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S u m m a r y .  - -  The stat ist ical  operator of a system in contact with a 
thermal bath,  in the presence of one or more e.m. external  excitations, is 
calculated in the quantized field formalism. This gives a great  formal 
simplification with respect to usmd treatments.  The result is a set of 
simple prescriptions for calculating physical quantities which allow a clear 
insight in the physics without formal complications. The procedure is 
z~pplied, as an il lustration, to many-photon paramagnetic  resonance and 
to double-resonance effects. 

1 .  - I n t r o d u c t i o n .  

I n  th is  p a p e r  we shal l  deve lop  a t e c h n i q u e  for  c a l c u l a t i n g  t h e  r e sponse  of 

q u a n t u m  s y s t e m  in c o n t a c t  w i th  a t h e r m a l  b a t h  to  one or m o r e  m o n o c h r o -  

mat ic  e.m. exc i t a t i ons .  The  t r e a t m e n t  app l ies  to  a wide  class of p h y s i c a l  s i tua-  

tions, n a m e l y  e v e r y  t i m e  the  f ield s t r e n g t h s  a c t i n g  on each  a b s o r b i n g  s y s t e m  

(atom, molecu le  or  spin)  in  a m e d i u m  can  be  p u t  e q u a l  to  t h e  e x t e r n a l  f ie ld 

s t rengths  to  a good  a p p r o x i m a t i o n .  E x t e n s i o n  to  p r o b l e m s  for  wh ich  th i s  is 

not  the  case,  a l t h o u g h  poss ib le ,  h a v e  n o t  been  cons ide red .  

Our  m e t h o d  a l lows a cons ide r ab l e  f o r m a l  s imp l i f i ca t ion  w i th  r e spe c t  to  

usual t r e a t m e n t s .  This  is due  to  t h e  a d o p t i o n  of a v e r y  e l e ga n t  t e c h n i c a l  im-  
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provement  which h~s first been introduced by SHIRLEY (1), gnd then widely 
applied to problems of double light and r.f. irradiation in optical pumping (.~-4). 

The main idea is thut  considering the external field us u quantized field, ~nd 
extending the system to include the radiation, makes the Hamil tonian time 
independent. A t ime-independent Hamil tonian is much simpler and more 

familia.r to handle th~n ~ t ime-dependent one. Of course usinz quantized 
fields is equivalent to the semi-classical t reatment ,  due to the exceedingly high 
number  of photons present in all practical situations. 

The stntistical operator of the system becomes in our t reatment  a ~ dressed ~ 
operator, depending on the field variables. I ts  time evolution is determined 
by  the total Ha.miltonign ~ff of the system-~field. The determination of the 

steady-state solution of the equation of motion for the statistical operator is 
reduced to the di~gonMization of ~ .  Time averages of the expectation values 
of physical quantities are traces of the corresponding operators times the dressed 

statistical operator of the system. 
Some specific problems, which have been discussed in the literature by 

conventional methods, will here be rephrased in the new formalism as an 
illustration of the method. In  m a n y  cases the great simplification will allo~, 

a deeper and clearer insight in the physics. 
The plan of the work is the following: 

In  Sect. 2 we introduce the formalism. We write down the equation 
for the (( dressed ~) statistical operator, and give the rules for calcul~tiug phys- 
ical quantities. 

In  Sect. 3 we give a t rea tment  of p~ramagnetie resonance. 

In  Sect. 4 we apply the method to double-resonance effects. 

2 .  - T h e o r y .  

We w~mt to s tudy the behaviour of a system S, which is in eontuet with 
a thermal bath, and is subjected to one or more monochromat ic  e.m. excita- 
tions. 

We shall consider the radiation R as ~ quantized field interacting with S. 
The Ha,miltonian for the extended system S + R  is 

('2.1) 

(~) J. It. SHIRLEY: ~Dhy8. Rev., 138, B 979 (1965). 
(2) N. POLONSKY and C. ConEN-TANNOUDJI: Journ. de Phys., 26, 409 (1965). 
(3) C. COnEN-TAN~OUDJI and S. HAROCHE: Compt. Rend., 262, 37 (1966). 
(4) C. COHEN-TANNOUDJI a~ld S. HA~OCHE: Compt. Rend., 262, 268 {1966). 



R E S P O N S E  T O  E L E C T R O M A G N E T I C  E ~ i L C I T A T t O N  I N  A Q U A N T I T ~ E D - I , ' | I g l , I )  F O R M A I , I S M  4 1 ) 9  

where o~ s is the Hamiltonian for S considered as isolated, 

i i 

is in the usual notat ion the Hamil tonian for the free radiation field, and 

(2.3) 
i i i 

describes the interaction between R and S. In  eq. (2.3) 2,(a~ +a~) is the (electric 
or magnetic) field strength operator of the i-th mode of the radiation, p~ the 
component of the (electric or magnetic) dipole moment  which is coupled to it, 

In eq. (2.3) the field strength acting on S is the field strength one would 
have in vacuum. In  dense matter,  where the refraction index is large, it has 

to be replaced by  an <( effective )~ field. Some self-consistent t rea tment  or 
distorted-wave approximation would then be needed. ~¥e shall disregard this 
possibility. In  our t rea tment  relaxation is the only effect of the medium on S. 

We shall also neglect modifications of the external field state due to the 
presence of matter .  The external field acting on each system S will be described 

by a statistical operator Qn corresponding to an approximately coherent state (~) 
a =  (at ... ~ )  of the m exciting modes, 

If the interaction were absent the statistical operator for R T S  would be ~)B" Ca, 

exp [--  fl.~s] 

being the thermal-equilibrium distribution for S. Switching on the interac- 

tion ~f~, leaves 0e unchanged in our approximation, while ~s evolves under 
the action of the total  Hamil tonian ~ .  I t  becomes a (~ dressed ,  operator ~o, 
depending on the field operators as and a* i. The statistical operator for R + S  
becomes 

(2.6) 9~+s=0~'9" 

The equation of motion for ~ is 

(2.7) i ~t + ~ = [;~'' ~]' 

(5) R. J. GLAUBE~: Phys. tier., 131, 2766 (1963). 
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where by l / z  we have symbolicMly indicated the effect of relaxation. In a 

steady-state condition ~ is time independent, o¢~ being time independent, so 
o e- eq. (~.,) becomes 

i 
(2.8) -~e = [.Z; 0] • 

In the semi-classical t reatment,  the statisticM operator for ,S is assumed to 
relax exponentially towards the istantaneous thermal equilibrium. In  our 

formalism this is equivalent (*) to assuming that  the dressed operator ~ relaxes 
exponentially towards 

exp [-- fl(-/g~s + ~ ) ]  
(2.9) oo = ~ { ~ p - [ ~  ~ ( ~ :  + ~ / / , ) ] i "  

I t  is thus convenient to pu~ (~) 

(2.1o) 9 - -  0 o + D .  

The operator D, defined by eq. (2.10) is the part  of o which is affected by 
relaxation. By  using this fact, and eq. (2.9), eq. (2.7) can be wri t ten 

i 
(2. ~ 1 ) - D  = [:Z', D] + [~%, e0] • 

T 

Use has been made of the relation [W, ~0]--[WR, ~0]. Exponent ia l  decay 
means tha t  the operator 1/z in the left-hand side of eq. (2.:[1) consists in multi- 
plying by suitable time constants the matr ix elements of D between the eigen- 

states of Jt~s. 
Since in M1 practicM situations flJ~<< 1, t~o as defined in eq. {2.8) tan  be 

~pproximated by  (+) 

APs 

where A P s / A E s - - ( ~ s - - ~ ' s ) / ( f f z - - S s )  is the operator (population differ- 

ence)/(energy difference) between the state to the left and tha t  to the right. 

(*) In translating the classical equations in our formMism we simply have to replace 
classical fields by the corresponding quantum operators. 

This because all physical quantities are of the form of eq. (2.17) below, and then 
the effect of the radiation density operator OR, which is a coherent state, is to replace 
each annihilation operator a by ~ (and each a* by ~*) which is just the classical field. 
All this will appear clear from what follows. 

¢) R. KAI~eLUS and J. SCHWINGER: Phys. Rev., 73, 1020 (1948). 
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When (6) fljfe < 1, 

(2. '3) APs 
AEs - - -  f l O *  • 

13y using eq. (2.11), (2.12) can finally be written 

7 ÷ A E ,  [oJ&, . 

We shall now discuss how physical quantities are t.o be calculated in tern> of 

the dressed statistical operator. The solution of eq. (2.11) will have the form 

(2.15) D ~ [ ' ~ '  * ..... - -  " a m n  ( I  ( t  . 

For the sake of simplicity we assume tha t  one external frequency is present. 
The argument is easily extended to the general ease. 

In eq. (2.15) d ~*~ ~.~, are operators in the g i lbe r t  space of S. The expression 
for D has been put  in a normal form (i.e. with creation operators on the left 
and annihilation operators on the right). We note that ,  since the average 
number g of present photons is very large, any operator can be directly put  

in the normal form, neglecting the eommutators  between a and a*. The approx- 
imation involved is ~ l / g .  Any observable operator 0 will be of the form 

(2.16) 0 ~ .,(,I *~ z 2- ,  Ltk~ a a . 

According to eq. (2.6) the expectation value of 0 is 

(2.17) = --Tr{e OoO}, T,'{e DO} . 

Both god and DO can be put  in the normal form simply changing the order 

of the operators and neglecting commutators .  Multiplication by  0h and trace 
()vet" the degrees of freedom of the field consists in calculating the expecta- 

tion value on the coherent state Is>. This is equivalent to replacing each oper- 
ator a in eqs. (2.15) and (2.16) by  e, each a t by  ~*. 

Equation (2.14), when averaged on the field state, is just  the semi-classical 
equation for D. 

Once the trace on the radiation has been computed the quant i ty  (0> in 
eq. (2.17) is a power series in ~ and ~*. Now ~ and ~:"° depend on time according 
to the equations 

(2.18) c~(t) = ~(0) exp [--icot], ce~(t) = c~*(0) exp [ +  io, t]. 
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If one w'mts to cMculate the time average (0)  of the expectation value (0 ) ,  
one has just  to consider, in the trace on the left-hand side of eq. (2.17), the 

terms of oO having an equal number  of creation and annihilation operators. 
Only that  part  of ~ has then to be considered which is diagonal with respect 
to the number  of photons. 

This means 

(~.19) ~,0:  = Tr {Yo0}, 

where ~ - ~ J , J n )  (,,n I. ~ is the weight of In,) in the state {ce). ~ is peaked 

on the average number  g of photons with a negligible relative spread An. 
(In practice this is possible by allowing a negligible indetermination of g.) 

This si)read has to be small compared with g, but  it may  contain an enor- 

mous number of states, g being very large. 
In  eq. (2.19) each matr ix element of a and a t can be put  equal to 

Phases disappear because there is an equal number  of a and at's. 
We shall solve eq. (2.14) in a representation in which 54f, the total Hamil- 

tonian of R ÷ S ,  is diagonal. Since the state of the field is not  appreciably 
modified by the presence of matter ,  the eigenstates of 3 f  will differ from the 

eigenstates In) of ~ a  by an admixture  of states In~), with n' not much different 
from n. (The difference n ' - - n  depends on the order of per turbat ion since 
the coupling ~ is linear with respect to a and at.) Then apart  from terms 

J/An, the uni tary  t ransformation which diagonalized Jd' commutes with .¢2. 
The distribution ~ ,  of the states In). becomes the distribution of the corre- 
sponding eigenstates of ~ .  Eigenstates of ~/o can be labelled, among other 

quantmn nmnbers, by the number  n of photons of the corresponding unper- 
turbed state In) which one gets by switching-off the interactions. 

States can be grouped into sets such that  the states in a set have equal 
all quan tum numbers but  n. States which are in the same set are physically 

equivalent, since the matr ix elements of a and a* are pratically independent 
of n in the m~nifold projected by .ft. 

Trace (2.19) can then be calculated as follows: 

i) Construct a manifold .,/[ containing one state for each set of 
(2.20) equivalent states. 

ii) Calculate the trace (2.19) of the operator 00 inside ~[.  

iii) Pu t  n = ~ .  

The choice of the state inside a set is a mat ter  of convenience. 
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Let us i l lustrate in detail  this procedure,  in the case tha t  the t e rm ~ in 
the Hami l ton ian  eq. (2.]) can be t rea ted  as a per turbat ion .  

The unper tu rbed  Hami l ton ian  is h =  J~t°s-b-~R. I t s  eigenstutes are [s~}[n} 
with eigenvalues es-bn(o. The ma t r ix  elements of ~ between these states 
axe small compared  with ez and with the corresponding energy differences 
es--e~." The eigenstates of W are equal to the approx imat ion  ~JY'~/h to the 
eigenstates of h unless, for some value of oJ, some of them become degenerate.  
Such a degenerat ion is nothing bu t  a resonance. I t  appears  also f rom eq. (2.14) 
that the only re levant  ma t r ix  elements of D will be those between nearly 

degenerate states,  connected by  the operator  [ ~ ;  9~°,]. 
Equat ion  (2.14) has then  to be solved inside degenerate  manifolds of states.  

Other mat r ix  elements  will be neglected. 
Let 

/~,,) In~}, 
• . . 

be a degenerate manifold. 
As explained before the states l e , , ) l n , ÷ K }  for any  K <  An are physical ly 

equivalent• There will be an infinite number  of equivalent  degenerate  manifolds 
whose corresponding states differ b y  an equal number  of photons.  A degenerate  
m~nifold is a convenient  choice for the manifold ~#. The effect of per tu rba-  
tion inside the degenerate  manifold is equivalent  to replacing the I t ami l ton ian  

by an effective Hami l ton ian  (7) 

(2.21) P h P  -.- ,~, ~ , 

1 
(2.22) ')¢~;'~ = P~f*P ~- P f f ) Q  E - -  h - - Q ~ Q  Q'~*P 

and the per turba t ion  ~ by  9f ;  *~. 
P is the project ion operator  on degenerate  set, Q is the project ion on the 

remainder of the t t i lber t  space. E is eigenvalue of h in J [ .  W ~  can be evaluated 
to the desired order of accuracy.  The solution of eq. (2.14) is then reduced to 
an algebraic p rob lem in a number  of dimensions equal  to the number  of 
degenerate states of h• The physical  quanti t ies 0 which will have  expecta t ion 
values appreciably  different f rom the equil ibrimn values, will be those having  
matrix elements inside a degenerate  manifold. The t ime average of their ex- 
pect.~tion values {0} will jus t  be equal to the t race Tr{O~} inside a de~en- 

(~) A. MESSIAIt: Mdcanique quawtique, vol. 2 (Paris, 1964); C. COHEN TANNOUDJI: 
Carg~se Lectures in Physics. vol. 2 (New York. 1968), p. 347. 
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er'tte manifold. The average on field w~riables is obtained by putt in~ n =- 
in all matr ix elements. 

Applications of this procedure will be given in Sect. 3 and 4. 

When ~ is greater than JiC~z: ~ z  has to be treated as a perturbation. The 
problem is then to di~gonalize ~R-?J~t .  No general rule can be given in this 
case. An example is t reated in Sect. 3. 

In  conclusion calculating the trace of ~0 in a representation in which ~ is 
diagonM and ~ver~ging over n with weights :"2. gives statistical average and 
time ~ver~ge. If one wants the k-th harmonic of the statistie'fl ~verage of a, 
quant i ty  0 one just has to calculate 

(Oa  ~ ~ .... 

and then divide the result by  ~ * ~  ( F / 2 ) e x p  [- -  ilc~,# ]. 

The choice of the phases in c~(0), ~*(0) is irrelevant, corresponding to "~, 
definition of time t = 0. 

The expecta.tion value of any quant i ty  can then be obtained. 
The usual semi-classic'~l procedure (*.") is to use Floquet 's  theorem to 

write the s tat ionary solution of the equation for ~ or the solution of the SchrS- 
dinger equation for the states as a sum of harmonics exp [ i n , t ]  of the external 

frequencies. Then, by equating the eoe~icients of the exponentials with the 
same time dependence an infinite set of linear equations is obtained which 
h~s to be solved some way. The formalism is complicated and it is d i~eul t  

to evaluate what has been nee'letted in approximate solutions. 
In  our formalism: 

]) Frequency shifts are directly c~lcul~ted before solving the equations. 
Since by eq. (2.14) these quantities ~ppear in the denominators of the matrix 

elements of D, our method i~ equiwflent to a resolvent formalism technique (7). 
The perturbat ion expansion of the denominator ~mounts to summing an in- 
finite number  of ordinary perturbat ion terms. 

2) The problem is in general reduced to ,~n algebraic problem in a finite 
number  of dimensions, and t inledndependent  pert, m.balAon theory immediately 
gives an estimate of what  has been neglected. 

In  what  follows, we shall be particularly interested in the absorption 
coefficient ~e of the k-th impinging wave. ~ is the time average of the mean 
rate of energy loss of the w'rve, divided by the incident energy flux. 

(s) S. II. AUTLER and C. it. TOWNES: Phys. Rec.. 100, 703 (1955). 
(9) A. I)[ GL~COMO: N uovo Cimento, 14, 1083 (1959). 
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Thus 

(2.23) 87I <'i [Yd~ ~), o#] '> = 2 ~ Tr { ~ D  [ . ~ ' ,  ~ ] }  
~z~ = cF-~ - cF ~  " 

The trace in the last  expression can be eva lua ted  b y  the rules (2.20). 

3 . -  Paramagnetic resonance.  

As a first appl icat ion of our me thod  we shall t r ea t  pa ramagne t i c  resonance. 
The system S ~s a spin J ,  with gyromagnet ie  rat io y ,  in a stat ic field Ho, whose 
direction we sh~ll assume as z-axis. The spin is also subjected to an oscillating 
linear field //1, whose direction n forms an angle 0 with Ho. ~Ve can assume 
it to lie in the (x, z)-plane so tha t  n = (sin0, 0, cos0). The Hami l ton ian  5C 

is given by  J ( ~ :  9ffs~-W~-J¢~, where 

(3.1) [ ' ~ s =  O)oJ, 

j~t'~R = ( .oat  a 

~ l  : - -  ~ y J , ( a *  + a) , 

(OJo = - -  7Ho) , 

J~ = sin 0 J~ + cos OJ~ . 

We shall discuss separa te ly  the two situations 

A) H , < H 0 ,  B) HI ).> Ho. 

In order to calculate D by  eq. (2.14) we have  to find the eigenvalues of J(f and  
the matr ix  elements between the corresponding eigenstates of the opera tor  
[ ~ ,  ~ ] .  The absorpt ion coefficient will then  be calculated b y  using eq. (2.23). 

A) H1 << Ho. In  this case ~ can be t rea ted  as a per turba t ion .  The eigen- 
states of the unper tu rbed  Hami l ton ian  

(3.~) h = ~ r  ~ x ~  

are IM~ In~ with eigenvalues M ~ o o ÷ n a ) .  The label M is the eigenvMue of J . ,  
the label n is the number  of r.f. photons.  

When O)o~po~ (p-photon resonance) the manifold ~ff,, 

(3.3) 

[J~, In>, 

iJ--~>]n + p > ,  

. . . . . . . . . . . .  

I-- J> I n -~ 2 J p > ,  
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is near ly degenerate.  There is one such manifold  ~£~ for each value of n, and 
each s ta te  belongs to one J(,,. The unper tu rbed  Hami l ton ian  inside the 
manifold (3.3) is represented b y  

(3.4) h : ~ J~ ((~ : o)o --poJ) 

apar t  f rom an un impor t an t  addi t ive  constant .  
The energy difference between ~/g,,, ~ , ,  is (n--n')¢o. From eq. (2.14) it 

appears  tha t  D can have  resonant  ma t r ix  elements only between states of a 
degenerate manifold, which are connected b y  the per turbat ion.  

[ ~ ,  9ff~] has no ma t r ix  elements  be tween the unper tu rbed  states (3.3), 
unless p - -  1. For  p ~ 1 the admix ture  of other s tates b y  the per turba t ion  
has to be considered. Due to the selection rules An = ~:1 for ~ the effective 
interact ion can have  only diagonal ma t r ix  elements up to order p - - 1 .  The 
second-order contr ibut ion to the diagonal pa r t  is in any  case the lowest-order 
contr ibution to it. Direct  calculation gives 

• 1 1 
(3.5) PS(f~Q ~ Q . , P  . . . .  ,0 

((o, -- -- yH1). 
The second t e rm in the curly bracke t  is to be pu t  equal  to zero wheu p = 1. 

This f requency displacement  is known as Bloch-Siegert (,o) shift. The lowest- 
order off-diagonal ma t r ix  elements of ~ "  defined by  eq. (2.22) are of order p, 
and are of the form 

p ~imes 

(3.6) (M{ <n{~Q ~ QYf~Q E - -  h 

] ] 
(3.7) ( ,MI (n I~Q-E-~-~Q~'~QE_h  ... O ~ i M  q- I ) } n - - p ) ,  . 

The mat r ix  elements of [W., 5 ~ , ] =  [9~R, W - - h ]  are s imply  obtained multi- 
plying by  --p~o the raising ma t r ix  elements of ~f°'~ and b y  -~p~o the lowering 
ones. Our problem is then reduced to finding the ma t r ix  elements (3.6), (3.7). 
Each mat r ix  element is the complex conjugate  of one of the type  (3.6). 

I t  can be proved tha t  the effective, p - t h - o r d e r  pe r tu rba t ion  behaves  like 
a vector  or thogonal  to Ho. 

By the usual choice of the phases (Co~DON and SgOnTI.E¥) (~) the matr ix  

(,o) F. BLOCII and A. SIEG-ERT: Phys. Rer., 57, 522 (1940). 
(11) E. V. COXDON and G. H. SHORTLE~_*: The Theory o] Atomic Spectra (Cam- 

bridge. 1953). 
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elements are real. 
m~nifold 

(3.8) 

and 

So T if we introduce a fictitious spin ~ (*) the degenerate  

---- (io) ¢~ 

The solution for D is of the form D - - d . J .  Equa t ion  (2.14) gives 

d~ relaxes with T,~ d~ and d v with T2. The result  for gc~) is 

(3.9) 
~(~' ~_ 4,_~_n fl J ( J  -~ l ) oJ~ ~ T2 

gg~" is thus obtained calculating by  reduct ion the vector  pa r t  of the operator  

p t i m e s  

P g ~  Q - ~ - ~  Q ' Q E - -  h " " g ~ , P .  

This is achieved by  using the  algebra of the ro ta t ion  group, i.e. the commu-  
tation relations of angular  m o m e n t u m  and the result  is independent  of the 
value of J .  One can then  evalua te  the  ma t r ix  e lement  (3.6) in the simplest  
case, i.e. t ha t  of spin ½. The result  is equal to w<~)/2. The result  a l ready exists 
in the l i terature for t ransverse  oscillating field (~). 

We shall give a simple procedure for calculating it  in the more general case 
of an oscillating linear field a t  ~ny angle 0 with respect  to the stat ic field. We 
shall write ~ in the form 

W1 = ~7 (a ÷ a*) [a~ cos 0 w (a+ ÷ a_) sin O] 

where 

(rz cos 0 ÷ (a+ ÷ ,~_) sinO = a,, .  

(') By a fictitious spin we mean, as usual, a set of three operators which arc repre- 
sented by the usual angular-momentum matrices in our discussion representation. 

(,2) j .  WINTER: Ann.  de Phys. ,  4, 745 (1959). 

27 - I I  N u o v o  C i m e n t o  B .  
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The m a t r i x  e lement  (3.6) is then  

p t i m e s  

if the  ene rgy  differences are measured  in uni ts  o ) =  1. Then  

We  have  now to cMeulate the  ma t r ix  e lement  in eq. (3.10). The  ene rgy  dif- 

ferences be tween  the  s tates  invo lved  in the  ma t r i x  e lements  of the  per turba-  
t ion  are 

(3.11) 

m a t r i x  e lements  

<~laG-If l>  

ene rgy  j u m p  (E~  - -  Et~)/o) 

- - 1  7 

- - ( ]  + p ) ,  

- - ( l - - p ) .  

The rules for ge t t ing  the  m a t r i x  e lement  in eq. (3.10) are now easily found. 
F o r  a given choice of in te rmedia te  states,  we shall associate to  each energy 

denomina to r  a d- sign or a - -  sign accord ing  to  whe the r  the  cor responding  in- 
t e rmed ia t e  s ta te  has  ~ = d=l. So all possible choices of in t e rmed ia te  states 

are in a one- to-one  cor respondence  with sequences of ( p - - l )  d- or - -  signs. 
Fo r  eMcu]at ing the  ma t r ix  e lement  in eq. (3.10): 

1) Consider all possible sets of { p - - l )  d- or - -  signs:  

+ - - ÷  + . . . - - .  

2) The  n - th  sign corresponds  to  a denomina to r  

1 
-- if it is - - ,  

- - n  

- -  ( n - p )  
if i t  is + .  

3) E a c h  j u m p  be tween  subsequen t  signs gives a f ac to r  sin0, each per- 

m a n e n c e  gives a f ac to r  cos0. 
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There is in a d d i t i o n  an  in i t i a l  j u m p  or p e r m a n e n c e  acco rd ing  to  w h e t h e r  t h e  

first sign is q- or - -  a n d  a f inal  j u m p  or  p e r m a n e n c e  a c c o r d i n g  to  w h e t h e r  t h e  

l~st sign is - -  or + .  

4) Mul t ip ly  b y  a f ac to r  - - 1  for  each  p e r m a n e n c e  of - -  signs. 

5) A d d  the  c o n t r i b u t i o n  of al l  sets.  

E,~;ami) les. 

p - - l .  No d e n o m i n a t o r ,  one j u m p  

(o~l) = ~°--! s i n  0 . 

p =: '2. One d e n o m i n a t o r  

poss ib le  sets  i) @,  ii) - - .  

Set i) has  an  in i t i a l  j u m p  a n d  a f inal  p e r m a n e n c e ;  se t  ii) has  an  in i t i a l  per -  

manence  a n d  a f inal  j u m p .  

Since t h e  p e r m a n e n c e  is in  a - -  sign, b y  ru le  4) ii) has  an  a d d i t i o n a l  fac- 

tor (-- 1). 
The denominator i) is I; the denominator ii) is --1. The result is 

p = 3  

2 

¢o~?) = ~---m" sin 0 cos 0 .  

- -  0 - -  ~ s i n  a 0 ,, \ ~ /  [ s i n 0 c o s  

For  h igher  vMues  of p t h e  rules  a re  to  be  i n t e n d e d  as  a p r o g r a m m e  for t h e  com- 

puter  s ince t he  n u m b e r  of poss ib le  sets  becomes  v e r y  high.  W e  were  n o t  ab le  

to find a c o m p a c t  exp re s s ion  for  t h e  sums.  

The  r e su l t  becomes  s imple  when  the  f ield is t r a n s v e r s e  (0 = :~/2). T h e n  no 

pe rmanence  is a l lowed  a n d  the  on ly  d i a g r a m  which  c o n t r i b u t e s  is 

- -  - ~  - -  + . . .  

The d i a g r a m  m u s t  beg in  w i t h  a + a n d  end  w i t h  a - - ,  so p - - 1  is even  

and p is odd ,  as e x p e c t e d  b y  a n g u l a r - m o m e n t u m  cons ide ra t ions .  The  dia-  

gram is s imple  to  e v a l u a t e :  

, V+l 
\ ] g ~ o ]  " 
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B) H1 >> Ho- 

(3.12) 

A. D I  G I A C O M O  and  S. S A N T U C C I  

In  this ease we shall assume 

as unper tu rbed  Hami l ton ian  and 5/~ as a per turbat ion .  The direction of the 
r.f. field has been t aken  as z axis. Then 5~fs-~ ~Oo(J~ cos0 + J~sin0) ,  0 being 
the angle between Ho and / - / I .  The procedure for diagonalizing h of eq. (3.12) 
is well known, h can be pu t  in the form 

where 

h ~-~ (:co¢i'6¢--~'Jz2 ~ 
2 

The c o ~ m u t a t i o n  rules for ~ and ~t are of course the same as for a and a f. 
The energy eigenstates are then  [M, ~), where M is the eigenvalue of J= 

and  ~ the cigenvalue of ~t~. 
The corresponding energy values are ~o.  
The ma t r ix  elements of J~ are (~) 

(3.!3) <~MIJ+~' M'>: J~--~,( ~ ~).<MIJ±IM')' . 

Jk(z) is the Bessel function of order k. 
The tota l  t~amil tonian ~ inside a degenerate manifold is, apar t  from a 

constant ,  

(3.14) ~'# = mo cos 0 J~ ÷ ~oo sin 0 J~ Jo  -~o " 

The ma t r ix  elements of the  pe r tu rba t ion  ~ s  between different manifolds ~, g'  are 

(3.15) <M~I.CC~sIM'~'>= ~osinOJ,~_,, ([11/-- l~/'] ~ )  <MIJx}M'>,  

which are to be compared  with the energy difference (n--n')a~ in order to 
test  the va l id i ty  of the pe r tu rba t ion  expansion. I f  wl >> ~ the equality 

¢o 

(3.1~) JX + 2 y. J~ = i 
I 
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gives 

( O 1 )  l 

(3.17) Zj~ 7. _~... 

The parameter  which has to be small is I(¢oo/n¢o)J,~(og~/o))[----s. We have 

co 

Now ~ J~/n 2 is some kind average of 1/n 2 with weight J~ normalized according 
1 

to eq. (3.17). The max imum weight is tha t  of the J',,' such tha t  the argument  
is of the order of the index. So ~ (J~/n~)~-,½(m/~ol)< The inequal i ty  (3.18) 
reads now 

2 

e~"< 2~ << 1 . 

If on the other hand (a, <~) from the inequal i ty  

1 
]J~] < -- 

~22'  

which is a direct consequence of eq. (3.16) 

(Oo fO 0 
~--~ --<<i. 

So if ~o~)~ COo per turbat ion expansion is always possible. The second-order 
correction to the energy levels 5/f (2) is readily calculated by  using the mat r ix  
elements in eq. (3.15). The result is 

¢~ (2)= 4~,~ s in  ~ 0 Z --  g~ o7~ = 0 .  
(O --co ~, 

Neglecting third-order effects 

(3.19) .jfe~f= (')0 cos 0J~ + ~Oo sin OJ~Jo -~  • 

The operator  

has matr ix  elements between contiguous manifolds 

<~MI[~fR, ~,%f~]l~ ~ 1, M'> = T o,h¢o<M]J~lM'> • 



4 ~ 2  A. DI GIACOMO a n d  S. SANTUCCI 

The operator  J f ~  in eq. (3.16) is easily diagonalized by  a ro ta t ion  

with 

R = exp [--iq~J~] 

*o o COS 0 
cos ( p -  ~ , 

(o0 sin 0 jo(Oht 
s i n ( p =  - ~ - -  \o>/ '  

The result  is 

So eq. (2.14) gives 

~2 = o,o 20+ sin2OJo[-~o ) • 

i 
T " ' ' 

<MIRJ~RttM'> 

and b y  eq. (2.23) 

4~fl J( . /  4 1 ) ~ ~oj:" 
c 3 

1 
-f-) /T2 + (o) + 1¢2)2]} - 

4~fl 1t1' ~ = _ _  ~2J(J I I)~o2 

This is Debye  absorption.  

4 . -  Double-resonance effects (8.9.l~). 

Typical  double-resonance effects are schematical ly i l lustrated in Fig. 1. 
A three-level sys tem is subjected to two waves, bo th  close to the  resonance 

between a couple of them. The response to the wave with f requency ~o0 is 
observed in the presence of the wave with f requency o9~, which is s trong enough 
to produce saturat ion.  For  simplicity we shNl put  MI re laxat ion times equal. 
We shall assume tha t  the interact ion with the external  fields is smM1 compared 

(la) A. JAVAN: Phys. Rev., 107, 1579 (1957). 
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with the spacing of the levels. Then we can t rea t  

¢ f 
Q)o ao ~o 

as unperturbed t tami t tonian  and ~ as a per turbat ion.  We shall s tudy in 
detail the situation of Fig. la) .  The extension to the others is straightforward. 

a) ~) c) 

Fig. i. 

~e~r the resonances the unper turbed eigenstates can be grouped in sets 
of three nearly degenerate states. 

! 
[fl'~ [3),[n,,n,)i.~ with eigenvalues (apart from a cons tant )J0  

! 

i~i = rli~ I n , +  1, ~o~' [ -~.= - ( ~ - ~ . ) .  

Within an approximat ion ~9~ / J¢~ ,  9~ e~ of eq. (2.22) is equal to 9~.  In  the 
representation where l~:., Ifll and 17~:' are a basis, 9~/ is represented by  the 
m~trix 

t 0 EoPo 0 ) 
=--1 EoPo 0 E:p: , 

0 Esp: 0 

l .~ ,  9~] by  the mat r ix  

1(o o op o) 
[.,~, ~]---- ~ --cooEopo 0 eo~Esp~ . 

0 -- (o~ Esp~ 0 

Equation (2.14) could be direct ly solved in this representation.  The approxi- 
mation of the result is ~-~f~/5(Cs, and one has merely to inver t  a 3 X 3 matrix.  
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This inve r s ion  is e q u i v a l e n t  to d iagona l i z ing  the  H a m i l t o n i a n  

5o Eopo 0 1 ~) 

Eopo 0 E~p~ 

2 2 I "  
0 E~p.~ 5~ 

2 

The genera l  resul t  is ye t  r a the r  compl ica ted .  However  we shall  see t h a t  the 

essent ia l  fea tures  can  be s tud ied  b y  an  a p p r o x i m a t e  d iagona l i za t ion  giving 

s imple  resul t .  Since we p u t  no  ] imi t a t i on  to the  power  of the  field s, we shall 

beg in  b y  d iagonal iz ing  the  2 ×  2 subspace  i n v o l v i n g  the  s a t u r a t i n g  wave  s, 

in  order to t r e a t  i t  exact ly .  This is accompl ished  b y  a r o t a t i o n  

R ~  (i 0 0 
exp - -  i w, ~ 

wi th  

s 

(4.~) cos 0 = 3-:' sin 0 = E~p~ 
3~ 

~/( ~ + p ,  E , .  A , = s i g n b ~ "  ' ~ . . . .  2~ ~ 

I n  the  new r ep re sen t a t i on  

(4.2) ,)~' = 

Eopo 0 Eopo 0t 5o - - - -  c o s -  s i n -  
2 2 2 2 

Eopo 0 5~ d, 
- - - -  cos--  ÷ - -  0 

2 2 ') 2 

EoPo . 0 5, 3, 
sin -- 0 

'~ '2 2 '2 

We  shall  confine ourselves to the  f r equency  in t e rva l s  where  two d iagona l  ele- 

m e n t s  connec ted  b y  n o n d i a g o n a l  ones are n e a r l y  degenera te  compared  to 

Eopo b u t  n o t  the  other,  i.e. 

(4.3) 
i) 151 ~-15o + 1 ( 5 8 -  As)I << Eopo 

a n d  ]As[ >> Eopo. 
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The condi t ion IA~] >> EoPo which m e a n s  t h a t  only  two levels m u s t  be  degene ra t e  
is a lways  satisfied when E~p~ >2 Eopo~ otherwise  i t  m u s t  be  t h a t  [¢~[ ) )  EoPo. 

Condit ions i) and  ii) co r re spond  to  two resonances .  ]A~[ >> EoPo m e a n s  t h a t  
they  are well s e p a r a t e d  wi th  respec t  to Eop0.  

I f  condi t ion i) is satisfied, the  m a t r i x  e lements  (1.3) (3.1) of ~ eq. (4.2) 
can be neglected.  I f  condi t ion  ii) is satisfied, the  m a t r i x  e lements  (1.2) (2.1) 
can be neglected.  

In  b o t h  cases the  p r o b l e m  is r educed  to the  d iagona l iza t ion  of a 2 x 2 m a t r i x .  
This is s imple  a lgebra .  We  sh~ll d i rec t ly  give  the  resul t  for  the  a b s o r p t i o n  

coe~c ien t  ~o of the  obse rved  wave ,  in the  two f r e q u e n c y  ranges  i) and  ii) 

4~ APo 2 1 
i) ~0 . . . . . .  c AEo (°~P° 

[ l / r 2 +  A'" + II-r~+A~ 
÷ 

4 ~  A P  o 2 1 
ii) ~ o =  e AEo (°:P°-~" 

sin!0/  
[1/~ + A"' + 

E,p.,w, A~ sin 0/2 ] 

cos 2 0/2 E,pwJ~ A~ ,_sin 0 / .  ') [ 

1 f-r~ + A ~, 2coo [ l / r  -~ + (3"t2 + 33- ']  [ 1 t ~  + (A"12 -- A,y]~ " 

Here the  on ly  new quan t i t i e s  a re  

and 

A ' =  sign 6 .x/6 ~- + E]po cos ~ 0/2 

A" = sign A. V 3  2 + Eop'~ s-inTo/2. 

(5 and  2 are  def ined b y  eq. (4.3), 0 b y  eq. (4.1). We  shall  now br ief ly  discuss 
the result .  

I f  ]6,] ) ) E , p , ,  i.e. if the  s~ tu ra t ing  f r e q u e n c y  is f a r  off the  s a t u r a t i o n  line 
width, t hen  

,~2 2 

- -  26, ' cos0- -~ l  , 

46~ ' A N 6 o ÷  6 ~ + - -  

2 2 2 

A ' ~  60- -  4(~, ] + Eopo , 

E ~ p ~  " E2..~E~P~ 
A " ~  ~o+5~+ 46,]  + opo ~ • 

sin 0 _~ Esp.~ 
0s ' 

12 2 E,p, 
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P r o v i d e d  ~ is n o t  m u c h  grea te r  t h a n  (oo~ which means  t h a t  the  three  levels 

are a lmos t  equgl ly  popu la t ed ,  

i )  ~ A P , ,  l 1 

ii) 

The  l ine presents  two peaks shif ted in  an  opposi te  d i rec t ion b y  an  equa l  a m o u n t  
,2 2 T,,p~/46~ from ~5o-- ~oo ~ 0 a n d  (5~+~o--0)~--~o0 = 0. The  first one suffers sat- 

u r a t i o n  by  the  observed wave,  while the second one does no t  if (o~ is sufficiently 

far f rom resonance .  This is a new resul t ,  which could no t  be  g iven  in  previous  

t r e a t m e n t s  of the  problem.  

W h e n  6 ~ 0  and  E~p~>>E0p0  t h e n  

0 l 0 1 E~p.~ 
sin ~-,) - -  ,~ , COS 2 - = - ,  (5 = d o - -  

. ~ :2 '2 '2 

A = 6o + E~p~ 
2 

A,~ ~2 + E~p~ A~2=A~ + E~p~ 
2 2 

The l ine becomes a doub le t  wi th  equa l  peaks  a t  the  f requencies  ±E~p, /2 .  

The in te res t  of the  au thors  in  this  work  has been  s t i m u l a t e d  b y  a seminar  

of C OHEN-TANNOITDJI he ld  in  P isa  in  the  Spr ing  of 1968. The au thors  wish 

to t h a n k  C. COHEN-TANNO~TDJI for cr i t ical  r ead ing  of the  m a n u s c r i p t  and 

useful  commen t s .  

R I A S S U N T O  

Si st.udia l'operatore st atisiico di un sistcma in contatto con un termostato, in pre- 
senz~t di una o pifi eccitazioni e,m. esterne, nel formalismo del campo quantizzato. 
Rispetto Mle trattazioni usuMi si ottiene una grande semplificazione formMe. I1 risultato 



RESPONSE TO ELIgCTt~OMAGNETIC E X C I T A T I O N  IN A Q U A N T I Z E D - F 1 E L D  F O R M A L I S M  427 

~ un insieme di regole semplici  per  c~lcolare quanti t 'h fisiche, t he  p e r m e t t o n o  di capire 
]c npprossim~zioni  e gli a spe t t i  fisici senz~ complic~zioni formali .  Il p roced imen to  viene 
~pplicato come i l lustr~zione ~lle r i sonanze  p~r~unagnetiche ~ pift fotoni  e ai fenomeni  
di doppi~ r ismmnza.  

PeaKHHH Ha 3:IeKTpOMaFHHTHOe B o 3 6 y ~ e H u e  B dpopMa~U3Me KBaHTOBaHHOFO IIOJIH. 

Pe3mMe (*). - -  B qbopManH3Me KBaHTOBaHHOI-O rlOJlfl BbIqHc:I~eTC~I CTaTHCTIdHeCKH~I 
ortepaTop CHCTeMbI, Haxo~tme~c:a a KOHTaKTe C TepMOCTaTOM, IIpH Hana'tHr40I1HOFO 
nan 60nee 3.rleI<TpOMaFHHTHblX BHeILIH/4X Bo36yFKjIertH~I. ~TO ['IpHBO,IlHT K cyttleCTBeHHblM 
qb0pMaYlbHblM ynpottIeHrtflM OTHOCMTeYIbHO O6blqHbIX paccMoTpeHn~. Pe3y.qbTaT rtpe/l- 
CTaB,rtfleT CHCTeMy rIpOCTblX petIel'lTOB llaa BbIqHCJleHl4fl qbH3HHeCKHX Be.qHqnH, KOTOpbIe 
~ortycKaIoT ~tCHOe qbI43H~tecKoe rtpe)IcTaBne~He 6e3 qbopManbHbIX ycYiO>KHeHrl~. B raqecTae 
rIanrocxpattut, t 3Ta r lpottesypa rlpi4Men~exc~t K MHOrO-dpOTOHHOMy rlapaMarMnTHoMy 
pe30Hancy H K 21Bo~m, IM pe3oHaHCHbIM 3qbqbeKTaM. 

(') llepesebeno pec)aKtlue~. 


