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Summary. — The statistical operator of a system in contact with a
thermal bath, in the presence of one or more e.m. external excitations, is
calculated in the quantized field formalism. This gives a great formal
siplification with respect to usual treatments. The result is a set of
simple preseriptions for caleulating physical quantities which allow a clear
insight in the physics without formal complications. The procedure is
applied. as an illustration, to many-photon paramagnetic resonance and
to double-resonance effects.

1. - Introduction.

In this paper we shall develop a technique for calculating the response of
a quantum system in contact with a thermal bath to one or more monochro-
matic e.m. excitations. The treatment applies to a wide class of physical situa-
tions, namely every time the field strengths acting on each absorbing system
(atom, molecule or spin) in a medium can be put equal to the external field
strengths to a good approximation. Extension to problems for which this is
not the case, although possible, have not been considered.

Our method allows a considerable formal simplification with respect to
usual treatments. This is due to the adoption of a very elegant technical im-
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408 A. DI GlacoMO and 8. SANTUCCI

provement which has first been introduced by SHIRLEY (!), and then widely
applied to problems of double light and r.f. irradiation in optical pumping (¢).
The main idea is that considering the external field as a quantized field, and
extending the system to include the radiation, makes the Hamiltonian time
independent. A time-independent Hamiltonian is much simpler and more
familiar to handle than a time-dependent one. Of course using quantized
fields is equivalent to the semi-classical treatment, due to the exceedingly high
number of photons present in all practical situations.

The statistical operator of the system becomes in our treatment a « dressed »
operator, depending on the field variables. Its time evolution is determined
by the total Hamiltonian J# of the system--field. The determination of the
steady-state solution of the equation of motion for the statistical operator is
reduced to the diagonalization of 5#. Time averages of the expectation values
of physical quantities are traces of the corresponding operators times the dressed
statistical operator of the system.

Some specific problems, which have been disenssed in the literature by
conventional methods, will here be rephrased in the new formalism as an
illustration of the method. In many cases the great simplification will allow
a deeper and clearer insight in the physies.

The plan of the work is the following:

In Sect. 2 we introduce the formalism. We write down the equation
for the «dressed » statistical operator, and give the rules for calculating phys-
ical quantities.

In Sect. 3 we give a treatment of paramagnetic resonance.

In Sect. 4 we apply the method to double-resonance effects.

2. — Theory.

We want to study the behaviour of a system S, which is in contact with
& thermal bath, and is subjected to one or more monochromatic e.m. excita-
tions.

We shall consider the radiation R as a quantized field interacting with 8.
The Hamiltonian for the extended system S4-R is

(2.1) H=Hy + Hy + Hy,s

(1) J. H. SaIRLEY: Phys. Rer., 138, B 979 (1965).

(2) N. Poronsky and C. COHEN-TANNOUDJI: Journ. de Phys., 26, 409 (1965).
(®) €. ConrN-TaxnnoupJI and S. HAROCHE: Compt. Rend., 282, 37 (1966).

(*) C. ConreEN-TanvorpJ1 and 8. HarocHE: Compt. Rend., 262, 268 (1966).
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where J#; is the Hamiltonian for S considered as isolated,
(2.2) Hy=SHi=waola (h == 1)
i [
is in the usual notation the Hamiltonian for the free radiation field, and
(2.3) H=SHi=—3p,F,=—3 Lpilal + a)
Z i i

describes the interaction between K and 8. In eq. (2.3) l,r(a: +a;) is the (electric
or magnetic) field strength operator of the i-th mode of the radiation, p; the
component of the (elecfric or magnetic) dipole moment which is coupled to it,
and 1, = V2now,.

In eq. (2.3) the field strength acting on S is the field strength one would
have in vacuum. In dense matter, where the refraction index is large, it has
to be replaced by an «effective» field. Some self-consistent treatment or
distorted-wave approximation would then be needed. We shall disregard this
possibility. In our treatment relaxation is the only effect of the medium on 8.

We shall also neglect modifications of the external field state due to the
presence of matter. The external field acting on each system § will be described
by a statistical operator g, corresponding to an approximately coherent state (*)
@=(a, ... ,,) of the m execiting modes,

(2.4) 0z = |ot et .
If the interaction were absent the statistical operator for B+ 8 would be g, g,,

. _ _expl—fA]
(2.5) Os = Tr fexp [— ]t

being the thermal-equilibrium distribution for 8. Switching on the interac-
tion 5#,, leaves p, unchanged in our approximation, while g, evolves under
the action of the total Hamiltonian 5. It becomes a « dressed » operator g,
depending on the field operators a, and af,. The statistical operator for RS
becomes

(2.6) Orys = 0O 0 -

The equation of motion for p is

[ -]

-3
~—

K I .
'I(T Jf”_)Q:[‘y/aQ],

ct T

(®) R. J. GLAUBER: Phys. Rer.. 131, 2766 (1963).
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where by 1/t we have symbolically indicated the effect of relaxation. In a
steady-state condition ¢ is time independent, 5# being time independent, so

o

eq. (2.7) becomes

i
y) (1 _ — .1 d R
(2.8) ce=[#¢]

In the semi-classical treatment, the statistical operator for § is assumed to
relax exponentially towards the istantaneous thermal equilibrium. In our
formalism this is equivalent (*) to assuming that the dressed operator p relaxes
exponentially towards

exp [— B(A s + A1)

(2.9) 0= g o e

Tr {gr exp [— (s + A D]}
It is thus convenient to put (%)
(2.10) 0=100+ .

The operator D, defined by eq. (2.10) is the part of ¢ which is affected by
relaxation. By using this fact, and eq. (2.9), eq. {2.7) can be written

(2.11) SD = [#, D)+ [, 0]

Use has been made of the relation (57, g,] == [#,, p,]. Exponential decay
means that the operator 1/7 in the left-hand side of eq. (2.11) consists in multi-
plying by suitable time constants the matrix elements of D between the eigen-
states of .
Since in all practical situations #,< 1, p, as defined in eq. {2.8) can be
approximated by (%)
AP

(2.12) 00 A 05+ AE’S H7

where AP JAE, = (9, ——@’s)/(é?s — ;) is the operator (population differ-
ence)/(energy difference) between the state to the left and that to the right.

(*) In translating the classical equations in our formalisin we simply have to replace
classical fields by the corresponding quantum operators.

This because all physical quantities are of the form of eq. (2.17) below, and then
the effect of the radiation density operator gz, which is a coherent state, is to replace
each anuihilation operator a by « (and each a' by «*) which is just the classieal field.
All this will appear clear from what follows.

(®) R. Karrrus and J. ScHWINGER: Phys. Kev., T3, 1020 (1948).
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When (¢) pg#; < 1,

(2.13)

By using eq. (2.11), (2.12) can finally be written

. P AP ‘
(2.14) T D=0, DY A, A

We shall now discuss how physical quantities are to be calculated in terms of
the dressed statistical operator. The solution of eq. (2.11) will have the form

(2.15) D=3a%ama".
For the sake of simplicity we assume that one external frequency ix present.
The argument is easily extended to the general case.

In eq. (2.15) di, are operators in the Hilbert space of §. The expression
for D has been put in a normal form (i.e. with creation operators on the left
and annihilation operators on the right). We note that, since the average
number 7% of present photons is very large, any operator can be directly put
in the normal form, neglecting the commutators between ¢ and «'. The approx-
imation involved is ~1/A4. Any observable operator O will be of the form

(2.16) 0=303a"a.
According to eq. (2.6) the expectation value of O is
(2.17) {05 = Tr{pge0} = Tr{gz 0,0} + Tr{g, DU} .

Both g, D and DO can be put in the normal form simply changing the order
of the operators and neglecting commutators. Multiplication by g, and trace
over the degrees of freedom of the field consists in ecalculating the expecta-
tion value on the coherent state |x>. This is equivalent to replacing each oper-
ator @ in eqs. (2.15) and (2.16) by «, each a' by a*.

Equation (2.14), when averaged on the field state, is just the semi-classical
equation for D.

Once the trace on the radiation has been computed the quantity (0> in
eq. (2.17) is & power series in o and «*. Now « and «* depend on time according
to the equations

(2.18) o(t) = x(0) exp [—iwt],  o*(t) = a*(0) exp [+ iwt].



112 A. DI ¢1acoMO and s, SANTUCCI

If one wants to calculate the time average (O of the expectation value <05,
one has just to consider, in the trace on the left-hand side of eq. (2.17), the
terms of o0 having an equal number of creation and annihilation operators.
Only that part of g, has then to be considered which is diagonal with respeet
to the number of photons.

This means

(2.19) (0 = Tr{p0},

where # = 3 #,|ny{n|. #, is the weight of |n> in the state |ay. 2, is peaked
on the average number 7 of photons with a negligible relative spread Amn.
(In practice this is possible by allowing a negligible indetermination of «.)
This spread has to be small compared with %, but it may contain an enor-
mous number of states, 7 being very large.
In eq. (2.19) each matrix element of @ and a' can be put equal to

e F
IC(! =V <ﬁ\/ = 7 .

Phases disappear because there is an equal number of a and a®s.

We shall solve eq. (2.14) in a representation in whieh 5#, the total Hamil-
tonian of R4 8, is diagonal. Since the state of the field is not appreciably
modified by the presence of matter, the eigenstates of s# will differ from the
eigenstates |r’: of #, by an admixture of states |»'>, with »’ not much different
from n. (The difference n' —n depends on the order of perturbation since
the coupling #, is linear with respect to & and a'.) Theun apart from terms
~1/An, the unitary transformation which diagonalized 5# commutes with Z.
The distribution #, of the states {n> becomes the distribution of the corre-
sponding eigenstates of 5. Eigenstates of s can be labelled, among other
quantum numbers, by the number # of photons of the corresponding unper-
turbed state |»: which one gets by switching-off the interactions.

States can be grouped into sets such that the states in a set have equal
all quantum numbers but n. States which are in the same set are physically
equivalent, since the matrix elements of ¢ and a' are pratically independent
of # in the manifold projected by 4.

Trace (2.19) can then be calculated as follows:

1) Construct a manifold .# containing one state for each set of
(2.20) equivalent states.
ii) Calculate the trace (2.19) of the operator g0 inside .#.

ili) Put n=n.

The choice of the state inside a set is & matter of convenience.
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Let us illustrate in detail this procedure, in the case that the term 4, in
the Hamiltonian eq. (2.1) can be treated as a perturbation.

The unperturbed Hamiltonian is h= #,+#,. Its eigenstates are |¢,>|n>
with eigenvalues e,-+nw. The matrix elements of #, between these states
are small compared with « and with the corresponding energy differences
g The eigenstates of 3# are equal to the approximation ~ ;/k to the
eigenstates of 2 unless, for some value of o, some of them become degenerate.
Such a degeneration is nothing but a resonance. It appearsalsofromeq. (2.14)
that the only relevant matrix elements of D will be those between nearly
degenerate states, connected by the operator [#,. 5,1

Equation (2.14) has then to be solved inside degenerate manifolds of states.
Other matrix elements will be neglected.

Let

— &y -

|€Sl>‘n1\/ ’

[Es,> |n2> ’

be a degenerate manifold.

As explained before the states |eg,>|n,+~H)> for any A << An are physically
equivalent. There will be an infinite number of equivalent degenerate manifolds
whose corresponding states differ by an equal number of photons. A degenerate
manifold is a convenient choice for the manifold .#. The effect of perturba-
tion inside the degenerate manifold is equivalent to replacing the Hamiltonian
by an effective Hamiltonian (7)

(2.21) PRP + ",

1

IO D] 1‘eff: _ 8
(“"’") ‘11 P%P#P%QE—_’L—Q%Q

QH, P

and the perturbation , by #:".

P is the projection operator on degenerate set, ¢} is the projection on the
remainder of the Hilbert space. E is eigenvalue of 2 in 4. 3" can be evaluated
to the desired order of accuracy. The solution of eq. (2.14) is then reduced to
an algebraic problem in a number of dimensions equal to the number of
degenerate states of k. The physical quantities O which will have expectation
values appreciably different from the equilibrium values, will be those having
matrix elements inside a degenerate manifold. The time average of their ex-
pectation values <O) will just be equal to the trace Tr{Og} inside a degen-

(") A. MEss1au: Mécanique quantique. vol. 2 (Paris, 1964); C. CoHEN TANNOUDJI:
Cargése Lectures in Physics. vol. 2 (New York, 1968), p. 347.
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erate manifold. The average on field variables is obtained by putting »n— %
in all matrix elements.

Applications of this procedure will be given in Sect. 3 and 4.

When £, is greater than 5, 5, has to be treated as a perturbation. The
problem is then to diagonalize 2#,+ 5#,. No general rule can be given in this
case. An example is treated in Sect. 3.

In conclusion ealculating the trace of o0 in a representation in which 5 is
diagonal and averaging over n with weights &2, gives statistical average and
time average. If one wants the k-th harmonic of the statistical average of a
gquantity O one just has to calculate

L0a*

and then divide the result by o** = (F/1) exp [ +ikot].

The choice of the phases in «(0), «*(0) Is irrelevant, corresponding to a
definition of time ¢= 0.

The expectation value of any quantity can then be obtained.

The usual semi-classical procedure (**) is to use Floquet's theorem to
write the stationary solution of the equation for g or the solution of the Schro-
dinger equation for the states as a sum of harmonics exp [inwt] of the external
frequencies. Then, by equating the coeficients of the exponentials with the
same time dependence an infinite set of linear equations is obtained which
has to be solved some way. The formalism is complicated and it is difficult
to evaluate what has been neglected in approximate solutions.

In our formalism:

1) Frequency shifts are directly calculated before solving the equations.
Since by eq. (2.14) these quantities appear in the denominators of the matrix
elements of D, our method is equivalent to a resolvent formalism technique (?).
The perturbation expansion of the denominator amounts to summing an in-
finite number of ordinary perturbation terms.

2) The problem is in general reduced to an algebraic problem in a finite
number of dimensions, and time-independent perturbation theory immediately
gives an estimate of what has been neglected.

In what follows, we shall be particularly interested in the absorption
coefficient o, of the k-th impinging wave. «, is the time average of the mean
rate of energy loss of the wave, divided by the incident energy flux.

(8) 3. 1. Avrner and . H. TowNErs: Phys. Rerc.. 100, 703 (1955).
(") A. D1 Gracomo: Nuove Cimento, 14, 1083 (1959).
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_ &
T eF:

8n

(2.23) a GAY, #]> = et T {#D[x}, 41} .
&k

The trace in the last expression can be evaluated by the rules (2.20).

3. - Paramagnetic resonance.

As a first application of our method we shall treat paramagnetic resonance.
The system 8 is a spin J, with gyromagnetic ratio », in a static field H,, whose
direction we shall assume as z-axis. The spin is also subjected to an oscillating
linear field H,, whose direction n forms an angle § with H,. We can assume
it to lie in the (z, 2)-plane so that n = (sin@, 0, cos ). The Hamiltonian #
is given by o# = # {H#, +H,, where

%SZ(J)OJZ (wo:*'}’HO)y
3.1 Hp=wa'a,
H, = — dyJ (a" + a), J, = sinfdJ, -+ coshJ, .

We shall discuss separately the two situations
Ay H < H,, B)H »H,.

In order to calculate D by eq. (2.14) we have to find the eigenvalues of &# and
the matrix elements between the corresponding eigenstates of the operator
[%,, #,1. The absorption coefficient will then be calculated by using eq. (2.23).

Ay H, < H,. In this case 5, can be treated as a perturbation. The eigen-
states of the unperturbed Hamiltonian

(3.2) h= o, + F,

ave | M |n> with eigenvalues Mw,-+nw. The label M is the eigenvalue of J_,
the label n is the number of r.f. photons.
When w,~ po (p-photon resonance) the manifold .4,

’J!n/\ ’
iJ_ l>]7’b + P\ ?
@3

— T3l + 209,
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is nearly degenerate. There is one such manifold .#, for each value of », and
each state belongs to one .#,. The unperturbed Hamiltonian inside the
manifold (3.3) is represented by

(3.4) h=20,J, (8, = 0, — pw)

apart from an unimportant additive constant.

The energy difference between .#,, .4, is (n—n')w. From eq. (2.14) it
appears that D can have resonant mafrix elements only between states of a
degenerate manifold, which are connected by the perturbation.

[#,, 5] has no matrix elements between the unperturbed states (3.3),
unless p=1. For p>1 the admixture of other states by the perturbation
has to be considered. Due to the selection rules An = -1 for 5%, the effective
interaction can have only diagonal matrix elements up to order p —1. The
second-order contribution to the diagonal part is in any case the lowest-order
contribution to it. Direct calculation gives

(3.5) PH,) = QAP = . ﬂs'n 6{3— + ---3-;}2,1289

(w, = —7yH,).

The second term in the curly bracket is to be put equal to zero when p = 1.
This frequency displacement is known as Bloch-Siegert (%) shift. The lowest-
order off-diagonal matrix elements of s defined by eq. (2.22) are of order p,
and are of the form

p times
1 1 .
(3.6) (M| <n|%QE_h Q0 T QA M—1>n+py,
1 1
(3.7) {M}(n]/f,@E_hQ%QE*h...()%}DI+1} [n—p

The matrix elements of [, 5= [#,, # —h) are simply obtained multi-
plying by — pw the raising matrix elements of #°" and by +pw the lowering
ones, Our problem is then reduced to finding the matrix elements (3.6), (3.7).
Each matrix element is the complex conjugate of one of the type (3.6).

It can be proved that the effective, p-th—order perturbation behaves like
a vector orthogonal to H,.

By the usual choice of the phases (CoxpoN and SHORTLEY) (**) the matrix

(*9 F. Brocu and A. SIEGERT: Phys. Rer., 57, 522 (1940).
(1Y) E. V. Coxpox and G. H. SmorTLEY: The Theory of Atomic Spectra (Cam-
bridge. 1953).
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elements are real. So, if we introduce a fictitious spin J(*) the degenerate
manifold
HM= P ],
- 1
(3.8) o
P
H = (5, + s,,)Jz + o,

and

[y, H,] = l0o? J,.

The solution for D is of the form D — d-J. Equation (2.14) gives

l _ - (? wp ) >
z'd_[((' s k+ o™il d+ e J+l)al j-

d, relaxes with 7, d, and d, with 7,. The result for o' is

IR JECERIL & &
' 3 @ 14 (6, + &)+ 1T, 0

#™ is thus obtained calculating by reduction the vector part of the operator

P times

1
P%}QE G @0 s - P

This is achieved by using the algebra of the rotation group, i.e. the commu-
tation relations of angular momentum and the result is independent of the
value of J. One can then evaluate the matrix element (3.6) in the simplest
case, i.e. that of spin 4. The result is equal to w™/2. The result already exists
in the literature for transverse oscillating field (12).

We shall give a simple procedure for calculating it in the more general case
of an oscillating linear field at any angle 6 with respect to the static field. We
shall write 5, in the form

9@:_-@-’ (@ -+ a")[o, cos 8 + (o, + o_)sin b},

where

G, co80 + (0, +o_)sinf =g, .

{*) By a fictitious spin we mean, as usual, a set of three operators which are repre-
sented by the usual angular-momentum matrices in our discussion representation.
(1?y J. WINTER: Ann. de Phys., 4, 745 (1959).

27 — Il Nunvo Cimenio B.
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The matrix element (3.6) is then

» times

{(3.10) <%y) {njarin + py {+|os E’i— W U"E};—h e Ol =

_fony 1 1
—(4) <+10"E__ha,....a,,—

rUZJ—l

if the energy differences are measured in units w =1. Then

p—1 1
Y = (&(&) <HU,,E_ [ On oo Onl—> .

We have now to calculate the matrix element in eq. (3.10). The energy dif-
ferences between the states involved in the matrix elements of the perturba-
tion are

matrix elements energy jump (£, — Ey)/o
{«lac |B> —1,
(3.11) (alao.|f) — {1+ p),
{alag_{f> —(1—p).

The rules for getting the matrix element in eq. (3.10) are now easily found.
For a given choice of intermediate states, we shall associate to each energy

denominator a + sign or & — sign according to whether the corresponding in-

termediate state has o, = 4-1. So all possible choices of intermediate states

are in a one-to-one correspondence with sequences of (p —1) + or — signs.
For calculating the matrix element in eq. (3.10):

1) Consider all possible sets of (p—1) + or — signs:
+ =+ ...

2) The n-th sign corresponds to a denominator

1
i it s —
n

3) Each jump between subsequent signs gives a factor sinf, each per-
manence gives a factor cosf.



RESPONSE TO ELECTROMAGNETIC EXCITATION IN A QUANTIZED-FIELD FORMALISM 419

There is in addition an initial jump or permanence according to whether the
first sign is + or — and a final jump or permanence according to whether the
last sign is — or .

4) Multiply by a factor —1 for each permanence of — signs.
5) Add the contribution of all sets.
Ezxamples.

p=1. No denominator, one jump

W,
o ="13in6.
v

-

p=-2. One denominator
possible sets i) +, ii) —.

Set 1) has an initial jump and a final permanence; set ii) has an initial per-
manence and a final jump.

Since the permanenece is in a — sign, by rule 4) ii) has an additional fac-
tor (—1).

The denominator i) is 1; the denominator ii) is —1. The result is

2
ey .
WP =-""ginfl cos 0.
R Y0)

2 1
wd = i (wl) {2 sin 9 cosﬂ—zsinl‘ 0} .

2 \do

For higher values of p the rules are to be intended as a programme for the com-
puter since the number of possible sets becomes very high. We were not able
to find a compact expression for the sums.

The result becomes simple when the field is transverse (6§ = #/2). Then no
permanence is allowed and the only diagram which contributes is

N

The diagram must begin with a 4+ and end with a —, so p—1 is even
and p is odd, as expected by angular-momentum considerations. The dia-
gram is simple to evaluate:

4 '
wibr__ O1f 01\
(y = o \1 .
- (9]
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B) H,>» H,. In this case we shall assume
(3.12) h=#, + # = wa'a- IyJ (a+ a’)

as unperturbed Hamiltonian and 3¢, as a perturbation. The direction of the
rf. field has been taken as z axis. Then £, = w,(J,cos6 - J,sin0), 6 being
the angle between H, and H,. The procedure for diagonalizing kb of eq. (3.12)
is well known. h can be put in the form

h= u:cx*oc—%y'«]f,

where

The commutation rules for « and o' are of course the same as for ¢ and a’,
The energy eigenstates are then |M, %), where M is the eigenvalue of J,
and 7 the eigenvalue of «fo.
The corresponding energy values are nw.
The matrix elements of J, are ()

(3.13) @AM, M = Jos (:t %)-(M]Ji]M’} :

J (%) is the Bessel function of order k.
The total Hamiltonian 5 inside a degenerate manifold is, apart from a
constant,

(3.14) K= wy 08 B, + wq sin O, J, (%‘)
[

The matrix elements of the perturbation 5, between different manifolds %, 7’ are

W,

(3.15) (M| M7 = w, sin 8, ([M - a1

) iz,

which are to be compared with the energy difference (n—a')w in order to
test the wvalidity of the perturbation expansion. If w,>> o the equality

(3.16) Ji2>Jdi=1
1
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gives

- 2 (W)
(3.17) zJ,. (?;)_

(S

The parameter which has to be small is [(w,/nw)d (0w /w)] =¢e. We have

2 2 o 72
(3.18) (“’_O‘Zf) LT

nw w? T n?

©

Now Y J%/n* is some kind average of 1/n* with weight J2 normalized according
1

to eq. (3.17). The maximum weight is that of the J,',' gsuch that the argument
is of the order of the index. So Y (J2/n?)~ L{w/w,)®. The inequality (3.18)

reads now
2

g
e2<C T 1.
2wy

If on the other hand w, 2w from the inequality

1
I']nl < _T) ’

V2

which is a direct consequence of eq. (3.16)

VSO (10N

So if @, > w, perturbation expansion is always possible. The second-order
correction to the energy levels #® is readily calculated by using the matrix
elements in eq. (3.15). The result is

¢ =
nED
Neglecting third-order effects
(3.19) SN = 3y cos 0T, + w, sin 6, J, (&) .
w

The operator
[H, ;] = Aylet — ) J,

has matrix elements between contiguous manifolds

M|, ) £1, My = F oy (M|J.| M .
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The operator #°* in eq. (3.16) is easily diagonalized by a rotation

R=-exp[— i(pjy]

with
(m, cos 0 , 0, 8in B J W,
COS = —— sing = -——=—dJ{—
¥ o ¢ 0 o)’
[¢3)
Q= am, Vcos 6~ sin® 6J2( l).
W

The result is
%etf QJ
So eq. (2.14) gives

_DMnM K= s [$ w ( — M ]DMn MREL -+ ‘T]ﬁiji‘l <1WiRJ:R*(1W’}

and by eq. (2.23)

g
¢ 3 yiet
Joduoso AT bt 0o 1 1L
Q1T o 0> TLT 4+ (0—80) ' 1]T+ (0 + Q)2)f
As wy —+0

4 1T
-%é yrJ(J - TYw? — - Iz

= e

This is Debye absorption.

4. — Double-resonance effects (3*13).

Typical double-resonance effects are schematically illustrated in Fig. 1.

A three-level system is subjected to two waves, both close to the resonance
between a couple of them. The response to the wave with frequency w, is
observed in the presence of the wave with frequency «,, which is strong enough
to produce saturation. For simplicity we shall put all relaxation times equal.
We shall assume that the interaction with the external fields is small compared

(*®) A. Javan: Phys. Rev., 107, 1579 (1957).



RESPONSE TO ELECTROMAGNETIC EXCITATION IN A QUANTIZED-FIELD FORMALISM 423

with the spacing of the levels. Then we can freat
h=Ky+ Hp=H,+ W, @ a, + woal a,

as unperturbed Hamiltonian and 5, as a perturbation. We shall study in
detail the situation of Fig. 1a). The extension to the others is straightforward.

Fig. 1.

Near the resonances the unperturbed eigenstates can be grouped in sets
of three nearly degenerate states.
a= 1300, my— 1) O == @, —w,
I8 =[2>|n,, n,> with eigenvalues (apart from a constant){0
W: [1‘,‘;In_,+ 1, ny ——(53:—(6?)5—(,?)3).
Within an approximation ~ J,/#,, #°" of eq. (2.22) is equal to £,. In the

representation where |a>, |f- and |y» are a basis, ), is represented by the
matrix

0 E,p, 0
,}f,:——% Hpe 0 Ep. |,
0 E.p, 0
[#5. #,] by the matrix
0 wo By o 0
[, Jf,]:% —wo By o 0 0. B,ps
0 —w,E,p, 0

Equation (2.14) could be directly solved in this representation. The approxi-
mation of the result is ~ %/, and one has merely to invert a 33 matrix.
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This inversion is equivalent to diagonalizing the Hamiltonian

o, Tk 0
E E,

[ ?)pq 0 o ;p-;
o b _

The general result is yet rather complicated. However we shall see that the
essential features can be studied by an approximate diagonalization giving a
simple result. Since we put no limitation to the power of the field s, we shall
begin by diagonalizing the 2Xx2 subspace involving the saturating wave s,
in order to treat it exactly. This is accomplished by a rotation

1 0 0
E=10 . )
. exp[-—@: az]
with
(4.1) 0050:5’_5, sinG:Esps, A,=sign o Vit piEE.

A, A,

In the new representation

% 9 4 2 S
E,p 0 b
4.2 =] - Pt O M.
(4.2) 2 cos2 2+2 0
E
Opobn_e_ 0 _.5_’_4_“
2 2 2 2

We shall confine ourselves to the frequency intervals where two diagonal ele-
ments connected by nondiagonal ones are nearly degenerate compared to
B, p, but not the other, i.e.

1) 8] =6y + §(0,— 4,)| < E, p,
(4.3) ) and |4,|> B,p, -
i) 4] = |8 + 8, — 18, — 4| < Eopo
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The condition |4,| > E,p, which means that only two levels must be degenerate
is always satisfied when #,p, > F,p,; otherwise it must be that |J,| > H,p,.

Conditions i) and ii) correspond to two resonances. |4, |:> H,p, means that
they are well separated with respect to E, p,.

If condition i) is satisfied, the matrix elements (1.3) (3.1) of # eq. (4.2)
can be neglected. If condition ii) is satisfled, the matrix elements (1.2) (2.1)
can be neglected.

In both cases the problem is reduced to the diagonalization of a 2 X 2 matrix.

This is simple algebra. We shall directly give the result for the absorption
coetficient. «, of the observed wave, in the two frequency ranges i) and ii)

dm AP, .
i) oty = — o AR, aﬂp
1 . cos™ 6/"’ »Sln 0/“ bspsws - A SinB/_ - o
Yres AR Db A e, (e (A2 A ()2 — A7)
4 AP,
— e w? 2
i) ety AE, P
. SH,}z 9/2, 60820/27 ___Es_/ps(l)x As sin 6/2
Ve A N AL 2y [z (A2 + AL (A"/z—Am]} '

Here the only new quantities are

A'=sign -V + Bipdcos?6)2
and

A"= sign AV A* + EpEsin® /2

9 and A are defined by eq. (1.3}, § by eq. {4.1). We shall now briefly discuss
the result.

If |6,| > E,p,, i.e. if the saturating frequency is far off the saturation line
width, then

As:és-Fli:;:”, cosh~1, sin@:E:;f)",
ity — E;ép, A~c$(,+és+ﬁi;7:’
A'2~((50_Ff§ 2)2+ BEpt,

A" (5 + 6, +E2p2) + B SE;?Z‘.
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Provided «w, is not much greater than ,, which means that the three levels
are almost equally populated,

. dz AP, 0+ 1

e~ A, VT (6, mptas e 1 EipE

ii) iff AP" 2 21 S A,_q'ﬁ,_ I e
T AR, P T (8,10, T B piAe)E It L B pR(EipEAsY)

The line presents two peaks shifted in an opposite direction by an equal amount
B} p246, from @, — we = 0 and @, +d,— o, — wo= 0. The first one suffers sat-
uration by the observed wave, while the second one does not if w, is sufficiently
far from resonance. This is a new result, which could not be given in previous
treatments of the problem.

When 4, ~0 and E, p,> FE,p, then

. 1 ] 1 E.p,
sin?— = —, CO8%— = —, S = 0y— L )
2 2 2 2 2
Ew s
4= (jo‘l’ :)p y
Espo Eips
A (52+__ S A7 = /_/]2_+ > .

The line becomes a doublet with equal peaks at the frequencies + K, p./2.
K ok ock

The interest of the authors in this work has been stimulated by a seminar
of COHEX-TANNOUDJI held in Pisa in the Spring of 1968. The authors wish
to thank C. CoHEN-TANNOUDJI for critical reading of the manuscript and
useful comments.

RTIASSUNTO

Si studia Poperatore statistico di un sistema in contatto eon un termnostato, in pre-
senza di una o piu eccitazioni e.m. esterne, nel formalismo del campo quantizzato.
Rispetto alle trattazioni usuali si ottiene una grande semplificazione formale. 1 risultato
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¢ un insieme di regole semplici per calcolare quantitd fisiche, che permettono di capire
le approssimazioni e gli aspetti fisici senza complicazioni formali. Il procedimento viene
applicato come illustrazione alle risonanze paramagnetiche a pitt fotoni e ai fenomeni
di doppia risonanza.

Peakuus Ha 3JIEKTPOMATrHMTHOE BO3GYKIeHHe B (opMain3Me KBAHTOBAHHOIO MOJIA.

Pestome (*). — B dopmanniMe KBAHTOBAHHOIO IMOJS BbIYUC/ISIETCS CTATUCTHYECKUM
OMEPATOP CHCTEMBI, HAXOAAIWICHCA B KOHTAKTe C TEPMOCTATOM, IPH HANUYUHW OILHOro
w1 60ltee TEKTPOMATHHTHBIX BHEIIHMX BO30YXKOEHMH, DTO OPMBOIUT K CYHIECTBEHHBIM
(dopManbHBIM YIIPOUIEHUAM OTHOCHTENBHO OOBIUHBIX paccMoTpenuwil. PesyneTaTr mpen-
CTaBJIAET CHUCTEMY MPOCTHIX PELEHTOB ISl BLIYHCICHHSA (GHM3HYECKMX BEJIMYWH, KOTOPLIE
JOHYCKAIOT sICHOe du3uMeckoe IpeacTasieaune 6e3 GopMaliblbIX ycioxueHnil. B xauecTse
WUIIOCTPpau|y 5Ta Tpoleaypa IPUMEHSETCS K MHOro-OTOHHOMY TapaMarHHTHOMY
PE30HAHCY W K NBOWHBIM pe30HAHCHLIM 3ddexTam.

(") Hepesedeno pedaxyueii.



