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Summary. — The problem of finding the electric field within a plasma-
filled plate condenser, upon which an alternating e.m.f. is imposed, is
considered. The adopted model implies the solution of the Boltzmann-
Vlasov system of equations with a single relaxation time collision term,
matched by suitable boundary conditions at the walls of the condenser.
The plasma is assumed to be completely ionized and the frequency large
enough to consider negligible the ion motions. In order to solve the
Boltzmann-Vlasov system the method of separating the variables is
used. Firstly a general mathematical theory of such solutions is developed,
then applications to the plasma capacitor are considered. Both diffusing
and reflecting walls are considered. In the limiting cases of large and
small separation of the plates the effective permittivity is evaluated.

1. — Introduction and basic equations.

The problem of finding the electric field within a plasma-filled plate con-
denser upon which an e.m.f. is imposed has been studied extensively, both
in the frame of a classical contnuum treatment (**) and with the methods
of kinetic theory (+%). Our researches aim to extend the previous results, with
particular regard to that obtained in (*3), when a more accurate model and
more realistic boundary conditions are taken into account.
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(%) F. Suure: Journ. Nucl. Energy, Part C, 6, 1 (1964).

() R. Aamopt and K. CASE: Ann. Phys., 21, 289 (1963).



WALL AND COLLISION EFFECTS IN PLASMA CAPACITORS 141

The model which we adopted implies the solution of the Boltzmann-Vlasov
system of equations with a single relaxation time collision term, matched by
suitable boundary conditions at the walls of the condenser. The plasma is
assumed to be completely ionized and the frequency of the potential differ-
ence which, is applied to the plates is assumed to be large enough that we can
consider the ions at rest because of their inertia. According to this assump-
tion, our equations do not conserve the momentum and the energy, but only
the number of particles; consequently we are prevented from considering the
plasma oscillations; our attention is principally devoted to the study of the
thin plasma sheath adherent to the walls, for which a kinetic treatment is
required.

The coupled one-dimensional Vlasov and Poisson equations for electrons are

0 e Ny € _
(1-1) &ﬂ'ﬂy (2) t)‘f“va‘x‘f(xa Yy t)-URTmE(‘%“‘
+ e
= % [ fF(U)f(W, v, t) dv — f(=, v, t):' y
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(1.2) a—ac E(x, t) = 4me| F(v) f(a,v, t)dv .

The original Vlasov equation has been linearized about its equilibrium solution

(1.3) f(*”’ v, ) = F(v)[no + f(«%', v, t)] ’

‘where

4
F(x, v, 1) zfﬂ'(w, v, t) v, do,
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is the equilibrium, electron density and F(v) is the dimensional Maxwellian

exp[— v¥/2RT].

1
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0 has the meaning of the collision mean free time, ¢ and m are the charge and
the mass of electron.
It will be convenient to introduce the nondimensional variables
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and the nondimensional parameter (= 1/w f where the Debye lenght 7, and
the plasma frequency , are given by

ETm . Amn,e?
Wy —=—

2 —_—
(1.5) Iy = drnge’ m

Now, rewriting the equations without changing the names of the variables,
and putting E/4mel, 1n place of E gives

+o

8 f(@, vy 1) + v%f(w, v, 1) —vE (=, t) :C[ JF(v)ﬂ‘% v, t) dv— f(#, v, t)]?

(1.6) =

-0
+®

(1.7) a%E(ﬂ% ) =f17’(17)f($, v, ) dv,

— 0

where now

Fw) = \%2_75 exp[—v2/2].

We are looking for solutions of eqs. (1.6) and (1.7) with the time depen-
dence exp[—iwt], » being the frequency of the impressed field measured in w,
units. The solution will describe the situation resulting from an applied voltage
when the equilibrium is re-established.

2. — Elementary solutions of egs. (1.6), (1.7).

It is useful to consider the combination
P
(2-1) Y(w7 v, t) - f(-’l?, ?, t)_; E(m7 t) ’

where ¢ ={—1iw; the symmetry of equations now suggests looking for solu-
tions of the form

Y(», v,1) Y,(v) . z
(2.2) ( B, ) ) = ( B, )exp [—iwt] exp [—a;} .
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Equations (1.6) and (1.7) become

(2.3) (1--)17( “C—?’ flf’

(2.4) B, —=— / F()Y,(0)dv .

Choosing & convenient normalization of Y, (v), i.e.

+

(2.5) fF(v) Y, (v)dv =1

—w

we obtain three different types of elementary solutions.

Crass 1. Discrete spectrum. — If Tmv 5= 0, we can easily solve eqs. (2.3) ...
by writing

(2.6) V(o) =20 M

2.7 E i=—y£/g,

provided that the »; are roots of the equation

(2.8) A(»)

+o
2.___ 12 2
_o zv —I—vGC 27J /F(”) v — 0 .
o g v—y

—a0

The characteristie funetion A(v) is analytiec in the complex y-plane with
a cub along the entire real axis and asymptotically

1—
(2.9) A, = “""+ 0( )
Clearly if v, is a root of eq. (2.8), s0 is — v, and 4-»]. Defining v, = —w,,

we assume for convenience that the », can be labeled so that Rev,> 0, i> 0
and if v}, #v,, then |Rey,|<<|Rew,,|. In general we have 2N zeros (which,
for simplicity in notations, we will consider to be simple). About these zeros
some results are listed in Appendix A.



144 C. CERCIGNANI and C. D. PAGANI

‘uass I, Continuous spectrum. — In addition to discrete solutions we have
the continuum of solutions corresponding to real values of »

(2.10) Y, (v) = "C;”z [pv:”%] 4 A(»)d(v—),
(2.11) E,=—vo.

From eq. (2.5) one finds

(2.12) F(») M) = $(A47(0) + A~ (),

where A%(y) are the boundary values of A(») as v approaches the real axis from
above and below, respectively.

It should be noted that egs. (1.6) and (1.7) are satisfied also by the
spatially independent solutions

(2.13) folv, 1) = g 4, exp[—iwt]
(2.14) E(t) = 4y exp[—iwt],

where 4, is an arbitrary constant.

Now, in order to represent our functions Y{(z, v,¢) and F(z, t) as super-
position of elementary solutions, we must prove the completeness theorem.
This will be made in Sect. 5; in the next Section we study the solution in a
particular and instructive case.

3. — The time-independent case.

As it is shown in Appendix A, if w =0, eq. (2.8) has only two roots,
exceptionally real, v =4-{. One will note that this value of w is out of the
range that we are considering and the assumption of neglecting the movement
of ions is not justified in this case. However, some interesting results have
been obtained, which can give some information about the actual situation.

For future calculations it is now more convenient to cousider, in place
of (2.1), the following combination

(3-1) 1/)(507 U) = f('% v) + V(”) ’

where V(x) is the electric potential

_ Y@

(3.2) Bo)=—=4
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Our equations are now

+

(3.3) vclgfc-’f’—’ =c[ fF(v)w(m)dv—w(w, v)] ,
+ o

(3.4) O v f F(o)p(a,v)do.

Looking for solutions of the form

y(@,v) P, (v)
(3.5) ( o ) ~( v )exp [—Cap],
eqgs. (3.3), (3.4) become
+ o
(3.6) (1—3) P,(v) = f F(v)yp,(v)dv,
e
{3.7) 1=V, :fF(U)Wv(”) dv .

145

Equation (3.3) is just the one considered by CERCIGNANI (°) in studying shear

flow problems; its solution ean then be written

+ o
(3.8) Wi, 0) = Ay + Aylo— o) + f Aly) exp[— Lap] ¥, (0) dv ,
where
(3.9) P,(0) =P -+ pr)d(y—1)

y—

and, in order to satisfy the normalization condition (2.5), we have

(3.10) P(v) =25 {exp [v3/2]—2(v/V2) J.exp [#2] dt} .

0

(%) C. CERCIGNANI: Ann. Phys., 20, 219 (1962).

10 - Il Nuove Cimento B.
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Equation (3.7) is immediately solved and the general integral of eq. (3.4) can
be written

+
(3.11) V(x)=A,— A, la+ A, exp ]+ A_exp[—x] +f,A(w) exp[—Clafr]V,dv,

where

,v2

(3.12) V=P

From eqs. (3.1), (3.2), using the representations (3.8), (3.11), we have

+®
(313)  fla,0) = A,0— A, expla]— A_ exp [—a] + f A() ,(0) exp [ Lafr]dy,

+w

(3.14)  Bo) — AL — A, exp[o]+ A_ exp[— ] + f A() B, exp[— o]y ,

—o®

where, from, eqs. (3.9), (3.12),

(3.15) W) = PE=5 T p)d—),
g

4. — Some time-independent problems.

The general solution found in the previous Section allows us to give
immediately the solution of the following problem: the plasma is confined
between two parallel plates at the same temperature (equal to the plasma
temperature). The walls are assumed to diffuse the electrons according to
Maxwellian distribution funetion. Then the distribution will be Maxwellian
everywhere and we shall have

(4.1) fl#) =—A, 6" —A exp[—a],
(4.2) E@)=—A,¢+4 A_exp[—ux],

(4.3) Vie)= A+ A 6"+ A_exp[—2z].
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In order to determine completely the problem we must give the potential
difference between the walls (or, better, the excess of electrons with respect
to ions); moreover we must choose the reference system: thug the eonstants
A, and A_ can be determined.

With respect to the walls just considered, the plasma behaves as a dielectric
(there is no current); moreover the collisions have no influence (the result
does not depend on the parameter ).

On the other hand, if we assume that one of the walls is a sink of electrons
and the other a source (so that the charge is constant in time, as is required
by the stationary conditions), then the simplest (even if little realistic) bound-
ary condition is of type

(4.4) flz, ) = ko for x = —g sgn v,

where I represents the number of charges created at one wall and destroyed at
the other for unit time and unit area.

Then the solution (global neutrality is assumed; if not, one must add the
solution of the previous problem) is merely

(4.5) fla, v) = kv, E=Fk.

The plasma behaves now as a conducting medium: the electric current
is constant (and equal to k) and { measures the plasma conductivity.

One must note that, while the first solution (eqs. (4.1) and (4.2)) does not
depend on {, the second (eqs. (4.5)) varies with £, and, for {—0 (no colli-
gions), the plasma becomes a perfect conductor. Finally one verifies that the
condition of specular reflection at the walls implies a solution of the first
kind too.

As a third example, we consider the following problem: the plasma fills
2 half-space bounded by a wall which diffuses the electrons according to a
Maxwellian distribution; but no condition of conservation of the number of
electrons at the wall is now imposed.

The the boundary condition is

(4.6) flx, v) = on for x =0 and v> 0,

where dn measures the excess (or defect) of electrons with respect to ions at
the wall and must be determined from the total number of electrons. Taking
into account the conditions at infinity, assuming V(0) = 0 and denoting by ¥,
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as previously, the constant electric eurrent, we have

(4.7) on = A,+ 4,0 +]A(v)‘1’,r(v) dv, v>0,
(4.8) 0 =4,+4_ +/A(v) V,dv,

[}
(4.9) E =A4,.

Solving eq. (£.7) by the well-known technique () we obtain

1
(4.10) A0 = 0 Tp0) F ]
(4.11) A, =om—kiValz,

whers 1= 1.1466 is the slip coefficient (), while

. !

From eq. (4.8) we can calculate A _; using the identity (%)

== @

(4.13) Xo J te [p(t)] d .[(t~z)X“(t)[P{f) + mit]
we have
(4.14) A ‘—6n—k[—1‘+—1—

. -= X(©) X(—C)] ’

where X(z) = I XH(z) + X7(2)] when z is real and positive.
Thus, with simple manipulations, we can write

1 X(=0)

(4.15) Ex) =k — [6% +k ()?(m6 + W}T@)] exp|—ux]—

. kcf)vX(— v) exp[—{Cafy] dv
J v £ [p)] + a2 Fly)

(") 8. AuBERrTONI, C. CERCIGNANI and L. Gorusso: Phys. Fluid., 6, 993 (1963,
(®) C. CercieNaxt: The Kramers problem for a not completely diffusing wall, in
Journ. Math. Anal. Appl., in press.
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It is interesting now to note that, while the current is constant, the electric
field shows a spatial transient; the proportionality between K and j, as found
in the Chapman-Enskog theory, is atisfied only far from the wall; the thickness
of the sheath where strong deviations from Ohm’s law. arise is of the order
of max (1, {) in the chosen units.

If £ —0, the integral in eq. (4.15) diverges logarithmically, and, since
X(0) =1, we have

(4.16) E(®) = —(0n+ 2k) exp[—ux] .

The plasma becomes a perfect conductor only a few Debye lenghts far from
the wall.

Other problems should be interesting to study, like those involving tem-
perature exchanges between the plasma and the walls; but then a more realistic
model than that here used should be assumed in order to take into account
the conservation of energy properly.

5. — The general case.

Let us now turn to consider the case when w = 0. As we have already
noted, we must prove the completeness theorem for elementary solutions.
Tt is an easy matter to prove, according to well-known methods (*¢), the
following theorems:

Theorem I. — « Eigenfunetions » corresponding to different eigenvalues (both
of continuous and discrete spectrum) are orthogonal on the whole real axis
with respect to the weight function

o? 7
o(v) = G—C:f?v (v) .
In fact, one easily finds
+ o
o? . .
(5.1) / " oFP() Y, (w) Y, (v)dv =9,,0,,,
+o

5.2} / 0—59_2—02 v P(0) Y, (v) Y,.(v)dv = §{r— ') C(v),

—
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where
L zd{,l(l)s T ,1—iwo 20 A

(6.3) 0, =—v; iy iyt—i’i [ 3+ poes + f—__v? (1—§” ’
(5.4)  Cv) =—2miv? [~ R ) R Sl vF@) {{p0)]*+ =2v?%

' AT A0) o a
In eq. (5.4) we have put
5 -
(5.5) py) = of Alv) .

For w =10, the function p(») now introduced reduces to that defined in
eq. (3.10).
In addition to eqs. (5.1), (5.2) we have also

(5.6) f —— v F0) Y, (v) Y, (v)dv =0 .

Theorem II. — The set {Y,(v)}, (—oo<vw< +o0) complemented with
{Y”(v)}, is complete on the real axis for the functions Y (v) satisfying a Holder
condition in every finite interval of the real axis and such that

(5.7) [F(v) Y(v)dv< oo .

One must show that Y(v) can be expressed in the form

+o

(5.8) mwsﬁajmmqmwnmw.

io—N
i#0 -

Let us begin by showing that expansion (5.8), if possible, is unique.
In faet, using eq. (5.1) and subsequently eq. (5.2), gives

+o
(5.9) 4,0, :[ EG:TZ”F(”) Y(0) Y, (v)de ,
(5.10) Av)C(v) :J. 070—2—7)2 vF(v) Y(v) Y, (v)dv,
—

A(v) and A4, are thus found.
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Now, in order to show that Theorem II is true, one must prove that the
expansion does exist. We construct an actual solution of eq. (5.8).

All the integrals appearing converge, by condition (5.7) and by the property
of Y(v) to be Holderian. The solution is given by eqs. (5.9) and (5.10) and
vA(v) results as the jump through the real axis of the following function of
the complex variable z:

4o
1 7 02
omi ol —

(5.11) NiE) =2 e o -

f vF @) 4
vV—z

—®

7;1{’(@ Y @)—ZA Y, (v)]dv

It is an easy matter to use Theorem II to construct the Green function
of eqs. (1.6) and (1.7) for an infinite medium,

Theorem III. ~ Let « and § be two real numbers (o < f§); the set {Yv(v)ﬂ
(a<<y< f) is complete for all the Y (v) which satisfy a Holder condition in the
open interval a<<v<f and are bounded by A[v—ax|™" or Bjv—pf|™"
(with y <<1) at the endpoints. In the limiting cases «=—oo or f= -} o0
the theorem also holds, provided that the set {YV(?J)} is complemented with
those of the eigenfunctions belonging to the discrete spectrum for which
Rev;<<0 or Rev,> 0, respectively.

The case of the semiaxis (0, co) is the most important one for applications,
as we shall see; we restrict ourselves to the consideration of this case only.

To prove the theorem, we have to show that the singular integral equation

. o? y vdy
612) T T—34, M - fA ) Y A p)

has a unique solution when Y(v) is subject to the restrictions quoted in the

theorem.
Let us consider the following function of the complex variable z:

@

1 [ G
(5.13) X(z) =2z ¥ exp [97:@ / -17~(_}))z dv] ,
0
where
(5.14) Glo) =10 PO T 70
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and the logarithm is such that G(») =0 when » — co; with this choice,
G(v) —> —2aiN, when v —0. X(z) is easily seen to be bounded when z — 0
and have a z~"-behavior when z — oo.

Let us now define a function N(z) with the following relation (where

XEw) = lim X(v + ¢)) :

@

1
(5.15) Nz) 3 o f r_yif;j?’ﬂ)_z) v ;
here

0-2 N
(5.16) y) = T YO = 3 A,

The integral in eq. (5.15) converges for every z not belonging to the positive
real semiaxis; thus, N(2) is an analytic function in the complex plane with a
cut along the positive real semiaxis; further, N(z) is bounded when z — 0,
and N(z)~z"! when 2z —> oo, provided that the following N conditions are
satisfied:

@

) X)) B B
(0.17) f/v m— dv=20 [l—-O, 1, ...,N 1]-

Writing eq. (5.17) explicitly gives

, ¢° @X() fv)dv
(5.18) fv - —— ZA” / [p T v,—v)

Using the representation of X(z) given by (B.2), eqs. (5.18) take the form

o«

(5.19) fvl of_ vXTOYO) g S 4,0 X ) .

ol —v? plo)—miv =1

o

Equations (5.19) constitute a linear system with determinant equal to

(5.20) —)Vl_[le(v H (v, —v,)

1> j=1

that is clearly nonzero. Thus, by using Cramer’s rule, the 4, are uniquely
determined.
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Then, if one defines

(5.21) vA(»)=N"—N",
he can conclude

1 cf>1:A(v)
5.22 — = | g,
(5.22) N(2) 5mi | 5—s dy

0

Using the Plemely formulas for log X (z) gives

(5.23) X+ — X_P(v) + 7}2)

. 20y —miv
Analogously from (5.15)
(5.24) e S o e S UL L)

(V) —niv

Inserting into this equation N, N~ as calculated by the Plemely formulas
from eq. (5.22), and X7 as given by eq. (5.23), gives eq. (5.12).

Conversely, if 4, and A(v)are constants and a function respectively such that
eq. (5.12) is satisfied, let N(z) be defined by eq. (5.22); using Plemely formulas
and straightforward algebra gives eq. (5.24). Then N(z) X(2) must be given
by eq. (5.15); letting z go to infinity in eq. (5.15) gives eqs. (5.17). Thus the
solution given by eqs. (5.15) and (5.17) is the only solution of eq. (5.12).

If there are no discrete eigenfunctions, the previous procedure must be
slightly modified. In fact it is sufficient to consider the same function X(z)
as defined in eq. (5.13) with N= 0; X(2) has now a constant behavior when
z —> oco. The same definition (5.15) for N (z) holds where y(v) = Y (v) (¢%/(0f — v?)).
Now N(2)~z! without requesting any additional condition to be satisfied.
Then defining A(v) as in eq. (5.21), the demonstration proceeds as previously
show.

6. — Applications to the plasma capacitor.

Toillustrate the usefulness of the theorems derived in the preceding Section,
we consider now u specific problem. As we have already assumed in Sect. 4,
the plasma is confined between two plane parallel walls: as boundary con-
ditions we suppose:

A) first case: the walls are specularly reflecting,

B) second case: the walls diffuse the electrons according to a Maxwellian
distribution.
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We note that these two cases were not distinguishable for o = 0.
In order to take the limit L — co later, we assume the reference system

sketched in Fig. 1.

A) Reflecting walls. — This is the problem
treated by WEISsGLAS (1) and by SHURE (%)

L without taking into account collisions.

X However, it is to be noted that when treating
such problems, the above theorems would not
be strictly required: a Fourier expansion would

Fig. 1. — Geometry of the ca- be sufficient.
pacitor and reference system. The then boundary conditions are now

(6.1)

(6.2)

¥(0,0) — ¥(—0,0) =2 B(0),

Y(v, L)— Y(—v, L) = —27:’ E(IL) .

Applying eqs. (6.1) and (6.2) to an expansion such eq. (5.8) we obtain

(6.3)

(6.4)

2p +5 e
—2050) =3 B, To0) -+ [B 0) V00,
oy e

2v &, -
—;E(L) =3B, Y, (v +|B»Y,()d,
il %

where we have puf

(6.5)

(6.6)

B(y) = A(y) — A(—»),

B'(v) = A(») exp[— oLjv] — A(—v) exp[cL/v],

and similarly for B, and B, .
From eqs. (6.5), (6.6), taking into account that, for symmetry reasons,
E(0)= E(L), we have

L v explp)(Lf2)] 1
Al) =200 B0) s 5 oosh ((o/)(L[2)) C()

vi  expl(afv)(L/2) 1
ol —2 2 cosh ((afw,)(L[2)) C,,"

4, = 2w B(0)
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The electric field can now be written as follows

o
(6.9)  B@) = 4.+ 3 A, E, exp [_ ‘;—”J + /A(v) B, exp[—ozfy] dv
zi;—oy i __O.D

where 4, and A(v) are given by eqs. (6.7), (6.8) and E, and K, by eqgs. (2.7), (2.11).
The integral in eq. (6.9) can be easily calculated by the method of residues
{see Appendix €). One has

(6.10) E(z) = E(0) {COSh [\/}—/Z (L2 ——x)] B

cosh (Va/C(L[2))
20 1 1 expi(nnx/L))—1 exp[—i(mne/L)—1
0 woiss.. w0 1+ ol(mnjoL)? [ A(i(Ljan))  A(—i(eL[mn)) ]

For { — 0, by taking into account that A7 (v) = A~ (—v), eq. (6.10) reduces
to Shure’s result (*).
From Ohm’s law we can calculate the impedance of the capacitor:

L

! fE(x) dw

(6.11) Z==

where J is the displacement current at the plates; introducing the capacitance
C, of the condenser gives

(6.12) J= i L0, E(0).

Performing the integration indicated in eq. (6.11) gives

1 2 E EL : ‘_‘22 i 74_1,,* .
(6.13) Z = i, [Z V(_T tgh( ZE) T ,,:1,23,5...7”@ 1 + ol(znjoL)?

=265~ (215

One can easily note that, owing to the fact that { 5~ 0, the impedance Z
is always a complex number; 4.c., the collisions prevent the capacitor from
becoming a largely dissipative device at certain frequencies w,.

The effect of collisions is also pointed out if one considers the actual dis-
tribution function f(x, v).
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Ag it was noted by SHURE (4), if (=0, the expression of f(x, v) is singular
at the wvelocities v = wL/an with which an electron may make a round trip
in an odd number of periods. As is physically reasonable, these singularities
vanish if the collisions are taken into account.

From eq. (6.13) we can calculate the complex dielectric permittivity e

1

14 =
(6.14) € iwCy Z

It may be interesting to consider the limit I — oco; we have

(6.15) (1—7 [ 51 W’J o(LY) .

1o wo

Taking in eq. (6.15) only the constant term and separating the real from the
imaginary part gives the expressions for the dielectric permittivity and plasma
conductivity; one obtains the familiar result given by GINZBURG ((°): see par-

ticularly Chap. IT).
Conversely, if one considers the limit L — 0, one has the simple result

(6.16) 8*1+L + ..

Now ¢ is a constant with respect to w and ¢ and is real, ¢.e., the plasma
conductivity is zero in this approximation.

) Diffusing walls. We consider now the same problem in so far treated,
but with more realistic boundary conditions; the walls are assumed to diffuse
the electrons according to a Maxwellian distribution. Thus we have now

(6.17) Y(0,0) = C—=="0, »>0,
(6.18) Y(v,L):—O—E—g—-)v, < 0.

where C is a costant proportional to the current at X ==0.
The condition that the electron current is conserved at the walls gives

0

(6.19) c :—\/%fw(v)f(o, v)dv .

—w

(") V. L. GINZBURG: Propagation of Electromagnetic Waves in Plasma (Amster-
dam, 1961).
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Then, by taking into account Theorem IIT, we can write the general
integral of our problem

(620)  Y(,a) = > A, exp [ %L m] Y,(0) +

i=—N ¢

i#£0

+f ) exp [—‘+ H(—v)] Y, (o) dv,

where we have put H{(—v;) in place of H(— Rew,).
We congider now the condition (6.17). We have the equation, valid only
for v>0

(6.21) C— —E((’Q V= z A, exp [ oL
t=—N
170

(_ vi):l Yv,-(v) +
-{—fA(v) exp [% H(— v)] Y, (v)dv.

As one can easily note by considering the transformation v - —v, # —L—u,
the constants 4, and the function A(v) are subject to the antisymmetry
conditions

(6.22) A4, =—A_,,

(6.23) Apy)=—A(—v).

The procedure that we shall use consists of reducing the singular integral
eq. (6.21) to a Fredholm equation to which the classic iterative method of
Neumann-Liouville can be applied.

This can be done in two different ways, the one particularly useful in the
case L <1, the other in the opposite case.

-For simplicity in -calculations we suppose that there are no discrete eigen-
functions (for example, this is true if o is sufficiently large).

Let us begin by writing eq. (6.21) in the form

@

(6.24) —fA e‘cp[ ]v_@d :{A(r)vi

(v)A(®) ,

where we have put

(6.25) vy = (C_gf,i) v) .
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Applying to eq. (6.24) the inverse of the operator appearing in the right-
hand side gives

(6.26) A0 = 77],2%)-% 1;2: v) jA exp [GL} viv dv; _
1 1 * 1 X (8) {y(t) —_fOA(v) exp [oL/v](v/(v—1)) dv}
T X(0) plo) + i f [ (t)— 2it] (t—v) a-

]

Performing the integrations in eq. (6.26) by using the identity (B.3) gives

(6.27) A@w) =— Xl(v)p%{ a(v) X(Vol) + b(v) X(— Vi) +
+j,‘3 4_%)5@ exp [UV—LJ dV} ;
here B
(6.28) a(v) = 55&2 (”2 f:ff, ey E((»)
(6.29) b(v):é»é(-f:—(_alfr;i()— aB(0 ))

In such a way the problem has been reduced to solving the integral eq. (6.27).
It is an easy matter, using a well-known technique (%1*11), to prove the con-
vergence of the Neumann-Liouville series of eq. (6.27); also one can show
that the larger is L the more rapid is the convergence.

We are now interested in the limit L — co. Then the first term of the
series gives (the terms neglected are exponentially decreasing with L)

() X(Val) + b(v) X (— \/ac)‘

(6.30) Av) = — X~(v)[p(v) + miv]

(19) C. CeErCIGNANI: Plane Couectte flow according to the method of elementary solu-
tions, in Journ. Math. Anal. Appl., in press.

(11) C. CErciGNAXNI: Plane Poiseuille flow according to the method of elementary
solutions, in Journ. Math. Anal. Appl., in press.
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The electric field can now be written as follows:

(6.31) E(x) = E(0) -+ % v A(v) (1 + exp [— 0—%]) dv—'% va(v).

. (exp [— G—;} —+ exp [O;}—w—o-—f—]) dv,

where A(v) is solution of eq. (6.27), if eq. (6.23) is taken into account.
In order to have the impedance of the capacitor, we must caleulate

(6.32) [E(m) doe = E(0)L + % vA(v) (1 + exp [_%]) dy—

—%/WA(V) (l—exp [——U—L]) dv .
c p

In the approximation in which eq. (6.30) is valid, eq. (6.32) becomes

(6.33) fE(ab) de = E(0)L + % v A(v) dv—%fvzfl(v) dv .

0 0 [i]

Performing the integrations by using the identity (B.4) gives

o=

(6.34) /v A(v)dv = aX (Vo) + bX(—Vel) —(a+b),

-]

(6.35) J‘vZA(v) dv = Vol [aX (Vo) —bX(—Val) —(a—Db)],

0

here
(6.36) oo FEWO) _ 02C
) 2 2Vt
oE(0) a2(
6.37 b= — .,
(6.37) 2 246t

We must now express the constant C through the only datum of the
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problem: the electric field at the walls. From eq. (6.19) we have

[
c E(0)
(6.38) — ——=|vF(v [Y01;+—— v]dv.
oz = RO | YO, 0 + =
Substituting in eq. (6.38) the expression of ¥ (0, v) and exchanging the order
of integration gives

0

(6.39) ;/a—A dvaF [T, (v) — Y, (— )] dv +

E(O
25

—w®

Now, by performing the first integral, we have

[==]

¢ _1ioo 2(0)
Bl va(v)varv%.

0

(6.39 bis)

If now use eq. (6.30), by taking into account (6.34), we have finally

B(0) iwo[(1—ioa) + F[X(Vel) + X(—Vel)]
o (12Ved) [X(—Val) — X(Vol)]

(6.40) —C=

Thus we have the current of electrons entering the wall. One can observe
that, if £ —0 (%),
0 1—X(0
B(0) 49 L= X10)

(6.41) == 70

The preceding expression coincides with that found in (3).

We are now able to give an explicit expression for the impedance Z of the
capacitor and for the complex dielectric permittivity e.

After some calculations we obtain

1—iwo:
(6.42) E=— "
i 2 [ s XV E V)] 2Vl
oL i 2 X(Vol) — X(—V?)

(*) Since (8/00)[X(2, {, w)] < oo we can write

Xo a:_a X(o, £, 0)]—> 0
a\/ ;.[ (Z > )] a\/&—c'az_[ (27 ’w)J:_m .
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As we can see, the congtant term in eq. (6.42) is just the same as in eq. (6.15).
which, in turn is the same as one finds when treating the full-range problem,
As is physically reasonable, this term does not depend on any boundary
condition.

Let us now turn to consider the case L « 1. For this purpose let us
begin by writing eq. (6.21) in the ifollowing form:

[=2]

(6.43) C sgnv—gg)—) ©—8gn va(v) (1 —exp [—G—f]) Y, (—|v|)dv =

0

which is valid also for v < 0.
Applying to eq. (6.43) the inverse of the operator appearing in right-hand
side gives

6.44)  A@) C)— Cj e 0| F) Y0 do—

4+

E(0) o? .
ﬁ—_a—fog“—vzv F{v) Y, (v)do—

—

4o

*fAM(l—exp[—%]) d'ufﬂé' L [P F(0) Y (—]v]) Y, (v)do .

Performing the integrations in eq. (6.44) and rearranging some terms gives

(6.45) A@)C(») =20F(»)q(—v) + v ——— (O’O E(0)») +

C

2]

,uA oL » oL
Lo, [ (1—eXp[——/;]) au—2, uAu(l—eXP[—7J) Sa,v) du
[1]

where we have defined

(6.46) ~fv_v

2 /vF('v) [ol(u+ v+ v) + o] d
u+ (v A+ p)(v +9)

(6.47) S(p,v) =

11 — Il Nuovo Cimenio B.
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Note that the following relation holds

(6.48) F()p() = F(y)[q0») + ¢(—»)] + —(:i :

In such a way the problem has been reduced to solving the integral eq. (6.45).
Again one could easily prove the convergence of the Neumann-Liouville series
of eq. (6.45); also one could show that, the smaller is L, the more rapid is
the convergence.

Since we are interested in the limit L — 0, we take only the first term

of the series; thus we have
1w

(6.49) A(v) O(») =2CF(»)q(—v) +» G%_—-v-z (0C —E(0)y) .

We wish now to calculate the permittivity ¢. Then we write eq. (6.32)
in the approximation in which eq. (6.49) is valid

(6.50) fE(:c)d 0)L - '7J Al

v

Now, in order to calculate C, we take into account eq. (6.39bis). If we
substitute, in place of A(v), the expression (6.49), we easily find C=0.

In order to realize the fact that, also for L <1 (as for L «1) the first
approximation for the permittivity & does not depend on the chosen boundary
conditions, we check solutions of eq. (1.6) by an iterative method based on
the following scheme:

00

n)
p @0 g gy e o)+ j F(o) f*(2,v) dv

(6.51) e

4

(g
(6.52) aE f ) {1 (2, v) do

—

Equations (6.51) and (6.52) are accompanied by the following boundary
conditions

(6.53) =0, F(0, v) = (1 —a)f(0, —v) + C, >0,
(6.54) =1L, (L, v) = (1 —o)f(L, —v)—aC, <0,

where o is a weight-constant ranging from 0 (conditions of specular reflexion)
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to 1 (conditions of Maxwellian diffusion). The condition that the electron
current is conserved at the walls gives, for C, eq. (6.19) again.

We start with the zero solution f9(z, v) = 0, E'®(x) = 0. For n =1 we have
simply f4 (2, v) = 0, EV(2) = E(0). For n=2 we have, after easy calculations

(6.55) (2, v) = E(0) [w—g— —:“_& L sgn v} ,

while E®(x) = E(0). Then, from f®(x,v), we have
(6.56) E®(x) = E(O)[1 + {xix— L)].

This expression is already independent of «; if we ecalculate & we have
just eq. (6.56).

7. — Conecluding remarks.

The system of Boltzmann-Vlasov has been treated by the method of the
elementary solutions for different boundary conditions.

Some time-independent problems have been explicitly solved. One could
usefully extend this first part by taking into aceount the ion motion, that is
important in the limit of very small frequencies of the applied field.

For time-dependent (but stationary) problems it has been shown how to
handle the elementary solutions method in order to ensure a rapid convergence
of the approximated solution. The method is applied to the evaluation of the
complex dielectric permittivity of a plasma capacitor for extreme values of
the wall distance. The results, when first-order corrections are neglected, are
in accordance with the elementary theory of the dielectric permittivity given
by GINZBURG (°).

A possible extension of the above results could be that of taking into
account & three-dimensional model of the plasma so that momentum and
energy are conserved; thus the plasma oscillations effzcts could be studied.

Moreover a rather differen’ collision term could be used, as e.g., & simplified
Fokker-Planck model, which allows us to treat the grazing collisions, which
are neglected in the B.G.K. model.

% K %
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APPENDIX A

Let us congsider eq. (2.8), A(») =0. If »2 =0 this equation gives o®=1y?
i.e., =0 and v=-4C. If v?£¢{, we can write eq. (2.8) in the form

1o

) y 02— p?
! — .
(A.1) /F(v) — do oF— 2

If now we look for the solutions of (A.1) for which w =0, we must satisfy
the following equation

+oo

(A.2) fF(v) Y av—=1,

y—o

which is an impossible one. Thus we can conclude that, for w =0, the equa-

tion A(v) =0 is satisfied only by v= 4.
If, on the contrary, { =0, eq. (A.1) becomes

(A.3) F(v)

Equation (A.3) is well known (4); it is easy to show that, when w>1
there are no solutions; when o <1, there are two: yi = +1iy,, with v, real
and positive.

When o #0 and {+#0 eq. (A.1) is difficult to treat and no general result
has been got. However, it seems a plausible thing to suppose that, for w suf-
ficiently large, no roots of eq. (A.l) exist.

APPENDIX B

We derive here very briefly some useful identities for the function X(z),
which have been used in the main text.
From eq. (5.23) we have

_ . v X (v)
(B.1) XH(w)— X (v) :2n@mﬁ,
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Thus, the Plemely formulas applied to X(z) give

[’o v X (v) dv
p(v) —miv (v—2)¥

(B.2) X(2) =

0

according to the fact that X(2) has a &% behavior for z—co. If N =0, and
X(2)—1 for z—co, the Plemely formulas give

dov

(B.3)
—7'[@’[) v— Z

Now, we restrict ourselves to the case N =0.
Let us consider the function ¢(2)=1/X(2)—1, to which the Plemely
formulas can be applied. Since, from (B.1), one has

11 [XJr(v) 1] 1 2miv
Xi(v) X~ (v) X~ (v) [ X (v) — T X (0) p(v) + mwiv’
we have
B.4 L, i v dv
(B4 @ =] o= g 4 ain

0

Finally, if we consider the function

_ X(») X(—?)
W) ==
we have, for z— oo, W(z)—1/A(c0). Since
X+ X
— W™= X(—0) [A—+—F] =0,

we have, taking into account Liouville’s theorem,

(B.5) X@X&@—mgj
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ArPENDIX C

We have to calculate the integral

+®

(C.1) I :fA(y)Ev exp [— ox/v]dv ,

— 0

where A(y) is given by eq. (6.7), ¥,=—v/c. Taking into account eq. (5.4)
we have

+o

| 2 1 v 1 1 ] exp[(af)(L]2— )]
(€.2) I‘7E(0) 2ni _/ ol —y? [A-/F A_} cosh( olv) L/Z)

-

Let us consider

{—»2 A(») cosh ((o/»)(L[2)) a; —vz A(w) cosh ((o»)(L[2))

(.3) f » dv expl{ofp)(L2—@)] dy exp[(o/»)(L]2 — )]
’ b

4

where the integration paths €, and C, (represented in Fig. 2) are such to
encircle all the singularities of the integrands.

M v These singularities lie at points
,,4«\6\ v =+ Vo,
-R {M._*m Re v_ T ig{/
r\—’—*““ = an’
]
. / 2 =
]L G V=" [n-1,3,5,..],
2

where v, are the roots of the equation A(»)=0.
Fig. 2. — Integration path for the Denoting by § the sum of residues of the
evaluation of the integral (C.1). poles and taking the limit K- oo, we have

(C.4) I— %3 E(0)S — constant ,

where the constant represents the contribution to the integrals (C.3) from

infinity. These constant combines with A4, in expression (6.9). The residue

contribution of the poles ¥ =, indentically cancel the sum in expression (6.9).
Thus, requiring that E(z} = E(0) for # =0, we have just eq. (6.10).
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RIASSUNTO

Si considera il problema di valutare il campo elettrico che si stabilisce tra le armature
di un condensatore a faces piane parallele, pieno di plasma, quando una f.e.m. alternata
viene applicata alle facce. Il modello adottato richiede la soluzione del sistema di
Boltzmann-Vlagov con termine di collisione a rilassamento unico, accompagnato da
opportune condizioni al contorno. Si suppone che il plasma sia completamente ionizzato
e la frequenza della f.e.m. abbastanza grande cosicché si possa trascurare il moto degli
ioni. Per risolvere le equazioni di Boltzmanu-Vlasov si adotta il metodo della separa-
zione delle variabili. Innanzitutto si sviluppa una teoria matematica generale delle
soluzioni elementari; quindi se ne considerano le applicazioni al condensaiore a plasma.
Si prendono in considerazione entrambi i casi di parefi diffondenti e riflettenti. Nei
casi limite in cui la distanza tra le armature ¢ molto grande o molto piccola si valuta
la permittivita efficace.



