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Summary. Presented in this paper are exact solutions to Einstein's
field equations generated via static spherically symmetric mass and
charge distributions. In the limit in which the mass density vaunishes
but the charge density does not, the mass seen by an observer at infinity
does not vanish and the metric exterior to the source can be the Ressner-
Nordstrom or Schwarzschild solution depending upon the charge distribu-
tion. This mass, generated by the energy density of the electromagnetic
field, cannot be set equal to zero for a body of finite size. If the charge
is concentrated in a thin shell and the charge and mass as seen by an
observer at infinity are set equal to those of an electron, the radius of
the shell is half the classical electron radius. Finally, we exhibit a class
of solutions in which the red-shift (from a point in the body to infinity)
is maximum at the surface rather than at the center.

1. — Introduetion.

In a recent paper (1), exact flelds of a number of charge and mass distri-
butions were found and the self-energy (*) of these distributions was discussed.
Because of their complexity, these solutions are difficult to work with. In this

() C. F. KYreE and A. W. MarTIN: Nuovo Cimento. 50 A. 583 (1967).
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paper, we present some especially simple charge and mass distributions and
find exact solutions to Einstein’s field equations corresponding to these distri-
butions. The mefric coefficients are sufficiently simple so that all quantities
of interest (such as self-energy) can be computed exactly; no power-series ex-
pansions are necessary.

The mass and charge distributions treated here consist of one or more thin
shells. The method used to treat such shells is closely related to that used
elsewhere (2).

2. — Charged shell.

To treat the problem of a thin spherically symmetric charged shell of radius
o, 1t 18 convenient to write the metric in the form

1) ds?= A?ds* -+ B2dr® + r2(A62 + sin20dg?) .

This form of the metric has the advantage that the radial co-ordinate r is re-
lated to the area of a sphere of constant radius » via area = {ar2. An espe-
cially simple way to write Einstein’s field equations in orthonormal frames is

(20) 8nr: I =[r(1— B-%],,
(28) 8nABT® = [(rB)~(rd),], + (4/r*B) ,
(20) A2B(1 + 8mr2 T1) = (rA2), .

If we consider only radial electric fields generated by a spherically symmetric
charge distribution, we obtain only one nontrivial Maxwell equation (3)

(3) (rie),= 4r*oB,

where ¢ is the charge density and ¢ is the radial electric field in orthonormal
frames. Inside the shell ¢ vanishes, while outside the shell we obtain

(4) e=q[r*,

where the charge ¢ is related to the charge density o via

-
To

(5) q= 47£fO’TZB dr.

r
0

(?) J. M. CoHEN: Relativity Theory and Astrophysics, edited by J. Eurers (New
York, 1967); D. BriiL and J. COHEN: Phys. Rev., 143, 1011 (1966); J. ConeEN and
D. BrirL: Nuovo Cimento, 56 B, 209 (1968).

(®) J. M. Conex: Phys. Rev., 148, 1264 (1966); B. HorrMax: Quart. Journ. Math.,
3, 226 (1932).
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Here 7;t and r; denote the limit » — r, taken from above and below respectively.

The stress-energy tensor (generated by the electic field, the mass density
p of the shell, and the elastic stress £22= {3 necessary to support the shell)
has the nonvanishing components

(6) T=p + (¢%/87) , T=—¢2[8n, T2 = T3 = §33 | (*/8nm) .

In the limit of a shell of vanishing thickness, the mass density and elastic stress
can be expressed in terms of a delta « funetion », <.e.

(7) p=Kor—r), t2=18=80r—r,),

where the delta « function » is normalized to satisfy
(8) 1= 4nf6(r— ro)r2dr .

To

For the field equations (2) with the stress-energy tensor (6) we have the
solution

(9)

and

N

*=B2=1—(2mr—q¢*)r2, e=q/r? for r >7r,,

(10) A2=1— (2mr,— q®)ry*, B:=1, ¢=0 for r<<7,.

The solution (9) is the well-known Reisner-Nordstrom solution while the solu-
tion (10) is just flat space.

All that remains to be done is to find the connection between the mass
and to find the elastic stress supporting the shell. The former relation is found
by integrating eq. (2a) across the shell and using eq. (8):

(11) m =K -+ (¢*27,) .

If we assume that the mass density is positive definite then K must also be
positive definite. It is interesting to note that even when the mass density
vanishes (K = 0), the mass does not. Thus an observer at infinity sees a mass
even if no «real » mass is present. It is the energy density of the electric field
which generates this mass. It is often stated that the effect of the electric
charge on the metric dies off faster at large distances than the effect of the mass,
since the ¢ term in the metric (9) falls off faster than the m term. But rela-
tion (11) shows that the electric field also contributes to the mass via its energy
density. Thus the effect of the charge does not fall off faster than that of a
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«real » mass (nonelectromagnetic mass): the energy density of the eleetric
field makes a contribution to the mass seen by an observer at infinity which
can be as important as the contribution from any «real » mass. In the extreme
case K = 0, the energy density of the electric field makes the only contribution
to the Schwarzschild mass. If the Schwarzchild mass and charge are set equal
to the values for an electron (with K = 0), the radius of the body becomes ry=
= q*/2m, half the classical electron radius. This result came directly out of the
field equations with the gravitational interaction taken into account auto-
matically via the field equations.
We define the gravitational self-energy dm via (%)

(12) dm = m—m, ,

where m is the Schwarzchild mass and m, is the proper volume integral of the
energy density, i.e.

(13) my = 4nfT°°r2B dr

0

for the spherically symmetric distribution considered here while

©

(14) m= 4nfT°°rzdr .
0

Thus the gravitational self-energy dm is given by

o

(15) Sm =4nfr2drffw(1—8),

¢

which is negative since the integrand is negative definite (B>1). Integration
yields the exact result

(16) dm = ro(1— o) + (1q]/2) In[(4q + |glrs™ —mlg|~)/(1 —m|g[-")] .
When K = 0 this expression (16) takes the form

(17) dm = m(1— (|g|/2m) In [(1 + m|g|~")(1 —ml|q|-1)~1]),

(*) ADLER, BaziN and SCHIFFER: Introduction to General Relativity (New York, 1965).
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which becomes dm ~ —mm?/3¢g> when the charge and mass of an electron
are substituted into (17) since |g) > m. Note that m > |dm| for this charge
distribution and charge mass ratio.

The elastic stress in the shell is obtained by integrating eq. (2b) across the
shell yielding

- v
7, Ty

(18) SnSfBé(r— 7o) dr = B (rgt 4+ A, A7) = (27 Ao) (1 — Ag)2— ¢257%] .

Tn Tn

The integral on the left of eq. (18) is not well defined (since the integral of the step
function times o delta « function » is not well defined) and can only be determined
if additional information is given. This additional information can be obtained
by integrating (2a) across the shell

+

T 710
(19) 4nroKf6(r—ro)Bdr:—B—l =1— A4,.

[} "

Substitution of this relation (19) into eq. (18) yields

(20) 8= (K[A[A7 —1—r" 457 (1 — 4) ]
When e?— 0, this relation (14) reduces to

(21) 8= (m/4)(45" —1),

in agreement with previous results (?). In the limit K — 0, eq. (13) reduces
to eq. (8) and eq. (20) or eq. (18) yields S=—gq*/4r,. While if |¢j=m, S
vanishes; the gravitational attraction just balances the electrie repulsion. This
is not hard to show if one notes that A2 = (1 —m#;")? in this case.

When this latter case |¢| = m is considered via isotropic co-ordinates, strange
results are often obtained. The co-ordinate transformation »—= o¥? yields
the isotropic form of the metric (1), (9):

(22) dsz=— Vzdiz + P(de? 4 02df? + p?sin*fde?) ,
where

(23)  Wr=[1 f 20— ([e?), V= (1—[(m2—¢)/te2]) P2,
When |q| = m, these metric coefficients become

(24) Yre1 -+ (mfp), V=Ww>2.
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A sphere of constant radius ¢ has the area 4m(p¥?)*= 4ar?. Thus, if we
measure the «radius » of a shell via the area of the shell through the relation
area = 4m3, we find that the «radius» of the shell is related to g, via (for

m = |g|)

(25) To= 0o+ M.

Thus when g, approaches zero, the shell radius r, approaches m, a nonzero value.
Consequently, the surface area of a charged body with m = |¢| and g,— 0
does not vanish, and thus the body is not a point charge in the usnal sense.
However, it is often called a « point charge », since it exhibits many of the pro-
perties of a point charge (%).

For this case the expression for the gravitational self-energv (18) is

(26) dm = (m/2)In (1 —mr"),
which becomes large as 7, approaches m. Thus the gravitational potential
« renormalizes » the mass and keeps it finite as pointed out previously by
others (°).
3. — Schwarzschild metrie.

In this Section we consider two concentric spherical charged shells with

charges ¢, — ¢ and radii r,, r, respectively. For this case the metric takes the
form (1) with the electric field and metric coefficients being

2n e=20, A= B2=1—2mr 1, for r,<r,
e=q/r*,

(28) | A= (1 —2m)(1—g T —D)(1— @0 — 1),
Br=1—g¢*r2(rr; —1), for rn<r<r,.
e=20,

29 A= (1—2mr;")(1 — @y ey — 1)), for r<r .
B=1,

(®) R. Arxowrrr, S. DEsSER and C. MIsNER: Adnn. of Phys., 33, 88 (1965).
(°) R. Arxowrrt, S. DESER and C. MIsNER: Phys. Rev. Lett., 1, 375 (1960).
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Here the Schwarzchild mass m is given by
(30) m = (¢*/2n )1 —rr37")

and r, is the radius of the inner shell. The mass m seen by an observer at infinity
is generated by the electric field between the two charged shells. However,
this observer cannot tell that the mass is due to two charges rather than to a «real »
mass.

4, — Extended charge distribution.

Another exact solution is
(31) e=q(r)frt, A*= B?=1— (8au/3)r?, for r<<ry,

with the solution for r,<r being the same as that in eq. (9). Here u is the
constant related to the mass m and total charge ¢ via the relation

m= (4/3)prl + (¢2[2r,)

and ¢(r) is an arbitrary function satisfying the conditions ¢(r,) = ¢ and g(r) ~r»
with »<3 as r approaches zerc. This latter condition ensures that the charge
density remains finite at the origin. The nonvanishing components of the stress-
energy tensor are

"= p=p + (¢*(r)/8mr*)
(32) M= —p=p,—(¢()/8rr?),
T2 = T3 = — u = p; + (q*(r)/87r?) ,
where @, p,, p; are determined once u and ¢(r) are given. This solution has the

surprising property that the red-shift (from a poini in the sphere to infinity) is
maximum at the surface rather than the center.

* Kk ok

For helpful discussion, we are indebted to Drs. R. GAUTREAT and A. Finz1,
This work was completed while the the first anthor held an NAS-NRC Re-
search Associateship at the Institute for Space Studies, Goddard Space Flight
Center, NASA, New York.
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RIASSUNTO (%

Si presentano le soluzioni esatte delle equazioni di campo di Einstein generate tramite
distribuzioni statiche e sfericamente simmietriche della massa e delle cariche. Al limite
in cui la densitd di massa, ma non la densitd di carica, si annulla, la massa vista da
un osservatore all’infinito non si annulla e pud verificarsi che la metrica esterna alla sor-
gente sia la soluzione di Ressner-Nordstrom o di Sehwarzschild dipendente dalla distri-
buzione di carica. Questa massa, generata dalla densitd di energia del campo elettro-
magnetico, non pud porsi uguale a zero per un corpo di dimensioni finite. Se la carica
& concentrata in un guscio sottile e la carica e la massa, viste da un osservatore all’infi-
nito, si pongono uguali a quelle di un elettrone, si trova che il raggio del guscio & la
meta del raggio classico dell’elettrone. Infine si espone una classe di soluzioni in cui lo

gpostamento verso il rosso (da un punto del corpo fino all’infinito) & massimo alla su-
perficie anziché che al centro.

(*) Traduzione a cura della Redazione.

Touynble Noast /A pacnpenesieHyii 3apsaga
W Macchl B O0uleil TEOPHH OTHOCHTENLHOCTH.

Pesrome (*). — B 3T10ii cTaThe COOOWIAIOTCA TOYHBIE PEIUEHUA YPABHEHHH moNsg DifH-
wTeiiHa, 0Opa30BaHHBIX MOCPEACTBOM CTATHYECKUX CHEPHYECKH CHMMETPHYHBIX paclpe-
JeJIeHu# MacCHl ¥ 3apsna. B mpegenie, B KOTOPOM INIOTHOCTH MAacChl 00pallacTCs B HYJb,
a TIOTHOCTL 3apsiga He oOpalaeTcsi B Hy/lb, Macca, KOTOPYIO BHAWT Habnwomarens Ha
6eCKOHEYHOCTH, He OOPAIIAETCA B HYJlb, ¥ METPHYECKAS HAPYXHOCTb K UCTOYHUKY MOKET
65ITh pellieHueM PeccHepa-Hopactpéma wiu lIsapuimibsia, KOTOPOE 3aBHCHT OT pacrnpe-
JeneHus 3apsga. OTa Macca, ofpa3oBanHas IVIOTHOCTLIO 3HEPIHMH 3JEKTPOMArHHTHOFO
1oNsg, He MOXET ObITh PaBHOI HYJIO Hisg Teja OeCKkoHeYHbIX pasMepoB. Eciam 3apsg
CKOHLCHTPHPOBAH B TOHKOI 000JI04YKe, TO 3apsam ¥ Macca, KOTopsle BUAUMT HaGrogaTellb
Ha OECKOHEYHOCTH, PaBHBI 3apANY M MAacCCe 31EKTPOHA, a paauyc OB0JIOYKH paBeH HOJIO-
BHHE K/IACCHYECKOr0O paanyca 3JIEKTpOHA. B 3akiiroyeHHe, MBI TOKA3BIBAEM KJTACC pELICHUH,
JJisl KOTOPBIX KpacHOe cMellleHue (OT TOYKH B Tejie OO GECKOHEYHOCTH) SABJISETCS MAKCH-
MaJbHBIM Ha NOBEPXHOCTH, a HE B LIEHTpeE.

(*) Ilepesedeno pedaxyueil.



