momentum k, is of 

the order I~t~/(sk-- #)2 ra ther  than the usual {exp [fl(s~-- #)] - -  1} -~ for small sk, 
since now V -~ is negligible when compared with V -t. This is the central result 

of this paper, so we wish to restate this point ;  in the thermodynamic  limit 

(V-->oo) and with condensation (#->0)  and with a fixed ~ to be set equal 

zero at  the end we get  that ,  for 8k< lim/~(~]) the result 

(14) lira <nl~>, --  , , -~  (~ - -  ~)~ 

n~ being the number  of particles per unit  volume in the state k. 

Now by  similar a rgument  to the one tha t  led to eq. (10) we conclude tha t  
all the states with s ~ / ~  are in the Glauber (4) coherent state. Although there 

are in the thermodynamic  limit many  (infinite) such states, they all shrink to 

lira k - > 0  in the sense tha t  the integral, IVo eq. (10), is now a principle value 

integral. This type of condensation is the one introduced by  GIRARDEAW (5). 
We have shown thus tha t  even the condensation of the ideal Bose gas is, from 

the view adopted here, a (~generalized Bose-Einstein condensation ~ (~). For  

convenience we shall replace the sum of these states by  an integral with the 
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upper  l imit  k - *  co. This seems reasonable  because s ta tes  wi th  large sk will 
contr ibute  l i t t le  to the  integral  (the in tegral  ~ s ~  2 for large ek). I f  we now 
consider the  h igh-densi ty  l imit  where  the  t e rm  hr¢ (eq. (10)) is negligible, we 
get (1~ ---- 2m ----- 1) 

co 

N 2 f k2dk 7~2 
(15) V-]hi 4~J(k~-/~)~--I~1~ v, ~, 

o 

which gives the  dependence on [U] ~ of %/ tt for t t - > 0 - .  
We can now calculate the spat ia l  off-diagonal ma t r i x  

densi ty opera tor  

(16) (x[9[x'} = V -~ ~ nk exp [ik. (x - - x ' ) ]  
k 

The result  is (r = ]x--x ' l ,  r ¢  O) 

elements  of the 

_x/v ~(r)=~exp[--~/ fir]. 

In  the  l imit  #--> 0 -  we see t ha t  the  sys tem possesses an off-diagonal long- 
range order (ODLRO).  lgote t ha t  the  # - * 0  nms t  be  t aken  before the  
r--> c~ l imit  since the  l imit  tt--->0 is associated with the  t he rmodynamic  
(V - .  co) l imit.  

The fact  t h a t  the  calculations were carried out in the  high-densi ty l imit  
(_~'>> N~) does not  affect the resul t  t h a t  ODLRO exists in our sys tem even 
a t  lower densities (but with BEC, of course). This is so because  re tent ion of 
the  t e rm  Xc will not  affect the calculations apa r t  f rom replacing N / V  in eq. (15) 
by  ( N - - N c ) / V .  I t  is perhaps  sat isfying t ha t  the  result  for the  general  probe  
(all k) leads to gn intensive /~, as i t  should. 

5.  - C o n c l u d i n g  r e m a r k s .  

The theory  of singular response has not  as ye t  been fo rmula ted  in its full 
general i ty  in the  l i terature.  Nonetheless  as a caleulational technique the  
me thod  has been used extensively.  I n  this pape r  we inves t iga ted  the  well-known 
Bose-Einstein condensat ion of an ideal gas f rom the point  of view of the SR. 
We obtained in ag reemen t  with a previous result  (2) t ha t  the  phase  t ransi t ion 
t ha t  occurs here  breaks  a s y m m e t r y  in the  phase  of the wave  functions,  whose 
mode, k, par t ic ipa tes  in the condensate ,  I t  was shown t h a t  the  onset of the 
condensat ion leads to the  coherent  s ta te  of Glauber (4). The result  for the  
simple Bose-Einstein  condensat ion was generalized to sys tems  of in teract ing 
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bosons  (3). The  resul t s  a re  bas ica l ly  the  same.  I t  is be l ieved  t h a t  also the  

gene ra l i zed  BEC could be  f o r m u l a t e d  for the  case of i n t e r a c t i n g  bosons .  

C e n t r a l  to the  d iscuss ion was the  m a n n e r  of a p p r o a c h  to zero of t he  chem- 

ical  po t en t i a l .  I n  fact  u p o n  ref lec t ing  on the  m a t h e m a t i c s  used,  one sees t h a t  tt 

p l a y e d  a role as a p a r t  of t he  t t a m i l t o n i a n  of t he  sys tem.  Thus  t he  phase  

t r a n s i t i o n  here  fits t he  gene ra l  discussion of phase  t r a n s i t i o n  t h a t  is g iven  b y  

E~cr~ (9) i n  t h a t  the  e l emen t s  of the  d iagonal ized  H a m i l t o n i a n  are t e m p e r a t u r e -  

d e p e n d e n t ,  t t e r e  th i s  was so even  for T >  T,  b u t  the  t e m p e r a t u r e - d e p e n -  

dence  a t  T >  To of tt is n o t  i m p o r t a n t .  

I n f o r m a t i v e  discussions a n d  helpful  c o m m e n t s  b y  A. CAS~ER a n d  Prof .  C. 

G. K~-PEZ are g ra t e fu l ly  acknowledged .  

R I A S S U N T O  (*) 

Si definisee il eoncetto di risposta singolare e to si usa per lo studio della eondensn- 
zione di Bose-Einstein di un  gas ideale. Si dimostra ehe, oltre alla ben nora simmetrin 
inf ran¢a  dalla transizione dello stato con k = 0, anche stati  con k s~ 0 parteeipano alla 
eondensazione. Si dimostra che il nuovo stato eondensato possiede fuori della diagonale 
un ordine di lungo raggio che ~ il prodotto di stati  coerenti di Glauber con k = 0 e 
k ¢ 0 .  

(*) T r a d u z i o n e  a e u r a  d e l l a  R e d a z i o n e .  

CHHFyA~pHoe noBe~leHHe H~lea~bHOrO l~03e-ra3a. 

Pe3~oMe (*). - -  Onpe~e~eTc~ KOHUeDL~Hn cnHryJT~prroro noBe~eHr~, KOTOpat] HCHO~B- 
3yeTc~ ~n~ Hcc~e~oBaFn4~ KoH~ertcar~H~ l~03e-~HmTefiHa B c~yqae H~eanbKOrO ra3a. 
YIoKa3blBaeTcfl, qTO KpoMe xopomo FI3BeCTHOH C~MMeTpHH, KOTOpa~ HapynaaeTc~ nepe- 
xO~OM B COCTO~HHe C k~0 ,  TaK~e COCTO~/KH~[ C k=2&0 yqaCTByK)r B KOH~eFIcauHH. OTMe- 
qaeTc~, qTO rtoBoe KOr~er~cHpoBartgoe COCTO~HHe HMeer ~I4aFoHaJ]bHbI~ IIOp~[~OK B 
B 60~]bmO~ O6flaCT~4 rX flB/q~leTC~l npoH3Be~ermeM KorepeHTHbIX COCTOt]H~ Fnay6epa c 
k = 0  ~ k ~ 0 .  

(*) lIepeaer)euo pec)a~quert. 


