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Pairing Approximation in Spherical Nuclei - I.
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Institut fiir Theoretische Kernphysik der Universitdt - Bonn

R. DE TOURREIL

Faculté des Sciences de U Université de Paris
Départment de Physigue Nucléaire - Orsay

(ricevuto il 17 Marzo 1967)

Summary. —— The pairing theory (BCS-method) is applied to spherical
nuclei in order to calculate some characteristic physical properties. The
main points are: i) insertion of an effective (realistic) two-nucleon force
in the pairing matrix elements; ii) definition of a phenomenological
nuclear potential in order to determine the single.particle states. The
effective two-nucleon interaction was obtained from the Hamada-Johnston
expression by means of a Scott-Moszkowski procedure; the complete
set of nuclear potentials (of Saxon-Woods type) contains 5 constants
which were determined from specific nuclear properties (empirical
determination of the self-congistent field occurring in a Hartree-Bogoliubov
treatment). The gap equation was solved numerically taking into account
all relevant single-particle states. The final results (separation energies
and quasi-particle excitations) as well as the corresponding empirical
data are plotted simultaneously as functions of the nucleon numbers
(Fig. 4 and 5). There is a satisfactory agreement just within the spherical
regions; in particular the correspondence between the typical irregu-
larities at the magic numbers and hetween the characteristic variations of
the gquasi-particle levels and of the pairing energies should be emphasized.

1. — Introduction and survey.

From a systematic survey of nuclear data one obfains a large number of
characteristic features which are intuitively understood from the general prin-
ciples of shell structure (**). As an example we have plotted the empirical

(*) N. ZeLpEs: Nucl. Phys., T, 27 (1958); N. Zerpes, M. Gro~avu and A. LEv:
Nucl. Phys., 63, 1 (1965).

() M. BeiNnEr and K. BLEULER: Nuecl. Phys., 22, 589 (1961).

(®) M. BEINER: Forschungsberichte des Landes Nordrhein- Westjalen (1964), No. 1407
(to be obtained from our Institute).

(%) K. BLEULER, et al.: Nuclear Separation Energies, Report of the Lysekil-Con-
ference, 1966,
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PAIRING APPROXIMATION IN SPHERICAL NUCLEI - I 47

« mean separation» energy of neutrons as a function of the nucleon numbers
Z and N (see Fig. 1). This « mean separation » energy is defined by

(L.1) B, (Z, N)=}[B(Z, N +1)—B(Z, N—1)],

where B(Z, N) represents the total nuclear binding energy which, in our case,
was taken from the new tables of Mattauch ef al. (°); an analogous expression
is used for the protons. The double step was introduced in order to eliminate
the even-odd mass differences. We thus obtained a smooth surface which,
however, is interrupted by characteristic steps at certain lines of constant
N-values (magiec numbers). This behaviour corresponds, of course, to the
closing of spherical shells of independent particles. Similar propeities continue
to hold for the empirical «single particle » states, i.e. ground-states and low-
lying excited states of odd nuclei within the spherical regions. If for each as-
signment the corresponding separation energies are plotted within the same
diagram we obtain a characteristic system of restricted surfaces («leaves»)
which, again, is easily nunderstood from this point of view (see Fig. 2). In this
case the separation energies are naturally defined by

(1.2) B!*(%Z, N\=B’*(Z, N\—B(Z, N—1), (Z even, N odd),

772 9%/2 3*/2

IS VN
NANYTAN

NN

20 30 40

T
8" (Mev)

Fig. 2. - Neutron separation energies B/*(Z, N) (Z even, N odd): B(Z,N)=
= B/*(Z, Ny— B(Z, N—1). Heavy lines connect ground and cxcited states of the
same assignment J*. e Spin certain, o spin probable, o other spins, ground states.

(®) J. MarravcH, W. TurerLe and A. H. WaprsTrRA: Nuel. Phys., 67. 1 (1965).
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where the excitation energy is incorporated in B’* (se. generalized separation
energies). All points corresponding to the same assignment J* were then con-
nected by a system of heavy lines thus representing a continuous variation of
the independent particle levels with Z and N.

It is, however, evident that the empirical data will not, by any means, be
in quantitive agreement with an ¢ideal » structure, such as independent par-
ticles moving in a potential well. For instance, the average spacing of the
empirical single-particle levels is much smaller than the «ideal » shell value,
which is essentially determined by the nuclear radius. Moreover, no irregu-
larities of the separation energies are observed at the subshell closures. This
fact indicates that the sharp change of occupation probabilities occuring at the
Fermi level in the naive picture may be the main reason for the disagreement.

On the other hand, the «ideal » structure corresponds very closely to a
Hartree-Fock (HF) treatment of the n-body system. It is, therefore, obvious
that we should look for a suitable generalization of this method. We therefore
consider as a next step the Hartree-Bogoliubov (HB) or more precisely, the Vala-
tin approximation (6-°) in which a smoothed Fermi limit is introduced from the
outset. In addition, the nucleus is replaced within the framework of this
method by a system of quasi-particles with a relatively weak interaction. This
fact also corresponds exactly to the general empirical nuclear properties. For
these reasons we introduce this approximation as a basis of our calculations.
At present, however, it does not appear to be possible to use the full scheme
—at least in the case of heavier nuclei—for a detailed numerical treatment.

We therefore introduce a rather drastic simplification. It may be seen that
the HB-equation (as given by VALATIN (7)) represents a coupled system con-
sisting of a generalized HF-problem and a slightly enlarged pairing equation (7).
Now, the corresponding generalized (nonlocal) nuclear potential, appearing as
a quadratic expression of the unknown wave functions in these equations, is
just replaced by a phenomenological local potential well of the Woods-Saxon
type. In other words, the nuclear potential is determined directly from a series
of typical empirical data. All details of the determination of this potential
will be given in Sect. 2; the main point was to use a form which gives a fair
account of the single-particle levels, within a limited energy interval just
around the Fermi level.

We thus remain with the numerical solution of a problem which has the
well-known form of the pairing (BCS) approximation (see Sect. 4). We have,

& . BogoriuvBov: Sov. Phys. Usp., 2, 236 (1959).

N

G. VaraTin: Phys. Eev., 122, 1012 (1961).

BARANGER: Phys. Kev., 122, 992 (1961); 130, 1244 (1963).

Brocu and A. M=ussiam: Nucl. Phys., 89, 95 (1962).

The separation of the Valatin system will be discussed in a subsequent paper.
In order to cheek our method we have considered the limiting case of nuelear matter.

(®) N.
" J.
¢) M.
¢) C.
O T
T
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however, to bear in mind that the HB-scheme is applicable only if effective
(finite) nuclear forces are introduced from the outset. Within the framework
of our approximation we have therefore to use the same forces also for the
BCS calculations. They were determined explicitly using a Scott-Moszkowski
procedure and the well-known Hamada-Johnston expression for nuclear forces
(see Sect. 3).

Our caleulations are thus based on the following principles which define,
in faet, an intuitive « nuclear model »:

a) Introduction of a nuclear potential constructed from specific nuclear
properties (Sect. 2).

b) Determination of an effective (finite) two-nucleon interaction from
the scattering data (Sect. 3).

¢) Insertion of these forces as an additional direct interaction which is
treated within the framework of the pairing approximation (Sect. 4).

There are, of course, many generalizations like nonlocality of the nuclear
potential and deformation (*).

A formal advantage of this « pairing model » is the possibility of determi-
nation of nuclear properties as (« continuous ») functions of the nucleon num-
bers N and Z. This enables us to make rather detailed comparisons with the
empirical data which we have represented by «continuous» surfaces (com-
pare Fig. 1 and 2).

The calculations following the above-mentioned prescriptions have been
carried out within all «spherical » regions of the periodic table (the details
of the calculations are given in Part II of this work). The results may be
summarized as follows.

There is a fairly good agreement with the empirical data in relatively large
regions; i.e. there is a good fit of the mean separation energies and pairing
effects (see Fig. 4, Sect. 4) and of the generalized separation energies (see
Fig. 5, Sect. 4). In particular, the characteristic steps at the end of the
major shells are fairly well reproduced whereas some ¢« expected » irregularities
at the closures of the subshells are eliminated completely. In other words,
the pairing effects are just strong enough to eliminate the subshell effects
whereas they still leave some steps at the major shells. These steps are,
however, strongly reduced with respect to the «ideal » values.

Finally, one should explain why such a simple model is already so close to
reality, especially in view of the fact that only the pairing part of the direct
interactions is taken into account and that the nuclear potential has a phenom-

(*) The spherical case however, has already a relatively large domain of validity
and represents the simplest case for a complete mathematical treatment.

4 - Il Nuovo Cimenio B.
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enological characier. The following arguments might be considered in this
connection:

1) Within the spherical regions the pairing plays the role of an over-
whelming interaction, i.e., it reduces substantially the effects of all other types
of direct interactions because of the special structure of the total state (cor-
relations) induced by the pairing forces (*).

2) The numerical values of our pairing matrix elements differ only
slightly from the results of more detailed calculations (short-range correlations)
in lighter nuclei (%°).

3} Our local potential replaces the more general (nonlocal) HB expres-
sion as long as the relevant single-particle states in the neighborhood of the
Fermi level are considered. The deviations found for heavier nuclei (4 > 90)
should be partly ascribed to the nonlocality of the potential.

A more detailed discussion of the average potential especially with respect
to the spin-orbit splitting which so far was determined phenomenologically
(Sect. 2) will be given in a subsequent paper ('1).

2. — The nuelear potential.

" The numerical basis of our work is the determination of the nuclear poten-
tial in the domain of spherical structures. Within our scheme this potential
should, in principle, be calculated from self-consistency (HB or, as a first ap-
proximation HF). In view of the length of these calculations for heavy nuclei,
and a rather critical uncertainty of the 2-body interaction, we make the fol-
lowing assumptions: i) existence of a self-consistent potential; ii) possibility
of an approximate determination of appropriate nuclear properties (average
values) from this potential alone. If we assume, in addition, that a local ex-
pression of special analytical form may be used it becomes possible to deter-
mine our potential directly from the nuclear properties mentioned above. We
have, therefore, introduced the following rules:

1) We assume a central symmetric form of the Woods-Saxon type

(2.1) We(r) = — W, (1 + exp [’i;—’"o])ﬂ.

5

(*) This point will be discussed in a forthcoming paper by D. ScHUTTE.

{19y See for example: T. T. 8. Kvo and G. E. Brown: Nucl. Phys., 85, 40 (1966), com-
pare Table 10, p. 70.

(1Y) Compare K. BLEULER: Proc. 8.I.F., Course 36 (New York ond Gordon, 1966),
p. 464.



PAIRING APPROXIMATION IN SPHERICAL NUCLEI - I 51

This expression contains three parameters: radius r°, surface thickness «; and
depth W,. «; is assumed to be independent of Z and N, whereas r° satisfies
the usual radius law r® =a,A}. W, is different for protons and neutrons and
has the following well-known N-, Z-dependence (W® for protons and W
for neutrons)

N-Z

(2.2) W = o, 4 o, -

2) We add a phenomenologieal spin orbit coupling of the Thomas type

7e .
(2.3) W )15 = o 2y S0 L

dr #z

=

where 4, =1.41fm. «, is a characteristic dimensionless constant and assumed
to be independent of N and Z. The same expression holds for protons and neu-
trons with the corresponding potential W*(r).

3) For the protons we add the Coulomb potential W®(r) which is cal-
culated from the empirical charge distribution as measured by R. HOFSTADTER.

We are thus left with 5 constants (i.e. the parameters o,—a;) which
determine the complete set of nuclear potentials for the spherical regions. We
now use the following nuclear properties in order to determine their numerical
values:

1) The empirical nuclear charge distributions within the spherical regions.

2) The mean separation energies of neutrons and protons as funections
of Z and N, i.e. our empirical surfaces B and B_. According to the HB-
scheme they are directly related to the (regularized) Fermi energies of the

unknown potential (see Fig. 4, dashed lines).

3) The empirical sequence of single-particle levels throughout the spher-
ical regions of the periodic table and their relative distances. A graphical
survey was given by different authors (3-12).

In order to use these conditions explicitly the single-particle eigenfunections
have to be determined for all relevant values of N and Z and for various sets
of the parameter o,—o;. The nuclear properties mentioned above were then
determined (and adjusted) explicitly from such a simplified single-particle
model. The sequence of single-particle levels for the «best fit» is shown
by the light lines in Fig. 4. It was interesting to realize that all three

(?) P. KLINKENBERG: Rev. Mod. Phys., 24, 63 (1952); K. BLeUuLER and CH. TER-
REAUX: Helv. Phys. Acta, 30, 183 (1957).
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conditions could be satisfied simultaneously (with relatively small deviations)
although there is a very large overdetermination: several unknown functions
of the two variables ¥ and Z against only 5 constants at our disposal. This
fact assures us of a certain consistency of our method, especially in view of
the constancy of the potential depth parameter «;. (Actually it may be seen
from our subsequent caleculations that the addition of direet interactions has
only a small effect on the particular nueclear properties invoked here.)
Our consistent values for the 5 constants are (see ref. (%))

(2.4) o, =55.5MeV, o=33.2MeV, o, —0.36, og==1.21fm, oz=0.68fm.

In addition, we have checked that the potential depth and the « symmetry
energy » of a somewhat simplified nuclear matter model are in fair agreement
with the corresponding parameters «;, and «, (1*). Similar values have been
obtained independently by P. C. SooD (1%). «, is to a large extent determined
by condition 3) and it should be noted in this connection that our subsequent
BCS-transformation does not alter appreciably the sequence (and even the
relative distances) of the relevant levels although there is a rather large change
of the absolute values; compare Fig. 4 and formula (4.10). The possibility of
a theoretical determination of «,; from a generalized HF-scheme (parity mixing)
has been discussed by one of us (11).

3. — The effective nueclear forces.

In a second stage we now have to construct the effective two-body forces
using the nucleon-nucleon scattering data (0 -300) MeV as well as the known
properties of the deuteron (binding energy and guadrupole moment). In this
paper we give just a short survey of the construction of this interaction, whereas
the details will be contained in a speecial paper (**). The itwo-body potentials
proposed so far satisfying the scattering data up to 320 MeV contain always
a repulsive core of considerable strength. They are, therefore, incompatible
with a Hartree-Fock approximation or a pairing theory in conventional form.
It has been shown ('¢) that even a soft-core chosen in order to reproduce the
behaviour of the S-phase at high energies has still a prejudicial influence on
the binding energy and the relevant pairing matrix elements. To avoid these
difficulties we propose a potential suggested by the fundamental separation

(%) K. ERKELENZ: private communication.

() P. C. Soop: Nucl. Phys., 89, 553 (1966).

(3) M. BriNEr, K. BLEULER and K. ErRkELENZ: Effective Nuclear Forces, to be
published in Nuovo Cimento.

(%) K. ERKELENZ: private communication.
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method of Moszkowski and Secott (7). Starting from the fact that the re-
pulsion produced by the hard-core is effectively canceled by the inner part
of the attraction we define a cut-off radius for this region in such a way that
the remaining long-range tail of the potential reproduces the free nucleon-
nucleon scattering data. In other words, we determine the cut-off radius
directly from the nucleon-nucleon scattering data.

Our effective potential is based
upon the well-known Hamada-Johns- 20
ton form, however, with free nume-
rical parameters in the various ana-
Iytical expressions. The cut-off radii
which we now insert, are in general 15t
energy, spin and parity dependent.

kel
They were determined together with £
the free parameters by fitting the 12
scattering phases and deuteron data. 10r \
However, within the energy interval § \
. . Y N\
to be considered in nuelear structure ! N

we showed that it was even possible
to choose energy-independent cut- 05%
off radii. This implies large simplifi-
cations in the subsequent calcula-
tions. It is important to observe in

this connection that even the S- 0o 0 300
phases are in relatively good agree- energy (MeV)

ment within the relevant energy in- Tig. 3. — Energy dependence of experi-
terval (see Fig. 3), although it is evi- mental and calculated S-phase shifts:
dent that the change in sign of the — — — Hamada-Johnston, ——— our effec-

. tive potential, experimental.
S,-phase which takes place at about 1ve poten ° oxp

240 MeV will not be reproduced.
The following rather lengthy expression states our final result.
Our potential consists of four terms

(3.1) V=V, 4+ V80 + Vs L-S +V,, Lns,

where C, T, LS and LL refer to central, tensor, linear LS and quadratic
LS8 potential, respectively. The operators S,, and L,, are defined by

Slz = é(’L??z L) - (0'1 '0'2)

(1) S. Moszkowskr and R. Scorr: Ann. of Phys., 11, 65 (1960).
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and
Ly, =(0,°6,) L2—1} {(6,- L)(6,- L) + (0,- L){c," L)} .

The V,; (¢ stands for O, T, LS, LL) are spin-parity dependent and given by
Ve = f? (G1°6)(T ) Y (1 HacY 4 b Y?) y

(3.2) Ve =% (717)Z(1 +arY),

winx  wiw

Vis=pGs Y (1 +b,5Y),

Vie=uG 0 Z(14+a,, ¥ +5,,Y?),

where y =140 MeV is the pion mass and f2=0.08 the pion coupling con-
stant. Y and Z represents the central and tensor funectional form, respectively,
of the one-pion exchange potential OPEP

(3.27) Yzf;? Z:Y(l +§' +3—2),
X A €

with @ =y, r (4, = reciprocal Compton wave length of the pion measured
in fm—1). Henee, for sufficiently large r, the potentials V, and V, go over to
the OPEP (with f2 =0.08). The additional terms with the coefficients a and b
ecan be interpreted—within the model of the one-boson exchange poten-
tials ('8)—as a contribution simulating the higher-boson exchanges. In the
inner region, defined by the cut-off radius d, all four-potential terms in (3.1)
vanish simultaneously. It must, however, be realized that this region is slightly

TABLE I. — Numerical values of the parameters and cut-off radii d for the invariant subspaces
of the two-body system.

Parameters and cut-off
Subspaces —_— e - e
d (fm) ‘ Qo be ar Gz a;; | biz Gps . brs
— - - ) it
even-singlet (*) | 1.07 | 15 0 0] —0003 | —1] 0 ‘ 0 0
even-triplet 1.07 ‘ 11.5 0 0 0.007 0 0 . —0.17 0
odd-singlet 0.80 ‘ — 8 12 0 —0.003 3 9 0 0
odd-triplet 080 | — 2 1] —1 0 0l]o ‘ 023 | —7
(*) Solution (II) of ref. (**).

(*¥) R. Bryax and B. Scorr: Phys. Rev., 135, B 434 (1964); C. ErtmiMiu and
K. ERRELENZ: to be published in Nuovo Cimento.



PATRING APPROXIMATION IN SPHERICAL NUCLEI - I 55

different for the various terms according to their spin and parity indices. The
various parameters which determine our effective potential are given in Table I.
(The cut-off radii d are measured in fm, the « deviation » parameters a, b and
the relative potential strength G are dimensionless). Equations (3.1-2') together
with this Table define our potential. It will now be used in our subsequent
pairing calculations.

4. — The pairing theory.

‘We now use the single-particle state functions and the corresponding eigen-
values of our nuclear potential W as well as the effective nucleon-nucleon force V
in order to set up the Hamiltonian of our model. Leaving out the pairing forces
between unlike particles (*) this « formal » Hamiltonian has the following struc-
ture:

(4.1) H"'—H, | H,.

The two parts refer to protons (index p) and neutrons (index n) respectively.
In both cases H has the form (**)
(4.2) H=D3 (e,— Naa, +13Gm,j—m|Viim, j—mdal,a_ a6,
o ol
where jm represents the usual abbreviation for the complete set of quantum
numbers nljm of our single-particle states (the total single-particle spin is now
denoted by j). We added the « chemical potential » because we shall have no
longer sharp particle numbers within our approximation (***). We thus have two
Lagrange-parameters 4, and A, which shall be related to the two supplementary
conditions fixing the average particle numbers for N and Z. The exact signi-
fication of this formal shell-model Hamiltonian within the HB-approximation
will be given in a forthcoming paper.

It contains the characteristic terms of the original Hamiltonian of the
n-body system rewritten in a HF-basis. The additional term of the form
-1V za;‘mam (V represents the average HF potential energy per particle) has

im

been dropped because its effect amounts to the subtraction of a constant V/2
in all our ¢,- and A-values. In the caleculation of the separation energies, which

(*} This point will be diseussed in a forthcoming paper by D. ScmiTTE and
A. FRIEDERICH.
(**) In a slightly different connection (description of valence nucleons) this Hamil-
tonian had been proposed by J. R. SCHRIEFFER (Nucl. Phys., 35, 363 (1962)).
(***) Note added in proofs. - Calculations with sharp nucleon numbers have been done
at our Institute by J. Garcia: private communication.
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are now given by

V x 8(81—%7)
T2 oy

1

— =

this constant (V7/2) practically ecancels the terms containing the derivatives
with respect to the particle number N. Within the restricted frame of our
Hamiltonian (4.2) we therefore obtain the separation energies just from the
resulting A-values. The additional term, however, is needed if the total bind-
ing energies were considered.

We now perform the « clagssical » Bogoliubov-Valatin transformation

(4.3) Ejm = u].a:m —(—=)"™v,a,_,, ui +of =1,
yielding
44 H =g[(£,-—l + $08,)0} 4 A (=) 0,u,] +
+ 2 [les— 2+ deui — o)) — 25— 1 By
+ 2 [(e;— A 4 0es) (=005 + § AU — V) HEWE T+ Ernim) +
"" + Hyy = Hy+ By + Hy + H,, ,

with

de; = (jm, §—m|V|(jm, j —m)— (j —m, jm)>v]
and
(4.5) A = 2.'m, § —m/ | V]jm, §—mH(—) " v, u, .

i'm’

In view of the spherical symmetry of V we have the following m-dependence
of Ajm:

(4.6) A = A=),
with

A= z< jrm'y § —m | Vijm, j—my(—) iy,

The usual condition H,, = 0 yields, if we neglect the de; (*),

(4.7) 2(85—}.)/’//,"0,-“{’* A,(u?—v?) =0,

(*} The de¢; lie between 0 and &;;, where G,; represents the diagonal elements of
the gap matrix. (This follows from (4.8) and 0<»}<1). They are therefore, in ge-
neral small (see Part II, Tables 10 and 11 of Appendix B). On the other hand, within
the HB-frame, matrix elements of this diagonal type contribute directly to the HB
self-consistent potential (see ref. (*8)}, and the corresponding change of ¢; is just given
by ds;.
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Introducing the « gap matrix» G by

3 () T G, f— | VI =

the solution of (4.7) (with (4.6)) follows from the well-known system of gap
equations (this system corresponds—by a redefinition of the ¢,—to the «pair-
ing part» of the HB-equations)

(4.9) A;:%;G’w)%}dﬁ
where

(4.10) Ey=+Vi(e,— A + 45,
if we put

(4.11) v;‘fzé(l— —E;—) , u,:% (1 —|—%E;f), (ujvj:~§Aj/Ej) .
The ground states [0) are now determined from

(4.12) Eiml0> =0 for all jm,
and one obtains for the expectation value of the particle numbers

(4.13) 013 85, 0,,[0> = 3 (2] + 1)} .

J

Therefore, the supplementary conditions read

[ Z for the proton system,

(4.14) (2] + )02 =
; ’ N for the neutron system.

Our ¢« diagonalized » Hamiltonian now has the form (omitting the remaining
interaction among the quasi-particles)

- L 142 ,
(4.15)  H=3(G+3% {(e,~ A) (1— STA) —;%} + 2 BiEnim -

Our system of equations ((4.8), (4.9), (4.10), (4.14)) has been solved numerically
(computer) for all «ideal » nuclei ((Z, N (%)) and (Z(N), N )) situated on the mid-
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dle line (N =N (Z)) of the flow of stable elements. In each case all relevant
states § which occur within the gap equation (4.9) were taken into account; the
@s were calculated explicitly from (4.8) and the expressions (3.1} and (3.2) for
the nuclear forces using the Moshinsky method. All details are to be found
in Part II of this work.

protons
10 30 50 70 90
AV = a) T T T T
L%
P
iR
0
b )
s 5*2 792 W72 142,342 512" \
5+2 32 52 9k < j \
It2 1 772 \

3_/2\ A 12 <

12 372 5 /2

9>/2 13*72\5—/2 172

30 110 130 150

neutrons

Fig. 4. — Comparison of separation and pairing energies: 2E]'.’f“: theoretical pairing
energy of protons, P,: experimental pairing energy of protons, — A_: theoretical mean
sepa_ration energy of protons, B, : experimental mean separation energy of protons,
2E7": theoretical pairing energy of neutrons, P,: experimental pairing energy of

neutrons, — 4,: theoretical mean separation energy of neutrons, B, : experimental
mean separation energy of neutrons. a) Full-line histogram: 2Em“‘ broken histogram:
P,; b) @ ® ® —/,; O— —0— =0 By; —— €5 ——— or'ginal Fermi

limits (without pairing); ¢) @ @ ® —i; O— —=0— =0 Bg; — &;
——— original Fermi imits; d) fullline histogram: 2Ej™"; broken histogram: P,.
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The solutions yield the numerical values for our characteristic functions

(4.16)  A(Z, N(Z)) — A(Z), M(N); KB, (Z) and E,(N),

b D n

which directly represent, within our restricted frame, the mean separation
energies st for protons and B for neutrons as well as the excitation energies
of the quasi-protons and quasi-neutrons. These « theoretical » functions can
be direetly compared to the corresponding empirical curves which were obtained
by the «intersections » (through the middle line) of our energy surfaces (com-
pare Fig. 1 and 2). We therefore plot theoretical and empirical curves just
within the same diagram (Fig. 4 and 5) which thus contain our main results
in a comprehensive form.

5. — Conclusions.

Our graphical representations give the possibility of a direct comparison
between our calculated values and the empirical data. In Fig. 4 (middle paris)
we have plotted empirical and theoretical mean separation energies, whereas
some typical examples of generalized separation energies of odd-N nuclei are
shownin Fig. 5. The empirical and theoretical curves are in good agreement over
all the spherical regions; the correspondence of the steps which oceur at the
magic numbers and the rather typical behaviour of the excited states should
be noted. We have, however, a rather large energy scale in our represen-
tation; the absolute deviations for the separation energies are, therefore,
quite appreciable although small compared to the total depth of the nuclear
potential.

On the other hand, there is even a better agreement if we compare our
theoretical values for the « gap » directly with the empirical data obtained
from the even-odd mass differences. Such a comparison is shown in Fig. 4
(top and bottom parts). Theoretical values (full-line histogram) are calculated
from formula (4.10), whereas the empirical data (broken histogram) are
taken from the Mattauch tables. It should be pointed out that the abso-
lute values as well as the typical variations with Z or N of the pairing effect
are in good agreement. This is rather satisfactory because the gap values are
perhaps the most characteristic results of our calculations.

In view of the general correspondence {especially with respect to the N-,
Z-dependence of our results) it should be emphasized that only 5 constants
(ee;—ats) had to be adapted within our scheme, using to a large extent experi-
mental data which are not directly related to the present ones (e.g. charge
distributions, etec.). The remaining diserepancies within the region of heavier
elements are perhaps due to the fact that we choose a nuclear potential of
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local character, whereas the HF- or HB-potentials exhibit rather strong non-
localities. (This fact may also be seen from the empirical energy location
of the deep-seated single-particle states). Our next task, therefore, is (as a
first stage) a numerical treatment of the HF-approximation using the same
effective two-body forces (*). The present single-particle wave funetions
could then be introduced in a first step of the iteration process.

The complete numerical resnlts and a more detailed discussion will be given
in Part IT of this work.

* koK

We thank the computer center of the Rheinisch-Westfilisches Institut
fiir Imstrumentelle Mathematik in Bonn where the numerical calculations
have been done.

The authors wish to thank Profs. J. R. SCHRIEFFER, S. MOSZKOWSKI and
M. MosHINSKY for most valuable discussions on this subject.

(") Note added in proofs. - Such HF caleulations with the effective potential (3.1}
are being done at the same institute (H. PETrY and D. ScHUTTE: to be published).

RIASSUNTO (%

8i applica la teoria dell’acecoppriamento (metodo di BCS) ai nuclei sferici allo scopo
di calcolare alcune proprieta fisiche caratteristiche. I punti principali sono: i) inser-
zione di una effettiva (realistica) forza di due nucleoni negli elementi della matrice di
accoppiamento; ii) definizione di un potenziale nucleare fenomenologico allo scopo di
determinare gli stati di particella singola. Si & ottenuta linterazione di due nucleoni
effettiva dall’espressione di Hamada-Johnston per mezzo del procedimento di Scott-
Moszkowski; il gruppo completo dei potenziali nucleari (del tipo di Saxon-Woods) con-
tiene 5 costanti che sono state determinate dalle proprietd nucleari specifiche (deter-
minazione empirica del campo auto-compatibile che interviene nel trattamento di
Hartree-Bogoliubov). Si & risolta numericamente 1’equazione del gap tenendo conto
di tutti 1 pit importanti stati di particella singola. Si riportano in diagramma i risultati
finali {energie di separazione ed eccitazione di quasi particella) assieme ai corrispondenti
dati empirici in funzione del numero di nucleoni (Figure 3 e 4). Si ha un accordo sod-
disfacente proprio entro le regioni sferiche; si deve mettere in rilievo in particolare la
corrispondenza fra le irregolaritd tipiche ai numeri magici e fra le variazioni caratteri-
stiche dei livelli di guasi particelle e delle energie di accoppiamento.

(*) Traduzione a cura della Redazione.
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IpuGanxenne cnapusannst B chepudeckux aapax. — L.

Pesiome (*). — Teopus criapuBanms (Metox BCS) mpuMeHsiercs K chepruIecKuM sapam
IJIST BBIYMCIIEHHS HEKOTOPBIX XapaKTEPUCTHYECKHX OGH3MIECKHX CBOMCTB. [ JIaBHEIMH
npobiemamu Aeingiorca: 1) BBeneHue 3(dexTHBHON (pPeaNMCTHYHON) IBYX-HYKJIOHHOM
CHUNBl B MATPHYHBIE 3JIEMEHTHI CHAPUBaHus, 2) ompenelcHHe (HEHOMEHOIOIHYECKOTO
SIAEPHOTO MOTEHIMAaNa A ONUCAHMS ONHOYACTHUYHBIX cocTosHumit. Ilonmyvaercst, 4TO
sbbekTHBHOE NBYX-HYKJIIOHHOE B3aMMOICHCTBHE NpPWHUMAaeT BHJ BBIpaXeHus Xamana-
JxoHcTOHA mocpencTBoM mpouenypsl CkOTTa-MOIKOBCKOIO; HOJHAA CHCTEMA SOEPHBIX
noTeHuranoB (Tuna Cakcona-Byaca) cOmepXHT 5 KOHCTAHT, KOTODBHIE ONPEIEISIFOTCA U3
crelimuIecKuX SAEPHBIX CBOMCTB, {OMOupHYECKOe OIpeAeiieHne CaMOCOTIaCOBAHHOTO
OIS, BCTPEYAIOIIErocs B TPakToBke XapTpu-Boromo6osa.) YpaBHeHHe INE/Hd pelIaeTcs
YHUCIIEHHO, IPUHUMAas BO BHUMAaHHE BCE OTHOCSIIMECS K AETY OJHO-YACTHYHBIE COCTOSIHHUSA.
OKOHYaTebHBIE PE3YyNbTATHI (SHEPTHH OTIENIEHMS M KBAa3WYACTHYHBIE BO30YXKIESHUS)
¥ COOTBETCTBYIONINE SMIMPUICCKHE HAHHbIE BEIYEPYMBAIOTCA OJHOBPEMEHHO KaK (QyHKIIHH
aToMubix HOMepoB (pucyHku 4 u 5). CylmecTByeT yZOBIETBOPHMICIBLHOE COTJIACHE JIMIH
BHYTpH chepuieckux obracteii, B 4aCTHOCTH, CIEAYET OTMETHTH COOTBETCIBHE MEXIY
THIMYHBIMH HEPETYIAPHOCTAMH P MATMYECKHX YMCIAX M MEXIY XapaKTPePUCTHIECKAMU
H3MEHEHHAME KBa3HYACTMYHBIX YDOBHEH M JHEPrHil CIIapHBaHMs.

(*) ITepesedeno pedaryueii.



