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Summary. — The electric field in a plasma half-space is determined using
a normal mode analysis with collisions considered using a BGK particle-
conserving collision model. For the collisionless case, the results are
shown to be equivalent to the results of Landau who used transform
methods. For distances greater than five Debye lengths from the boundary,
and for collision frequencies up to 0.0lw,, it is shown that collisions
have little effect on the electric field except in the .frequeney range
0.950,< w < 1.2w,. Within this frequency band, collisions produce dif-
ferent kinds of effects, depending upon the frequency of the applied field
and upon the collision frequency. For most of the frequencies, the field
is damped more rapidly with distance. For special frequencies, however,
collisions destroy the colligionless damping and reduce the total damping.

1. — Introduction.

The problem of the penetration of an electric field in a plasma half-space
was first treated with kinetic theory by LANDAU (1) in the second part of his
paper on electrostatic oscillations. LANDAU used transform methods to solve
the kinetic equation without collisions. The use of the collisionless Boltzmann
(or Vlasov) equation was justified by assuming the applied frequency was
sufficiently high that the collisions of electrons with ions and neutrals could
be neglected.

In the present paper, Landaun’s work will be generalized to include collisions
via a Bhatnagar, Gross and Krook (BGK) collision model (?). We will employ a

(*) Permanent address: Nuclear Engineering Department.

(1) L. LaNnpavu: Journ. Phys. (USSR), 10, 25 (1946).
(3) P. BHATNAGAR, E. Gross and M. Kroox: Phys. Rev., 94, 511 (1954).
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normal mode analysis similar to that used by SHURE (®)) and modified by
CERCIGNANI and PAGANI (%) to include collisions. In Sect. 2 we establish the
normal and adjoint modes, determine the normalization coefficients, and obtain
the normal mode expansion. The plasma half-space boundary conditions will
then be applied to this expansion in Sect. 3. By setting the collision frequency
to zero, this work will be shown in Sect. 4 to reduce to the results of SHURE ()
and to bz equivalent to the results of LANDAU (!). This will demonstrate the
equivalence of the normal mode analysis and the transform method for the
boundary-value problem. Finally, in Sect. 5, results are given for asymptotic
approximations on integrals obtained for the electric field. By choosing repre-
sentative values of applied and collision frequencies and of distances from the
plasma boundary, the effect of considering collisions on the electric field will be
determined.

2. — Normal mode analysis for longitudinal waves.

For our treatment of longitudinal waves, a complete description of the
plasma is given by Poisson’s equation coupled with the kinetic equation. It
is assumed that no magnetic fields are present and that the unperturbed electron
velocity distribution is isotropie in velocity space. The frequency of oscillation
will be assumed to be of such a magnitude that the ions, with their greater
masses, are relatively immobile and form a uniform charge neutralizing back-
ground.

We consider propagation in the x-direction normal to the plasma half-
space boundary. The linearized kinetic and Poisson eqguations with the BGK
particle-conserving collision model (2) can be written as

(2.1) %fé—;‘i)- ¥ (“g’w“’ U "eE;f’ D 9 (w) = o, [F(u) f fu') du’ — f(z, u, t)J,
OE(s, 1 r

(2.2) = 4me| f(x, u, t)du,

ox

-—

where w, is the velocity-independent collision frequency, n, m, and e are the
electron density, mass and charge, F(u) is the one-dimensional equilibrium
electron distribution, and f(z, u, ?) is the perturbed distribution.

(®) F. SHURE: Plasma Phys. (Journ. Nucl. Energy Pari C), 6, 1 (1964).
() C. CeErciGNANI and C. PacaNI: Nuovo Citmenio, 40 B, 140 (1965).
(°) F. SuurE: Ph. D. dissertation, University of Michigan, Ann Arbor, Mich. 1960.
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We seek solutions whose time dependence is of the form exp [— 4wt], where w
is the frequency of the applied field. Following CERCIGNANI and PAGANT (%),

we define

. neF'(u)
(2.3) Y(z,u,t)=f(2, u, 1) — om E(x, ),
where
g=—w,+iw.

With this linear combination of f(z, %, ) and E(«, t), egs. (2.1) and (2.2) become
decoupled.

The translational invariance of eqs. (2.1) and (2.2) suggests examining
solutions of the form exp [oz/v]. These equations can then be written in the

form
dmey
(2.4) E, = T- f Yp(u/) du’ y
(2.5) v—u)Y,(u)= wuy(u)fY,(u’) du’,
where
wp w, Fu)
y(u)—?:F (u)*—j;—u',
with

47rne?

The solutions of these equations can be conveniently classified as follows:

Class I, Discrete spectrum. These modes, denoted by the subscript i,
are restricted to solutions of Y, () in eq. (2.5) where either » has a nonvanishing
imaginary part, or, if » is real, then y(») must vanish. Providing that the applied
frequency is not zero, y(») will not vanish for finite ».

The solutions to egs. (2.4) and (2.5) bacome

4mey,

(2.6) E,
g
2.7) Y (w) = plu) 2

Y, — U

18 — Il Nuovo Cimento B.
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where the normalization condition
(2.8) fY,-(u) du=1

has been chosen. For these relations to be valid, the normalization condition
must be satisfied, i.e. the quantities v, are the eigenvalues of the characteristic
funetion

«©

(2.9) Ap)=1 +vfwdu
U—v

-

Note that
A*(v) = A(v*) and  A@p)=A(—»).
Consequently, if », is a root, then
A = A=) = AW} = A=) =0

so that <+, and j;vf are all roots. The solution to A(y;) = 0 is discussed in
Appendix A.

Class II, Continuwm spectrum. When v takes on real values we have,
in addition to the discrete modes, a continuum of solutions which we shall
denote by the subscript ». Choosing the normalization condition

@

(2.10) J‘Yy(u)du =1,

—0

eqs. (2.4) and (2.5) can be written

47ey
(2.11) Er = _‘6__
and
(2.12) Y. (u)=ruP 3}% + Ap)o(v —u),

where A(y) is an arbitrary function and P indicates the Cauchy prineipal value.
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From eqs. (2.10) and (2.12), A(») can be evaluated as

@

(2.13) Mp)=1+ ”2“’3pr ) o _”_‘&Pf T .
g uU—yv

T —C0

Class 111, Charge free mode. The normal mode solutions for this class

are spatially independent. From Poisson’s equation, with ffduszdu we

obtain - -
(2.14) H, = constant =1 (arbitrarily),
(2.15) Y,=0.

Following SHURE (), the adjoint modes can be obtained by similar argu-
ments. The results are summarized below:

E}
(2.16) Ell=0,
E;
Y: v:ﬁiu
(2.17) YHi =P ,
Y 0

where normalization for the adjoint modes is given by

w© Y‘f
(2.18) fy(u){ ]du: 1
=~ Y;
and where
(2.19) M)y =1+ vadu W _ 0.

—

The orthogonality relations (*) imply the following for the classes of so-
Intions:
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Class I, Discrete spectrum.

(2.20) f Y, Yidu=NJ,,
where

dA
(2.21) N, =1 dv(”)

When the equilibrium distribution is Maxwellian, the normalization coefficient
N; becomes

s M
;—

I e L L)

(2.22) N,=1, [— 3+ o \(ws/c®) vi(m[kT) + (w,.[c)

Class II, Continuum spectrum. The development of the normalization
coefficient for the continuum modes differs from that of the discrete modes in
that the normalization integral, eq. (2.23) is undefined. Nevertheless, we may
infer from the orthogonality relation for the continuum the following symbolic
representation:

(-3

(2.23) f Y, Y= Np)sr—»),
where

1 1 1 1
(2.24) N@) = 2aip? [A—(v) - A+(v)]

and where we define Ai(v)——-eligg}/l(viis).

With the normal and adjoint modes and the normalization coefficients
Wwe are now in a position to expand the functions Y({(x, ), F(x) and f(z, ) in
terms of the modes, i.e.

Y(x, u) ®
(2.25)  Plw,w)={E@) = Ap,+ 3 Ay, exploafr]+|AW)y, exp[oz/v]dy,
f (@ u) -

where fo, f; and f, are obtained from eq. (2.3), and where the summation Y

for the discrete modes is taken over the values of the discrete roots v»;. The
proof that the normal modes form a complete set has been demonstrated by
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CERCIGNANI and PAGNANI (4). The expansion coefficients are obtained from
eqd. (2.25) to be

TY(:U, u) Y du

-0

(2.26) A() exploz/v]= o)
and

TY(w, uw)Yidu
(2.27) A exploofr] ===

N;

The term 4, may not be evalnated in the same manner as A4; and A(») since
Y0=Y;‘ = 0. The evaluation of each of the coefficients including A, is carried
out in the next Section where the boundary conditions for the plasma half-
space are applied.

3. — Application to a plasma half-space.

In this Section we will use the normal modes developed in Sect. 2 to calculate
the electric field in a plasma half-space. The required boundary conditions
are the following:

1) The electrons are assumed to experience specular reflection at the
boundary. This implies

(3.1) 10, u) = f(0, —u) .
From eq. (2.3), which defines Y(x, u), and eq. (3.1), we obtain

— 2me
wm

(3.2) Y(0, %) — Y(0, —u)= F'(u) E(0).

2) As & — oo we require that no incoming waves exist and that ¥ remains
finite. This is accomplished by specifying that for the continuum mode

(3.3) Ar)=0, when p<< 0,
and for the discrete mode
(3.4) w[Im (r,)]—w,[Re (r)]< 0.

By including a collision frequency term, we do not require the applied fre-
quency to contain a small imaginary part for the continuum modes as did
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SHURE in treating the collisionless case (5). For the discrete modes, however,
we must assign a small imaginary part to o when the left side of eq. (3.4) is zero.

3) Across any plane in the plasma parallel to the boundary, the net
current flow is zero. Specifically, at the plasma boundary we write

(3.5) J(0) = | uf(u, 0)du=0.

-0

Applying the boundary condition 1) to eq. (2.25), we obtain

— 2me
om

36)  SALY(0 - Yo 0]+ 40T — T-w]dr= =2 7w 5(0).

Defining B(y)= A(») — A(—v») and B;=A4,—A_,, and using the symmetry
relations Y,(—u)= Y_(u) and Y.(—u)= Y_/(u), eq. (3.6) becomes

— 2me

(3.7) S8 +f W) dv' = 2™ priuy B(0).

From the orthogonality relations, B(») and B, can be obtained as

(3.8) B(v):ineE(O)[ 11 ][_vsz’(u)du F(v)l(]

omvim | A~ (v) At() u—v )

—_—D

3.9) B,= 2nev,~E(0)(1 + %’ﬁ) .

g m Wy wy\2 . M -1
{mv,(l—{— )[0‘ (1— ;kT) c]—i——;v,m(2—(—07> ’l}iﬁ)—{- wckT} ’

where, in eq. {(3.8) and hereafter, the P is dropped from the Cauchy principal-
value integrals.
From boundary condition 2) (the radiation condition)

l A(v) = B(») for >0,
(3.10)

=0 for << 0.

In Sect. 2 we found that there are, in general, four values of the discrete root.
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Two values are eliminated by the boundary condition, eq. (3.4), and the others
are used in the summation ZA,, where A;= B, and B,is given by eq. (3.9).

To obtain 4,, we use boundary condition 3). From eqs. (2.25) and (3.5)
we find

(3.11) fuf(u, 0)du = Aofuf,, du —i—fdvA(v)fuf,du + ZA" uf;du=0.

When F(u) is a Maxwellian distribution, the integrals can be evaluated
by straightforward manipulation to obtain

[-+]

g @ _dmef, o ,
(3.12) 0= e (1+ 0)(va(v)dv+ ;A*”')'

—

The last can be eliminated in favor of E(0) by recognizing that

(3.13) E(0)= 4, + 47"5 yA@)dy + % S A

0

From eqs. (3.12) and (3.13), 4, is found to be

(14 w,/0)E(0)
(3.14) A= et ol

The solution for the electrie field may now be written as

(3.15) H(xz,t) = exp[— iwt]"

0

Zv,-A,. exp [ox/v,] + 4~:—efde(v) exp [aw/v]} .

| @+ w/o)E(0) i dme
1+ wfo+ oije® o

For the collisionless case discussed by SHURE (%), no discrete modes exist
for o> w,. When w,s0 there appears to b2 no simple analytical criterion
for the existence of the discrete modes in terms of w,. In Appendix A we find
that for w,= 0.01w,, no discrete modes exist for v > 1.12w,.

4. — Equivalence of results.

For the limit o, —0, eq. (3.15) reduces to the expression obtained by
SHURE (*) if w > w, (no discrete modes). SHURE did not show the equivalence
of his result, which was obtained by a normal mode analysis, to that of LAN-
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DAU (1), who used Fourier transforms. In this Section, the equivalence of the
results will be established and the restriction w > w, will be removed.
Using Landau’s notation, we rewrite our results in the form

(4.1) E{w, 1) = exp [— iwt][E(co) + Eu(7)],
where E(oo) is precisely what LANDAU found:

E(0)

The other term of eq. (4.1) is seen from eq. (3.15) to be

E(© 3 ) .
(4.3)  E@) = 7-(”—)fexp [%o w] %(.—/1% - A-l(v)) bt

2E(0)
t 2 im0 = ol

exp [twz/v,].
LANDAU found for #,(z)

iB(0) [ K,— K,

4.4 = )
(4.4) E\(x) we ) k(1 — K exp [¢ka]dk,
where
2 F /
(4.5) K;,:aﬁfd Ul (u) Im w>0,
w u— o’
2
(4.6) K,=2—1_¢.
0)2
We write eq. (4.4) in the form
1E(0
wn  Be="T0.
(K, — —K) 1) + (1 —K*) .
[ f k(l — K‘) exp [tkx]dk 4 e exp [tkax]dk|,
‘where
K,=K+ for k>0,

= K- for k< 0.
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With the change of variable v = w/k, it is easily shown that
(4.8) Ax(y)=1—K=*(v) .

Equation (4.7) can be rewritten in terms of A(y) as

1 E(0) .
nA{co)

“ AMM —ADELC) oxp Liwaplan + f A(oo T)A 0) exp [liopm)alar|,

(4.9) By)=

where

r

) . . Fig. 1. — Contour of in-
Consider the first integral by examining the closed tegration in the complex

contour shown in Fig. 1. If we allow w< w, as v-plane.

well as o> w,, then we must admit the presence

of a pole in the lower half v»-plane. We label this pole »=9»,. From Fig. 1
we write

0 -~
(4.10) §= 2 2ni residue (poles ab vi)=f+f+f'
e ‘ r w@ 0

We obtain for the residue

JeXp [iwa/v.],

(411)  R=2ni Jresidue= 3 — 2E(0) [ A(o0) + A ()

A(o0) vi[A~(@)]

where the prime indicates differentiation with respect to » at » = »,. We eval-
uate the expression [A~(»;)]’ to be

(4.12) [Ajwnuzwﬁ%(l__gg__i.

The expression for the residue becomes

— 2E(0)
3 — Y (m/ET)(1 — wj]w®)

(4.13) R:Z

exp [iwz/y, ]
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As » — -+ oo the integral designated j—>0; therefore, eq. (4.9) may be written as
r
iE(0) f [/l(oo) —A~() | Ap)— Aloo)
7 (c0) A~ () vAt(w)
0
2E(0)
+ ;:3 — vim[kT)(1 — w}/w?)

(4.14) B\(z)= ]exp [fwz/v] +

exp [twx|v,] .

This expression for F(x) reduces to eq. (4.3) and demonstrates the equivalence
of the two methods for all frequencies.

5. — Effeet of collisions on the electric field.

The complete expression for the electric field, eq. (3.15), consists of contri-
butions from the charge free, discrete, and continuum modes. If we consider
large distances (greater than several Debye lengths) from the plasma boundary
we may approximate the integral which results from the continuum mode.
The electric field may then be expressed in the form

(5'1) [E(x)]lngox = E(OO) + Emode($) + ES‘D.(x) + Epole(w) .

4 We shall proceed to define
and discuss individually each
term of eq. (5.1).

The field at infinity, F(oo),
shown in Fig. 2, results from
the charge free mode. The
effect of collisions is greatest
at the plasma frequency where
the magnitude of E{(co) reaches
its maximum value. For the
collisionless case, E(co) is in-
finite at = w,, while for
w0, = 0.01w,, F(ooc)~100 E(0).

l
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Fig. 2. — Electric field vs. applied
K frequency for w,= 0.0lw,.
/ X >

wcloy, | |E(c0)[B(0)] |
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50
0 . —y
2 30 40
Fig. 3. — Electric field vs. distance for o =0.975w,. we=0; ——— 0,=0.01w,.

0 50 100 150 200
(ef1,)

Fig. 4. - Total electric field vs. distance for & = 1.050,.
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Fig. 5. — Electric field components wvs. distance for o= 1.05w,. w,=0;
——— w,=0.0lw,.
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Fig. 6. - Total electric field vs. distance for 0 =1.10w,. —— @,=0; ——— ,=0.01w,.
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|E(e=)/E(0)]
,Emode/E(o)'
| Iy
0 50 150 200
Fig. 7. — Electric field components vs. distance for o= 1.10w,. —— w,= 0;

—— — 0,= 0.0lw,.

Except for the frequency ratio
range of approximately 1<
<wlw,< 115, FE(oo) is the
dominant field component after
a distance of roughly 304;.
(See Fig. 3-9). The Debye
length 4, is defined by 1, =
= kT |4ztne?.

The field due to the dis-
crete modes, E_,,, exists for
values of applied frequency up
to a certain cut-off frequency.
Using the argument princi-
ple to examine the complex
A(»)-plane for encirclements
of the origin, we found that

Fig. 8. — Electric field vs. dis-
tance for v =1.250,,. w,=0;
——— w,= 0.0lw,.

401

3.0

|E(x)/E )]

e
\/ |E(a)/E(0)]
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-k w=li50,

—8 1 1 1 -1 B 1 J I
2 10 20 30 40
(xfa,)

Fig. 9. — Percent change in the electric field due to collisions »s. distance for w,= 0.01w,.

for w.= 0.01w, the discrete modes do not exist for w > 1.12w, as compared
to w > w, for the collisionless case. (See Appendix A.) For the collisionless
case K, is the least significant component for all frequencies up to 0.975w,.
When collisions are considered, however, this component may be significant
at frequencies above the plasma frequency. Although the magnitude of E_,,
for small distances is small relative to the other components, it decreases very
slowly with distance as shown in Fig. 7. For w = 1.10w, and distances greater
than 1004,, E,,, is the most significant spatially dependent field contribution.

The field component labeled Eg 5, (#) results from the evaluation of the inte-
gral of the continuum mode by the method of steepest descent as shown in

Appendix B; the result is

— 23 E(0)
5.2 Es D == gy *
(5:2) 242) V36* (1 + wllo® + wo)

[ (14 2) (25) 0+ atiat exp - oy

¢
-exp [g— (kLnT—)* at(w® + wi)texp [i(n— —32—6)” ,

where 6 = tg~! (o/w,).
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This component exists for the entire range of w, and, except for frequencies
in the vicinity of the plasma frequency, it constitutes the major field component
which is spatially dependent. The
field Eg 5, (x) is the only field com- 4
ponent in which the -collisions
reduce the magnitude of the field
for every frequency and distance

considered. The behavior of the g3l H
real part of the exponent of
E, () is plotted as a function of 2)

w/w, for values of w,./w, in Fig. 10.

This exponential factor is labeled

¢ damping factor» and may be .,
considered as the Landau damp-
ing for the collisionless case. As
the collision frequency increases,
this « damping factor » decreases
in value. The particles undergo
increased collisions, thereby re- &)
ducing the opportunity of an
exchange of energy between the 5)
incoming wave and the plasma \
particles which are moving with )

the phase velocity of the wave 1.0 2.0 3.0
(collisionless damping). (wle)

Finally we consider the field Fig. 10. — Damping factor wvs. applied fre-
component labeled FE

pole+  LhiS queney for r=31y: 1) w,= 0; 2) w, = 0.050,;
contribution results from encoun- 3) w,= 0.10,; 4) o, = 0.50w,; 5) w, = o,.
tering a pole when deforming the

contour of integration to the patb of steepest descent. In Appendix B it is

shown that for large x/4,

(6.3) Eooe=

— E(0)w; [(0 + w.) (0wl ws) + wc] ox ox(w; + ic* \/(n/Z)Ka)}]
wh wiwploie + o, P $e0p Ap 0y '

where

o} = 3wk + ow, ,

w; = wi+ 6*+ w0,

2 2 2

. Wy | Wpy [£0 8 (O3}
Ky=i—|—5—=——|exp| |-

Wy | O g g 2(05
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By examining the arguments of the pole and saddle point the pole was encoun-
tered within the frequency range of w,<<w<1.2w,. The contribution E_,,
is most significant at approximately w = 1.05w,, since at this frequency E
decreases only very slightly with distance. The ratio [E,,[E(0)] decreases
from 10.75 at 44, to 10.50 at 2904,. For w >1.05w,, E,,, becomes less signifi-
cant until it vanishes when the argument of the pole lies on the path of steepest
descent at approximately w ~1.2w,.

For distances greater than 104, it is evident from Fig. 2-9 that the effect
of collisions is greatest when the applied frequency is near the plasma frequency.
In particular, from Fig. 9 we find that when w>1.15w, and = > 441;, the value
of the field with collisions is within 5%, of that without collisions. When
w< 0.95w, and x> 104, the field with and without collisions is within 4 9.

The effect of including collisions for 0.95 << w/w,<< 1.00 is one of enhancing
the damping of the field. For w=0.975w, we find that for x> 304,, the
effect of collisions is to decrease the field by a constant value 1.99,. For fre-
quencies slightly greater than the plasma frequency, this is not at all the case
as seen from Fig. 4 for w =1.05w,. Here we find the field magnitude for
w, = 0 undergoing large oscillations with distance. The behavior of the field
components shown in Fig. 5 indicates that the oscillations are primarily caused
by the sum of E,, and F(oo), since their magnitudes are nearly equal for all
2z to 2004,. Hence the inclusion of collisions results in the field approaching
the constant value F(oo) at a much closer distance to the plasma boundary
than predicted in the collisionless case.

The results are quite different for the frequency w = 1.10w, plotted in Fig. 6
and 7. The field E,,, is damped much more rapidly than for w = 1.05w,, but
when o = 0.01w, the damping of E_,, is very slight. This causes the field to
continue to oscillate significantly with distance. Since the discrete mode van-
ishes at this frequency for w,= 0, we find the unusual condition of the colli-
sionless cage being damped out more rapidly than when collisions are included.
The collisions tend to reinforce the waves rather than destroy them for this
particular combination of collision and applied frequencies.

6. — Discussion.

The longitudinal electric field in a plasma half-space was calculated by use
of the normal mode technique. Collisions hetween electrons and neutrals were
accounted for by use of a particle-conserving BGK collision model. The equiva-
lence of the normal mode approach and the transform method used by LANDAU
was established for the collisonless case. For distances greater than five Debye
lengths from the boundary, and for collision frequencies up to 0.0lw,, it was
shown that collisions have little affect on the electric field except in the fre-



LONGITUDINAL WAVES IN A PLASMA HALF-SPACE 289

quency range 0.95w, < w<<1.2w,. Within this frequency band, several dif-
ferent kinds of effects are possible. The field may be damped much more rapidly
with distance, or for special frequencies which depend on the collision frequency
the collisions may destroy the collisionless damping and thereby reduce the
total damping. The behavior of the field is highly dependent upon the applied
frequency and the collision frequency, particularly when the former is in the
vicinity of the plasma frequency.

It should be noted that the collision model which is used only conserves
particle number. The results obtained are intended to provide a qualitative
rather than a quantitative indication of the behavior of the electric field.
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APPENDIX A

Diseussion of the discrete mode.

In formulating a solution for the electric field using the BGK collision model,
we noted that the discrete modes do not exist above a certain frequency. This
cut-off frequency and the value of the discrete root will be the topics covered
in this Section.

In Sect. 2 we found that the », are the eigenvalues of the characteristic
function A(»). Equation (2.9) can be written as

2 2 p b
(A.1) Apy=1+" U{z’f}iﬂ du_”j&cffﬂ_) e
ot J (u—vw) o Ju—vy

To investigate the number of zeros of A(y) in the
upper half-plane, we employ the argument princi- c
ple (¢). Congider the contour € in the »-plane shown
in Fig. 11 and follow A(v) as » traverses this con-
tour. The change of argument of A(y) will be equal
to 27 times the number of zeros of A(v) inside C. 3 4 !
For the semicircle 1-2-3, » is sufficiently large that Fig. 11. — Contour of in-
A(») assumes its asymptotic behavior. tegration in the v-plane.

(¢) E. CopsoN: Theory of Functions of a Complex Variable (Oxford, 1935).

19 - Il Nuovo Cimento B.
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Since the whole semicircle (1-2-3) in the »-plane maps into a single point

in the A(y)-plane, it is the only necessary to examine the real y-axis (3-4-1)

in using the argument principle to find encirelements of the origin in the

A(y)-plane. If an encirclement is to oceur,

there must be at least one value of real v,

call it 5, that satisfies ImA(F)=0 and

ReA(#)<< 0. The procedure therefore will

1 be to find the roots of ImA(») =0 and ex-

\/ amine the behavior of ReA(#). To complete

the problem, values of # near the roots will

be investigated to ensure that complete en-

circlement was made. By following this pro-

cedure, we prevent the occurrence of map-

pings such as gshown in Fig. 12 where the

imaginary axis was crossed but no encirele-
ment occurred.

To examine the real v-axis along 3-4-1 of Fig. 11, we consider F(u) as a

Maxwellian distribution and define

4

Fig. 12. — Real values of v mapped
in the complex A(»)-plane without
encirclement of the origin.

¢ ¥

Z(a) = \/n fdf ppl

m \}
f:(m) “
¥ v (m)*
o= —= —=
\/2ue kT

Equation (A.1) can then be written as

where

(A.2) Ala)=1— 22

For the collisionless case we find that to satisfy ITmA(x) =0 and ReA(x) < 0,
we require o — oo. Then, from eq. (A.2) we find ©w < w,. There are no zeros
of A(») when o> w,.

For the case w,# 0, we find ImA(cc)> 0 and the analysis becomes con-
siderably more complex. For the purpose of numerical caleulation, we choose
w,/m, = 1072, This ratio, which is reasonable for a weakly ionized plasma,
should be sufficiently high for demonstrating the effect of w, 0. By using
this parameter we find both Re/(co) and ImA(oco) are zero for v =1.12w,
and o« = — 3.025. When o> 1.12w,, there are no zeros of A(r) and there are
no discrete modes. _

In Fig. 13 three values of w are plotted: v = w,, 0 = \/2w,,, and w=1.12w,.
The first two show typical mappings of A(#) for cases of encirclement and
nonencirclement of the origin, and w =1.12w, is the marginal case of the
mapping passing through the origin.
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The value of the discrete root may be determined by solving A(l)=0,
where { = a-+if. First we examine the collisionless case. From a discussion
of the properties of A(y) in Sect. 2, we found there are four possible roots of

0.8k

—0.8} -

_16 1 1 4 1 1 i 1 i 1 1

—0.8 —0.4 0 0.4 08 1.2 16

Fig. 13. — Complex A(9)-plane for w,= 0.0lw,.

A(v)=0. But from the first part of this Appendix, we found there is only
one possible root in the upper half-plane; therefore, it must lie on the imaginary
axis. With w,=0, { =148, « =0, and we find

A@f) = Re A(if)=0.
This yields

(A.3) % — V2B[1 — i fef (1 — ert )i .

This relation gives the value of the root as a function of the dimensionless
frequency.

When we set w,= 0.01lw,, the solution to A(»)=0 was found with the
aid of an IBM 360/30 computer. The computer results are plotted in Fig. 14.
Observe that the value of the real part of the discrete root below w, is small,
and the magnitudes of the real and imaginary parts of the root for w ~ w,
are roughly equal. The curve terminates on the real », axis at the cut-off fre-
quency of 1.12w,. For the collisionless case, as w — w, the root is entirely
imaginary and approaches infinity. For w,=0.01w, and w,<w<1.12w,,
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Fig. 14. — Complex discrete root normalized to the electron thermal speed as a function
of applied frequency for w,= 0.0lw,. All points indicate applied frequency.

the magnitude decreases for both the real and imaginary parts of the root.
However, the real part is now greater than the imaginary part. For v =1.10 w,
the sign of one of the roots changed to satisfy the boundary condition that the
field vanishes at infinity.

APPENDIX B

Asymptotic approximations.

By assuming distances to be greater than several Debye lengths, we can
evaluate the integrals of the electric field expression. The method of steepest
descents (") will be applied to the integrals, and then any poles crossed in
deforming the contour to the path of steepest descent will be investigated.

(") E. CorsoN: Asymptotic Expansions (Cambridge, 1965).
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The term of the electric field solution that is in integral form can be re-
written using the Plemelj formulas (®) as

@

— 20LE(0
(B.1) Fsp ()= %“ﬁ f dv explow/v] (A*(vv);(;}l)T(ﬂ)'
u—v @) of Ju—v T

If we consider F(») as Maxwellian and use the definition of y{(v), we obtain
an expression in the form

©

(B.2) o (@) = 0[ a6 (v) exp [2g(»)]

0
where G(v) is the nonexponential function of the complex variable », € is a
constant in », and

c my?
(B.3) 90) ="~ orra

Applying the method of steepest descent, we find the saddle point at

ET \? )
(B.4) vy = (®® + wﬁ)%( :v) exp [1 (— 60+ 2%7‘5)],
m 3
where h=1 w,=0
=tg (wlo), n=0,1,2. 2n/3
wc>>w

Possible values for the arguments
of the three roots of v, are shown
in the hatched areas of Fig. 15. To W, w
deform the original contour (0 to oo)
to the regions indicated by n=1

and n = 2 the imaginary axis must w, =0 n=e
be crossed. Since the integrand has  —sz/6 /6

an essential singularity at these cros- =2 w>>w

sings, the integral fails to converge; w,=0
hence, the only possible choice for —2nf3

the root is the one defined by »= 0.
With the proper path of integra- Fig. 15. — Possible arguments of v, in the
tion chosen, we may evaluate the complex v-plane.

(®) N. MuskHELISHVILL: Singular Iniegral Equations (Gronigen, 1953).
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integral using the Debye formula (7):

2n ¢
(B.5) Fsp.(v) = Cexp [mg(vo)]G(Vo)[W] .

To find G(»,) we note that as  — oo, yy—> co. We therefore make the fol-
lowing approximations:

(B.6) Arfp) = Ar) =1+ = n =,
(B.7) fmF'(“)du—fdu_F(”) ~ 1L
. u—y (w—w)2 2’
rF 1
(B.8) J%(_uldu:—;.

With these relations, eq. (B.1) becomes

— 203 E(0)
V36% (1 + wilo® + w,fo)

[ 2 oon]- )]
[exp [3 (:})% a¥(w® + o)k exp ” .

One possibility that has been overlooked in this development is that a pole
could have been encountered when deforming the contour to the path of
steepest descent. If such a root exists, we know it must be near the real axis
in the lower half »-plane, so we examine the roots of A~ (»)=0. Assuming
the phase velocity of the wave is large compared to the thermal velocity,
we find

(B.0) A ()=1+ (“’J)g i (kT) (3 we y i) +
v o2 a

(B.9)  FHsp(r)=

2
im—i=0
3

g ag m
+ + CL)C “_“m i - my? J
i 2 AD onkT ¢ 2kT )

To find the root », that causes the above expression to vanish, we assume the
last term in the above expression is less than the combination of the remaining
terms. An appropriate solution for », results:

(B.11) yy ~ [UCT/M)(— W) — 3(wf,/gz))] 3

1+ wy/e? + w.fo
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This relation is then used in the last term of eq. (B.10), and again we solve
that equation for »;. The result is

b

” [ — (kT)m)e? ]

(B.12) T |0} F @2 (wrfwn) (030 k) — w.0) exp [6/2wd]

where
2 __ 2 2 24_ 2 _ ;
0y = 3w, + ow,, wi=w,+0o +wo, o6=—w,+10.

If the argument of », lies within an angle from 0 to the argument of », from
the path of steepest descent, then the pole », will provide an additional con-
tribution to the field. Since eq. (B.12) is too cumbersome for an analytical
expression for the argument, a computer solution was obtained. The results
show the argnments of », and », to be equal at w = 1.21w, for no collisions
and o =1.20w, for v,= 0.01w,.

‘We have now established the existence of a pole which will contribute to the
asymptotic field when the applied frequency is approximately w, < v 21.20w,.
To evaluate this field contribution we use the theory of residues.

Y —(im/6) o 0

(B.13) f( )+ f () 270 (residue at »,) + f ()=0,
L] [>o} —(im/6) 0

where

()=-explor/v]A)E,dv. le

V. o

Figure 16 indicates the contour of these in- !
tegrals. Since the second term of eq. (B.13)
vanigshes by Jordan’s lemma we obtain

© —(in/8)o
(B.14) f( )= f — 2mi (residue at »,). Fig. 16. — Contour of integration

5 : in the complex »-plane.

To calculate the residue we again assume large real », such that the integral
of eq. (3.15) may be evaluated. The field resulting from the residue we shall
call E .. It takes the form

- E 2 2 . 272y 4 . 2 72\/—‘72_—}(9—"
(B15) By — O2[(0" £ @co)wifes) wg] exp[i’“—@i‘i [ mf2) g)],
oy wiwplw; + w0 iw, Apw,

where

coy [oiol o, w3
Ey=i—|—5—=5——|exp| |-
W, | 07y g 2w,
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For the collisionless case, eq. (B.15) reduces to

_ E(0) o [.wty)e 1.57/7 (0, 1.5w5
10) B =" o0 |7 | *Vs—ﬂ/é(?u) exp |~ 2222

3
£ ol o}f

which was obtained by LANDAU.

RIASSUNTO ()

Si determina il campo elettrico nel semispazio di un plasma usando un’analisi del
modo normale con collisioni studiate tramite un modello di collisione che conserva le
particelle di BGK. nel caso in cui non si hanno collisioni si dimostra che i risultati sono
equivalenti a quelli di Landau che ha usato metodi di trasformazione. Per distanze
maggiori di cinque lunghezze di Debye dal bordo, e per frequenze di collisione sino
a 0.0lw,, si dimostra che le collisioni hanno scarso effetto sul campo elettrico tranne che
nell’intervallo di frequenze 0.95w,<< w < 1.2w,. Entro questa banda di frequenze, le
collisioni producono diverse specie di effetti, dipendenti dalla frequenza del campo
applicato e dalla frequenza delle collisioni. Per la maggior parte delle frequenze il eampo
& smorzato piu rapidamente con le distanze. Per speciali frequenze, perd, le collisioni
distruggono lo smorzamento senza collisioni e riducono lo smorzamento totale.

(*) Traduzione a cura della Redazione.

ITpojonbHbIe BOJIHBI B HOJIYGECKOHEYHOH IIa3zMe.

Pe3iome (*). — OnpenenseTcst 21eKT pUYECKOE H0JIE B TOAYOECKOHEYHOM 11a3Me, HCTIOIb-
3ys aHaNM3 HOPMAaJibHBIX MOJ C COYJAPEHUsIMH, KOTOPBIE PACCMATPUBAIOTCS C TIOMOUIBIO
mozaeau BGK mnsa coymapenmit, KOTOpbIE COXPAHSIOT YEC/IO YACTUIL. IlOKa3bIBaeTCs, YTO
B OECCTOJIKHOBHMTE/ILHOM Cllyyae pEe3y/IbTAThl 3KBMBANEHTHEL pe3ynbTaTaM Jlannay,
KOTOpPbIH ncnone3osan TpanchopMaiontsie MeTogsl, OTMEYaeTCst, 4TO IS PACCTOSHHI
Gosipllle, 4eM NATh Ae0aeBCKUX MUIMH OT TPAHMLbI M IS YaCTOT COYAAPEHHH BIUIOTH IO
0.01w,, CTONKHOBEHUS MMEIOT MaJlo€ BIIMSIHME HA JICKTPHYECKOE ITOJIE, 3a UCKIFOUEHHEM
obnactu yactoT 0.95w, < w<< 1.2w,. BHyTpu 310l 0651aCTH YaCTOT COYAapEHUS BBI3BIBAIOT
pa3snuuHBIe TUILI 3PGEKTOB, 3ABUCAIINX OT HAaCTOTHI IIPUIOKEHHOIO OIS U OT YACTOTHI
coypapennit. [lns GONBIIMHCTBA 4acTOT, IIOJIE 3aTyxXaeT Gojiee OLICTPO ¢ PACCTOSHHUEM.
OpHaxko, IS XapaKTepHBIX YacTOT, COYIAPEHHS YHHYTOXAIOT OeCCTONKHOBHTEIBHOE
3aTyXaHHEe M yMEHbUIAIOT MOJIHOE 3aTyXaHue.

(*) Iepesedeno pedaryueil.



