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Summary. — The theory of inter-band transitions is re-examined in the
case of finite photon momentum g. New expressions for the joint density
of states near critical points are derived. They give Van Hove’s expres-
sions in both the limits of long and short wavelengths. The dispersion
relation for the transverse dielectric function &, due to inter-band pro-
cesses is given explicitly and it is compared to that of the longitudinal
dielectric function e;,. It is shown that in the limit ¢ = 0 &, equals &,
even for anisotropic media. The possibility of an experimental evidence
of the effects caused by a finite photon momentum on the shape of the
optical absorption is discussed.

1. — Introduetion.

In 1962 Tavoc (*) proposed to extend the study of optical processes in solids
taking into account the photon moementum, and summarized the progress made
in this way in explaining some peculiar behaviour of excitons and excitonie
lines. In the preceding year Erriort (?) had taken into account the photon
momentum in showing that the n =1 line of the yellow series of Cu,0O had
to be ascribed to a quadrupole transition (%).

The effect of a finite photon momentum on inter-band transitions has not
been considered yet and the problem has grown of importance in these last
years. The use of gynchrotren radiation has practically opened to spectroscopists

1y J. Tave: Proc. Int. Conf. Phys. Semicond. (Exeter, 1962), p. 333.

) R. J. Erviorr: Phys. Rev., 124, 340 (1961).

(3) E. F. Gross and A. A. Kapryanski: Sov. Phys. Solid State, 2, 353 (1960);
2, 2637 (1961).
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the regions of soft X-rays and vacuum ultra-violet (*); in these regions the photon
momentum ¢ = 2an/l may be significant, even if still smaller than the Bril-
lonin zone dimensions.

In this paper we attempt to study the finite photon momentum inter-band
transitions, neglecting any. electron-hole interaction or lifetime broadening.

In Sect. 2 we generalize the theory of interband processes and obtain the
behaviour of the joint density of states near critical points. The dependence
of the imaginary part of the dielectric funetion on the photon momentum is
also discussed.

In Sect. 3 the limiting cases of vertical transitions and of transitions from
deep bands are considered and selection rules are examined. It is shown also
that, using the proper perturbation operators in the matrix element, the lon-
gitudinal ag well as the transverse dielectric function can be obtained from the
theory of Sect, 2.

In Sect. 4 the possibility of an experimental evidence of the obtained results
is discussed. While for dipole allowed transitions such evidence does not seem
possible, the case of dipole forbidden transitions is open to discussion.

2. — Theory.

2'1. General considerations. — The theory of optical inter-band transitions
gives the following expression for the imaginary part of the dielectric function (®):
27me

W s =2 (30) S SR E, g0 POLE ) — B — o],

maw v,¢

where » indicates an occupied band and ¢ an unoccupied one, P, (k, k', g€)
is the transition probability matrix element

(2a) Pk K, qe) :fw’f(k’, r) exp[ige-rle-py,(k, r)dir =

crystal

(2) = (k' —k— qe)(k + ge, cle- (p + fik)|k, v) .

An electromagnetic wave propagating through the crystal along e with
momentum ¢ = n(w)-w/c and polarized along e has been considered. Moreover

(%) T. Sacawa, Y. IeucHi, M. Sasanuma, T. Nasvu, 8. YamacucHi, S. FUJIWARA,
M. NaxamMura, A. EJiri, T. Masvoxa, T. Sasakr and T. OsH10: Journ. Phys. Soc.
Japan, 21, 2587 (1966); P. JAEGLE and G. MissoNi: Phys. Rev. Lett., 18, 887 (1967);
P. JaEGLE, . CoMBET FArRNOUX, P. DuEz, M. CREMONESE and G. ONoRri: Phys. Lett.,
26 A, 364 (1968); B. FEUERBACHER, M. SKIBOWSKI, W. STEINMANN and R. P. Gopwin:
Journ. Opt. Soc. Am., 58, 137 (1968); R. HaENseL, C. Kunz, T. SAsAKI and B. SoNNTAG:
Phys. Rev. Letl., 20, 1436 (1968).
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the abbreviation

(K, cif(r, p)lk, v) = L fuf(k', r)f(r, —iiV)u,(k, rydsr

'y
I/ cell

cell

has been introduced, where u indicates the periodic part of Bloch functions.
The contribution given to ¢,(ge, w) by each pair of bands is

3) E20c(€, @) =

2ne\ 2 d3k
—2 (;g) Gy (k- 0, cle-(p + ), o) 0 LBk + ge) — Bulh) — o),

and this is the expression we are concentrating on.

2'2. Joint density of states. — The argument of the d-function of eq. (3)
indicates the conservation of energy and gives an implicit equation for the
transition energy fiw since the final state depends on %w also through g¢. Let us
introduce the function

(4) fk, ) = B.(k + ge) — B.(k) —fiw»

and the set of surfaces f(k, w) = const, defined in the reciprocal space taking
w as a parameter. Each of these surfaces represents a measure of the difference
between the photon energy 7w and the energy gap existing between the states
represented by y.(k + ge, r} and u,(k, r). Obviously the energy -conserva-
tion is fulfilled only on the surface f(k, )= 0. Using this set of surfaces as
new variables, eq. (3) transforms into

+ oo
- (2N 1 ](k+ qe,c{e-(p+ﬁk){k,v)12 _
(5) €2y (G€, w) = 2 (;LZ)) (2m)7 f [ f Vi F(F, )]st do| d(fidf=

—0© " f=const

o (27N 1 [|(k 4+ g€, cle- (p + fik)|k, v)[*
= (mw) (2n>jf IVif(k, @) do-

=0

If the matrix element is almost constant through the Brillouin zone, the
main contribution to the shape of e;..(ge, ) is given by the generalized joint
density of states

b do
(6) Juelge, @) = (Z?)ff Vi f(ky ©)]= °



INTER-BAND TRANSITION PROBABILITIES AND PHOTON MOMENTUM 461

Analogously to the case of vertical transitions, characteristic variations
in J,.(qe, w) are expected near points for which

(Ta) V.fk,0)=0
on the surface
(7b) flk, w)=0.

From eq. (7a) the discontinuities in the shape of &,,. occur at general critical
points (¢), defined by

(8) VhEc(k + qe) = VkEv(k) -
The symmetry critical points, defined by
(9) V,B.(k 4 ge) =V, E, (k)= 0,

occur very exceptionally. Since symmetry states occur either at the centre
of the zone or on the surface of it or along some particular direction, eq. (9)
can be satisfied only for photon momenta of the same order of magnitude as
the Brillouin zone dimensions, that is to say in the X-ray range.

The analytic behaviour of the joint density of states near a singularity
occurring at (k,, w,) can be obtained expanding f(k, ) in a Taylor series about

TaBLE I. — Coefficients used in the expansion of f(k, w) near a critical point. Column 1
gives their mathematical definition; column 2 their general expression; column 3
their expression in the case of nearly vertical transitions.

1 &k, w) 7 A2
T 2; 2u,
22f(k, o) hte, dg fize, dg
¢ = - —_ —
! ¢k, Cw mz dw m:: dw
1k, w) | 1 dz2q Rl (dg\? #? £} dz(g?) e2u,; (dg
= = . el 'S - _ . LXACH -
AT T e 2[ ke edw2+§ my \dw 2 gz(m;—m;f,) de? +zm’i dw
= h—V,E, € — All—ay 2 2
" fo Vil e do ; m’:‘ — m:‘ do
1 1 1 1 1
i m;’:(ko + ¢€) mii(ko) mZ(Ko) m:‘(Ko)

(¢8) J. C. PurLrips: Solid-State Physics, vol. 18 (New York, 1966).
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the singularity. With the condition that (k,, o) must be a solution of the system
of egs. (7a) and (7b), we have

(10) f(k, w) = i a;(k;— ko) + [ za ek, — ko)) — 04] (0 — o) + @y — o)+ ... .

i=1

The coefficients of the expansion are displayed in Table I. Following Van

TaBLE II. — Joint density of states in the case of finite photon momentum. The coef-
ficients «, B, y are displayed in the case of nearly vertical transitions in the second

column.
E<0 E>0
Three-dimensional lattice
# 7V (ZE — ak?
M, , 0 —_————
Va, a,d,
. o R—VuB2— ¢, E) ak
b s —
] Vil N
Two-dimensional lattice
! m
M, 0 ——
’ ' 24/ a,a,
. J In 2R —1In (\/ﬂE:;;‘E — yB) In 2R —InVey B — aF:
l ¥ | ——— ———— h— e — -
' } 2V |a,ja, 2 \/[axlay
E = #i(w— wy)
=2
T
1 % 1 {dg\® &
o= |34 ~55) S
1 & 1 /dg\* &2 P
== 4 — ~olg) Voo T
¢ | 4|e, 2 \dw/ (mf —m;  m;
y = _1_ Cy &y \/,;t—y dg
h2v/a, 2my dow
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HovE (7), the singularities are classified as My, M,, M, and M, critical points
according to the signs of the coefficients a; (¢ =1, 2,3). Performing the inte-
gration of eq. (6) in a similar way as that explained by BASSANI (®), one obtains
the explicit expressions for the joint density of states. They are given in Table 11
in the cases of two- and three-dimensional M, and M, singularities (*). While
for M, critical points the surface f(k, w)==0 is a closed one and therefore
the field of integration is limited, in the case of M, critical points the cor-
responding surface f(k, w)=0 1is open. In order to avoid this difficulty,
it has been necessary to introduce an upper limit of integration E, large com-
pared with %{w — w,). The final expressions depend on E, as shown in Table II,
but this constant can be considered as a reference term.

2°'3. Nearly vertical transitions. — Since inter-band transitions in the optical
region carry photon momenta much smaller than the Brillouin zone dimen-
sions, they can be considered to be nearly vertical. This means that the energies
and the states involved differ very little from those interested in the vertical
case occurring at K.

Let us split ge into two components q; and g, connecting K with k + ge
and k respectively:

k+ge=K+gq,,
11) k=K—gq.,
g+ q:== g€

It (K,, 2,) represents a vertical singularity, the corresponding one (k,, w,)
for nearly vertical transitions differs very little from it; this difference, obtained
expanding F,, K, and their gradients in a Taylor series about (K,, £,), ne-
glecting effective-mass variations and evaluating the expansions at (%, w,),
is given by

hrge &
(12) ﬁwo——fiQO: VkEulK.,'qe%"”"?f‘ zm s
h,= _’ﬂ% qéi,
(13) "

G2y = Zf« qe; .

g

If the vertical transition occurs at a symmetry critical point, %w, —#82, is
quadratic in ¢. It can further be shown that in correspondence to symmetry

(") L. Vax HovEe: Phys. Rev., 89, 1189 (1953).
(8) M. P1ACENTINI: Analist delle transizioni interbanda nell’assorbimento di radia-
zione di sincrotrone, Thesig, Rome.
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critical points for vertical transitions, where eq. (9) holds with g¢= 0, there
is a general critical point satisfying eq. (8) for which the results of Table II hold.

2'4. Matriz element. — In the limit of nearly vertical transitions the matrix
element of eq. (2b) can be expanded in powers of g. Applying the k-p method,
w,(k, r) and u.(k -+ g€, r) can be expressed in terms of the orthonormal and
complete set {u,(K, r)} of periodic functions taken at K (*). In the case of two
nondegenerate bands it gives

uc(k + qe, r) = ut(K + q:, ,") = u’c(Ky r) + Z ccm(ql)um(K7 r) + sery
(14) e
ok, ) = U (K — qs, 1) = (K, ) + > don(qa)u. (K, r) + ...,

nFEY
where ¢,,, and d,, are given by ordinary perturbation theory:
o T (K mlg,pK, o)
" m E.K)—E.K)

_k (K, nlg."plK, v)
m E’D(K) - E‘n(K)

— (K, m|q, r|K, ¢), mse,
(15)

dyy = =i(K, n|g, r|K, ), nAED.

The right-hand side has been obtained using the commutation relations (1)
—mi — mi .
P:T[r9H]:T [r, HK)]— 2K,

where H(K) is the Hamiltonian operator in the K-p representation satisfying
the Schridinger equation H(K)u, (K, r) = E,(K)u,(K,r).

Using eqs. (14) and (15) and considering only the linear terms in g, eq. (2b)
becomes

(16) P, (qe, K) = (K, cle- (p + #K)|K, v) + i(K, c|(ge-r)e- (p + #K)|K, v) —
—i(K, cle- (p + #K) K, v)[(K, c|q, r|K, c) + (K, v|q. 7K, v)] .
Elements of the form (K, n|r|K, n) are proportional to the dipole moment

of an electron in state K and band » relative to the unit cell; they are null
if the small group of K has inversion symmetry.

2°5. Momentum dependence of the dielectric function. — The dielectrie function
of eq. (1) depends on both the frequency and the momentum of the absorbed

(®) E. O. KaNE: Semiconductors and Semimetals, vol. 1 (New York, 1966).
(19 E. I. BrounNt: Solid-State Physics, vol. 18 (New York, 1962).
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photons. So far we have been interested in the frequency; let us therefore
examine briefly the dependence on ¢. At this purpose we remember that near
a eritical point %k, we have

(7) E0c(q€, ) = 2 (2n6) z vaC(qe I Joe (g€, ) .

mw star ky

J,.(q€, ) depends on the photon momentum through the energy at which
the singunlarity occurs, as indicated in eq. (12). The matrix element is given
by eq. (16). Combining these two results one has the general expression for the
dielectric function near all critical points. In the case of an M, symmetry crit-
ical point, for instance, we have

1 7
(18) Eanc (g€ @) o — (B + B,g*)V (ho —182,) — Byg*

where B, and B, are constants easily related to the matrix element and

o :Emcf”—mv‘
moreover we have neglected the term «F2. It must be noted that for electro-
magnetic radiation, the momentum being a function of the frequency, only
one of these two quantities is necessary to define &,.

3. — Discussion.

8'1. Vertical tramsitions. — The case of vertical transitions is immediately
obtained from the results given in the preceding Section, if the limit ¢ going
to zero is performed. One has, for instance, for the M, singularity, lqi_r)x% =1

and 1111_13 o A~ 1/2me? so that aE? can be neglected in comparison with ¥, being

A 10~¢ times smaller.

3'2. Tranmsitions from core states. — At energies of some tens of eV and more
one excites electrons from core states. Since the corresponding energy bands
are nearly flat, one expects that the joint density of states depends on the
conduction band only and that singularities occur in correspondence to its
critical points. This can be verified performing the two limits V, E, (k) — 0
and m:(k)éoo (that hold throughout the whole Brillouin zone for core
states) in eq. (8) and the expressions of Table II. One obtains furthermore, by
taking the above limits on eq. (12), that there is no shift of the critical-point
energy due to photon momentum.
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3'3. Allowed and forbidden transitions. — General selection rules can be
obtained from the matrix element (2a) by using the method of Lax and Hor-
FIELD (1) on transitions connecting different points of the Brillouin zone.

In the case of nearly vertical transitions we have shown in Subsect. 2'4
that, if the group of K, has inversion symmetry, P, = E,+ i(E,+ M,);
transitions may be forbidden in the electrical dipole approximation (%)) and
allowed in the successive approximation (#,-+ M,); it may also happen that
the transition is forbidden in both approximations. An example of this case
ig given in graphite by the transition I} — I, for light polarized with the
electrie field perpendicular to the z-axis. SacHs has given tables of selection
rules for multipole absorption of polarized light at different symmetry points of
the Brillouin zone (*2).

When the dipole transition is forbidden at the vertical critical point, we
obtain from eq. (16) the following expansion in (K — K,) for the matrix element

(19) Po=[b|K— K| + ...] + ig(K, c[(e-T)e-(p + #K)|K, ») .

Substituting into eq. (3) we obtain, in the case of an M, critical point,

(20)  &s.(g€, w) = (;h%)z p i/a_x/ciE’—ocE’z [[Ez + M2+ by <%> (c.’,E—ocEZ)] .
1 [

This equation has been obtained in the case of a rotational ellipsoidal energy
band, with the light entering in the direction of the prinecipal axis; a, and a,
are the inverses of the reduced effective masses in the directions respectively
orthogonal and perpendicular to the principal axis and

G -35(+7)

is their mean value. The first term of eq. (20) corresponds to the allowed elec-
trical-quadrupole and magnetic-dipole transition, the second term originates
from the electrical-dipole forbidden transition.

3’4, Transverse and longitudinal dielectric functions. — So far we have given
a microscopic derivation of the transverse dielectric function e,,(ge, w). The
theory developed in Sect. 2 can be used to obtain the longitudinal dielectric
function ¢,, (g€, w) as well provided that the proper operator €:(p | #ik) - fiq/2
is used into eq. (2b) instead of e:(p + #k). The joint density of states J,.(g€, ®)

(1Y) M. Lax and J. J. HopFreLD: Phys. Rev., 124, 115 (1961).
(12) M. Sacus: Phys. Rev., 107, 437 (1957).
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is the same, depending only on the geometrical structure of the bands. The
matrix element, on the contrary, is different. In the approximation of two
nondegenerate bands and going to second-order terms in eqs. (14) and (15),
in correspondence to a vertical critical point K, with inversion symmetry we
obtain the following general expression for the square of the matrix element
modulus:

(21) [P (ge)|*== UKy, cle-(p + 1 K,)|K,, v)!z—ZA(L,T) g,

where

Agn= |(K0, cle: (p + #K,) K,, 7J)IZ Re [(Koy cl(q./q- )2 K,, 0) 4

2
n (Ko, vl(ga/q 1)Ky, ) " (Kos oligu/g-r) e (p+IK ) (qu/q 1) Ky, ”)] .
' 2 (Ko, cle- (p + #K,) K,, v)

—#isgn Im [(K,, cle r|K,, v)(K,, v|e- (p + #K,) |K,, )] ;

Re and Im indicate the real and imaginary part of a complex quantity. In
the case of longitudinal fields ele and s, = —e-q,/q + #/2; in the case of
transverse fields el € and s,— —e-q,/g.

We can now give the difference between the longitudinal and the transverse
dielectric functions corresponding to the same direction of polarization of the
electric field up to terms of order ¢:

2me
M

2
(22) eZT—au:fi( ) oc(g€, ) (A — Ar)q?.

Equation (22) shows that in the limit ¢ going to zero longitudinal and trans-
verse dielectric functions coincide also for anisotropic materials. Such result
can be considered as a generalization of that previously obtained by ADLER
for cubic substances (13). The difference between the longitudinal and the trans-
verse dielectric functions appears in the ¢* coefficient and depends on both
the kind of perturbation and the isotropic character of the material. We finally
could relate eq. (22) with Lindhard’s relation (%) ¢, —e, = (¢%¢*/w?)(1 —1/u)
and obtain the value of the magnetic permeability of the medium.

4, — Possibility for experimental evidence.

4'1. Dipole allowed transitions. — The new expressions given in Table II
for the joint density of states differ from the old ones mainly by the term
ah*(w — w,)? appearing under the square root. Let us analyse how large is the

(**) 8. L. ApLER: Phys. Rev., 126, 413 (1962).
(1) J. LinpaaRD: Hgl. Danske Videnskab. Selskab., Mat.-Fys. Medd., 28, 8 (1954).
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contribution given by this term and if there is any possibility to have experi-
mental evidence of it. TFirstly let us consider the variation of the transition
energy brought about by the finite photon momentum. In order to give the
order of magnitude of this difference, eq. (12) can be rewritten as follows:

w,— £, nhL, (mék m,",‘)—l
—~

~ e
Q, 2me* \m  m

For a small-gap semiconductor, such as Ge, (w,— £2,)/£2, is of the order of
3-10-%; it is much smaller than one can hope to detect by optical experiments.

Let us now consider the joint density of states for an M, eritical point, the
expression of which can be put into the form:

J (g€, ) oc VE(l—gB),

where p = (w— w,)/w, measures how far from the singularity we are analysing
J..(q€, ). The corrective term

Be fimy (mé mi\ 1 0)2
T omet\m  m v,

08

o
@
T

Jjoint density of states (arbitrary units)
o (=]
o ~
T T

Fl i [ I— i 1 1 ) y

[
—05 —04 —03 -0.2 =01 04 02 03 04 0.5

0
(E-E,fE,

Fig. 1. — Joint density of states for an M, three-dimensional critical point. E,=1eV;
{mg —my)/m=0.1. Continuous line: ¢fv, =1 (corresponding to the vertical-transition
approximation). Broken line: ¢/v, = 100.
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is of the order of 2-10-*% times (¢/v,)? in the case of Ge. Here the group velocity
v, == dw/dg of the light in the medium has been introduced. In correspondence
to a resonance frequency of the medium, ¢ ~0 and v, is much smaller than e,
being zero in the ideal limit of no broadening of the line. Even if no direct
calenlations have yet been performed, we expect that also in correspondence
to a sharp absorption edge the index of refraction » varies rapidly and v, is
much smaller than ¢. But, since broadening effects are always present in
solids, the variation of » will never be very large, as can be verified observing
experimental data, so that the ratio ¢/v, will be rather small. In Fig. 1 the
joint density of states has been plotted vs. ¢ for two values of ¢fv,, respectively 1
(solid line—it corresponds to the vertical transition) and 100 (broken line).
An intermediate curve corresponding to ¢/v,= 10 has been calculated, but

20

A
w

joint density of states(arbitrary units)
=

o
o

0 L ; | | [ il L L
—05 —04 -03 —0.2 -01 01 0.2 03 04 05

0
(E-E ),

Fig. 2. — Joint density of states for an M; two-dimensional eritical point with light

propagating along the positive effective-mass direction. &, =1eV. Continuous line:

ofv,=1 (corresponding to the vertical transition approximation). Broken line:
¢fv, = 100,
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practically it coincides with the first one. The very small separation between
the two curves shown in Fig. 1 can be somewhat increased by a larger energy
transition than that considered (1 eV), but still the possibility of experimental
evidence seems unlikely.

In the case of a two-dimengional lattice the finite photon momentum does
not affect at all the M, singularity and has an effect on the M, singularity only
for incident radiation propagating on the plane perpendicular to the c-axis.
If the light propagates along the positive effective-mass direction, the symmetric
logarithmic divergence of the M, critical point turns into an asymmetric
one, as Fig. 2 shows. It may be possible that in this case of an absorption peak
the variation is significant and observable at least with differential technigues.
On the contrary, practically no changes appear with light propagating along
the negative effective-mass direction, as is shown in Fig. 3.

20

—
o

joint density of states {(arbitrary units)
o

=t
o

i 1 [ I 1 1 I b

0
~05 —04 =03 —02 ~01 0.1 0.2 03 04 05

0
(E—Eg)/Eg

Fig. 3. — Joint density of states for an M, two-dimensional critical point with light

propagating along the negative effective-mass direction. FE;=1eV. Continuous line:

efr,=1 (corresponding -to the vertical transition approximation). Broken line:
¢fv, = 100,
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4°2. Dipole forbidden transitions. — The possibility of an experimental evi-
dence of photon momentun effects may happen in the case of dipole forbidden
transitions.

Since «F is much smaller than unity, as shown in the preceding Section,
we can expand (1 — ocE)J" in a power series and rewrite eq. (20) in the following
analytic form:

(23) eanelg€, 0) < VE(D + qE +rB?) ,

where p, ¢, 7 here are a short-hand for the expressions
p=|E, + M, —b<i>—’_’3‘ r=—24 <l>a
P = LT My, 4= 0, ’ =3 hy;
and must satisfy the condition

(24) @—5pr>=0.

It must be observed at this point that a transition, which is forbidden in
the dipole approximation, may be allowed at a higher order because of the
spin-orbit interaction. If one tries to fit the experimental line shape of a dipole
forbidden transition with eq. (23), the p-coefficient may be originated also from
this spin-orbit effect. The 7-coefficient corresponds really to a new term; if
an absorption edge is fitted considering a finite #, fulfilling condition (24), one
might think of it as the experimental evidence of photon momentum effects
on interband transitions.

ok ok

The author is very indebted to Prof. G. CHIAROTTI for suggesting the prob-
lem and to Prof. F. Bassant for many helpful and stimulating discussions.

RIASSUNTO

Si estende la teoria delle transizioni interbanda al caso di fotoni dotati di impulso ¢
non trascurabile. Le expressioni generali della densitd congiunta degli stati sono calcolate
nell'intorno dei punti eritici; da queste espressioni, nei casi limite di lunghezza d’onda
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sia corte sia lunghe, si riottengono quelle di Van Hove. La relazione di dispersione della
funzione dielettrica traversa e,, dovuta ai processi interbanda viene data esplicitamente
e confrontata con la relazione di dispersione della funzione dielettrica longitudinale ¢,;.
8i mostra che, nel caso limite g==0, &,; ed gy coincidono anche per i mezzi aniso-
tropi. Si discute infine la possibilitdh di osservare sperimentalmente l'effetto prodotio
sulle curve di assorbimento ottico da fotoni il eui impulso non sia pid trascurabile.

BeposaTHOCTH MeXAYIOHHLIX NepexoqoB H uMuyase dorona.

PezioMme (*). — 3aHOBO HCCNEAYETCA TEOPUS MEKIY3ORHBIX HEPEXOJOB B CllyYae KOHEY-
HOTO UMIY/Ihca (oTOHA ¢. BHIBOASTCA HOBBIE BHIPRXXCHHS I7151 COBMECTHOM MNOTHOCTH
cocTosiHMiA BOIM3M KpuTuYeckyx ToueK. OHM NPHBOAAT k BhipaxenusM Ban Xora B o6oux
TPEAEIbHBIX CAYYasx: AJMHHOBOJIHOBOM M KOPOTKOBOITHOBOM. B siBHO# QopMe mpuso-
IUATCS AUCIIEPCHOHHOE COOTHOUICHME IS DYHKIWMK ONEepeIHO MTUINEKTPHISCKOH POHY-
LAEMOCTH &,p, OOYCIIOBICHHOM MEXIY3OHHBIMM MPOHECCAMH, M 3TO COOTHOUIEHME Cpa-
BHMBAETCA C COOTHOIICHHEM /s QYHKIHM OPOJONGRON IUIIEKTPHYECKOH IpOHUIAe-
MOCTH €y;. IlOKa3BIRaeTCS, YTO B Ipepene ¢=0 &, PABHO &op HAXE JUIS AHU3OTPONHON
cpensl.  OGCYXIaeTCs BOIMOKHOCTE 3KCIEPHMEHTANBHOro HabnronmeHus BiaMsAHusA, o0y-
CIIOBJICHHOTO KOHEYHBIM HMMYJIbCOM ¢oToma Ha GOpMY ONTHYIECKOrO IOTTTOMICHHA.

(*) IHepesedeno pedaryueii.



