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Longitudinal Waves in a Plasma Half-Space. 
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S u m m a r y .  - -  The electric field in a plasma half-space, is determined using 
a normal mode analysis with collisions considered using a BGK particle- 
conserving collision model. For  the collisionless case, the results arc 
shown to be equivalent to the results of Landau who used transform 
methods. For  distances greater than five De, bye le,ngths from the boundary,  
and for collision frequencies up to 0.01o)~, it  is shown tha t  collisions 
have little effect on the electric field except in the ,frequency range 
0.95o)~< o)< 1.2~%. Within this frequency band, collisions produce dif- 
ferent kinds of effects, depending upon the frequency of the applied field 
and upon the collision frequency. For  most of the frequencies, the field 
is damped more rapidly with distance. For  special frequencies, however, 
collisions destroy the collisionle,ss damping and reduce the to ta l  damping. 

I .  - I n t r o d u c t i o n .  

The p r o b l e m  of t h e  p e n e t r a t i o n  of ~n  e lec t r i c  field in  a p l a s m a  ha l f - space  

was f irst  t r e a t e d  w i t h  k i n e t i c  t h e o r y  b y  LANDAU (1) in  t he  second  p a r t  of his  

p a p e r  on e l e c t r o s t a t i c  os, e i l la t ions .  LAS"DAU used  t r a n s f o r m  m e t h o d s  to  solve  

t he  k i n e t i c  e q u a t i o n  w i t h o u t  col l is ions.  T h e  use  of t he  col l i s ionless  B o l t z m a n n  

(or Vlasov)  e q u a t i o n  was jus t i f i ed  b y  a s s u m i n g  t h e  a p p l i e d  f r e q u e n c y  was  

suf f ic ient ly  h igh  t h a t  t h e  col l is ions of e l ec t rons  w i th  ions  a n d  n e u t r a l s  cou ld  

be  neg lec ted .  

I n  t he  p r e s e n t  p a p e r ,  L a n d a u ' s  w o r k  wil l  be  g e n e r a l i z e d  to  i nc lude  col l is ions 

v i a  a B h a t n a g a r ,  Gross  a n d  K r o o k  ( B G K )  col l i s ion  m o d e l  (2). W e  wil l  e m p l o y  a 

(') Permanent  address:  Nuclear Engineering Depar tment .  
(1) L. LANDAU: Journ. Phys. (USSR), I 0 ,  25 (1946). 
(2) p.  BHAT~AGAR, E. G~OSS and M. KROO~:: Phys. Rev., 94, 511 (1954). 
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normal  mode analysis similar to tha t  used b y  SItVRE (~) and modified by  
CERClGNA~I and PAGANI (4) to include collisions. In  Sect. 2 we establish the 
normal and adjoint  modes, determine the normalizat ion coefficients, and obtain 
the normal  mode expansion. The plasm~ half-space boundary  conditions will 
then be applied to this expansion in Sect. 3. By  set t ing the collision f requency 
to zero, this work will be shown in Sect. 4 to reduce to the results of SH-tYRE (5) 
and to b3 equivalent  to the results of LAZ~DAV (a). This will demonst ra te  the 
equivalence of the normal mode analysis and the t ransform method  for the 
boundary-value  problem. Finally,  in Sect. 5, results are given for asymptot ic  
approximations on integrals obtained for the electric field. By  choosing repre- 
sentat ive values of applied and collision frequencies and of distances f rom the 
plasma boundary,  the effect of considering collisions on the electric field will be 
determined.  

2. - N o r m a l  mode ana lys i s  for long i tud ina l  waves .  

For  our t r ea tmen t  of longitudinal waves, a complete description of the 
plasma is given by  Poisson~s equation coupled with the kinetic equation. I t  
is assumed tha t  no magnetic  fields are present  and tha t  the unper turbed  electron 
veloci ty  distribution is isotropic in velocity space. The f requency of oscillation 
will be assumed to be of such a magnitude tha t  the ions, with their  greater  
masses, are relat ively immobile and form a uniform charge neutralizing back- 
ground. 

We consider propagat ion in the x-direction normal  to the plasma half- 
space boundary.  The linearized kinetic and Poisson equations with the B G K  
particle-conserving collision model (2) can be wri t ten  as 

c o  

~ct ~- u ~x ~- m (~o F(  /(u') 

DE(x, t) ef - -  4~ /(x,  u, t ) d u ,  

du'  - -  f(x,  u, t)],  

where o)c is the veloci ty- independent  collision frequency,  n, m, and e are the 
electron density, mass and charge, F(u)  is the one-dimensional equilibrium 
electron distribution, and ](x, u, t) is the per tu rbed  distribution. 

(a) F. SItVR]~: Plasma Phys. (Journ. Nucl. Energy Part C), 6, 1 (1964). 
(a) C. C]~RClGNANI and C. PAGASI: _/Yuovo Cimento, 40B, 140 (1965). 
(5) F.  SHUR~: Ph.D.  dissertation, University of Michigan, Ann Arbor, Mich. 1960. 
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We seek solutions whose t ime dependence is of the form exp [--  i~ot], where ¢o 
is the f requency of the applied field. Following CERCm~'A~I and PAGA~r (4), 

we define 

(2.3) :Y(x, u, t) = / ( x ,  u, t) neF'(u) E(x, t), 
( T m  

where 

a - - - - o ) ~  + iw  . 

With this linear combinat ion of / (x ,  u, t) and E(x, t), eqs. (2.1) and (2.2) become 
decoupled. 

The translat ional  invariance of eqs. (2.1) and (2.2) suggests examining 
solutions of the form exp [gx/v]. These equations can then  be wri t ten in the 
form 

(2.4) 

(2.5) 

where 

E, -- 4~rev(r ; Y~(u') du' , 

(~ - u) Y,(u) = ~ur(u)f:Y,(u' ) d u  r , 

F ( u )  
y(u)  = ~ a u 

with 

w~-- 4~ne2 
m 

The solutions of these equations can be conveniently classified as follows: 

Class I, Discrete spectmtm. These modes, denoted by  the subscript i, 
are restr icted to solutions of Y,(u) in eq. (2.5) where either v has a nonvanishing 
imaginary part ,  or, if ~ is real, then y(~) mus t  vanish. Providing tha t  the applied 
frequency is not  zero, y(~) will not vanish for finite v. 

The solutions to eqs. (2.4) and (2.5) b3come 

(2.6) E~---- 4~ev~ 
(Y 

(2.7) :Y,(u) ---- ~'(u) ~,~u , 

1 8  - I I  N u o v o  C i m e n t o  B .  
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where the  normalizzt ion condit ion 

(2.8) f y,(u) 
- - c o  
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du---- 1 

Consequently,  if u~ is a root,  then  

A*(v) ---- A(v*) and A(v) ---- A(- -v)  . 

A(v,) ---- A ( - -  ~,) = A(v*) = A ( "  v*) = 0 

so t h a t  ± ~  and ±v* are all roots.  The solution to A(v,)---- 0 is discussed in 
Appendix  A. 

Class I I ,  Continuum spectrum. When v takes  on real values we have,  
in addi t ion  to the discrete modes,  a cont inuum of solutions which we shall 
denote b y  the  subscript  v. Choosing the normal izat ion condition 

(2.10) i Y , ( u )  du ---- ] ,  
- - t o  

eqs. (2.4) and  (2.5) can be wr i t t en  

(2.11) E ,  - -  

and  

(2.12) Y~(u)---- ~uP y(u) 
Y - - U  

4~eu 

O" 

where ~(v) is an a rb i t r a ry  funct ion and P indicates the  Cauchy principal  value.  

+ 2(~)~(~ - u ) ,  

Note  t h a t  

has been  chosen. For  these relat ions to be valid, the normalizat ion condit ion 
mus t  be  satisfied, i.e. the quant i t ies  ~ are the eigenvalues of the  character is t ic  
funct ion 

(2.9) A(v) = 1 + ~ f  u--vu~(u)- d u .  
- - C o  
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From eqs. (2.•0) and (2.12), ~(~) can be evaluated as 

° i v%)~p( F'(u) ~Og~p F(u) du. 
(2.13) ~ t ( ~ ) = l + ~ y -  ,] u__ du--  (~ J U--~ 

2 7 5  

Class I I I ,  Charge ]ree mode. The normal mode solutions for this class 

are spatially independent.  From Poisson~s equation, with f/du=f:~du we 
obtain . . . .  

(2.14) 

(2.15) 

Eo ~ constant  ---- 1 (arbitrari ly) ,  

]~o= o.  

Following S ~ v ,  (3), the adjoint  modes can be obtained by similar argu- 
ments. The results are summarized below: 

(2.16) E]E~ = 0, 

(2.17) 
I ~'i - -  U 

0 ~ - u  

+ ,~*(~)~(~- u) 

where normalization for the adjoint  modes is given by  

° 

(2.18) _fT(u) :Y• J du-~ 1 

and where 

(2.19) )~(v)7(~ ) ~-- 1 ~- vPfdu u--~,u}'(u) _ 2(v). 
m ~  

The orthogonali ty relations (4) imply the following for the classes of so- 
lutions: 
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Clas~ I, Discrete spectrum. 

(2.20) _i~, y; du 

where 

(2.21) 2V~ : v~ dA(v) 
dv 

When the equilibrium distribution is Maxwellian, the normalization coefficient 
h r, becomes 

(2.22) ~ :  vi L -  3 + v, ~-~ ~,1 + ~ (r I + ~ -  ~(~o~/a') v~(m/kT) + (w,la)l j " 

Class II ,  Continuum spectrum. The development of the normalization 
coefficient for the continuum modes differs from tha t  of the discrete modes in 
tha t  the normalization integral, eq. (2.23) is undefined. ~qevertheless, we may  
infer from the orthogonMity relation for the continuum the following symbolic 
representation: 

o a  

f d u  --~ N(v)6(v-- v'), Y, y:, (2.23) 

where 

(2.24) 

and where we define A~(v)=-lim+A(v±ie). 
With the normal and adjoint  modes and the normalization coefficients 

we are now in a position to expand the functions XT(x, u), E(x) and ](x, u) in 
terms of the modes, i.e. 

(2.25) ~(x, u)-~-' 
y(x, u) I 
E(x) t 
/ (x, u) ! 

00  

= Ao~o + ~, A ~ ,  exp [ax/v,] +fA(v)~v, exp [axlv]dv , 

where fo, 1, and ], are obtained from eq. (2.3), and where the summation 
i 

for the discrete modes is taken over the values of the discrete roots v~, The 
proof tha t  the normal modes form a complete set has been demonstrated by 
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(2.26) 

and 

CERCmNA~I and  PAGNANI (4). The expansion coefficients are obta ined f rom 
eq. (2.25) to be 

~l~(x, u) Y,~ du 
A (v) exl0 [ax /~ , ]  = - ~v(~)  

(2.27) 
f y(x, ~) ~*,du 

A ,  exp [~x/v,] = N,  

The t e rm Ao m a y  not  be evaluated in the  same manner  as A~ and A ( v )  since 
:Yo----:Y~---- 0. The evaluat ion of each of the  coefficients including Ao is carried 
out in the nex t  Section where the  bounda ry  conditions for the  p lasma half- 
space are applied.  

3. - Application to a plasma half-space. 

In  this Section we will use the  no rma l  modes developed in Sect. 2 to calculate 
the electric field in a p lasma half-space.  The required bounda ry  conditions 
are the  following: 

1) The electrons are assumed to  experience specular  reflection a t  the 
boundary.  This implies 

(3.1) 1(o, u) = l(o, - -  u ) .  

From eq. (2.3), which defines :Y(x, u), and  eq. (3.1), we obta in  

- -  2 m e  
(3.2) Y(0, u ) -  ]~(0, - - u ) -  ~ ' ( u ) ~ ( 0 ) .  

am 

2) As x --> c~ we require t h a t  no incoming waves exist  and  t h a t  E remains  
finite. This is accomplished b y  specifying t h a t  for the  con t inuum mode 

(3.3) A(v) = O, when v <  0 ,  

and for the discrete  mode 

(3.4) ~o[Im (v~)] - -  o~c [Re (v~)] < 0 . 

B y  including a collision f requency t e rm,  we do not  require the  applied fre- 
quency to contain a small imag ina ry  p a r t  for the con t inuum modes as did 
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SmYRE in t reat ing the collisionless case (5). For  the discrete modes, however,  
we mus~ assign a small imaginary  par t  to o) when the left  side of eq. (3.4) is zero. 

3) Across any plane in the plasma parallel to the boundary,  the  net  
current  flow is zero. Specifically, at  the plasma boundary  we write 

(3.5) 
co 

J(0)  =fu/(u, O)du = 0 .  

Applying the boundary  condition 1) to eq. (2.25), we obtain 

3.6) ~, A,[~,(u) - ~ , ( -  u)] +fA(r)[  Y,(u) -- Y,(-- u)] dr --  --am2me F(u)E(O). 
- - ¢ o  

Defining B(v)~A(v)--A(--v) and B~-~A~--A~, and using the symmet ry  
relations l r , ( - - u ) =  Y~(u) and :Y~(--u)= Y~(u), eq. (3.6) becomes 

(3.7) ~B~, Y,(u) +;B(r') Y,.(u) dr'-- --(rm2me F' (u)  E(0) .  

m ~  

Fro m  the  orthogonali ty relations, B(r) and B~ can be obtained as 

(3.8) B ( ' ) - ~ = , ~ m  a~r)  A~(ri [ - r )  ~ _ ;  +--i-ff~(r) . 

(3.9) 

] }1 
~c +--vim 2-- vi ~ockT 

where, in eq. (3.8) and hereafter ,  the  P is dropped from the Cauchy principal- 
value integrals. 

F ro m  boundary  condition 2) (the radiation condition) 

(3.1o) 
A(v) = B(v) for v >  0 ,  

= 0 for v < 0 .  

In  Sect. 2 we found tha t  there  are, in general, four values of the discrete root.  
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Two values a re  e l iminated b y  the bounda ry  condition, eq. (3.4), and  the others 
are used in the  summat ion  ~ A ~ ,  where A ~ =  B~, and B,  is g iven by  eq. (3.9). 

i 

To obtain  A0, we use bounda ry  condit ion 3). F r o m  eqs. (2.25) and  (3.5) 

we find 

(3.11 ) f u/(u, O) du = A ]o du 

When F(u)  is a Maxwellian dis t r ibut ion,  the integrals can be evalua ted  
by  s t ra ight forward  manipula t ion  to obta in  

4=e (x ( Z, a,",). (3.12) 0 = Ao a a 

--co 

The last  can be el iminated in favor  of E(0) b y  recognizing t h a t  

co 

(3.13) E ( O ) :  Ao + ----4~e [-vA(v)d v + 4ze ~ A , , , .  
f f  J 

o 

From eqs. (3.12) and  (3.13), Ao is found to be 

(1 + eo~/a)E(O) 
(3.14) A o = 

1 + ~ / a  + ~ / a '  " 

The solution for the  electric field m a y  now be wri t ten as 

(3.15) E(x, t) = exp [ - i ~ t ] .  

. [ +_ 1 + ,oo/  + 7 ] 
+ $ ~ , A ,  exp [,x/~,] + 4 ~  ~d~A(~)e~p [~x/~] . 

• ( r  d 

0 

For  the collisionless case diseussed b y  S~rRE (5), no discrete modes exist  
for ~o> w~. When  o9~ y= 0 there  appears  to b~ no simple analyt iea l  criterion 

for the  existence of the  discrete modes in te rms  of oJ,. I n  Appendix  A we find 
t ha t  for ~ :  0.01o~, no discrete modes  exist  for ~o>1.12ro~. 

4. - E q u i v a l e n c e  of results .  

For  the l imit  o9~-->0, eq. (3.15) reduces to the expression obtained b y  
SHtrRE (5) if ¢o ~ ~O~ (no discrete modes).  SrIvaE did not  show the equivalence 

of his result, which was obtained b y  a normal  mode analysis,  to t ha t  of LA~'- 
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])AIS ('), who used Fourier transforms. In  this Section, the equivalence of the 
results will be established and the restriction oJ > w~ will be removed. 

Using Landaa 's  notation,  we rewrite our results in the form 

(4.~) iT(x, t) = exp [--  io~t][E(~) + E,  fx)] ,  

where E(c~) is precisely what  LA~I)AV found: 

(4.2) E,(~) = n m  E(x)= Ao = .~(o) 
1 - eo~lco" 

The other term of eq. (4.1) is seen from eq. (3.15) to be 

(4.3) .~l,X, = E!O) ( e x p [ / O ) x l  :lt. 1__ A l ( , , ) d ~  + 
m J Lv Jv\A+(v)  

0 

+ ~ 3 - -  2E(O) 
v~(mlkT)(1 -- w2/o~ ') exp [io.lxlv,]. 

LANDAU found for El(X) 

(4.4) 

where 

(4.5) 

(4.6) 

iE(O) f Ko -- K~ 
El (X) - -  ~8  ,] k(l  ~ K~) exp[ i kx ]dk '  

¢o 
~ uE'(u) K~ = o~ du 

co j k u - - m  
--eta 

2 

Ko--  - - 1 - - e .  

- -  , I m  ~o > 0 ,  

We write eq. (4.4) in the form 

i~(o) .  
(4.7) E,(x) = 

7~8 
0 

k(1 -- K - )  
, ~ ( K  o - 1 ) +  ( l - - K + )  

exp [ikx] dk t j  -k-~ -- K+) 
0 

exp [ikx] dk] 

where 

~ g -  

for k > 0 ,  

for k < 0.  
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W i t h  the  c h a n g e  of va r i ab le  v = (o/k, i t  is eas i ly  shown t h a t  

(3.8) A~(v) = 1 - -  K ± ( v ) .  

281 

E q u a t i o n  (4.7) can  be  r e w r i t t e n  in t e r m s  of A+-(v) as 

(4.9) 
• iE(O) 

E l ( x  ~ - : ~ - X ( ~ )  

0 co 

+ [--  A(oo) + A+(v) 
exp  [i(ox/v] dv $ ~A~_~) 

0 

exp  [(i(o/v) x] dv] ,  

where  

2 
(O~ 

A(oo)  = 1 - -  1 - -  K o = ~. 
(O~ 

- - o o  0 co 

Consider  t he  f i rs t  in tegra l  b y  e x a m i n i n g  the  closed 
con tou r  shown in  Fig .  1. I f  we a l low ( o <  (o~ as 
well  as ( o >  (o~, t h e n  we m u s t  admii/  the  p resence  
of a pole in t he  lower  ha l f  v-plane.  W e  label  th is  pole v = v,. 
we wr i t e  

(4.1o)  =XZ iresidue(polesat,,)=f+f+f., 
c ~ co 0 

Fig. 1. - Contour of in- 
tegration in the complex 

v-plane. 

F r o m  Fig.  1 

We  ob t a in  for  t h e  res idue  

(4.11) - -  2E(0)  [ - -  A(c¢) + A-(v,) ] x [i(ox/vi] R - =  2 ~ i ~  residue---- ~ A ( - ~  v-~-_~ ,~]  7 ] e  p , 

where  the  p r i m e  ind ica tes  d i f fe ren t i a t ion  wi th  r e spec t  to  v a t  v = v,. We  eva l -  
ua t e  the  express ion  [A-(v,)] '  to  be  

(4.12) m ( 3 
[A-(v,)] '  = v, ~-~ 1 - -  (o-q/ v, " 

The  express ion  fo r  the  res idue  becomes  

(4.13) 
2E(0)  

R = ,~. 3 exp  [i(ox/v~ "3 

• - v ~ ( m / k ~ ) ( 1  - -  ( o ~ / ( o ' )  - "  
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As v-> ±oo the integral designated f--> 0; therefore, eq. (4.9) may be written as 
F 

c o  

(4.14) E,(x) iE(O) f [A(oo)--A-(,) A+(,)--A(oO)]ex p 
--  ~A(oo) d~, [ *,A-(y) + -$-ATv) J [i~ox/v] + 

o 

2E(0) exp [i(oxlv,]. 
+ ~ 3 -- v~(m/kT)(1 -- o~/w ~) 

This expression for E~{x) reduces to eq. (4.3) and demonstrates the equivalence 
of the two methods for all frequencies. 

5. - Effect of collisions on the electric field. 

The complete expression for the electric field, eq. (3.15), consists of contri- 
butions from the charge free, discrete, and continuum modes. If we consider 
large distances (greater than several Debye lengths) from the plasma boundary 
we may approximate the integral which results from the continuum mode. 
The electric field may then be expressed in the form 

(5.1) [E(x)],.=.= = E ( ~ )  + E=o,.(x) + E... .(x) + Eoo,.(x). 

12 

o 

T ~8 

/ 

0 x~'~" 
O.6 1.0 

asymptotic to 1 

J ' ' 1 .J8 ~ 

(','1%1 

We shall proceed to define 
and discuss individually each 
term of eq. (5.1). 

The field at infinity, E(oo), 
shown in Fig. 2, results from 
the charge free mode. The 
effect of collisions is greatest 
at  the plasma frequency where 
the magnitude of E(oo) reaches 
its maximum value. For the 
collisionless case, E(oo) is in- 
finite at o=o)~,  while for 
oc = 0.01~o~, E(oo) ___ 100 E(0). 

Fig.  2. - Electr ic  field v s .  appl ied 
f r equency  for eo~ = 0.01o~. 

0.01 100 
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F i g .  4 .  - T o t a l  e l e c t r i c  f i e l d  vs. d i s t a n c e  f o r  w = 1 . 0 5 o ~ .  - -  ~oc = 0 ;  - -  - -  - -  mc = 0 . 0 1 ¢ o ~ .  
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Fig. 7. - Electric field components vs. distance for o)----1.]0m~. 

- - - -  o~ = 0 . 0 1 ~ % .  

200 

~e=O; 

Excep t  for the  f requency  rat io 
range of app rox ima te ly  1 <  

<o~/c%< 1.15, E(oo) is the 4c 
dominant  field componen t  af ter  
a distance of roughly  302, .  
(See Fig. 3-9). The Debye  

length ~D is defined b y  2D---- 3.o 
= k T / 4 ~ n e  2. 

The field due to the dis- 
crete modes,  E~od., exists for 
values of applied f requency  up 

2.0 
to a cer tain cut-off frequency.  
Using the  a rgum en t  princi- 
ple to examine the complex 
A(v)-plane for encirclements 
of the origin, we found tha t  1.0 

Fig. 8. - Electric field vs. dis- 
tance for m= 1.25o~. co c = 0; 

- - - -  co c = 0 . 0 1 c o ~ .  
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Fig. 9. - Percent change in the electric field due to collisions v s .  distance for w~ ---- 0.01w~. 

for ~o~ = 0.01o~ the discrete modes  do not  exis t  for oJ > 1.12w~ as compared  
to eo >co~ for the eollisionless case. (See Appendix  A.) For  the collisionless 

case E=od. is the least  significant component  for all frequencies up to 0.975w~. 
When  collisions are considered, however,  this componen t  m a y  be significant 

a t  frequencies abo'ce the  p lasma  frequency. Al though the magni tude  of Emode 
for small  distances is small  re la t ive  to the other  components ,  i t  decreases ve ry  
slowly with distance as shown in Fig. 7. For  eo = 1.10~o~ and distances grea ter  
t han  100~D, Emodo is the mos t  significant spatial ly dependent  field contr ibut ion.  

The field component  labeled Es.D.(x ) results f rom the evaluat ion of the  inte- 
gral of ~he cont inuum mode  b y  the method  of s teepest  descent as shown in 
Append ix  B;  the result  is 

- 2~o~E(O) 
(5.2) ~:s.D.(x) = 

+ + + + ]  

• e x p  ~- ~-~ xt(co ' + co~)+ e x p  i - g 0 , 

where 0 ---- tg  -1 (to/toe). 
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This component  exists for the entire range of o), and, except  for frequencies 
in the vic ini ty  of the  p lasma  frequency, i t  const i tutes  the ma jo r  field componen t  
which is spatial ly dependent .  The 

field Es.D.(x ) is the  only field com- 
ponent  in which the  collisions 
reduce the magni tude  of the field 
for every f requency and distance 

considered. The behav ior  of the o.3 
real  pa r t  of the  exponent  of 
Es.D.(x ) is p lot ted as a funct ion of 

0)lw: for values of coc/0)~ in :Fig. 10. 
This exponent ia l  fac tor  is labeled 

~ damping  factor  >) and  m a y  be o.2 
considered as the  Landau  damp-  
ing for the collisionless case. As 
the  collision f requency increases, 
this (( damping  fac tor  ,~ decreases 

in value. The part icles  undergo 0.1 
increased collisions, t he reby  re- 
ducing the  oppor tun i ty  of an 
exchange of energy  between the 
incoming wave and  the  p lasma ~ ~ ~  
part icles which are moving  with 

I ) 

0 1',0 210 ~.0 the  phase ve loc i ty  of the  wave 

(collisionless damping) .  (~/%) 
Final ly  we consider the  field Fig. 10. - Damping factor v s .  applied fre- 

component  labeled E~o,.. This quencyforx=3~D: 1) ~o~----0; 2) ~ =0.05~%; 
contr ibut ion results f rom encoun- 3) to c = 0.lo)v; 4) 04 ---~ 0.50)~; 5) w c = ogv. 
~ering a pole when deforming the 
contour  of in tegra t ion  to the pa th  of s teepes t  descent. I n  Append ix  B it  is 

shown tha t  for large x / ] t  D 

(5 .3)  
-  (o)d [ u  + r x(d + 

Epoi.-- ~ [ - - - ~ - - - -  j o~:e,,,/0)~a q- eo~ exp [ ieo,2,~ol J 

where 

0) 1 

" = ~ + o "~' + oJ0,o" > (D I 

K~  jexp[ J" 
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B y  examining  the a rguments  of the pole and  saddle point  the pole was encoun- 
te red  within the  f requency  range of eo~< t o <  1.2~o~. The contr ibut ion E~o,, 
is mos t  significant a t  app rox ima te ly  (o = 1.05(9~, since a t  this f requency  E~o~ 
decreases only ve ry  sl ightly with distance. The rat io  IEpo~/E(O)] decreases 
f rom 10.75 a t  4,~ D to 10.50 a t  2902 D. For  o~ > 1.05eo~, Epo~. becomes less signifi- 
can t  unt i l  i t  vanishes when  the  a rgumen t  of the  pole lies on the p a t h  of s teepest  
descent  a t  approx ima te ly  (o _~ 1.2eo~. 

Fo r  distances grea ter  t han  10X D it  is evident  f rom Fig. 2-9 t ha t  the  effect 
of collisions is grea tes t  when the applied f requency  is near  the p lasma frequency.  
I n  par t icular ,  f rom Fig. 9 we find t h a t  when ¢o>1.15o~ and x > 4XD, the  value 
of the  field with collisions is within 5 °/o of t h a t  wi thout  collisions. When  
~o < 0 . 9 5 ~  and x > 10~ D the  field wi th  and  wi thou t  collisions is within 4 %. 

The effect of including collisions for 0.95 < ¢o/eo~ < 1.00 is one of enhancing 
the  damping  of the field. For  o)=0.975eo~ we find t ha t  for X>30~D~ the 
effect of collisions is to decrease the field b y  a cons tant  value 1.9 ~o- Fo r  fre- 
quencies slightly grea ter  t h a n  the  p lasma frequency,  this is not  a t  all the  case 
as seen f rom Fig. 4 for co = 1.05w~. Here  we find the field magni tude  for 
¢oc = 0 undergoing large oscillations wi th  distance.  The behavior  of the  field 
components  shown in Fig. 5 indicates t ha t  the oscillations are p r imar i ly  caused 
by  the  sum of E~o~° and E(c~), since their  magni tudes  are near ly  equal  for all 
x to 200~ D. Hence  the  inclusion of collisions results  in the field approaching  
the cons tant  value E(c¢) a t  a much  closer dis tance to the p lasma bounda ry  
t han  predic ted  in the  collisionless case. 

The results are quite different for the f requency  (o = 1.10o~ p lo t ted  in Fig. 6 
and  7. The field E~o~, is dam ped  much  more rap id ly  than  for ~o = 1.05~o~, bu t  

when co = 0.01w~ the damping  of E ~ o  is ve ry  slight. This causes the  field to 
cont inue to oscillate significantly with distance. Since the discrete mode  van- 
ishes a t  this f requency for  wc = 0, we find the  unusual  condition of the  colli- 
sionless case being damped  out  more rapidly  t h a n  when collisions are included. 
The collisions t end  to reinforce the  waves r a the r  t h a n  destroy t h e m  for this 
par t icular  combinat ion of collision and  applied frequencies. 

6 .  - D i s c u s s i o n .  

The longitudinal  electric field in a p lasma half-space was calculated b y  use 
of the  normal  mode technique.  Collision.'; be tween electrons and neutrals  were 
accounted for by  use of a part icle-conserving B G K  collision model. The equiva- 
lence of the  normal  mode approach  and the t r ans fo rm method  used b y  LANDAU 
WaS establ ished for the collisouless case. For  distances greater  t han  five Debye  
lengths f rom the boundary,  and for collision frequencies up to 0.01o~, i t  was 
shown t h a t  collisions have  litt le affect on the  electric field except  in the  fre- 
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queney range 0.95~%< co< 1.2c%. Wi th in  this f requency band,  several dif- 

ferent  kinds of effects are possible. The field m a y  be damped  much  more rapidly  
with distance, or for special frequencies which depend on the collision frequency 
the collisions m a y  destroy the collisionless damping  and  the reby  reduce the 
total  damping.  The behavior  of the field is highly dependent  llpon the applied 

frequency ~nd the  coilision frequency,  Ioartieularly when the  fo rmer  is in the 
vicini ty of the  p lasma  frequency. 

I t  should be noted  t ha t  the collision model  which is used only conserves 
particle number .  The results obta ined are in tended to provide  a quali tat ive 
ra ther  than  a quan t i t a t ive  indicat ion of the behavior  of the electric field. 

This work was suppor ted  by  the  Nat ional  Aeronautics  and  Space Admin-  
is t ra t ion under  :NASA Gran t  NsG ]34-61. We t h a n k  D. MIOI)IYSZEWSKI for 

helpful discussions on Sect. 4. 

APPENDIX A 

Discussion of the discrete mode. 

I n  formula t ing  a solution for the electric field using the  B G K  collision model, 
we noted tha t  the  discrete modes do not  exist above a certain frequency. This 
cut-off f requency and  the value of the  discrete root will be the  topics covered 
in this Section. 

rn  Sect. 2 we found tha t  the vi are the eigenvalues of the characterist ic  
funct ion A(v). Equa t ion  (2.9) can be wr i t ten  as 

(A.~) 
c o  c o  

A(v) = 1 + c~ J (u - -  v) du --  ~ -  J ~ - ~  d u .  
- - c o  - - m  

To invest igate  the number  of zeros of A(v) in the 
upper  half-plane, we employ the a rgumen t  princi- 
ple (*). Consider the contour  C in the  v-plane shown 
in Fig. 11 and  follow A(v) as v t raverses  this con- 
tour. The change of a rgument  of A(v) will be equal 
to 2z  t imes the  num ber  of zeros of A(v) inside C. 
For  the semicircle 1-2-3, v is sufficiently large tha t  
A(v) assumes its a sympto t i c  behavior .  

2 

3 4 1 

Fig. l l .  - Contour of in- 
tegration in the v-plane. 

(~) E. COl'SON: T h e o r y  o/ F u n c t i o n s  o/ a C o m p l e x  Var iab le  (Oxford, 1935). 

19 - Il  Nuovo Gimento I3. 
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Since the whole semicircle (1-2-3) in the v-plane maps into a single point  
in the A(v)-plane, it is the only necessary to examine the real v-axis (3-4-1) 
in using the argument principle to find encirclements of the origin in the 

Fig. 12. - Real values of v mapped 
in the complex A(v)-plane without 

encirclement of the origin. 

A(v)-plane. I f  an encirclement is to occur, 
there must  be at  least one value of real v, 
call it ~, tha t  satisfies I m A ( i ) = 0  and 
R e A ( ¢ ) <  0. The procedure therefore will 
be to find the roots of ImA(~)----0 and ex- 
amine the behavior  of ReA(¢). To complete 
the problem, values of i near the roots will 
be investigated to ensure tha t  complete en- 
circlement was made. By  following this pro- 
cedure, we prevent  the occurrence of map- 
pings such as shown in Fig. 12 where the 
imaginary axis was crossed but  no encircle- 
ment  occurred. 

To examine the real v-axis along 3-4-1 of Fig. 11, we consider F(u) as a 
Maxwellian distribution and define 

where 

co 

1 f e -~' 
Z(~)----- ~ .  d ~ _  

- c o  

m ½ 
u ,  

Equat ion  (A.1) can then be writ ten as 

(A.2) A(v)= 1 - ~ -  ~ T ~  + -b--v  ~ Z(v) .  

For  the eollisionless case we find that  to satisfy I m A ( ~ ) =  0 and R e A ( ~ ) <  0, 
we require e -+ oo. Then, f rom eq. (A.2) we find w < oJ~. There are no zeros 
of A(v) when ~ >  ~ .  

For  the ease ~ c ¢  0, we find I m A ( c ~ ) ¢  0 and the analysis becomes con- 
siderably more complex. For  the purpose of numerical calculation, we choose 
e)c/o)~ = 10 -3. This ratio, which is reasonable for a weakly ionized plasma, 
should be sufficiently high for demonstrat ing the effect of oo ¢: 0. By  using 
this parameter  we find both  ReA(oo) and ImA(c~)  are zero for o ) =  1.12~o~ 
and e = -  3.025. When (o>  1.12c%, there are no zeros of A(v) and there are 
no discrete modes. 

I n  Fig. 13 three values of ~o are plotted:  ~o = co~, ~o = ~/2o)~ and ~o= 1 . 1 2 ~ .  
The first two show typical  mappings of A(5) for cases of encirclement and 
nonencirclement of the origin~ and oJ ~ 1.12o), is the marginal ease of the 
mapping passing through the origin. 
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The value of the discrete root m a y  be determined by solving A(~) 0, 
where ~ =  a+ifl. First  we examine the collisionless case. F rom a discussion 
of the properties of A(v) in Sect. 2, we found there are four possible roots of 

1.6 

0.8 

--0.8 

p 

w = 1 . 1 2 ~  

_ _ ±  1 

--1.6 ~ ~ ~  
--0.8 --0.4 0 0.4 0.8 1.2 1.6 

Fig. 13. - Complex A(~)-plane for o)~ = 0.01o)~. 

A(v) = 0. But  f rom the first par t  of this Appendix, we found there is only 
one possible root in the upper hMf-plane; therefore, it must  lie on the imaginary 
axis. With  *oc--~0, $ = i f i ,  ~ - 0 ,  and we find 

This yields 

(A.3) 

A(ifi) = ReA(ifl)~-- O. 

60m 

This relation gives the value of the root  as a function of the dimensionless 
frequency. 

When we set co~= 0.01w,, the solution to A(v)= 0 was found with the 
aid of an IBM 360/50 computer. The computer  results are plot ted in Fig. 14. 
Observe tha t  the value of the real par t  of the discrete root below c,~ is small, 
and the magnitudes of the real and imaginary parts of the root  for co ~ ~% 
are roughly equal. The curve terminates on the real v~ axis at  the cut-off fre- 
quency of 1.12~%. For  the collisionless case, as w--~o~ the root is entirely 
imaginary and approaches infinity. For  ~ = 0 . O l ~ o ~  and t % < c o < 1 . 1 2 ~ % ,  



292 w .  i"~I. BLACK a n d  E. H. KLEVANS 

12 

10 

8 
:b  ° 

E 
6 

0.997 

X''~ 0.998 
. I  0.995 / 

/ 
/ 

~0.990 
/ 

/ 
-~ 0.985 

/ 
/ 

~/0.975 
/ 

/ 

0.950 
/ 

0.900 

~.~99 
1. 0 0 0"~4\ 

\ 
1.001 -~ 

\ 
\ 

1.002 

I 
I 

t 
/ 

1.005/x / 

/ 
/ 

/ 

1.OLO z /  

/ 
/ -  0.800 

2 " , I  
0.700 1.020 j 
0.600 , / ~  
0.500 1.050 I -  

1.100 .....~ -."" 
I I . . ~  ~ I I )~ 

0 2 4 6 8 10 1L2 114 

I~e ~;/%1 

Fig. 14. - Complex discrete root normalized to the electron thermal speed as a function 
of applied frequency for co c = 0.01oJ~. All  points indicate applied frequency. 

the magnitude decreases for both the real and imaginary parts of the root. 
However,  the real part is now greater than the imaginary part. For ~o ~ ] . ! 0  w~, 
the sign of one of the roots changed to satisfy the boundary condition that  the 
field vanishes at infinity. 

A P P E N D I X  B 

Asymptotic approximations. 

B y  assuming distances to be greater than several Debye lengths, we can 
evaluate the integrals of the electric field expression. The method of steepest 
descents (7) will be applied to the integrals, and then any poles crossed in 
deforming the contour to the path of steepest descent will be investigated. 

(7) E .  COPSON: Asymptotic Expansions (Cambridge, 1965). 
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The t e r m  of the  electric field solution t ha t  is in integral  fo rm cun be re- 
wr i t ten  using the  Plemelj  formulas (s) as 

(B.]) 

co 

E ~ .  ( x ) -  - 2 0 d v e x p [ ~ x / v  _ • 

0 
co co oo 

• - - v  2 d u F ' ( u ) +  1 +  u - v  ~ - ~  ~j~-v ~j~--7 d~ " 

I f  we consider iv(v) as Maxwellian and  use the definition of ~(v), we obtain  
an expression in the  fo rm 

(B.2) 

vo 

O 

where G(v) is the  nonexponent ia l  funct ion of the complex var iable  v, C is a 
constant  in v, and  

(~ m v  2 
(B.3) g(v) - 

v 2kTx  " 

Applying the  me thod  of steepest  descent,  we find the saddle point  a t  

(B .4 )  Vo=-(~-~(o~) t  x exp ~ ( - - 0 - ~ 2 n ~ )  , 

where 

0 = t g - ~ ( o l o ~ ) ,  n = 0 ,  1 ,  2 .  

Possible values for the  arguments  
of the three roots of Vo are shown 
in the ha tched  areas of Fig. ]5. To 
deform the original contour  (0 to ~ )  
to the regions indicated by  n-----1 
and n = 2 the imaginary  axis mus t  
be crossed. Since the  in tegrand has 
an essential s ingulari ty a t  these cros- 
sings, the integral  fails to converge;  
hence, the only possible choice for 
the root  is the one defined by  n = 0. 

With  the proper  pa th  of integra-  
t ion chosen, we m a y  evaluate  the 

~ %=0 
2rc/3 

%>>~0~~ c°c = ~  n = 0 

n = 2 ~  %>>w ~c=0 

-2rU3 

Fig. 15. - Possible arguments of % in the 
complex r-plane. 

(s) :i. MUSKHELISHVILI: Singular Integral Equations (Gronigen, 1953). 
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integral using the I)ebye formula (7): 

Es.D (~) = C exp [~g0,o)]a(, ,0)[ (B.5) 
xg" (~o)J " L 

To find G(~0) we note tha t  as x -~  c~, Xo--> co. 
lowing approximations : 

(B.6) 

We therefore make the fol- 

A+(~o) = A-(vo) = 1 Jr ~ fo~ 
0 .2  A - - - , t y  

co 

r"(Uldu f (B.7) = du F(u) 1 
j u - ~ ,  ( u - ~ , y - ~ '  

~ ¢ o  - c o  

(B.8) 

co 

I" F(u) du ~__ 1 
- -  - - o  

With  these relations, eq. (B.1) becomes 

(B.9) Es.D.(x)--- --  2~@ E(0) 
V5~2(1 + od,/~ ~ + o)c/~) ~ 

- [~2-- (1 -I (°'\ / m \' -~-)[~-~)(o)' + eo~)~(.' exp [-- i20])] • 

One possibility tha t  has been overlooked in this development is tha t  a pole 
could have been encountered when deforming the contour to the pa th  of 
steepest descent. I f  such a root  exists, we know it  must  be near the real axis 
in the lower half v-plane, so we examine the roots of A-(Q = 0. Assuming 
the phase velocity of the wave is large compared to the thermal velocity, 
we find 

' 

V+;~ 3 ~ +  + 

• 1/2 + o 

To find the root vl tha t  causes the above expression to vanish, we assume the 
last term in the above expression is less than the combination of the remaining 
terms: An appropriate solution for ~1 results: 

(B.11) 
~ " - [  T T ~ Z - ~ , m  _I " 
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This relation is then used in the last term of eq. (B.]0), and aguin we solve 
that  equation for v~. The result is 

-- (kTIm)oo~ ] 
(B.12) ~ = ~ ~ 

~ + (~/z?-(o~U~)((og~/~,D- ~ ) e ~ p  [ ~ 1 / ~ ]  ' 

where 

2 2 ~ _ 0 . 2  

I f  the argument  of ~ lies within an angle f rom 0 to the argument  of ~o from 
the path  of steepest descent, then the pole ~ will provide un additional con- 
tr ibution to the field. Since eq. (B.12) is too cumbersome for an unalytical 
expression for the argument,  a computer  solution was obtained. The results 
show the arguments  of ~o and ~ to be equal at  o~ ~ 1.21o~ for no collisions 
and co ~ ].20w~ for o ) ~  0.01w~. 

We have now established the existence of a pole which will contribute to the 
asymptot ic  field when the applied frequency is approximately ~% ~ ~9 ~ 1.2(%. 
To evaluate this field contribution we use the theory of residues. 

(B.13) 

co - - ( ig l6)co 0 

f()÷f ()  + (residuo at ,,,)- f ( ) = o, 
0 co --(i~/6)¢o 

where 

( ) : exp [axlv] A (v) E~ dr. 

Figure 16 indicates the contour of these in- 
tegruls. Since the second term of eq. (B.13) 
vanishes by Jo rdan ' s  lemma we obtain 

(B.]~) 

co - - ( ig /6)co  

f ( ) - -  f --2~i (residueatvl). 
o o 

co 

Fig. 16. - Contour of integration 
in the complex v-plane. 

To calculate the residue we again assume large real v, such that  the integral 
of eq. (3.15) may  be evaluated. The field resulting from the residue we shall 
call Epo~o. I t  takes the form 

- E(O)o~[(~ ~ + ~,~)(o~Uo~i) + ~o~l [~x(~o~ + i a ~ / ( n / 2 ) I ( , )  '.- ] 
[ / e x p  / w - - - -  ' (B. 15) Epolo -- .~2 

where 

602 I.. 2 
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F o r  the  collisionless case, eq. (B.15) reduces to 

[[  ¢i 1/ I ] (o oi.  . o Sll (B.16) E~o~o-- E(O) exp ~ i - - ~ -  2 \ ~ o /  exp --  ~ q - ~ ] j  

which  was ob t a ined  b y  LANDAU. 

R I A S S U N T O  (*) 

Si determina il campo ele~rico nel semispazio di un plasma usando un'analisi  del 
modo normale con collisioni studiate ~ramite un modello di collisione che conserva le 
partiee]le di BGK. nel caso in eai non si hanno collisioni si dimostra che i risultati sono 
equivalenti a quelli di Landau che ha usato metodi di trasfornmzione. Per distanze 
muggiori di einque lunghezze di Debye dal bordo, e per frequenze di eollisione sino 
a 0.01o~, si dimostra che le collisioni hanno scarso effetbo sul campo elettrico tranne che 
nell ' intervallo di frequenze 0.95~%< ~o< 1.20~. Entro questa banda di frequenze, le 
eollisioni produeono diverse specie di effetti, dipendenti dalla frequenza dcl eampo 
applieato e dalla frequenza delle collisioni. Per la maggior parte delle frequenzc il campo 

smorzato pifi rapidamen~e con le distanze. Per speeiali frequenze, perb, le collisioni 
dis~ruggono lo smorzamen~o senza eollisioni e riducono lo smorzamento to%ale. 

(*) T r a d u z i o n e  a c u r a  de l l a  R e d a z i o n e .  

I Ipo~O~bH~e BO~H~ B noay6ecgoHeqHofi naa3Me. 

Pe3IoMe (*). - -  Onpe)~en~eTc~ 3neKTpnqecKoe n o a e  B nony6ecKoHeqHo~ rtna3Me, Hcnonb-  

3y~ aHa~H3 ~opManbr~bIX MO)X C coy~apeHJ4~MH, roTopbIe  paccMaTpnBa~oTc~ c rIOMOLl~blO 

MO~eaH ]3GK ~n~ coyaapem~, KOTOpble coxpaHarOT ttI,iC710 ~acTn~. YIoKa3bIBaeTc~, HTO 

B 6eCCTO~KHOBHTe~bI{OM cnyqae  pe3ynbTaTbI 3KBHBaneHTHbI pe3ynbTaTaM 5IaH~Iay, 

KOTOpbl~ HCllOnb30Ban TpaHCqbOpMaHl4OHHbIe MeTOjIBI. OTMeqaeTc~, ~iTO 1/JI~ paccTo~rm~ 

6Onblue, qeM rl~lTb )Ie6aeBcrnx )InHH OT rpaHrItib~ ~ )~n~ qaCTOT coy~apeHn~ BYIJ1OTb ]~O 

0.0]09~, CTOJ]/(HOBeH/4~I ~IMelOT Manoe B21nflHJ4e na  3neKTpnqecroe none ,  3a HCKJ1roqeHHeM 

o6nacTn  qaCTOT 0.95o9~ < o9< 1.2~o~. BrIyTp~ 9TO~ o6nacT~ qaCTOT coy;laperm~ Bb~3bIBarOT 

pa3nnqHb~e Tnl~b~ 3qb~eKTOB, 3aBHCflUlHX OT qaCTOTbI I l p n n o g e H H o r o  nonfl  n OT qaCTOTbI 

coy~apeani2.  )~n~ 6OJlbl//I4I~CTBa qaCTOT, IIOYle 3aTyxaeT 6onee  6b~cTpo C paccToar~eM.  

O)~rIaKo, ]/n~ xapaKTepHblX qaCTOT, c o y ~ a p e ~ n a  yH]4qTo~a0OT 6eccxo~/KHOBnTenb~Oe 

3aTyxaHne n yMeHbma~3T non r toe  3aTyxaHne. 

(') Hepeee3eno pe3amtue~. 


