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Summary. The complexity in writing down expressions for P(n, 1),
the probability that = electrons are ejected from a photodetector by a
fluctuating incident light beam is discussed and the problem of computing
coherence functions from a knowledge of the moments of » is solved by
recasting the problem in terms of product densities familiar in stochastic
point processes. A general method of arriving at P(x, T') from a knowledge
of all the intensity correlations for any kind of light beam is studied.
For the case of light from a thermal source with usual assumptions on
the coherence functions P(n, T) is shown to be the Bose distribution.

1. — Introduction.

Recently stochastic semiclassical methods (¢2) have been applied in the
analysis of fluctuation of phiotoelectrons connected with correlation experiments
in light beams. The method involves the statistics of counts in a fast photo-
detector illuminated by a light beam. The eentral quantity of interestis P(n, T'),
the probability frequency function governing the number of counts in a certain
‘time interval (0, 7). The Poisson distribution which normally explaing the
probability of the number of events that are registered in a counter does not
give an adequate description of the process. The events do not occur in a Pois-
sonian manner and in fact tend to have a bunching effect characteristic of Bose

(1) L. ManprL: Proc. Phys. Soc., 81, 1104 (1963).
(?) L. MaxpzeL, E. C. G. SuparsuaNn and E. Worr: Proc. Phys. Soc., 84, 435

(1964).
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particles. Effectively we have here a kind of generalized Poisson process in which
the Poisson parameter besides being a function of ¢ is itself a random variable
subject to certain correlations. In fact it has been recognised that an ensemble
average of a simple Poisson digtribution (3) may meet the needs of the physical
situation. In this note we propose to go into the full intricacies implied in the
process of averébging by adopting the methods of stochastic point processes
(see for example ref. (+9)).

‘We hope that such methods, apart from providing an explicit derivation
that leads to the Bose distribution for light beams having Gaussian character-
istics, will be useful in other situations involving correlations of electromagnetic
fields (%8).

Section 2 contains a treatment of non-Markovian type of incidence of photons
and consequently also the product density description of the process. We next
deal with the method of calculation of higher moments of the number of counts
and also with an explicit way for arriving at all orders of coherence. The final
Section contains the derivation leading to the explicit form of P(n, 1) starting
from the echerence functions.

2. — Photoeleetric eounting.

Intensity correlation experiments to determine the coherence properties
in light beams are performed by allowing the light to be incident on a fast photo-
electric detector. If we treat the problem semiclassically, a stochastic deseription
of the photoelectric counts actuated by the incident radiation field may lead
to a probability distribution of » counts in time 7, under certain conditions to
be described later. But when the incident beam possesses certain statistical
features which make themselves manifest through correlations in its intensity
I(t) at different time intervals, it is rather difficult to arrive at P(n, T') explicitly.
However since such a process can be viewed as a point process defined on the
t-space, a description in terms of product densities (*12) will be very useful.

() E. Worr and C. L. MEnuTa: Phys. Rev. Lett., 13, 705 (1964).
(%} S. K. SRINIvVASAN: Nuovoe Cimento, 38, 979 (1965).
(®) 8. K. SriNivasaN and R. Vasupevan: Nuovo Cimento, 41, 101 (1966).
¢y R. C. BOURRET: Nuovo Cimento, 18, 347 (1960).
(") P. Romax and E. Worr: Nuove Cimento, 17, 462 (1960).
(®) P. Romaw: Nuove Qimento, 20, 759 (1961); 22, 1005 (1961).
(®) A. RAMAKRISHNAN: Proc. Camb. Phil. Soc., 46, 595 (1950).
(**) A. RAMAKRISHNAN: Probability and Stochastic Processes, in Handbuch der
Physik, vol. 4 (Berlin, 1956).
(1) 8. K. SriNivasaN and K. 8. 8. IveEr: Nuove Cimenio, 33, 273 (Berlin, 1964).
(*?) 8. K. SriNtvasan, N, V. Koreswara Rao and R. VASUDEvVAN: Nuovo Cimento,
44 A, 818 (1966).
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We can define the probability that a count occurs in a time interval between
t and ¢+ dt to be «I(t)df, where « is the sensitivity of the detector, taken to
be a constant, and I(¢) the intensity of the radiation falling on the detector,
is given by

(2.1) Ity =v*@)v),

V(¢) being the usual analytic signal corresponding to the radiation field. The
average number of counts in the time interval (0, T) is given by

4

(2.2) 7= ocfl(t) dt .

0

If I is a deterministic function of time, the probability of obtaining n counts
in time 0 to 7 obeys the Poisson law

(2.3) P(n, T) = [afI(T) dt]” exp [— och(t) dt] ”/n! .

If however we allow I to be a random parameter (indepedent of ) governed
by the probability frequency function p(I), P(n, T) is given by

(I T)m

(2.4) P(n, T) = P(I)dzc-xp [l 7]

Taking P(I) corresponding to an uncorrelated Gaussian signal in the form

i 1 f I
(2.5) P(I) = 7, exp [— I_o] y
'we obtain
(2.6) P(n, T) = (1 + 7)1 (1 + 71,

leading to a Bose-Einstein distribution with parameter n given by
(2.7) n=ul,T,

a result discussed in great detail by MEmTA and WoLF (3) who have resorted
to a « Poisson transform ».

If however I(t) is a correlated random process, it is not easy to arrive at
an expression for P(n, T') similar to (2.4). To realise the magnitude of the dif-
ficulty, we wish to draw the attention of the reader to the processes with such
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non-Markovian features as have been dealt with in connection with the theory
of shot noise (*) and Barkhausen noise (513-1%),

In these papers, an inhomogeneous Poisson process is described by the pa-
rameter A(?) which depends on the events that have occurred at previous time
intervals (1¢). This is essentially a non-Markovian proecess. We assume that
Mt)dt which denotes the probability of occurrence of an event between ¢ and
t -+ d¢ is such that the occurrence of an event at {; increases the probability
of occurrence of an event at a later time ¢ by b exp[—a(t—1t,)]. Thus given
that an event has occurred between #, and ¢, - df, with probability A,d¢; the
probability that the next event occurs between ¢, and ¢,-- di, is given by

(2.8)  p(ty|ts) Aty =

2

= exp [—f{ll + bexp[— at'—1,)] + (A, — &) exp [~ a(t'—1,)]} dt'] )

- {d+bexp[—a D (t,—1t)]}d,
i

where A, denotes the value assumed by A at t=10. (2.8) clearly shows the
difficulty in calculating P(n, T, t) the probability of obtaining n counts of photo-
electrons in time (¢, ¢+ 7). Let us divide the interval (¢, ¢+ T) into T/AT
short intervals labelled such that ¢t + AT =1¢; (¢ =0, 1, 2,..., T/AT). Then the
probability of obtaining » counts in the time interval (¢, ¢ T) is given by

/AT TIAT  TIAT

(2.9) P(n, T, ) :8{3;130 SO LY arI(t)I,) - It (AT

=0 7,=0  7,=0

=0 i=1

‘<Ti_AIT(1 B (xl(ti)AT)} { f[(l — al(trj)AT)}} )

where the expectation value is over all possible values of I(¢,). (2.9) is a very
complicated limit and cannot be evaluated explicitly. We can circumvent the
difficulty by resorting to a product density approach as has been done in
ref. (45). I fi(t)s fullils)s fa(fivefs) ... ave the product densities of events on
the t-axis, then it is easy to see that

RA = “E{I(tl)} :
(2.10) { foltits) = o2 {It VI(2, )} ,
l faltytats) = ale {I (tg)} ... ete. ,

(13) P. MazzerTi: Nuovoe Cimento, 25, 1322 (1962).

() P. Mazzerri: Nuovo Cimento, 31, 38 (1964).

(1%) 8. K. SRiNIVASAN: On a class of non-Markovian processes, 11T preprint, 1962.

(%) Such processes have been subsequently termed « doubly stochastic processes»
by BartLerr. See Journ. Roy. Statist. Soc., 25 B, 264 (1963).
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where the expectation is to be evaluated with the help of the joint probability
frequency function of the analytic signals at different times. At first sight it
might appear that the problem is simpler than the space-charge-limited shot
noise. However the complexity of the present problem lies in the continuous
random nature of I(t). In fact the problem would be intractable if we did not
assume a Gaussian character of the thermal source combined with some equally
elegant choice of the coherence functions.
The mean square number of counts in the interval (0, T) is given by

(2.11) 7 :ff(t) dt +fff(tt’)dt ar’

where I(f) is usually expressed in terms of the complex amplitude V(¢) of the
light beam:

(2.12) =V V) .
If we assume further that the Fourier components of V(¢) are distributed ac-

cording to a Gaussian law, then z(V, ¢) the p.f.f. of ¥ can be calculated. n(V, )
is given by

(2.13) al{V,t) = A exp {—fV*(t + /2y V{t— 1/2) dr} ,
which in turn yields

(2.14) L) I(ty) = L(t)I(t) 4 (It — )],

where I' is called the coherence function. We can substitute (2.14) into (2.11)
and we find that there is a deviation from the simple Poisson law due to the
second term of the right-hand side of (2.14) which is usually attributed to the
wave interference effect of the incident beam.

The above result can be readily extended to the higher moments of the
counts by calculating higher-order correlations of the intensity. The third
moment is given by

(2.15) ?ﬁzfxf dt—{—Soﬁff I(t,) dt, dt2+a3fff 1(t,) dt, at, dt, .

For thermal light, the third-order correlation is given by

(2.16)  I(t)I(ty) T(ts) = T(t)T(to) L(ts) + L(ty) [Tty — t5)]2 +

+I_(t2)|r(t1_t3)|2+1(t3)l (B, —1,) I + [Ft —1 )F(t2“t3)]—‘(t3“t1) —f—C.C.],

an equation which shows that the third-order correlation involves also the phase
of the coherence function. Thus if we are in possession of the first three moments
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of the total number of counts, then (2.11) and (2.14) to (2.16) will determine
the coherence function completely. If as in the case of the experiments of
HANBURY-BROWN and Twiss (*) the incident intensity ol(¢) is the input of
a linear filter whose output S(¢) is given by

[

(2.17) S(t) = ocfl(t’)é(t —ihat,

(1}
where b(t) is the response of g filter, then we can obtain the correlation of the
output (see ref. (°)):
ty 1y

(2.18) S(t,)8(8,) :Ub(tl~t (t,— ) fo(8'8") A8’ Q¥ +

(min ¢4,

+ f b(ts— )bt — ) (") Q'

0

In fact the power spectrum of the output which is directly obtainable by expe-
riments can be calculated by the formulas given in ref. (5).

3. — Higher moments and the distribution of the counts.

To obtain the general moment of the number of counts, it is convenient to
define the product density generating functional (®*) by

(3.1) Lu) =¢ {Lexp [ (u(t)I(t) dt]} =

v

= E f ffm e b)) u{E) w(ty) oo. u(t,) dE, A, ... Ay,

which in turn can be related to a different type of cluster functions g, that are
related to the product densities f; by

(nt) =g,
<3-2) { fz t tz - 91(t1) (tz) ”{" gz(t ? )
I,f(t tots) = g, (891 (Ea) g, (Ba) + 3{91 Vgatsts }sym + g5(t,1s15) ... ete.

(1) R. HanBURY-BrowN and R. Q. Twiss: Phil. Mag., 45, 663 (1954); Proc. Roy.
Soc. 242 A, 300 (1957); 243 A, 291 (1957},

(1¥) P. I. Kuzvestsov, R. L. StrarovovicE and V. I. Tikmoxov: Nonlinear
Transformations of Stochastic Processes (London, 1965), Chapter I, Sect. 6.
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where ¢, can be called the actual correlation functions since these functions give
a measure of the deviation from the Poisson law. It is interesting to note that
g:(t ts ... ;) are identical with the coherence functions I'(#¢, ... ¢;) defined by

(3.3) Tl o t) = V) VER) .. V) VG Vi) ... V(t)

and it is easy to verify the identity

=]

(3.4) L{u) =exp [2 7% fgmultz e b)) u(E ) u(ty) ... ul(ty,) di, di, ... dtm} )

m=1 M-

which shows that once we are in possession of all the moments of the =, then
we can readily obtain the magnitude and phase of all the coherence functions. If,
for a beam, coherence functions of all orders less than or equal to | determine
all higher-order coherence functions, then correspondingly a knowledge of the
first 1+ 1 moments of #» will be sufficient to determine all the coherence func-
tions completely.

It i3 customary (see references (v3)) to guess the probability P(n, T) from
comparing the second moment of n:

(3.5) nt=— ol T + o2(IT)? + ocszf(tl— t,) dt, dt, .

If we assume that I'(f; —1,) is given by /2, we obtain
(3.6) ni=Tn +2m°,

which is exactly the second moment of the distribution
(3.7) P, T) =1 +n) (1 +207)™",

which in turn describes the distribution of Bose particles with 7 = «lT. How-
ver this does not ensure that the higher moments agree with those corresponding
to a Bose distribution. This can be shown rigorously if we observe that the
probability-generating function of P(n, T') defined by

(3.8) S P(n, T)2" = h{z, T)

can be obtained from L(u):

(3.9) Lz —1) =h(z, T) .

If we can make some reasonable assumption for the coherence functions, then
(3.4) can be used to obtain h(z, T) explicitly. Let us assume that the intensities
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I(t) are distributed according to the Gaussian law as in the case of thermal
light so that all orders of coherence functions can be expressed in terms of the
coherence function of order 2. Thus we may postulate that

(3.10) D7ty ty oo ) = (e — 1) L2t — 1) T8ty — 1) .. Tty — tmy) -

If in addition we assume that I'2(t,—1,) = x2I] then we can write L(u)
explicitly if we identify g, with I'*. Using (3.10) and performing the summation

we obtain
7

(3.11) Liu] — [1 — ocl_fu(t)dt]_l,

0

from which we find

(3.12) Wz, T) =1 +alT —al2T)?,

a result that identifies P(n, T') with the boson distribution (3.7).

Our demonstration leading to the Bose-Einstein distribution shows that we
can always arrive at P(n, T) starting with the experimentally observed cohe-
rence functions. In particular the Bose-Einstein distribution can be confirmed
if the coherence functions of a few more orders are available.

ko ok

The authors express their sincere thanks to Profs. A. RAMAKRISHAN and
E. C. G. SURDARSHAN for interesting discussions. One of us (R.V.) thanks
Prof. K. M. WarsoN for many stimulating discussions on this topic.

RIASSUNTO (9

Si discute la complessita strutturale delle espressioni di P{n, t), la probabilitd che
n elettroni siano emessi da un fotorivelatore per azione di un faseio di luce incidente
fluttuante, e si risolve il problema di calcolare le funzioni di coerenza dati gli im-
pulsi di n, riformulandolo in funzione di densitd di prodotti familiari nei processi pun-
tuali stocastici. Si studia un metodo generale per giungere a P(n, T) dalla conoscenza
di tutte le correlazioni di intensitd di ogni specie di fasei di luce. Nel caso di luce
emessa da una sorgente termica, si dimostra con le usuali ipotesi sulle funzioni di
coerenza, che P(n, T) & la distribuzione di Bose.

(") Traduzione a cura della Redazione.
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DayrTyauun (l)OT03JIeKTp0HOB H KOoppeJauud MHTCHCHBHOCTH NYUKOB CBETa.

Pestome (*). -— OTMedas CIIOXHOCTh B HAIMCAaHmM BBIpaxkeHmit P(n, T'), BEPOSATHOCTH
TOTO, ITO 7 ITEKTPOHOB HCIYCKAIOTCI (POTOMETEKTOPOM, Omaromapsi dIlyKTyHpyromeMmy
magamolmeMy MydKy CBeTa, pemaeTcs NpobieMa BLYUCICHWA KOTEPEHTHBIX (QYHKLMH,
3HAas MOMEHTHI 7, MyTeM IEpPEeCUHTHIBAHUS HPOOIEMEI B BBIPAKCHUAX, NPOU3BEICHHN
[IOTHOCTEH, OGBITHBIX I/ CTOXACTHYCCKUX TOUYSYHBIX IPONECCHB. B MeTAIIX PacCMaTpPH-
BaeTcs obmuit Meron monyuerns P(n, T) u3 3HaMEsA BCEX KOppPENIANUN HATEHCHBHOCTEHR
I Jirob0ro copTa cBeToBOrO myuka. Iloka3aHO, 4TO I ciiyyas TEIZIOBOTO CBEYCHHS,
npu OOBIYHBIX HPENMOJIOKEHUAX O KOTepeHTHBIX (ymkmmsax, P(n, T) npencrasiser bose-
pacupezneIcHie.

(*) Hepesedeno peoaxyueil.

13 - Il Nuovo Cimenio B.



