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Summary. This paper presents the special relativistic hydrothermo-
dynamics (i. e. dynamies of mechanico-thermal processes) in eovariant
form for a simple viscous fluid, free of the paradox of infinite velocity
of heat conduction. The theory was developed by correcting Eckart’s
theory (1) admitting also infinitely fast heat propagation which is incom-
patible with Einstein’s principle of relativity. The paradox was eliminated
in part by replacing the relation between heat flow and temperature
— the so-called Fourier’s phenomenological transport equation — by
a more exact equation due to CATTANEO and VERNOTTE (%3), and in part
by changing in a corresponding manner the energy-momentum tensor.
The new energy-momentum tensor contains all terms appearing in
Eckart’s tensor, as well as terms having in coefficient factors 1/72 where V'
iz the greatest heat veloeity in the medium. Finally it is shown that
also for diffusion processes one can eliminate the paradox of instanta-
neous propagation of diffusion flux from the equations describing rela-
tivistic diffusion phenomena.

1. — Introduction ().

When deseribing heat conduetion in a mass medium. (or transfer processes
in general), it is customary to use Fourier’s transport equation (F) in con-

(*) This paper is an extract from the report (%) which was presented as thesis to
the Faculty of Mathematics and Physics of Charles University in Pragne in April 1964,

(Y) C. EcrarT: Phys. Rev., 58, 919 (1940).

(3) C. CaATTANEO: Compt. Rend., 247, 431 (1958).

(® P. VERNOTTE: Compt. Rend., 246, 3154 (1958).

(*) M. Kranv§: Report No 4/64 IPP Czech. Acad. Sci. Prague, (April 1964).
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nection with the equation of heat conservation (*) (1.1) (or, possibly, the equa-
tion of conservation of quantity of transfer):

(F) qg=—HKgrad 9,

(1.1) ymi = —divq,

so that quantities g and &, i.c. heat flow density and temperature are defined -
by equations

mo.
(1.2) Aq——yquz(),
(1.3) Az?—y%’,{?: 0,

of the parabolic type. But these equations admit the propagation of phys-
ical processes at an infinitely large velocity. From the point of view of relativity,
this is a paradox — the so-called paradox of infinite velocity of propagation.

(ATTANEO (3) and VERNOTIE (°) suggested a generalization of Fourier’s
phenomenological eq. (F) in the following form

A
(C-7) q -+ xfa% = Kgradd,

where » (™) is a newly introduced macroscopic constant. The connection between
» and the kinetic quantities might be found in (2). The (C-V) transport equation
in connection with the equation of conservation (1.1) gives following equations
for gquantities g and #:

m .. m .
(1.4) rotrotq+Aq—-xy—K_q—yEq:0,
ni-- m-

which are already of the hyperbolic type. This eliminates the paradox of infi-
nite veloeity of propagation of heat {or transfer processes); refer also to (*).

(*) Considering an isovolumic precess.

(**) Constant ¢ introduced.in (2) is linked with constant x used in the present
study, by relation » = o/K. x» has here the dimension of time and its order is iden-
tical with that of the so-called characteristic molecular time 7,, ¢.e. the mean time
between two successive collisions. For gases close to normal conditions, it is roughly
%~ Ty~ (1078 -10710) 5.

(®) P. M. MorsE, H. FesuBacH: Methods of Theoretical Physics, Pt. I, Chap. 74,
p. 865 (New York, 1953).
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On the basis of kinetic considerations for the case of a gaseous medium, CAT-
TANEO (2) then stated the grounds of the new equation.

Let us now return to eqs. (1,4) and (1.5) for the vector of heat flow and tem-
perature. The two equations are in the form of a so-called « telegraph equation »
which describes pulse propagation in a dispersive medium. This means that
various points of the pulse with generally different displacements possess also
different translational velocities whose magnitude ean reach values only within
the interval from 0 to ¥V, the maximum possible velocity of propagation (%)
being

(1.6) Vr:-l/%fm<oo.

Thus only the velocity of propagation of the signal front reaches the value of
V, whereas the signal itself increasingly smears and the wave front correspond-
ing to the end of the signal does not propagate at all but remains standing.
In the limiting case x>0 we obtain V— oo (which means that for the old
theory the range of velocity dispersion is from zero to infinity), and Cattaneo-
Vernotte’s (**) eq. (C-V) changes into Fourier’s eq. (F).

Another difference between the theories of heat conduction based respec-
tively on (1.5) and (1.3), lies in that the partial differential eq. (1.3) possesses
but a single initial condition while the corresponding generalized eq. (1.5)
must, have two initial conditions

(1.7) [ﬁ(ry t)]¢=0 =g(r),
od(r, t)
(1.8) { o | G(r) ("),

where ¢ and G are the given continuous functions of position. We note that
according to Cattaneo-Vernotite’s theory and in contradistinetion vo Fourier’s
theory heat pulses can also be excited by the initial change in temperature
alone, as indicated by condition (1.8). In the vast majority of practical applica-
tions, it will, on the other hand, be possible to simply put G(r) = 0. Similarly,
the boundary conditions for the solution of eq. (1.5) will have somewhat differ-
ent form than those for eq. (1.3). Thus e.g. the so-called Newton’s law of cooling
(for details refer to Sect. 8) will be

\
(1.9) —Kv,-B’ﬂ:h(ﬁ—G)+h;¢§0~t(ﬁ——0) (),

(*) By its order, it corresponds to the velocity of sound in the gas under given
conditions.
(**) The order of author’s names is alphabetical.
(™) In case that the surface of the body does not move relatively to its surround-
ings and the boundary surface does not change its shape with time.
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where »;, (j =1,2,3) is the outer unit normal to the boundary surface, kb
the coefficient of surface heat transfer, # the temperature of the surround-
ings.

An attempt to formulate the energy-momentum tensor of a fluid with heat
conduction was made by vaN DANTZIG as early as 1939 (¢). But so far as we
know, the first systematic relativistic theory of flowing fluid which takes into
consideration the effects of heat conduction, was formulated in 1940 by ECKART
in (). The basis of this Eckart’s relativistic thermodynamics of flowing continuum
is just the relativistic form of Fourier's law (F). The essential insufficiency
of Eckart’s formulation is that — although in covariant form — it admits an
infinitely fast heat propagation which is incompatible with the relativistic theory
because the primary postulate of relativity is that the maximum velocity of prop-
agation of physical processes cannot exceed the velocity of light in vacuum (*).
It is just Fourier’s law (F) or the equation of heat conduction (1.3) following
therefrom, that does not respeet the important eonsequence (as well as the pos-
tulate) of Einstein’s principle of relativity, becaunse according to (1.3), the front
of the heat wave propagates with an infinite velocity. But if we put the relativ-
istic form of Cattaneo-Vernotte’s eq. (C-V) instead of the relativistic form of
Fourier's law (F) as the basis of the relativistic thermodynamics of flowing
fluids, we eliminate the paradox of infinite veloeity of heat propagation from
Eckart’s theory. This will be the subject of our discussion in the Sections to
follow.

The general relativistic theory, with which Stueckelberg works (see (7)),
is practically identical with that of Eckart if the gravitational field in the former
is neglected.

The author is also acquainted with a study by Pham Mau Quan (°) on the
relativistic theory of fluids with heat conduection. The theory presented in that
study, is again a version of that of Eckart’s. The theories of Eckart and of
Pham Mau Quan can be generalized to include the case of relativistic magneto-
hydrodynamics — refer, e.g. to HUGHES (1), or PHAM MAU QUAN ('1); and
as the studies of Stueckelberg and of Pham Mau Quan indicate, general relativ-
istic versions of such theories are also possible.

(*y D. vax Da~Nrtzis: Physica 6, 673 (1939) (see p. 688).

(*) This means that in the arbitrary pulse representing the real physical phenome-
non whose parts propagate at various velocities, none of the parts of the pulse can
propagate faster than the light in vacuum.

(*y E. C. G. STUECKELBERG and G. WaANDERS: Helv. Phys. Acta, 26, 307 (1953).

(®)) E. C. G. STUECKELBERG: Helv. Phys. Acta, 35, 568 (1962).

(%) PHam MaAvu Quan: dnn. di Mat. pura appl., Ser 1V, 38, 121, (1955).

(% W. F. Hugugs: Proc. Cambr. Phil. Soc., 57, 4, 878 (1961).

(1Y) Prav Mavu Quax: Journ. Rational Mech. Anal. 5, 473 (1956).
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2. — Geometry of space-time. Resolution of space-time and world tensors (*).
We shall use Galilean cordinate systems
2.1) x* = (ct, 2, ¥, 2), r,=(—ct, >, 9y,2), a=20,1,2,3,

-3

for which the metric tensor is
(2.2) —fo=9n=9r=gua=1, g,=0 for a#p, gaﬁ;gaﬁ'
The world interval ds is directly identified with the « proper time »:

2
2.3) ds? = — g s Az~ daf = c>ds (1—“’—), wr =52+ Yr4 42,

e

Furthermore, we define the four-velocity of mass as

2.4) o 477 c__ w —
(2 CE G T Ve Ve T &

Then it holds that
(2.5) wu, =—1,

(2.6) u*ogu, =0, U, Opu™ = 0.

For partial derivatives we use the symbols:

2 (1 @ [ 12
(27) 6“:@‘— (;‘a—t’v)’ o :a‘v—a— (—Ea,V)-

The proper local frame in which mass medium is at rest (w, = w, = w, = 0),
we denote by K,. In this case

(2.8) w=(1,0,0,0), u,=(—1,0,0,0).

In a proper local co-ordinate system the velocity four-vector »*, forming a
tangent unit vector to the world line, determines the local axis of proper time.

(*) We have adopted almost ewerywhere Lckart’s terminology and notation from
paper ().
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Any world vector P* can be resolved into a longitudinal (i.e. time) component
B

P* and a transversal (i.c. space) component P*. Thus we have

(2.9) Pr=P4 P = w P+ SiP,
where

(2.10) P=—u,p’

and

(2.11) 5= 8% 4 utu,

is projection operator to local proper space. From this definition it follows
that

(2.12) u,S5=0, W8=0, 858 =248;.
Equally we can invariantly resolve differential operators:
(2.13) 8% 0 4 = —ut D - 8388,

where symbol D desighates

d 1 c
2.14 D= u,of — 1 (g v,
(2.14) upel = o or D T <8t Cw )

Taking into account the latter definition and eq. (2.6) we obtain
(2.15) wDhu,=0, w, Du* =90 .

Later we shall also use the following relations

(2.16) O=0,0"=—D+ 800,& + (Du,) &,
(2.17) 2,[8;2"1=0 + D* 4 (2,u")D,
(2.18) D — Do = (¢*uy) d° .

In the last formula one must assume that the differential operator will always
be applied only to functions @(x)* of such properties that ¢ @ = 9% 5* P holds.
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3. — Description of the motion of matter.

Moving matter will be decribed in the same way as by BECKART (') using
a four-vector of the mass flow

(3.1) m®* = mu®, m*m, = —m?,

where m is the invariant proper mass density of the continuum.
The law of conservation of matter is expressed by equation

(3.2) aom*=0,

which on introduction of the invariant specific volume

(3.3) vt
b4

may be written as follows

(3.4) mDv = o u*.

The interpretation is as follows: ¢_»* is a measure of expansion or compres-
sion of the specific proper three-volume ». Thus for a solid body is v = const and
hence also u* = const for all mass elements of the body.

4, — Construction of the energy-momentum tensor in relativistic hydrothermo-
dynamies.

In a mass continuum, there occur next to purely mechanical, reversible
processes, also thermal processes in the broader sense, i.e. irreversible proces-
ses such as heat conduction, viscous processes, diffusion phenomena, chemical
processes, efc.

In the Section to follow we shall discuss only such an isotropic continuum
(concretely, a fluid) in which only two irreversible processes — heat conduction
and viscous processes — take place in addition to mechanical events. Such a
restriction results from the fact that our considerations are only concerned
with a homogeneous medium forming a single pure substance so that dif-
fusion is absent and neither chemical processes nor phase transitions occur
according to our assumption.

Since our dynamic study of the fluid will involve both thermal and mechan-
ical aspects, we shall from time to time-—for the sake of clarity —resort to
the eclassical term of continuum dynamics (or hydrodynamics) with irreversible
thermodynamies, although we are of the opinion that the term hydrothermo-
dynamics is more consistent inasmuch as the word « dynamics » pertains to
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mechanical as well as thermal changes of the event being studied, which are,
strictly speaking, inseparable. Let us now formulate the relativistic hydro-
thermodynamics in the sense just stated.

We ask for the basic equation of relativistic hydrothermodynamics to have
the well-known form of four-divergence of the so-called energy-momentum
tensor WP

(4.1) oW — 0,
which is symmetrical
(4.1) Wb — Wwh

Equations (4.1) and {4.1’) which represent the basic postulate of the theory,
express both the conservation of energy-momentum (eq. (4.1)) and the con-
servation of moment of energy-momentum (eq. (4.1')) of the fluid in which irrev-

ersible processes are taking place. Tensor W*? can be resolved into proper
components (see (!)) which again form tensors

(4.2) w = W'“ﬁua%ﬁ,
& o A7 BY

(4.3) w* =-—8;W"u,,

(4.4) w*f = Sﬁ’; Sf W ,

hence it holds that
(4.5) Wb = wu*u’ + wu’ + wfu* + w*? .
Let us now discuss an important question, namely the physical interpretation

of the various tensors (4.2), (4.3), (4.4) and consequently, also of (4.5). According
to Eckart the invariant ' is

(4.6) W = me? + me .
Here me? is the invariant density of the internal energy of matter at rest and

me is the density of the internal thermal energy.
Furthermore, tensor w*? is the elastic-stress tensor which satisfies condition

(4.7) w0 =0,

as follows from (4.4) and (2.12).

Tn case that the elastic continuum is a fluid the stress tensor w™ can be
resolved into the viscous component P** and the pressure component pS*#
(% is the coefficient of viscosity):

(4.8)  w=— P L p§b PP = Q{880 u, + 8,u,]—5 8 87 0,u) .
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Particular attention must be devoted to the construction of the vector defined
by eq. (4.3). In (}), ECKART puts «w" = ¢*/¢ where ¢* denotes the heat flow
defined by the covariantly transcribed Fourier’s equation. Such a procedure
leads, however, to a theory suffering—as explained in the Introduction —
by the paradox of heat velocity greater than the velocity of light. In order
to get rid of this paradox, we must give to vector w® a somewhat different
physical interpretation. First of all, we shall assume that heat propagation
in a mass medium is governed by Cattaneo-Vernotte’s theory which —in
contradistinction to Fourier’s theory — does not imply the paradox of instan-

taneous propagation of heat. Cattaneo-Vernotte's eq. (C-V) in covariant form
is written as follows

(4.9) 9* + xeDq* = — K838°9 ,

which is immediately clear if we recall that (4.9) is but a transcription of the (C-V)
equation valid for proper local rest system K° (2.8), into an arbitrary co-ordinate
system. Thus the classical three-vector of heat g goes over into spacelike four-
vector ¢%, 0/dt goes over to ¢D (2.14), and gradient V goes over into transversal
derivative ¢ = 8527 .

Another possible covariant transcription of (C-V) equation is

(4.10) ¢* + xeDg* = — K83{e*9 + 0 Du’} .

In this case, the temperature gradient V4 on the right-hand side of the (C-V)
equation has been transcribed to a somewhat more extended covariant form
used by EckART. Either of the alternative covariant transeriptions of the (C-V)
equation might be used in the discussion to follow, but we shall prefer the sim-
pler eq. (4.9).

First, we shall determine the longitudinal and transversal components of
the four-vector of heat flow ¢* in an arbitrary local co-ordinate system. Ac-
cording to (2.15)

o L

(4.11) % = u"q + g%,
1

(4.12) q =—uyg°,
1 N

(4.13) ¢~ = 839" .

Introducing in (4.12) for ¢® from (4.9), we get with respect to (2.12)
(1.14) q = wugeDg”

which introduced back into (4.11) gives

o

(4.15) ¥ =q" —nuuzeDg’ .
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Naturally, it holds that
(4.16) w,q* =0
The construction of vector w* will be carried out as follows: Let us put

X

or w* = % — xurug DgF

& |F

(4.18) W =

where é" is the transversal component of the four-vector of heat flow relative
to the world line in the sense of (2.9); 7.e. a quantity defined by eq. (4.15).
According to definition (4.3) and because of (2.12), vector w* must also satisfy
condition

(4.19) w, W =0,

But this condition is compatible with the construction of four-vector «* done
in accordance with (4.18), as directly follows from eq. (4.16). For the transition
» —0 eq. (4.18) also goes over into the corresponding Eckart’s equation.

In contradistinction to Eckart’s theory from which it follows that there
is no invariant density of heat different from zero, ¢.e. that it holds that

&E —u, 4" =0 — refer to (1) eq. (25), — the more exact theory of heat con-
duction due to Cattaneo-Vernotte, leads to the existence of nonzero invariant
density of heat defined by eq. (4.14). The complete energy-momentum tensor
W=# for an elastic continuum with heat conduction according to (4.5), (1.6)
and (4.18) is obtained in the form

1 _
(4.20) Wb = (me® 4 me) uruf -+ w4~ (§*uf + QBu?) .

5. — Relativistie formulation of the first law of nonequilibrium thermodynamics
(or hydrothermodynamies).
By the covariant form of the first law of hydrothermodynamics we denote

a scalar equation deseribing the projection of vector 2 W** on the direction
of the world line

(5.1) w0, W =0,
By using eqs. (4.20, 16, 7), (3.2), (2.5, 14) and identity

4 £ £
D(uzq®) = u, D9 + q° Duy = 0
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we get for an elastic continuum
1. 1. "
(5.2) mDe + P C.q% + = q* D, + w*foug =0

or, in view of (4.8), (2.12,13), (3.4) for a viscous Auid

1 Lo L R T
{5.3) - {Baq“—‘r 7 Dua}: De + pDv— ;,;P B, ug .

The next equation

(5.4) meDg = — (2,4° -+ 4> Du,)

defines quantity ¢ as the « specific heat » received by the unit mass from the sur-
roundings. Through the use of eq. (5.4), the first law of thermodynamiecs,
i.e. eq. (5.3) may be written in the following form:

{3.5) Dq = De + pDv—vP* 3 u,,

which in the nonrelativistic approximation w/c¢ < 1, where it holds that cD—d/d
(see (2.14)), goes over into the well-known form of the first law of thermodyn-
amics for the viscous fluid. The total heat content @ in some three-dimensional
space volume V inside of which the fluid is at rest at a given instant is then

{5.6) Q :fquV )

The right-hand side of eq. (5.4) contains, in addition to the usual four-

divergence, also the term — ﬁ“Dud, expressing evidently some supply of heat
arising from the accelerated flow of heat in the fluid. The term has no analog in
the classical theory. It drops out for a uniformly flowing fluid.

8. — The relativistic equation for heat conduction in a continuum.

To illustrate the procedure of obtaining from the just formulated theory,
the equations of heat conduction, and to make sure that our theory really

(*) Integral quantities will also be derived similarly from other specific quantities.

‘Thus e.g. for the total internal energy, we write £= f medV, for entropy = f mydV, ete.

¥ 4
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leads in a special case to correct equations of heat eonduction, let us derive the
equation of heat conduction directly, at least for the case of an incoherent gas
at mechanical equilibrium, i.e. behaving from the standpoint of macroscopic
motion as a solid body in which thermal changes produce no dilatation. It
then holds that

(6.1) u* = const .

The first law of thermodynamies (5.2) then has the form
1
(6.2) mDe +— 2P =0.

Assume that the internal energy (thermal) of an incoherent fluid explicitly de-
pends on » and ¥ only, i.e. that it holds that ¢ = ¢(v, #), and then introduce
the concept of specific heat at constant volume (in the rest system)

.
(6.3) y = (5—3) .

A quantity thus defined might also depend on temperature; but assuming that
this is not the case, it holds that

(6.4) g=qyd.
Or, eq. (6.2) has the form
(6.5) — myeDd = 3.4".
Combining now eq. (6.5) with the equation of heat flow (4.9), we obtain
the required covariant equation of heat conduction. Let us carry out ope-

ration ¢, on eq. (4.13) and take account of (6.1) and (4.9), (2.12, 18); noting
the interchangeability of eperators o D = D9 , we obtain

(6.6) 8,4° = — K0,| 830°0] — xeD3,| 8397,

which, in view of (2.17) and (6.1), and of (4.13) gives

(6.7) 8,4* = — K{0 + D39 — %eD{2,4% .

And this equation, in connection with (6.5), finally gives the promised co-

variant form of the equation describing heat conduction according to CATTANEOG
and VERNOTTE:

(6.8) myeDd = K{{J + D} & — umycD9 .
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To make sure of it right away, let us observe the process, of heat conduc-
tion from the proper local system K° Then eq. (6.8) changes in fact into
eq. (1.5).

Finally, in any arbitrary inertial co-ordinate system, the relativistic co-
variant formulation of the equation of heat conduction (6.8) may be rewritten
incovariantly with the aid of (2.18) as follows

S N ]
K 81 —wifer di* K 1y dt dt ot
For w — 0, we again obtain (1.5).

A general equation of heat conduction in a flowing finid could be obtained
from the first law (5.3) if a single equation containing neither ¢* nor & could
be arrived at with the aid of eqs. (4.9) and &= g(¥, m).

7. — Relativistic formulation of the second law of nonequilibrium thermodynamics
(or hydrothermodynamies), and determination of entropy production (case of
a simple fluid).

According to the nonequilibrium thermodynamics, a state function & cal-
led the entropy of the system (see (?), Chap. III, § 1) can be introduced in
any macroscopic system. In the Sections to follow, we shall make use of the
term specific entropy, .. entropy of unit mass in a rest system %, and of the
concept of four-flow of entropy #* which will evidently depend, in a hitherto
not determined manner, on the four-vector of heat flow and on the reciprocal
value of temperature.

The mathematical formulation of the law of entropy of nonequilibrium
thermodynamics in a covariant form is

(7.1) meDn = o.n* 4o,
(7.2) g=>0.
Equation (7.1) is a general form of the so-called specific entropy balance equa-
tion. The symbol ¢ denoting a source term is the entropy production.
Our discussion will be restricted to a so-called simple viscous fluid (see (1))

characterized by the following: specific enfropy is an explicit function of only the
local internal energy ¢ and volume v, i.e.

(7.3) n = n(e, v)

(%) S. R.DEGRrooT, P. MazZUR: Nonequilibrium Thermodynamics. (Amsterdam, 1962).
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and not of the co-ordinates or gradients ¢ or ». Assumption (7.3) is required
in order to express the total differential of the specific entropy 7 with the aid
of Gibbs equation in the form (the second law)

(7.4) 9Dy = De - pDv.

In nonequilibrium thermodynamics this formula is assumed to remain valid
for each element of mass along the world line even outside thermostatic equi-
librium. The validity of formula (7.4) and of the corresponding nonequilibrium
thermodynamics as well, is of course restricted to states not too far from the
equilibriutn states. For detailed information on the range of validity of equa-
tion (7.4), refer, e.g. to (**) Chap IX, or (1), p. 11, p. 220. Nevertheless, it
can be said that for the most usual cases of heat propagation, the application
of {7.4) is justified, because the relative change of temperature Ad/¢ on the
mean free path of molecules is always slight for a mass medium. The accu-
racy of transport equations for heat, be it Fourier’s or Cattaneo-Vernotte’s,
is dependent on virtually the same limitations, and it roughly holds that it
is the greater, the higher the temperature of the system and the smaller the
differences in temperature, because then even the thermal conductivity ap-
proaches a constant, which is an assumption accepted herein.

Equation (5.3) in connection with Gibbs’ equation (7.4) gives

1, (g5 11 . 1
{7.5) mDy = — " C (%—) — 5 QL“{Q'&‘ + 3 Du}+ 3 PaBg g,

which 1s but an explicitly formulated equation of entropy balance (7.1). A
comparison of egs. (7.1) and (7.5) yields two important relations

A
22 (0‘

(7.6) na:% or 77“:%—%;u“uﬁcﬂgﬁ,
1

(1.7) o= —~5;q*a{aaz9 4 'l?Dua}—l—gP“ﬂﬁmuﬂ .

Equation (7.6) defines the four-vector of entropy flow and eq. (7.7) gives an
explicit expression for entropy production in the simple viscous fluid.
The expression for ¢ might be written in yet another form

11 i
(7‘8) G =17 {éaéa + %—QLaC(Dga)J—} —{QL“Dua + g -Paﬁaauﬁ M
92| A )
If we use instead of eq. (4.9), eq. (4.10) the last term in the bracket will fall out.

(13) 8. R. DE Groot: Thermodynamics of Irreversible Processes. (Amsterdam, 1962).
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There are two irreversible processes that in our case are responsible for
the entropy production inside & mass element: first, heat conduction with its
corresponding first term on the right-hand side of eq. (7.8), and second, ir-
reversible processes associated with the dissipation of energy in viscous flow;
the latter effect is represented by the second term on the right-hand side of
eq. (7.8).

That the invariant rest value, and hence also the value given by eq. (7.8),
of the entropy production ¢ always satisfies formula (7.2), is well known from
the kinetic theory as Boltzmann’s H-theorem (('2), p. 171).

Through the use of eq. (5.5), eq. (7.4) may be rewritten also in another
form as follows:

(7.9) Dy DLA 0BT Sy
9

Finally we shall give several notes about mathematical determinateness of
the theory. Mechanical and thermal behaviour of the simple fluid are com-
pletely described by thirteen quantities m =1ijv, u*, p, ¢ ¢% @, n for the
determination of which we need thirteen equations with the necessary number
of boundary and initial conditions. These are eqgs. (2.5), (3.2}, (4.1), (4.9), (7.4),
the equation of internal energy ¢ = ¢(m, @) and the equation of state p = p(m, ?).
This system of equations must be completed by condition ¢>0 (see eq.(7.2))
which selects from the possible solutions of the system only solutions that
have physical meaning. Thus the system of equations for a simple fluid in ques-
tion constitutes axiomatic theorems of the theory, from which all other laws
of the phenomenologiéal theory can be deduced. Other thermodynamical fune-
tions that are used in thermostatics can also be introduced in our theory, and
their corresponding balance equations can be derived (Details see (14)).

8. — Boundary and initial conditions.

The boundary conditions must be satisfied at all times on a (two-dimen-
sional) surface forming the boundary between the fluid and the surroundings;
from the standpoint of world geometry, this means that the boundary condi-
tions must be fulfilled on the sheet of the world tube (i.c. on a three-dimensional
surface (")) associated with the fluid. The boundary condition of a thermodyn-
amie problem states — according to Newton’s cooling law — that the normal
heat flow on the boundary between the fluid and its surroundings, is propor-

(1Y) M. Krany$: Preprint IPP-14, Czec. Acad. Sci. Prague, (Januar 1965).
(") d.e. two space and one time dimensions.

5 — Il Nuovo Cimenlo B,



66 M. KRANYS

tional to the difference of temperature & of the surface, and that of the sur-
roundings 0:

(8.1) 9"y, = hd —0) ("),

where »* is the unit normal to the sheet of world tube (»,+* = -+ 1) so that it
evidently holds that #*v, = 0, and % is the invariant constant called coef-
ficient of surface heat transfer. Combining the latter equation whith (4.9),
we obtain after rearrangement the required equation in the explicit form.
In case u* = const, it is also » = const, i.e. the boundary area between the
fluid and its surroundings does not change with time, and we get

(8.2) — Kv 20 = h(9 —0) -+ xheD(® —0) .

In a rest system when », = (0, v,) holds, the above equation reduces to eq. (1.9).
In case when the fluid boundary is thermally insulated, the above condition
holds true with 2 = 0. And in ecase the fluid boundary is permanently main-
tained. at the temperature 6 of the surroundings, the above condition holds
true with b = oo or & =6.

The initial conditions of the thermodynamics problem (1.7, 8) which must
be fulfilled at the initial time x, = const (in covariant writing «*z_ = const)
within the entire volume of the fluid in covariant transcription are

(8.3) (0)conee = 95 [eDF] =0G.

ay=conet
Here ¢ and G are given functions of space co-ordinates of points lying inside
the fluid, or functions specified on the initial normal cross-section of the world
tube of the respective fluid.

Naturally, all the boundary conditions go over into a well-known form
in Fourier’s approximation x» — 0. In the classical, ¢.6. nonrelativistic approx-
imation when w?/e? < 1, expression ¢D goes over to ¢/dt + w-V in all equations.

In a hydrothermodynamical problem, the boundary and initial conditions
for mechanical quantities retain their form known from hydrodynamics. Thus
the boundary condition for a viscous fluid represents the fact that on the boundary
of a three-dimensional space filled with the fluid, the fluid velocity «* must
be equal to the velocity of the confining wall U®, namely

(8.4) w' = U".

At the same time, the pressure in the fluid on the boundary must be equal to

(") The discussion is restricted to cases for which Du*= 0.



RELATIVISTIC IIYDRODYNAMICS WITH IRREVERSIBLE THERMODYNAMICS ETC. 67
the pressure of the confining medium P. Thus

(8.5) p=2P.

The initial conditions consist in that the initial density #, or pressure 13 and
flow velocity &“A must be known within the entire (three-dimensional) space
occupied by the fluid.

9. - Conclusion.

The paper presents a formulation of special relativistic hydrothermodynam-
ies (¢.e. dynamices of mechanico-thermal processes) of a simple viscous fluid,
free of the paradox of heat propagation at a velocity exceeding the velocity
of light.

The theory was developed by correcting Eckart’s (1) theory in the sense
to satisfy the requirement of finite heat velocity. Although covariant, Eckart’s
theory admits also infinitely fast heat propagation which is incompatible with
Einstein’s principle of relativity. The paradox was eliminated in part by sub-
stituting a more exact relation, Cattaneo-Vernotte’s eq. (4.9) for the so-called
Fourier’s transport equation deseribing the relation between heat flow and
temperature, and in part by infroducing into the energy-momentum tensor
only the transversal part (4.15) of the heat flow four-vector as defined by the
(I-V equation, instead of the original Eckart’s four-vector of heat flow. The
new energy-momentum tensor (4.20) thus obtained forms the basis of the
entire theory.

The equation of heat conduction (6.8) derived with the aid of the theory
founded on the corrected energy-momentum tensor, clearly indicates that the
velocity of heat propagation is in fact limited by a velocity V <C¢, accordingly
to ('attaneo-Vernotte’s theory of heat conduction.

At the same time, it was necessary to change the definition of entropy
flow (7.6). All other changes followed automatically.

In Fourier’s approximation, ¢.e. ¥V ->o00 or x>0, all newly defined quan-
tities as well as equations go over into the corresponding quantities and equations
of Eckart’s theory.

So far as the modification carried out on the energy-momentum tensor
is concerned, we believe that we have brought not too great a change in Eckart’s
statement ((*), p. 919): « The correct form of the energy-momentum tensor
is still a matter of discussion ».

We have seen that hydrothermodynamics admits formulations that are in
accord with the principle of special relativity. Further extension to the theory
of general relativity offers no special difficulties (see e.g. (*1*)). An extension
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of the hydrothermodynamics of simple fluids to the magnetohydrothermodynam-
ics of simple fluids is similarly clear (10-11),

Eckart’s relativistic theory resting on Fourier’s phenomenological equation,
does not exclude Onsager’s reciprocal relations in case the heat is conducted
in an anisotropic medium or is accompanied by diffusion (for mixture of sub-
stances). On the contrary, our theory based on Cattaneo-Vernotte’s equation,
¢. ¢. on the equation in which the heat flow is no longer proportional to the temper-
ature gradient only, is of that kind that it does mnot satisfy Onsager’s reci-
procal relations (see e.g. ('3) p. 224), at least in their present form. Thus
Onsanger’s relations are valid solely on the assumption that the phenomenolo-
gical transport law is in the form of Fourier’s equation, 7.e. the presence of the
paradox of instantaneous transport velocity is tacitly implied.

%k %k %
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APPENDIX

Notes on the relativistic theory of diffusion.

Another typical transport phenomenon (besides thermal conduction) is
ordinary diffusion usually described by an equation of parabolic type and this
equation is also loaded with the paradox of instantaneous propagation of dif-
fusion flow. Also in this case we can reach the delimitation of propagation
velocity in a similar way as we did in the case of heat conduction.

Let us consider the phenomenon of diffusion in an isofropic nonreacting
mixture of N components (which are numbered by index 4 =1, 2, ... N) in the
absence of external forces.

The law of conservation of mass can be written

(A.1) eulutm) =0, 4=1,2,..X,

4 A

where m is the mass density and «* the four-velocity of component A. After
A A

sumation over all components we obtain

(A.2) 0u{u*m) = 0,
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where m is the total mass density and »~ the barycentric velocity, which are
detined by
N

u*m or u* = ceu”
4 4 Aoy A4

Mz
Mz

(A.3) m=)m, mu* =
4

A=1 A4=1

1l
"

Here o= m/m is the concentration of the component 4. The diffusion flow of a
A
substance A4 with respect to the barycentric motion is
(A.4) p* = em{u*—u*) .
A 4

A

If we put the expression for w*m from (A.4) into eq. (A.1) we obtain
4 A
(A.5)
With m = me and with eq. (A.2) we obtain eq. (A.5) in the form
A A
1
(A.6) - 8,p*=—mDe¢ .
¢ 4 A

Now we use instead of Fick’s relativistic transport equation (see STURCKELBERG
and WANDERS (")) the equation

(A.T) p* -+ neDp* = — A85[ 0Pm + mDuf] ,
A A A A A A

where % is the diffusion coefficient (of component 4)in the rest frame, and x is the

“new coefficient (*) which is connected with J and maximal diffusion velo-
A

city V, in the rest frame by the relation

(n) .

o

(A.8) =

Now we restrict to the most simple case of ordinary diffusion without
conduction of heat, and cross-effects. Let as now suppose that &= const,
and simultaneously ¢* = 0 and u* = const (i.e. m = const) and that we have
only a binary system (N =2) with 2;<<1 and 2@»:1 (see (12), p. 254).

Then eq. (A.7) after application of ¢* and with the use of (2.17) and (2.18) is

(A.9) N iwI)(aa g)“) = mz o[ S5 Bﬁc] = — m}i[D -+ D"’]f .
1

(") We may ecall % the velocity cut-off coefficient for diffusion.
(*) For (a gas) 1};:10—1 em? 871, V,~3.10¢ cm-s~! (veloeity of sound) is ﬁ:l()—l"s.
This is again #=T, (see footnote in Sect. 1).
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Finally using eq. (A.6) we obtain
(A.10) choz %{[] +D2}lc——;140‘=])2 ¢.

This is the diffusion equation in covariant form free of the paradox of in-
stantaneous diffusion propagation.

RIASSUNTO ()

Si presenta I'idrotermodinamica relativistica speciale (cio® la dinamica dei processi
termomeccanici) in forma covariante per un fluido viscoso semplice, priva del paradosso
della velocitd infinita della conduzione del calore. Si & sviluppata la teoria correggendo
quella di Eckarr (!) che ammette anche una propagazione del calore infinitamente
veloce, il che & incompatibile col principio della relativitd di Einstein. 11 paradosso & stato
eliminato, in parte sostituendo la relazione fra flusso di calore e temperatura — la
cosiddetta equazione fenomenologica de! trasporto di Fourier — con un’equazione piit
esatta dovuta a CATTANEO e VERNOTTE (33) ed in parte modificando in modo corrispon-
dente il tensore energia-impulso. Il nuovo tensore energia-impulso contiene tutti i ter-
mini che compaiono nel tensore di Eckart, ed anche termini che hanno a coefficiente
fattori 1/V2 dove V & la massima velocith del calore nel mezzo. Infine si mostra che
anche nei processi di diffusione si pud eliminare il paradosso della propagazione istan-
tanea del flusso di diffusione dalle equazioni che descrivono fenomeni di diffusione
relativistici.

(*) Traduzione a cura della Redazione.



