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S u m m a r y .  - -  This paper presents the special relativistic hydrothermo- 
dynamics (i. e. dynamics of mechanico-thermal processes) in covariant 
form for a simple viscous fluid, free of the paradox of infinite velocity 
of heat conduction. The theory was developed by correcting Eckart 's  
theory (1) admitt ing also infinitely fast heat propagation which is incom- 
patible with Einstein 's  principle of relativity. The paradox was eliminated 
in part  by replacing the relation between heat flow and temperature 
- -  the so-called Fourier 's phenomenological t ransport  equation - -  by 
a more exact equation due to CATTAN~O and V~RNOTTE (2,3), and in par t  
by changing in a corresponding manner  the energy-momentum tensor. 
The new energy-momentum tensor contains all terms appearing in 
Eckart 's  tensor, as well as terms having in coefficient factors 1/V 2 where V 
is the greatest heat velocity in the medium. Finally it  is shown that  
also for diffusion processes one can eliminate the paradox of instanta-  
neous propagation of diffusion flux from the equations describing rela- 
tivistic diffusion phenomena. 

1 .  - I n t r o d u c t i o n  (*). 

W h e n  descr ib ing  hea t  c o n d u c t i o n  in  a mass  m e d i u m  (or t r ans f e r  processes 

in  general) ,  i t  is c u s t o m a r y  to  use F o u r i e r ' s  t r a n s p o r t  e q u a t i o n  (F) i n  con- 

(*) This paper is an extract from the report (4) which was presented as thesis to 
the Facul ty  of Mathematics and Physics of Charles University in Prague in April 196~, 

(1) C. ECKART: Phys.  Rev., 58, 919 (1940). 
(2) C. CATTANEO: Compt. Rend., 247, 431 (1958). 
(a) p.  V]~nNOrTE: Compt. Rend., 246, 3154 (1958). 
(4) M. K~ANY~: Report No 4/64 IPP Czech. Acad. Sci. Prague,  (April 1964). 
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nection with the equation of heat conservation (*) (1._1) (or, possibly, the equa- 

tion of conservation of quan t i ty  of transfer):  

(F) q = - -  K g r a d  ~ , 

(1.1) 7m.~ = - -  div q ,  

so tha t  quantities q and ~, i.e. heat  flow density and temperature  are defined 

by equations 

(i.2) A q - - 7 -  ~ q = 0 ,  

(1.3) A0--7~:~  9 = 0 ,  

of the parabolic type. Bu t  these equations admit  the propagat ion of phys-  

ical processes at  an infinitely large velocity. F rom the point of view of relativity,  
this is a paradox - -  the so-called paradox of infinite velocity of propagation.  

C~TTANEO (") and VERNOTTE (a) suggested a generalization of Fourier 's  

phenomenological eq. (F) in the following form 

((~-V) c~q = - -  K grad ~9 
q ÷ u  ~t 

where ~ (**) is a newly introduced macroscopic constant.  The connection between 

~, and the kinetic quantities might  be found in (2). The (C-V) t ranspor t  equation 

in connection with the equation of conservation (1.1) gives following equations 

for quantit ies q and ~:  

(1.4) 
/ . .  m o 

rot  rot  q ÷ A q - -  n y ~ q - - 7 ~  q - -  0 ,  

(~ .5) 

which are already of the hyperbolic type. This eliminates the paradox of infi- 
nite velocity of propagat ion of heat  (or transfer processes); refer also to (5). 

(*) Considering an isovolumic preeess. 
(") Constant a introduced, in (~) is linked with constant u used in the present 

study, by relation u = a/I~. ~ has here the dimension of time and its order is iden- 
tical with that of the so-called characteristic molecular time v o, i.e. the mean time 
between two successive collisions. For gases Close to normal conditions, it is roughly 

~ r o_~  ( 1 0 - 8 - - 1 0  -1° ) s .  

(~) P. M. MORSE, H. FESgBAC~: Methods o] Theoretical Physics, Pt. I, Chap. 7,4, 
p. 865 (New York, 1953). 
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On tile basis of kinetic considerations for the case of a gaseous medium,  CAT- 
TAZ~EO (~) then  s ta ted  the grounds of the new equation.  

Le t  us n o w r e t u r n  to eqs. (1,4) and (1.5) for the vec tor  of hea t  flow and tem-  
pera ture .  The two equat ions are in the fo rm of a so-cMled <( telegwaph equat ion  ~> 
which describes pulse p ropaga t ion  in a dispersive medium.  This means  t h a t  
var ious points  of the  pulse wi th  generally different displacements  possess also 
different t rans la t ional  velocities whose magn i tude  can reach values only wi thin  
the  in terva l  f rom 0 to V, the  m a x i m u m  possible veloci ty  of p ropaga t ion  (*) 
being 

- / K I  (~ .6) v -  r' ~ - ~  < o o .  

Thus  only the veloci ty  of p ropaga t ion  of the  signal f ront  reaches the  value of 
V, whereas the signal itself increasingly smears and the wave  f ront  correspond- 
ing to the  end of the signal does not  p ropaga te  a t  all bu t  remMns standing.  
I n  the l imit ing case z--> 0 we obtain  V-+  cx3 (which means  t ha t  for the old 
theory  the range of veloci ty  dispersion is f rom zero to infinity), and Cat taneo-  
Vernot te ' s  (**) eq. (C-Y) changes into Four ier ' s  eq. (F). 

Another  difference between the theories of hea t  conduct ion based respec- 
t ively  on (1.5) and  (1.3), lies in t h a t  the par t ia l  differential eq. (1.3) possesses 
bu t  a single initial condit ion while the  corresponding generalized eq. (1.5) 
mus t  have  two initial conditions 

(1.7) [vq(r, t)]t= o = g ( r ) ,  

[c~O(r, t) l = G(r) ("'), 
(1.8) [ c ~ ] t =  ° 

where g and  G are the  given continuous functions of position. We note  t ha t  
according to Cat taneo-Vernot te ' s  theory  and in contradis t inct ion to Four ier ' s  
theory  heat  pulses can also be excited by  the  initial change in t e inpera ture  
alone, as indicated by  condition (1.8). I n  the vas t  ma jo r i ty  of pract ical  applica-  
tions, i t  will, on the  other  hand,  be possible to s imply  pu t  G(r) = O. Similarly,  
the  bounda ry  conditions for the  solution of eq. (1.5) will have  somewhat  differ- 
ent fo rm than  those for eq. (1.3). Thus e.g. the so-cMled Newton ' s  law of cooling 
(for details refer to Sect. 8) will be 

(~.9) " ~ ~ ( ~ - - 0 )  (*"), 

(*) By its order, it corresponds to the velocity o2 sound in the gas under given 
conditions. 

(**) The order of author's names is alphabetical. 
(***) In ease that  the surface of the body does not move relatively to its surround- 

ings and the boundary surface does not change its shape with time. 



54 M. KRANYS 

where ~j (j : 1, 2, 3) is the outer  uni t  normal  to the boundary  surface, h 
the coefficient of surface heat  transfer,  0 the  t e m p e r a t u r e  of the surround- 
ings. 

An a t t e m p t  to formula te  the  ene rgT-momentum tensor of a fluid wi th  hea t  
conduct ion was made  b y  vA]~ DANTZIG aS early as 1939 (~). B u t  so far  as we 
know, the first sys temat ic  relat ivist ic  theory  of flowing fluid which takes into 
considerat ion the  effects of hea t  conduction,  w~s fo rmula t ed  in 1940 by  ECKART 
in (~). The basis of this E c k a r t ' s  relat ivist ic  t he rmodynamics  of flowing con t inuum 
is jus t  the relat ivist ic form of Four ier ' s  law (F). The essential  insufficiency 
of E c k a r t ' s  fo rmula t ion  is t h a t  - -  a l though in covar iant  fo rm - -  i t  admi t s  an  
infinitely fast  heat  p ropaga t ion  which is incompat ib le  wi th  the relat ivist ic  theory  
because the  p r i m a ry  pos tu la te  of re la t iv i ty  is t h a t  t h e  m a x i m u m  veloci ty  of prop- 
agat ion  of physical  processes cannot  exceed the ve loc i ty  of light in v a c u u m  (*). 
I t  is just  Four ier ' s  law (F) or the  equat ion  of hea t  conduct ion (1.3) following 
therefrom, t h a t  does not  respect  the  i m p o r t a n t  consequence (as well as the  pos- 
tulate)  of Eins te in ' s  principle of re la t iv i ty ,  because according to (1.3), the  f ront  
of the hea t  wave propagates  wi th  an infinite velocity.  B u t  if we pu t  the relat iv-  
istic form of Cat taneo-Vernot te ' s  eq. (C-V) ins tead of the relat ivist ic  form of 
Four ier ' s  law (F) as the  basis of the relat ivist ic  the rmodynamics  of flowing 
fluids, we el iminate  the  p~radox of infinite veloci ty  of hea t  p ropaga t ion  f rom 
E c k a r t ' s  theory.  This will be the  subject  of our discussion in the  Sections to 
follow. 

The general relat ivist ic theory,  wi th  which Stueckelberg works (see (7.8)), 
is pract ical ly  identical  with t ha t  of E c k a r t  if the  grav i ta t iona l  field in the former  
is neglected. 

The au thor  is also acqua in ted  with  a s tudy  b y  laham Man Quun (9) on the 
relat ivist ic theory  of fluids with hea t  conduction.  The theory  presented in t h a t  
s tudy,  is again a version of t h a t  of Ecka r t ' s .  The  theories of E c k a r t  and  of 
I~ham Mau Quan can be generalized to include the  case of relat ivist ic  magneto-  
hydrodyni~mics - -  refer, e.g. to HUGHES (10), o r  PItA]Y[ MAU QUAN (11); and 
as the studies of Stueckelberg and of P h a m  iV[an Quan indicate,  general  relat iv-  
istic versions of such theories are also possible. 

(s) D. VAN ]).kNTZIG: Physica 6, 673 (1939) (see p. 688). 
(') This means that  in the arbitrary pulse representing the real physical phenome- 

non whose parts propagate at various velocities, none of the parts of the pulse can 
propagute faster than the light in vacuum. 

(7) E. C. G. STUECK:ELBERG and G. W~NDEnS: Helv. Phys.  Aeta, 26, 307 (1953). 
(s) E. C. G. STUECKELBERG: tTelv. Phys. Acta, 35, 568 (1962). 
(9) PH•M MAu QuA-~: Ann.  di Mat. pura appI., Ser IV, 38, 121, (1955). 

(lo) W. F. ttuGI~ES: Proe. Cambr. Phil. Soc., 57, 4, 878 (1961). 
(11) pmx~E ~[~u QvA~': Journ. Rational Mech. Anal.  5, 473 (1956). 
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2 .  - G e o m e t r y  o f  s p a c e - t i m e .  R e s o l u t i o n  o f  s p a c e - t i m e  a n d  w o r l d  t e n s o r s  (*). 

We  shall  use Gal i l ean  cord ina te  sys tems  

(2.1) x '~ = (et, x, y, z ) ,  

for which  the  met r i c  t ensor  is 

( 2 . 2 )  - - g o o  = g n  = g ~  = g33 = 1 , 

x~ = (- -c t ,  x, y, z) , a = 0, 1, 2, 3 ,  

g ~  = 0 for a ¢ f l ,  g ~  = g ~ .  

The  wor ld  i n t e r v a l  ds is d i rec t ly  iden t i f ied  wi th  the  (~ p rope r  t ime  ~): 

(2.3) d s 2 = - - - - g ~ d x ~ d x ~ = c 2 d t ~  1 - - ~  , 

F u r t h e r m o r e ,  we define the  four -ve loc i ty  of mass  us 

(2.4) u~ dx~ ( c w ) dx~ 
- -  : " '  - - ~  ds ds ~/e 2 -  w ~ ~¢/e : -  w ~ , u~ 

T h e n  i t  holds  t h a t  

(2.5) u ~ u~ ---- - -  1 , 

i.e. u ~' is a d imens ionless  u n i t  t ime l ike  vec to r  for which  

(2.6) u~ O~U ~ = 0 ,  u~ ~ u  ~ = 0 .  

F o r  pa r t i a l  de r iva t ives  we use the  symbol s :  

(2.7) ~ c~x~ ~ ,  V ~ ~ - ' ~ x ~ -  - ~ , v  . 

The  p rope r  local f r ame  in  which  mass  m e d i u m  is a t  res t  (w~ = w~ = w~ = 0), 

we deno te  b y  Ko. I n  th i s  case 

(2.8) u ~ = (1, 0, 0, o ) ,  % = ( - - 1 ,  0, 0, o).  

I n  a p roper  local co-ord ina te  sy s t em th e  ve loc i ty  four -vec to r  u% f o r mi ng  a 

t a n g e n t  u n i t  vec to r  to  the  wor ld  l ine,  de t e rmines  the  local axis  of p roper  t ime.  

(*) We have adopted almost ewerywhere Eckart 's  terminology and notat ion from 
paper (1). 
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Any world vector  P~ can be resolved into a longitudinal  (i.e. t ime) componen t  

P~ and a t ransversa l  (i.e. space) componen t  P~. Thus we have  

(°.9) 

where 

(2.1o) 

and 

(2.11) 

[I 5 -  I[ 

p~ ~ p ~  + p~ = u ~ p  + S ~ P  ~,  

II 

P = _ ut~p~ 

S~ = ~ + u~uz 

is project ion opera tor  to  local proper  space. F r o m  this definition i t  follows 
t h a t  

Equa l ly  we can invar ian t ly  resolve differential operators :  

I] J .  

(2.13) U ~  ~ + ~ = - - u ~ D  @ b ~  ~ ,  

where symbol  D designates 

(2.14) D = ~ _ u ~ - -  ds or .D- -  / ~  ~ - ~ V  . 

T a ~ n g  into account  the  la t te r  definition and eq. (2.6) we obtain  

(2.15) u~Du~, = 0 ,  u~Du  ~ = 0 .  

Late r  we shull also use the  following relations 

(2.16) [] ~ ~¢, ~ = _ 1 ) 2  + ~S~rZ ~ U + (.Du~.) ~!', 

(2.17) O , [ S ~  ~] = [] + D 2 + (~,u~')D , 

(2.18) U D  - -  D ~ =- (~u~)  ~P. 

I n  the  last  formula  one mus t  assume t h a t  the differential opera tor  will a lways  
be applied only to functions q)(x) ~ of such propert ies  thu t  ~ ~ ~b = 3~ ~ b  holds.  
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3. - Description of the motion of matter. 

Moving mat te r  will be decribed in the s~me way as by ECKART (~) using 

a four-vector of the mass flow 

(3.1) m ~' ~ m u  ~' , m ~ m ~  = - - m  2 , 

where m is the invariant  proper mass density of the continuum. 

The law of conservation of mat te r  is expressed by equation 

(3.2) ~ r a  ~ = 0 ,  

which on introduct ion of the invariant  specific volume 

3"~ 1 (3. v - -  

m a y  be writ ten as follows 

(3.4) m . D v  = 8 ~ u  ~' . 

The interpretat ion is as follows: 8 u  -~ is a measure of expansion or compres- 
sion of the specific proper three-volume v. Thus for a solid bodyis  v = const and 

hence also u ~ =  const for all mass elements of the body. 

4 . -  Construction of the energy-momentum tensor in relativistic hydrothermo- 
dynamics. 

I n  a mass continuum, there occur next  to purely mechanical, reversible 
processes, also thermal processes in the broader sense, i . e .  irreversible proces- 

ses such as heat  conduction, viscous processes, diffusion phenomena,  chemical 
processes, etc. 

I n  the Section to follow we shall discuss only such an isotropic cont inuum 

(concretely, a fluid) in which only two irreversible p r o c e s s e s -  heat  conduction 
and viscous p r o c e s s e s -  take place in addition to mechanical events. Such 

restriction results from the fact  tha t  our considerations are only concerned 
with a homogeneous medium forming a single pure substance so tha t  dif- 

fusion is absent and neither chemical processes nor phase transitions occur 
according to our assumption. 

Since our dynamic  s tudy  of the fluid will involve both thermal and mechan-  
ical aspects, we shall from time to t i m e - - f o r  the sake of c l a r i t y - - r e s o r t  to  

the classical term of cont inuum dynamics (or hydrodynamics)  with irreversible 
thermodynamics ,  al though we are of the opinion tha t  the term hydro thermo-  

dynamics is more consistent inasmuch as the word (, dynamics ~ pertains to 
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mechanica l  as well as the rmal  changes of the  event  being studied, which are, 
s t r ict ly speaking, inseparable.  Le t  us now formula te  the  relativist ic hydro-  

t he rmodynamics  in the  sense jus t  s ta ted.  
We ask for the basic equat ion of relativist ic hyd ro the rmodynamics  to huve 

the  well-known form of four-divergence of the so-called e n e r g y - m o m e n t u m  

tensor  I-V '~ 

(4.1) ~}V ~ = 0 , 

which is symmetr ica l  

(4.1/) W ~ =  "W ~' . 

Equa t ions  (4.1) and  (4.1') which represent  the basic pos tu la te  of the  theory ,  

express  bo th  the conservat ion of e n e r g y - m o m e n t u m  (eq. (4.1)) and  the  con- 
serva t ion  of m o m e n t  of e n e r g y - m o m e n t u m  (eq. (4.1')) of the fluid in which irrev- 
ersible processes are t ak ing  place. Tensor  W ~ can be resolved into  proper  

components  (see (~)) which again form tensors 

(4.2) 

(4.3) 

(4.4) 

hence it  holds t h a t  

(4.5) 

W ---- W 

w ~ = - -  8~ W ~ : % ,  

w ~ = 'd~, S~ W ~'~ , 

W~,[ ~ ~ ~u~'  u ~ .~  w~ u ~ -~ w~ u ~' _}_ w~,~ . 

Let  us now discuss an impor t an t  question, namely  the physical  in te rpre ta t ion  
of the various tensors (4.2), (4.3), (4.4) und consequently~ also of (4.5). According 
to E c k a r t  the invar i~nt  ~ is 

(4.6) ~ -~ mc  ~ ÷ m e .  

Here  mc ~ is the invar ian t  densi ty  of the in ternal  energy of m a t t e r  a t  rest  and 

ms is the densi ty of the internal  thermal  energy. 
Fur thermore ,  tensor  w ~ is the elastic-stress tensor which satisfies condit ion 

(4.7) u~,w ~'~ ----- 0 

us follows f rom (4.4) and (2.1°). 
I n  case t ha t  the elastic cont inuum is a fluid the stress tensor w ~ can be 

resolved into the viscous componen t  P~z and  the  pressure componen t  p S  ~ 

(2 is the coefficient of viscosity):  

(4.8) w ~'~ Pc'Z ÷ p S  ~ , P ~  ) ,c(S ",: I t , u :  ÷ ~ r u ~ ] - - ~  S~'z Sr~ O~ur} . 
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Par t icu la r  a t t en t ion  mus t  be devoted  to the construct ion of the vector  defined 
b y  eq. {4.3). I n  (1), ECKART puts  W ~ = ~ / C  where ~ denotes the hea t  flow 
defined by  the covar ian t ly  t ranscr ibed Four ier ' s  equation.  Such a procedure  
leads, however,  to a theory  s u f f e r i n g - - a s  explained in the  I n t r o d u c t i o n - -  
b y  the  pa radox  of hea t  veloci ty  grea ter  t han  the veloci ty  of light. In  order 
to get rid of this paradox ,  we m u s t  give to vec tor  w ~ a somewhat  different 
physical  in terpre ta t ion .  Firs t  of all, we shall assume t h a t  hea t  p ropaga t ion  
in a mass med ium is governed by Cat taneo-Vernot te ' s  theory  w h i c h - - i n  
contradis t inct ion to Four ier ' s  t h e o r y - - d o e s  not  imp ly  the pa radox  of instan-  
taneous  p ropaga t ion  of heat.  Cat tuneo-Vernot te ' s  eq. (C-V) in covar ian t  fo rm 
is wr i t ten  as follows 

(4.9) q~ -~ ~cD~ ~ = - -  K S ~  , 

which is immedia te ly  clear if we recall t h a t  (4.9) is bu t  a t ranscr ip t ion  of the (C-V) 
equa t ion  valid for proper  local rest  sys tem K ° (2.8), into an a rb i t r a ry  co-ordinate 
system.  T h u s  the  classical three-vector  of hea t  q goes over  into spacelike four- 
vector  q" ,  ~ / ~ t  goes over  to c D  (2.14), and  gradient  V goes over  into t ransversa l  

J_ 
der iva t ive  ~ = S~ ~ .  

Another  possible covar iant  t ranscr ip t ion  of (C-¥) equat ion is 

(4.1o) q~ + ~cDq ~ = - -  K S ~ { ~  + ~Du~} . 

I n  this case, the t empe ra tu r e  gradient  Vv~ on the r igh t -hand  side of the  (C-¥) 
equat ion  has been t ranscr ibed to a somewha t  more  ex tended  covar ian t  fo rm 
used by  ECKART. E i the r  of the  a l ternat ive  covar ian t  t ranscr ipt ions of the  (C-V) 
equat ion might  be used in the discussion to follow, bu t  we shall prefer  the  sim- 
pler eq. (4.9). 

First ,  we shall determine the  longitudinal  and  t ransversa l  components  of 
the  four-vector  of hea t  flow q~ in an a rb i t r a ry  local co-ordinate system.  Ac- 
cording to (2.15) 

II 2. 
(4.11) ~ : u~q + q~" , 

I] 
(4.12) q : - -  ut~q~ , 

± 

(4.13) q ~ =  S~q ~ . 

In t roduc ing  in (4.12) for ~z f rom (4.9), we get wi th  respect  to (2.12) 

[I 
(4.14) q = ~ u B c D q B ,  

which in t roduced back  into (4.11) gives 

± 

(4.15) q~ = q~ - -  ~u~ u~ cDq ~ . 
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:~'aturally, it holds tha t  
± 

(4.16) u~,q ~ = 0 .  

The construction of vector w -~ will be carried out as follows: Let  us p u t  

.L q~ q~ 
(4.18) w ' = - -  or w . . . .  ~u~u~ .Dq~  

C 

± 

where q~ is the transversal  component  of the four-vector of heat  flow relative 
to the world line in the sense of (2.9); i .e.  ~ quant i ty  defined by eq. (4.15). 
According to definition (4.3) and because of (2.12), vector  w ~ must  also satisfy 
condition 

(4.19) u~,w ~' = 0 .  

But  this condition is compatible with the construction of four-vector w ~ done 
in accordance with (4.18), as directly follows from eq. (4.16). For  the transit ion 

-~ 0 eq. {4.18) also goes over into the corresponding Eckar t ' s  equation. 

In  contradist inction to Eckar t ' s  t heo ry  from which it follows tha t  there 
is no invariant  density of heat  different from zero, i .e.  tha t  i t  holds tha t  
IE 

q -~  - - u ~ q  ~ = 0 - -  refer to (1) eq. (25), - -  the more exact theory of heat  con- 

duction due to Catt~neo-Vernotte,  leads to the existence of nonzero invari~nt 
density of heat  defined by  eq. (4.14). The complete energy-momentum tensor 

W ~ for an elastic cont inuum with heat  conduction according to {4.5), (4.6) 
and {4.18} is obtained in the form 

(4.20) IV ~ = (me -~ + me)u~ 'u~  + w ~'~ + 1 ± _L ( q ~ ¢ +  q~u ~) . 
C 

5 . -  R~lativi~tic formul~ttion of the first law of nonequilibrium thermodynamics 
(or hydrothermodynamics). 

By the covariant  form of the first law of hydro thermodynamics  we denote 
a scalar equation describing the projection of vector ~flV '~ on the direction 
of the world line 

(5.1) u s ~ W ~ = 0 .  

By  using eqs. (4.20, 16, 7), (3.2), (2.5, 14) and ident i ty  

_(_ f i 

D ( u ~ q  ~) ~ u ~ D q  ~ + q-~ D u ~  = 0 
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we get  for an elastic con t inuum 

(5.~) , 1 ±  

or, in view of (4.8), (2.12, 13), (3.4) for a viscous fluid 

(5.3) 1 ± 1 c~ 
{ G q  ~' + D~ + - -  . 

The  nex t  equat ion 
± ± 

(5.4) mcDq ~ ~ = - - (  ~ ÷ q ~ D u ~ )  

defines quan t i ty  q as the <( specific hea t  )~ received by  the uni t  mass  f rom the sur- 
roundings.  Through  the use of eq. (5.4), the  first law of the rmodynamics ,  
i .e. eq. (5.3) m a y  be wri t ten in the  following form:  

(5.5) Dq = Ds  + p l ) v  - v P  ~ ~ ~ uz , 

which in the nonrelat ivis t ic  approx ima t ion  w/c <<1, where i t  holds t ha t  e l ) -+ d/d  
(see (2.14)), goes over into the well-known form of the first law of t he rmodyn-  
antics for the  ~4scous fluid. The to ta l  hea t  content  Q in some three-dimensional  
space  vo lume V inside of which the  fluid is a t  rest  a t  a given ins tan t  is then  

<5.6) q ('). 

V 

The r igh t -hand  side of eq. (5.4) contains,  in addi t ion to the  usual  four- 

divelgence,  also the t e rm - -  ~ Du~, expressing evident ly  some supply  of hea t  
ar is ing f rom the accelerated flow of hea t  in the  fluid. ~he  t e rm  has no analog in 
the classical theory.  I t  drops out  for a uni formly  flowing fluid. 

,6. - The  re la t i v i s t i c  e q u a t i o n  for  h e a t  c o n d u c t i o n  in  a c o n t i n u u m .  

To i l lustrate the procedure of obtaining f rom the jus t  fo rmula ted  theory ,  
%he equat ions of hea t  conduction,  and  to make  sure t h a t  our theory  real ly  

(') Integral quantities will also be  derived sinfilarly from other specific quantities. 

Thuse.g.  f o r the to ta l in t e rna lenergy ,  w e w r i t e E i m s d V ,  for entropy J=f.  dV, etc. 

l" V 
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leads in a special case to  correct  eqnat ions of hea t  conduction,  let  us derive t h e  
equat ion  of hea t  conduct ion directly, a t  least  for the  case of an incoherent  gas  
a t  mechanical  equil ibrium, i .e.  behav ing  f rom the  s tandpoin t  of macroscopic  
mot ion  as a solid body  in which thermM changes produce no dilatat ion.  I t  
then  holds tha t  

(6.1) u ~ = c o n s t .  

The  first law of t he rmodynamics  (5.2) then  has the  fo rm 

± 
(6.?) mDe + 1  ~:q:, : 0.  

C 

Assume tha t  the in ternal  energy (thermal) of an incoherent  fluid explicit ly de- 
pends on v and ~ only, i .e.  t h a t  i t  holds tha t  s ---- ~(v, ~) ,  and then  in t roduce  
the concept  of specific hea t  a t  cons tant  vo lume (in the  rest  system) 

(6.3) 7 =  ~ • 

A quan t i ty  thus defined migh t  also depend on t empera tu re ;  bu t  assuming tha~ 
this is not  the case, i t  holds t h a t  

( 6 . 4 )  ~ = ~ .  

Or, eq. (6.2) has the fo rm 

(6.5) - -  m y c D v  ~ = ~-~ '  . 

Combining now eq. (6.5) with the equat ion of hea t  flow (4.9), we obta in  
the  required covar iant  equat ion  of hea t  conduction.  Le t  us car ry  out  ope- 
ra t ion  ~ on eq. (4.13) and take  account  of (6.1) and  (4.9), (2.12, 18); not ing 
the  in te rchangeabih ty  of operators  ~,D = D ~ ,  we obta in  

(6.6) ~ = - -  K ~ [  S ~ + ]  - -  u c D ~ [ S ~ q ~ ] ,  

which, in view of (2.17) and (6.1), and of (4.13) gives 

And this equation, in connection with (6.5), finally gives the promised  co- 
va r i an t  fo rm of the equat ion describing hea t  conduct ion according to CATTANE~ 
and V E R N O T T E  ': 

(6.8) m y c D ~  = K { [ ~  + D 2} ~ - -  ~ m y c ~ D ~ .  
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To make sure of i t  r ight  away, let us observe the process, of heat  conduc- 
tion from the proper  local system K °. Then eq. (6.8) changes in fact  into 
eq. (1.5). 

Finally, in any a rb i t ra ry  inertial co-ordinate system, the relativistic co- 
var iant  formulat ion of the equat ion of heat  conduction (6.8) ma y  be rewri t ten 
incovar iant ly  with the aid of (2.18) as follows 

(6.9) [~.~_(mY~ 1)  1 d " ' 9 ' m 7 1 d t $  (d  ~ f_w.V) 
K ~ I - -  w2/c "- "dr 2 K ~/1  - -  w2/c ~ dt  --O dtt = ~--t " 

For  w-+  0, we again obtain (1.5). 
A general equa-tion of heat  conduc-tion in a flowing fluid could be obta ined 

from -the first law (5.3) if a single equation containing nei ther  q~ nor s coul4 
be arrived at  with the aid of eqs. (4.9) and s = s(~,  m) .  

7. - Relativistic formulation of the second law of nonequilibrium thermodynamics 
(or hydrothermodynamics), and determination of entropy production (case of 
a simple fluid). 

According to the nonequflibrium thermodynamics ,  a s t a re ' func t ion  gf cal- 
led the en t ropy  of the system (see (12), Chap. I I I ,  § 1) can be int roduced in 
any macroscopic system. In  .the Sections .to follow, we shall make  use of the 
te rm specific entropy,  i .e. ent ropy  of unit  mass in a rest  system ~, and of the  
concept of four-flow of en t ropy ~ which will evident ly  depend, in a h i ther to  
not determined manner,  on the four-vector  of heat  flow and on the reciprocal 
value of temperature .  

The mathemat ica l  formulat ion of the law of en t ropy  of nonequil ibr ium 
thermodynamics  in a covariant  form is 

(7.1) mcD~] = ~¢,~=~ ~- ~ , 

(7.2) o" ~> 0 .  

Equa t ion  (7.1) is a general form of -the so-called specific en t ropy balance equa- 
tion. The symbol a denoting a source te rm is the en t ropy Production. 

Our discussion will be restr icted -to a so-called simple viscous fluid (see (1)) 
characterized by  the following: specific en t ropy is an explicit  function of only .the 
local internal  energy s and volume v, i .e.  

(7.3) ~ = ~](s, v) 

(13) S. R. DEGRooT, P. MAZUR : ~onequi l ibr ium Thermodgnamics. (Amsterdam, 1962). 
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and not  of the co-ordinates or gradients  e or v. Assumpt ion  (7.3) is required 
in order to express the  to ta l  differential of the  specific en t ropy  ~] with the aid 
of Gibbs equat ion in the  form (the second law) 

(7.4) fl, D~ l = De + p D v .  

] n nonequi l ibr ium the rmodynamics  this formula  is assumed to remain  valid 
for each e lement  of mass  along the world line even outside the rmos ta t i c  equi- 
l ibrium. ~he  va l id i ty  of formula  (7.4) and of the corresponding nonequi l ibr ium 
the rmodynamics  as well, is of course restr ic ted to states not  too far  f rom the 
equil ibrium states. For  detailed informat ion on the range of va l id i ty  of equa- 
t ion i7.4), refer, e.g. to (12) Chap I X ,  or (~3), p. 11, p. 220. Nevertheless,  it 
can be said t ha t  for the  mos t  usual  cases of hea t  propagat ion ,  the appl icat ion 
of (7.4) is justified, because the relat ive change of t empe ra tu r e  Av~/v ~ on the 
mean  free p a t h  of molecules is always slight for a mass medium.  The accu- 
racy of t r anspor t  equat ions for hea~, be i t  Four ier ' s  or Ca t t aneo-¥e rno t t e ' s ,  
is dependent  on vi r tual ly  the same limitations,  and  it  roughly holds tha t  i t  
is the gTeater, the higher the t empera tu re  of the sys tem and the  smaller the 
differences in t empera tu re ,  because then  even the  thermM conduct iv i ty  ap- 
proaches a constant ,  which is an assumpt ion  accepted  herein. 

Equa t ion  (5.3) in connection with Gibbs '  equat ion (7.4) gives 

(7.5) ~D~=-- ~ f i / - - c ~ ( ~ + ~ l ) ~ , } +  ~ P ~ ,  

which is bu t  an explici t ly fo rmula ted  equat ion of en t ropy  balance (7.1). 
comparison of eqs. {7.1) and (7.5) yields two impor t an t  relations 

l 

(7.6) ~ q~ (t~ = ~- or ~?~ = ,~ ,9 u~'u~cDq~ ' 

(7.7) 
I 2- ~ V 

= - - ~ { c ~ 9  + 0 / ~ }  + ~ P~u~.  

A 

Equa t ion  {7.6) defines the four-vector  of en t ropy  flow and eq. (7.7) gives an 
explicit  expression for en t ropy  product ion in the simple viscous fluid. 

The expression for ~ might  be wri t ten  in ye t  another  fo rm 

(7.s) 

I f  we use instead of eq. (4.9), eq. (4.10) the last  t e rm  in the  bracke t  will fall out. 

(13) S, R. DE GROOT: Thermodynamics o/Irreversible Processes. (Amsterdam, 1962). 
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There  are two irreversible processes t h a t  in our  case are responsible for  
the en t ropy  product ion  inside a mass  element:  first, hea t  conduct ion with  its 
corresponding first t e r m  on the  r igh t -hand  side of eq. (7.8), and  second, ir- 
reversible processes associated wi th  the  dissipation of energy in viscous flow; 
the  la t te r  effect is represented  b y  the  second t e r m  on the r igh t -hand  side of 
eq. (7.8). 

Tha t  the invar ian t  rest  value, and  hence also the  value given b y  eq. (7.8), 
of the  en t ropy  product ion  a always satisfies fo rmula  (7.2), is well known f rom 
the kinetic theory  as Bo l t zmann ' s  H - t h e o r e m  ((1~), p. 171). 

Through  the  use of eq. (5.5), eq. (7.4) m a y  be rewr i t ten  also in another  
form as follows: 

Dq -~ v P  ¢'~ ~,u~ 
(7.9) D~} = ~9 

Final ly  we shall give several  notes abou t  ma thema t i ca l  determinateness  of 
the theory.  Mechanical and  the rma l  behav iour  of the simple fluid are com- 
pletely described b y  th i r teen  quanti t ies  m = 1/% u ~, p,  s, q~, t~, ~7 for the  
determinat ion of which we need th i r teen  equations with the  necessary n u m b e r  
of bounda ry  and  initial conditions. These are eqs. (2.5), (3.2), (4.1), (4.9), (7.4), 
the equat ion of in ternal  energy s --  e(m, ~) and  the equat ion  of s ta te  p = p ( m ,  t~). 

This sys tem of equat ions m u s t  be completed b y  condition a > 0  (see eq.(7.2)) 
which selects f rom the possible solutions of the sys tem only solutions t h a t  
have  physical  meaning.  Thus the sys tem of equat ions for a simple fluid in ques- 
t ion const i tutes  ax iomat ic  theorems of the  theory,  f rom which all other  laws 
of the  phenomenological  theory  can be deduced. Other  t h e r m o d y n a m i c a l  func- 
tions t h a t  are used in thermos ta t ics  can also be in t roduced in our theory,  and  
their  corresponding balance equations can be der ived (Details see (~4)). 

8.  - B o u n d a r y  and  in i t i a l  cond i t i ons .  

The bounda ry  conditions m u s t  be satisfied a t  all t imes on a ( two-dimen- 
sional) surface forming the bounda ry  between the fluid and  the  surroundings;  
f rom the s tandpoin t  of world geometry ,  this means  t h a t  the  bounda ry  condi- 
tions mus t  be fulfilled on the  sheet of the world tube  (i.e. on a three-dimensional  
surface (*)) associated wi th  the fluid. The bounda ry  condition of a t he rmodyn-  
amic p rob lem states  - -  according to Newton ' s  cooling law - -  t h a t  the normal  
heat  flow on the b o u n d a r y  be tween the  fluid and  its surroundings,  is propor-  

(14) M. K]~ANY~: P r e p r i n t  [ P P - 1 4 ,  Czee. A c i d .  Sci. P r a g u e ,  ( J a n u a r  1965). 
(*) i . e .  two space  a n d  one  t i m e  d i m ens i ons .  

5 - l l  N u o v o  Cimento  B .  



66 M. KRAN YS 

tional to the difference of temperature  ~ of the surface, and that  of the sur- 
roundings 0 : 

(8 .1 )  q~v~ = h ( #  - - 0 )  ( * ) ,  

where u~ is the unit  normal to the sheet of world tube (~v ~ = ÷ ]) so tha t  it 

evidently holds tha t  u~v~ = 0, and h is the invariant  constant  called coef- 
ficient of surface heat  transfer. Combining the latter equation whith (4.9), 
we obtain after rearrangement  the required equation in the explicit form. 

]n  case u ~ = const, it is also v~ ~ const, i .e.  the boundary  area between the 
fluid and its surroundings does not  change with time, and we get 

(8.2) - -  Kv~ ~',~ -~ h(~ - -  O) + ~hcD(t9 - -  O) .  

I n  a rest system when vz = (0, v~) holds, the above equation reduces to eq. (1.9). 
;In case when the fluid boundary  is thermally insulated, the above condition 

holds true with h = 0. And in case the fluid boundary  is permanent ly  main- 
ra ined at the temperature  0 of the surroundings, the above condition holds 
true with h = c~ or v~ = 0. 

The initial conditions of the thermodynamics  problem (1.7, 8) which must  

be fulfilled at the initial t ime Xo = const (in covariant  writing u ' ~ x  = const) 
within the entire volume of the fluid in cov~u'iant t ranscript ion are 

(8 .3 )  [~V]~o- . . . .  ~ = g ,  [¢DO]~,o_ . . . .  ~ = G .  

Here g and G are given functions of space co-ordinates of points lying inside 
the fluid, or functions specified on the initial normal  cross-section of t he  world 
tube of the respective fluid. 

Naturally,  all the boundary  conditions go over into a well-known form 

in Fourier 's  approximat ion ~-~  0. ;In the classical, i.e. nonrel~tivistic approx- 
imation when w~[c ~ ~ 1, expression cD goes over to ~/St  -~ w-V  in all equations. 

I n  a hydro thermodynamica l  problem, the boundary  and initial conditions 

for mechanical  quantities retain their form known from hydrodynamics .  ~hus  

the boundary  condition for u viscous fluid represents the fact  Chat on the boundary  
of a three-dimensional space filled with the fluid, the fluid velocity u ~ mus t  

be equal to the velocity of the confining wall U ", namely  

(8.4) u "u= U ~ • 

At the same time, the pressure in the fluid on the boundary  mus t  be equal to 

(*) The discussion is restricted to cases for which Du: '=  O. 



R ~ L A T I V I S T I C  I I Y D R O D Y N A M I C S  "WITH I R R E V E R S I B L E  TH:E:RMOOYNA)IICS :ETC. 67  

the pressure of the confining medium P. Thus 

(8.5) p = / ~ .  

The initial conditions consist in tha t  the initial densi ty ~ ,  or pressure /~ and 
flow veloci ty ~ must  be known within the entire (three-dimensional) space 
occupied by  the fluid. 

9 .  - C o n c l u s i o n .  

The paper  presents a formulat ion of special relativistic hydro the rmodynam-  
ics (i.e. dynamics of mechanico- thermal  processes) of a simple viscous fluid, 
free of the paradox of heat  propagat ion at  a velocity exceeding the velocity 
of light. 

The theory  was developed by  correcting Eckar t ' s  (1) theory  in the sense 
to satisfy the requi rement  of finite heat  velocity. Although covariant,  Eckar t ' s  
theory  admits also infinitely fast heat  propagat ion which is incompatible with 
Einstein 's  principle of relat ivity.  The paradox was eliminated in par t  by  sub- 
st i tut ing a more exact  relation, Cat taneo-Vernotte 's  eq. {4.9) for the so-called 
Fourier 's  t ranspor t  equat ion describing the relat ion between heat  flow and 
temperature~ and in par t  by  introducing into the energy-momentum tensor 
only the transversal  par t  {4.15) of the heat  flow four-vector  as defined by  the 
C-¥  equation, instead of the original Eckar t ' s  four-vector  of heat  flow. The 
new energy-momentum tensor (4.20) thus obtained forms the  basis of the 
entire theory.  

The equation of heat  conduction (6.8) derived with the aid of the theory  
founded on the corrected energy-momentuIn tensor, clearly indicates tha t  the 
velocity of heat  propagat ion is in fact  l imited by  a veloci ty V <= c, accordingly 
to Cat taneo-Vernot te 's  theory  of heat  conduction. 

At the same time, i t  was necessary to change the definition of en t ropy  
flow (7.6). All other  changes followed automatical ly.  

In  Fourier 's  approximation,  i.e. V--> c~ or u -+  0, all newly defined quan- 
tities as well as equations go over into the corresponding quantities and equations 
of Eckurt ' s  theory.  

So far us the modification carried out on the energy-momentum tensor 
is concerned, we believe tha t  we have brought  not  too great  a change in Eckar t ' s  
s ta tement  ((1), p. 919): , The correct form of the energy-momentum tensor 
is still a ma t t e r  of discussion )). 

We have seen tha t  hydro thermodynamics  admits formulations tha t  are in 
accord with the principle of special relat ivity.  Fur the r  extension to the theory  
of general re la t ivi ty  offers no special difficulties (see e.g. (8-~,~)). An extension 
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of the hydro the rmodynamies  of simple fluids to the m a g n e t o h y d r o t h e r m o d y n a m -  
i ts  of simple fluids is similarly clear (lo11). 

E ckar t ' s  relativist ic theory  rest ing on Four ie r ' s  phenomenologicM equation,  
does not  exclude Onsager 's  reciprocal relat ions in case the  hea t  is conducted  
in an anisotropic m ed i um  or is accompanied  b y  diffusion (for mix tu re  of sub- 
stances). On the contrary ,  Our theory  based on Cat taneo-Yernot te ' s  equation,  
i. e. on the  equat ion in which the  hea t  flow is no longer p ropor t iona l  to the  temper -  
a ture  gradient  only, is of t h a t  k ind  t h a t  i t  does not  sat isfy Onsager 's  reci- 
procal  relat ions (see e.g. (13) p. 224), a t  least  in their  present  form. Thus 
Onsanger ' s  relat ions are val id solely on the  assumpt ion  t h a t  the  phenomenolo-  
gical t r anspor t  law is in the  fo rm of Four ier ' s  equation,  i .e.  the presence of the  
pa radox  of ins tantaneous  t r anspor t  veloci ty  is tac i t ly  implied. 

The au thor  is grea t ly  indebted  to Prof.  M. BICDI6KA for his s t imula t ing  
and  valuable  advice, interest  and  encouragement .  Thanks  are also due to 
J .  PREINHAELTEI¢ for his helpful  comments  and  discussions. 

A P P E N D I X  

Notes on the relativistic theory of diffusion. 

Another  typica l  t r anspo r t  phenomenon  (besides t he rma l  conduction) is 
ord inary  diffusion usually described by  an equat ion of parabol ic  t ype  and  this 
equat ion is also loaded with the pa radox  of ins tan taneous  p ropaga t ion  of dif- 
fusion flow. Also in this case we can reach the de]inii tation of p ropaga t ion  
veloci ty  in a similar  w a y  as we did in the  case of hea t  conduction.  

Le t  us consider the phenomenon  of diffusion in an  isotropic nonreact ing  
mix tu re  of N components  (which are numbered  b y  index A = 1, 2, ... N) in the  
absence of external  forces. 

The law of conservat ion of mass can be wr i t ten  

(A.1) ~,(u~'m) = 0 ,  A = 1, 2,  ... N ,  
A A 

where m is the  mass  densi ty  and  u ~ the  four-veloci ty  of componen t  A. Af ter  
A A 

sum~tion over  all components  we obta in  

(A.2) ~,(u~'m) = 0 ,  
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where m is the total  mass density and u -~ the barycentr ic  velocity, which are 
defined by 

(A.3) m ---- ~ .  m ,  m u  ~ ~ -  ~ ,  u ~ m or u~ = Z c u ~ "  
A = I  A A = I  A A A = I  A A  

Here c = m / m  is the concentrat ion of the component  A. The diffusion flow of a 
A A 

substance A with respect to the barycentf ic  mot ion is 

(A.4) p~' = e r a ( c ( ' - -  u ~') . 
A A A 

I f  we pu t  the expression for u~m from (A.4) into eq. (A.1) we obtain 
A A 

1 
(A.5) - ~o,p  °' ~ - -  ~ ( m u  ~') . 

(~ a A 

With m = m c  and with eq. (A.2) we obtain eq. (A.5) in the form 
A A 

(A.6) 1 - ~ o , p ~ ' = - - r o D e .  
V a A 

~Now we use instead of Fick 's  relativistic t r snspor t  equation (see STUECKELBE]~G 
and WA~DERS (7)) the equation 

(A.7) + = - s p y  + 

where ~ is the diffusion coefficient (of component  A) in the rest frame, and s is the 
A A 

new coefficient (') which is connected with 2 and maximal diffusion velo- 
A 

city Ya in the rest frame by the relation 

A ( A . s )  ( ' ' )"  

~Tow we res t r ic t  to the most  simple case of ordinary diffusion without  
conduction of heat, and cross-effects. Le t  as now suppose tha t  ,~= const, 
and simultaneously q ~ =  0 and u ~ = const ( i . e .  m ~ const) and tha t  we have 
only a binary system ( N : 2 )  with e < ~ l  ~nd e ~ l  (see (~:), p. 254). 

1 

Then eq. (A.7) after application of ~ and with the use of (2.17). and (2.18) is 

(A.9) 
1 1 1 

(') We may call × the velocity cut-off coefficient for diffusion. 
(*') For (a gas) ~ 1 0  -1 cm~.s -1, VA_~3.104 cm.s -1 (velocity of sound) is ~_~10-1°s. 

A A 

This is again ~ - - r  o {see footnote in Sect. 1). 
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F i n a l l y  us ing  eq. (A.6) we o b t a i n  

(A.IO) oDe-~ ~ {[] + D~}e 1 - -  ~c°'D2 e .  

This  is the  diffusion e q u a t i o n  in  c o v a r i a n t  fo rm free of the  p a r a d o x  of in-  
s t a n t a n e o u s  diffusion p r o p a g a t i o n .  

RIASSUNTO (*) 

Si presenta l ' idrotermodinamica relativistica speciale (eio6 la dinamiea dei processi 
termomeccanici) in forma covariante per un fluido viscoso semplice, priva del paradosso 
della veloeit~ infinita della eonduzione del calore. Si 6 sviluppata la teoria correggendo 
quella di ECKART (1) the ammette anche una propagazione del calore infinitamente 
veloce, il che 6 ineompatibile col prineipio della relativit~ di Einstein. t l  paradosso 6 stato 
eliminato, in parte sostituendo la relazione fra flusso di ealore e temperatura - -  la 
cosiddetta equazione fenomenologiea del trasporto di Fourier - - c o n  un'equazione pier 
esatta dovuta a CATTANEO e ~¢~ERNOTTE (2.8) ed in parte modificando in modo corrispon- 
dente il tensore energia-impulso. I1 nuovo tensore energia-impulso contiene tut t i  i ter- 
mini  ehe compaiono nel tensore di Eekart,  ed anche termini che hanno a coefficiente 
fattori 1IV 2 dove V 6 la massima veloeit~ del oalore nel mezzo. Infine si mostra che 
anehe nei proeessi di diffusione si pub eliminare il paradosso della propagazione istan- 
tanea del flusso di diffusione dalle equazioni che descrivono fenomeni di diffusione 
relativistici. 

(*) Traduz ione  a cara della Redaz ione .  


