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Summary. — The interference term between direct and collective dipole
radiative capture of nucleons by nuclei is obtained. The cross-section
is written in a Breit-Wigner form as a sum of three terms: direct capture,
collective or «resonant» capture and interference term. The expression
of the latter term is investigated and the conditions for constructive,
destructive and zero interference are given. The nucleon capture cross-
sectiong for 13°Te, 142Ce and 205Pb are calculated. Taking into aceount the
interference between direct and collective processes, a better agreement
between theory and experiment is achieved.

1. - Introduetion.

In recent papers (3) the radiative capture of nucleons by heavy nuclei
in the (10--50) MeV energy range has been discussed in terms of direct and
collective mechanisms. According to the «direct» process (}), an incident
nucleon in the mean nuclear potential field may emit a photon undergoing a
transition to a single-particle bound state. In the « collective » picture (?)
the target nucleus may have shape oscillations and an incident nucleon ex-
periences a slightly deformed potential, which can excite collective modes of
the target. In the collective capture process the nucleon is scattered into a
bound state and the nucleus is excited to its giant dipole state. The latter then
decays emitiing a y-ray.

() A. M. LaNE: Nucl. Phys., 11, 625 (1959); A. M. Lane and J. E. LYNN: Nucl.
Phys., 11, 646 (1959).
(2) G. E. BROWN: Nucl. Phys., 57, 339 (1964).

(3 C.F. CLEMENT, A. M. LANE and J. R. Roox: Nucl. Phys., 66, 273, (1965); 66,
293 (1965).
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The direct model does not explain the cross-section peak in the (10-20) MeV
nucleon-energy range (%), while calculations, which take into account the col-
lective process too, give peak values lower than the experimental ones (3).
As pointed out in ref. (®), the interference contribution between the two pro-
cesses could improve the agreement between theory and experiment.

In this paper an expression of the «interference term » between direct and
collective radiative capture of nucleons is obtained. The cross-section is written
in a Breit-Wigner form as a sum of three terms: direct capture, collective or
« resonant » capture and interference term.

The expression of the interference term is investigated and the conditions
for constructive, destructive and zero interference are given. These conditions
are illustrated by a proton-capture transition for '#2Ce.

The dipole-capture cross-sections for the 13Te(p, v), 1*2Ce(p, ), **Pb(p, v) and
28Ph(n, v) reactions are calenlated. As will be shown, the interference between
direct and collective capture is destructive below the collective resonance energy
and constructive above it. So, the interference raises the total cross-section
peak, slightly displacing its position in the direction of higher energies, as
required for a better agreement between theory and experiment.

2. — Basic formulation.

Let us consider the interaction of an incident nucleon with a target nucleus
of A particles. The total Hamiltonian of the system is

(2.1) H=H,+ T(r)+ V(r. §)

with H, the Hamiltonian of the nucleus, 7(r) the kinetic energy of the incoming
particle, and V{(r, &) the potential of the interaction between the A nuclear
particles and the incident nucleon, i.c.

4

(2.2) Vir, &) =23 V(r, &).

i=1l

The variable r labels the incoming nucleon co-ordinates and & the totality
of the co-ordinates of the A4 particles inside the nucleus. The incident and
target nucleons are treated as distinguishable.

By @(r, &) we indicate the solution of the Schrodinger equation

(2.3) HO® = B

(4 P. J. Dary, J. R. Roox and P. E. HobgsoxN: Nucl. Phys., 56, 331 (1964).
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and by ¥ the initial wave function satisfying
(2.4) H,W = EY,

where H, = H,+T(r). In future we shall drop the upper - or — suffix for
the outgoing or incoming waves.

Then, in order to obtain the connection with the optical model, we in-
troduce the optical complex potential 17, go that V= I~7+H’, where the
« regidual potential » H' can be treated as a perturbation. The distorted wave
function ¥ obeys the equation

(2.5) B, =EP,

with #, = H,+V.
The solution of eq. (2.3) satisfies the integral equation

(2.6) O=[1+GHP,

where @ is the Green’s operator. Replacing G by (E— H +ie)~', where the
magnitude of ¢ is arbitrary and, in the final expressions, the limit ¢ -0 is
taken, we have

1 e

Consequently the matrix element of an electric transition for the radiative

capture process may be written as

CH| A | D2y LD H' [,
E—H+1e !

(2.8) Moy = (| # TS + ;

where @, is a member of a complete set of eigenfunctions of the nuclear Hamil-
tonian H.

Let us now consider the case of the dipole emission. We split the total
dipole operator into the nucleon and the target part

(2.9) H=H N4 #D

4

with # Y = #(r) and # @ = > #(&,). Taking into account the fact that the
{f=l

intermediate giant-dipole state @, of a fairly well defined energy FE,, has a

finite decay width I', the matrix element can eventually be written as

2.1 M — s g ST
(2.10) i = (| AH V> W H, 4 3l ,
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where the first and second terms may be interpreted by means of the
« direct » () and the « collective » (*) mechanisms respectively.
The cross-section for the total dipole capture process has the usual form

16n MAY

(2.11) Oiss =g~ Jipt

|M1—>f| ’

where M is the reduced mass, ¥ and k. are the incident and photon wave
numbers respectively.

3. — Cross-section: direect, collective and interference term.

By using the notation of ref. (5), the dipole-capture cross-section for an
individual final single particle bound state (I, j) can be written as

167 MR?Y <'.‘pfm|//(\)|5uxn <y/““lyfmlgj‘nt> intlH’lW‘n\) 2

3.1 (to'.) -
(3-1) o 9 h2k' o epy—ho,—e,; +il2 7

where ¢,.,, and g,;; are the initial and final nucleon energies and #iow, the excita-
tion energy of the dipole state in the target nucleus (4, N, Z).
The initial, intermediate and final states are given respectively by

y/111 - Z [47 Ol/ + 1 ]%(ll %%}? ]?( Jrme (p (711/)1 ir ( )%o ]

[N

(32) g’int Jm('g2 O')u“( )9’1-,‘,
Vi = gpim('Q; 0) uli( )’Poo 9

fin
where ', §', m’ and I, j, m are the quantum numbers of the initial and final
states of the incident nucleon, ¢ the target functions and ¢ the spin-angular

wave functions

(3-3) z l, M — /17 9 MJ*H) lM—/IZ%,,I .
A
The direct dipole transition operator Jf{ff’ is given by
. Z
(34) %;2) = 6’;17'1-1']‘“(91(}71') ’

the variables 6;, g;, r; being the spherical co-ordinates of the i-th proton with
respect to the centre-of-mass of the target nucleus. The collective dipole radia-

(°) G. LonNco and F. SaporerTI: Nuovo Cimento, 52 B, 539 (1967).
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tion operator and the component of the particle-vibration coupling for the
dipole mode which leaves the charge of the particle unchanged are respectively

., 3\t NZ
(3.5) H {8 = const + ¢ (E) 5 e
3.6 i\, NL  p T
5.6) o= (3)2 o= k)T,

where vy = R, — R, is the separation of the centro‘ds of the neutron and pro-
ton systems, r the position of the incident particle, », the strength of the iso-
topic spin term of the optical potential and &,(r— R,) the «finite-width
o-function » with ¢ equal to the surface thickness and B, the nuclear mean
radius.

For the matrix element of the direct transition one then obtains

e
\>il[I . #__Z (21 - 1&

i

(37) fm’%

,J;

0L DU By Vi, P Ty

lu

where ¢ is equal to ¥ and — Z for an incident proton and neutron respec-
tively, and D,,. is the direct radial integral expressed as

(3.8} D, :fugj(?‘) po(riridr .

Using the expressions (3.5) and (3.6), the collective transition matrix ele-
ments are

W NZ 3
(3.9) (PlH'|P> = + ()2 Rk (?n)

'ZL QU+ 0 33 D ER) Doy Tau Py <111a]0) Cre

va

and
3 NZ
(3.10) W # O P> = (— e (E) N2 it

where the upper and lower signs in (3.9) refer to the proton and neutron case,
respectively; the « collective » radial integral C,.; is given by

i 1 d}d
(3.11) Cpy= _f“ (r) = T T}(,—) py(r)redr,

with T(r) the real part of the central nuclear potential, while the matrix ele-
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ment {1|n,}0>, according to the sum rule, is

A A2 14082
12 Ve oy = = 2T Tt
(3.12) et = A0>* = 57 557 o,

with z the exchange force factor.
Inserting in eq. (3.1) the matrix elements (3.7), (3.9), (3.10) and (3.12)
and summing over all the bound states, the total cross-section becomes

8w e M )
(3.13) gt = 9;2 72 7\’12 (27" +1) k3855
¢ W NZ B 1+ 0.8 2

- eDy i b - ;
\e ’ j:z?,-r—ﬁ(ulwz;,j—%-z(]ﬂ/z) 2 A 2M e,

where S;;, is the statistical factor
Sy =47 3 Dy, Y., Do) |2,
/lm

for which tables (¢} are available.

Squaring the first and the second terms separately, we obtain respectively
the expressions for the direct and the collective capture cross-sections given
in ref. (%).

The mixed term gives the interference between direet and eollective capture

. 8m et M .
(3.14) o= 942 ﬁ;ﬁ.ng’: (21" + 1) k58,5
7 9 1 *“, /1 .
27| EEA h_l ,081" Re _”_’&“_ ,
I A 2M  fo, XL

where the «energy » X (in units of /") is given by

. gp—thw,— ey,
(3.15) x= i

The total cross-section can now be written in a more compact Breit-Wigner
form as
7 .,
(3.16) Ototy = k,gz(Q? +1)-

.

(Fyljm)é Xecos(x—p)—sin (x— f) N Iyl
r 1+ X2 VA TN

-{a2 + 20 ———

(6) See for example: S. A. MoszrowsK1: Alpha-, Beta-, and Gamma-Eay Spectroscopy,
edited by K. Sie¢BABN (Amsterdam, 1966), p. 879.
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by introducing the «resonance widths »

16 4NZ ., h* 140382
P’Y = 9 ﬂ]"7<®5m“li ‘poo]%(lmdjimuw‘pl—u'\"z -3 A e 3"'2]}1 W ’
- ME
(31‘) ‘riﬂ =4 B2 z !‘/~¢:ﬂ‘mula’¢14u|H’ldsi'm'wl’i’q)oo\/\ =
I_lm
2 ME NZ’2ﬁ'~’ 1+ 0.8z .
5 A2 BN ey 10l

and by introducing the modulus a of the direct capture amplitude, defined by

8 Mk’ [e\?
(3.18) a? = 9 Bt (Z) tzl@Sﬁ']Dm’lz,
and the phases « and f
— Im (D)
st # A R (D)
o I (Cuy)

= arct, .
p % Re (Cryi0)

The first, second and third terms of the eq. (3.16) represent the direct cap-
ture, the interference term and the collective or «resonant» capture respec-
tively.

4, — The interference term.

4’1. Conditions for consiructive, destructive and zero inierference — In order
to study the influence of the interference term on the cross-section, let us con-
sider a single transition from a given initial state (I'j') to an individual-particle
bound state (Ij). For such a transition the cross-section (3.16) may be ex-
pressed as

(4.1) Oy =z (20 1)+ S,

where &7, and .7, are the direct and collective capture amplitudes given by

;= a expia],
E1
(4.2) Mc _ (F'Y]I:in) COS0 GXp I:,’ (‘8 + 0__ %)] ,

with

(4.3) 0 = arctg X .
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The sign of the interference term is defermined by the phase-shift o
(4.4) S—o—f—6+.
The interference vanishes for 6 = (n+-%)n (n =0, 41, £2 ...) or
(4.5) Xy =tg(x—p)
and is entirely constructive or destructive for é =nn or

(4.6) X =ctg(B—a).

The values of X, and X can be found by calculating the expression

- o Im (Dy;;)-Re (Cy,50) — Re (Dy;;0) Tm (Cyp0)
(.7 tel—f= Re (D) Re(Cyy5) + Tm (Dyy) Im (Cyp0)

The eq. (4.5) gives the exact position of the zero-values of the interference
term, while (4.6) obviously gives only the approximate position of the inter-
ference peaks because the energy-dependence of the amplitude moduli in-
fluences such a position.

The interference is constructive for —z/2 < 6 < /2 and is destructive for
7[2<< 0 < 3x/2. For incident nucleon energies higher than the resonance en-
ergy (X >0), it is 0<< 6 < n/2. Therefore in this energy region the interfer-
ence is always destructive for o« — § in the second quadrant and constructive
for « —f in the fourth quadrant.

Below the resonance energy (X < 0), the f-value ecan vary in the range
—a/24+A0 < 6 < 0, where AG = (7/2) — arctg[2(fiw, + ,.;.)/I"]. Therefore the in-
terference is always destructive or constructive for 0<<o— f< (#/2)+A0 and
w<oa—B<(37m/2)+AD respectively. For typical dipole state and bound state
parameters, it is Af ~ (5-=-10)°. The above conclusions are sumarized in Table 1.

In the cases not considered in Table T (for example, X >0 and 0 << o —
—fB< x=/2) the interference may be either constructive or destructive.

TasiE 1.
Interference ‘
,ﬁfﬁﬁfw L B

‘ Always destructive \ Always constructive |

!

For X< 0 | O0<a—p<(n/2)+ AB ‘ n<a—pB<(3n/2)+ A6 ‘

‘ — |

For X>0 | a2<a—f<m 3n/2<a—p<2n !
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Thus the sign of the single-transition interference term may be determined
from the conditions listed in Table I and those given by eqs. (4.5) and (4.6),

by calculating the expression (4.7).

472,

Typical behaviour of the interference term. — We have studied the in-

terference term for the transitions of the **Te(p, v), ***Ce(p, v), 2*Pb(p, v) and
25Pb(n, y) reactions. The set of parameters used in the calculations is listed

10 20 30 40 50
E (MeV)
Fig. 1. — The calculated curves tg («— f) and
ctg (8 — o) for the f;—ds transition of the
142Ce(p, v) reaction vs. the proton energv. The
intersections of these curves with the straight
line X = tg@ give three points of zero-inter-
ference and three of entirely constructive or
destructive interference. The quadrants for
a— f are indicated by Roman numbers.

units

relative

0k
B Y S, S ]
10 20 30 40 50
ED\MeV

Fig. 2. - a) The calculated interference term for
the j%—>d% transition of the 2Ce (p, y) reaction
vs. the proton energy. b) The imaginary and
real part of the direct and collective integrals
Dyy;- and Oy for the same transition.

in Sect. 5.

The typical behaviour of a
single transition interference term
is illustrated by the example of
the f; —d; transition for the proton
capture by 2Ce. The values of
tg(e—p) and ectg(f—«), calecu-
lated by using the expression (4.7)
together with those of X wvs. pro-
ton energy are shown in Fig. 1.
The intersection of the curve
tg(x—p) and X gives the zero
values of the interference term.
The latter have been found at 8.8,
29.1 and 51.5 MeV proton energy.
The condition (4.6) for entirely
construetive or destructive inter-
ference occurs at 13.7, 18.7 and
33.5 MeV energy, where X and
ctg (f—x) cross.

The conditions listed in Table I
imply that the interference is con-
structive in the energy interval
(9.6 —21.4) MeV. The first zero-
interference points external to this
interval occur at 8.8 and 29.1 MeV,
so that the interference remains
constructive between these ener-
gies. In this region the condition
(4.6) gives entirely constructive
interference at 13.7 and 18.7 MeV.
Before the zero-point at 8.8 MeV
and after the one at 29.1 MeV,
the interference becomes destruc-
tive, as it must for energies be-
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tween 29.3 and 33.9 MeV (see Table I). In this region a point of entirely
destructive interference occurs at 33.5 MeV. Finally, for energies higher than
51.5 MeV there is a new positive peak.

The contribution to the capture cross-section due to the interference term
for the f; —>d; transition of the 142Ce(p, ) reaction has been calculated from
eq. (3.16) and is shown in Fig. 2a). It confirms the predictions derived from Fig. 1
regarding the position of the zero points and the regions of constructive or
destructive interference. It can be seen that, though the interference is en-
tirely constructive or destructive at 13.7, 18.7 and 33.5 MeV, the maximum
and minimum values arve displaced with respect to these energies. This is due
to the variation with energy of the absolute value of the direct and collective
capture amplitudes, as shown in Fig. 2b), where the real and imaginary parts
of the direct and collective integrals D,;;. and C,,; for the transition studied
are drawn.

The point X = 0 corresponds to the collective capture-resonance energy.
The examination of Fig. 1, confirmed by Fig. 2a), indicates the presence of a
negative interference below X 0 and a positive one above this X-value.
Therefore the position of the peak for the total cross-section of the f; —d;
proton transition is slightly displaced with respect to the collective peak in
the direction of higher energies.

The behaviour of the other single transition interference terms for proton
capture by :°Te, *2Ce and 2°Pb is similar to the one described above. For
a given final state (e.g., the proton 2f, bound state of 2°Pb), the func-
tion (x—p) increases with energy more rapidly for a transition from an
initial state with higher momenta (I'j’). This gives intersection points on
the curve tg(x— ) which are nearer one another. So, e.g., for the g, —f;,
g; >3, and dg —f; proton capture transitions in Pb the constructive inter-
ference region extends from about X ~ 0 up to the energy of 31.4, 33.5 and
41 MeV respectively. Similar considerations are feasible for the transitions
from an initial state (I'j’) fixed with respect to the corresponding final state (Ij)
(e.g. the transitions to each bound state from the initial state I’=14-1 and
j'=4¢ 4 1). In this case, the function {«x— f) increases with energy more rap-
idly for the transitions to bound states lower in the succession given by shell-
model calculations (7) (e.g., for the tellurium proton transitions of the sequence
i;ﬁi"’@}y P_;_—"S%v f%"d%7 f%"}d%a h%%g%).

The above-described behaviour of the proton transition interference term
is such that it will cause an enhancement and a slight displacement of the
total cross-section peak in the direction of higher energies.

(") M. GoEPPERT MaYER, J. HaNs and D. JENSEN: Elementary Theory of Nuclear
Shell Structure (New York, London, 1957), p. 58.

18 — I Nuovo Cimenio B.
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5. — Caleulations.

The dipole capture cross-sections of **Te(p, v), **Ce(p, v), **Pb(p, v) and
208Pb(n, v) reactions are calculated by using the formula (3.16), which includes
the interference term. For capture by 2¢Pb, more recent experimental bound
states and an adjusted programme are used with respect to the ones of ref. (%).
In the present work the calculations for proton capture by #2Ce differ from
those of ref. (**) in that the spin-orbit interaction is also included.

51. Radial part of the bound state wave functions. — According to the model,
u,;{r}) is the radial part of the final particle wave function, normalized by

J‘[u”(r)]zr2 dr=1,

and satisfying the Schrodinger equation. The potential for the bound-state
functions is assumed to be of the Woods-Saxon form containing a spin-orbit
term of the Thomas type as well as the Coulomb potential of a uniformly
charged sphere. The potential chosen is

U,(r) (for protons)

Ulr) — — V@) — V. hir)o 1+
(r) f(r) ) 0  (for neutrons),

where the spin-orbit strength V', and the Coulomb potential U.(r) are given by

2
V,= 4 (_m_") T,

2M
Z 2
¢ r>R
r
Uelr) = Zet 72 !
R (3 - f) r<kB

and the form factors are f(r) = [1 +exp [r—roA"‘]/a]"’ and h(r) = —23 df(r)/rdr.
The Coulomb radius E is taken as being equal to the nuclear one.

This potential containg four parameters: the nuclear potential depth @
for protons and neutrons, the radius parameter 7,, the diffuseness ¢ and the
positive dimensionless parameter A.

For the nucleon capture by 20¥Pb, the set of bound-state parameters is

A=33, a = 0.67 fm and 7, = 1.30 fm. The potential depth V@ for each bound
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state is adjusted to give the experimentally known binding energy (#¢). The
final bound states taken into account in the -calculations are 3dy(1.40),
‘?g (1.47), 4?1(1 91), 3(15(" 38), 1j15(2 53), lfiu(3 15), 2g9(3 94) for neutron
capture and 3ps(0. 66), fs 0.96), 1@13(‘ 19), f (2.9), 1k, (3 8) for proton capture;
the binding energy in MeV is given in braekets.

For the proton capture by 42Ce the 2d%, 38%, Zd%, 1hlgl final bound
states are considered as in ref. (**). In this case the experimental binding
energies are not well known. Therefore the eigenfunctions are calculated by
using the bound states parameters V® = 56 MeV, A=233, a=0.67 fm, 7, ==
=1.27 fm. The same set of parameters is used in the case of the 3Te(p, v)
reaction for the 1gs, 2d%, 354, 2d% and 1h1‘ﬁl final states.

52, Radial part of the continuum-state wave functions. — The radial part
u;(r) of the incident wave function obeys the Schridinger equation, however
the potential experienced by the incident particle has now an absorption term

too, expressed as ~iW(R)g(r). We assume this imaginary part of the poten-
tial to be peaked at the surface in the form

g(r) = — 40 A[1 + exp[r—r, A¥}}p]~1/dr,

with b the width parameter. The optical potential is now defined by the six
optical parameters V®, W® V. a, b, 7.

The Rosgen et al. Optlca] parameters (*°), which deseribe many experimental
data, are chosen to calculate the free functions of the incident particle, 7.e.

) 53.8 . .5
T(MeV) = 1oy 0BT WOMeV) =1, V,(MeV) =55,
. D40

b |

ro(fm) = 1.25, a(fm) = 0.65, b(fm) = 0.70.

The strength », of the symmetry term of the nuclear optical potential is
put equal to 160 MeV as in ref. (3). The excitation energy Zw,; and the width I”
of the dipole state are taken as %w, =15 MeV, I'=3 MeV for tellurium and
cerium (see ref. (%)), and fiw, =14.5 MeV, I'=2.5 MeV for lead. The papers
of ref. (') have been taken as a guide in choosing these values. Since the cal-

(8) Nuclear Data Sheets, Part. 11 (New York, 1966).

(®) J. 8. LitLeY and N. StEIN: Phys. Rev. Leit., 19, 709 (1967).

(1) L. RoseN, J. G. BEERY, A. S. GOLDHABER and E. M. AUERBACH: dnn. of Phys.
34, 96 (1965); F. P. Acee and L. RosEN: LA-3538-MS (1966).

(1) B. 1. GorYACHEV: Atomic Energy Rev., 2, No. 3, 71 (1964); P. OrLiva and
D. PrOSPERI: Nuovo Cimento, 49 B, 161 (1967).



276 G. LONGO and F. SAPORETTI

culated collective cross-section is a sum of several single transition terms,
the resulting width is larger than the I'-value used in the caleulations. Taking
into account this effect, the fiw,- and I-values can be considered as being in
agreement with the giant-resonance data of the reference mentioned. As usual
the exchange form factor x has been put equal to 0.5.

6. — Results.

In Figs. 3 and 4 a comparison between calculated and experimental cross-
sections (1213) for proton radiative capture by #2Ce and '°Te is given. To
show the weight of the different terms, the total, direct, collective and inter-

750 - 5

10 20 30 40 50
Ep(MeV)
Fig. 3. - The %(Ce(p,y) experimental Fig. 4. — The Te(p, v) experimen-
and calenlated eross-sections vs. the proton tal and caleulated cross-sections ws.
energy. The experimental points are: clos- the proton energy. The experimental
ed circles from ref. (13), open circles and data (12) are indicated by open circles.
triangles from ref. (12). total cap- total capture, -——— collec-
ture, — — — collective capture, ----- di- tive capture, ----- direct capture,
rect capture, —.—.— interference term. === 00— — — interference term.

ference curves are drawn separately. The interference term affects the cal-
culated cross-section increasing the peak valne and slightly displacing the
position of the peak towards the experimental one.

The calculated cross-sections for proton capture by 20!Pb are plotted in
Fig. b, together with the experimental points of the proton capture by 20°Bi.

(12) P. J. DALy and P. F. D. Suaw: Nucl. Phys., 56, 322 (1964).
(13) E. V. VeErDIECK and J. M. MitLER: Phys. Rev., 153, 1253 (1967).
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As can be seen, the experimental cross-section values and their trend can be
obtained.

The caleulated curves and experimental cross-sections of the ¢Ph(n, +)
reaction are shown in Fig. 6. In the energy range considered, only the meas-

Fig. 5. - The 2Pb(p, v) calculated cross-
sections vs. the proton energy. Closed and
open circles are the experimental data for
proton capture by 2°9Bi quoted in ref. (14)
and (*?) respectively. total cap-
ture, —— — collective capture, -+ -- di-
rect capture, —-—.-— interference term.

ured values in the (13.4--15.0) MeV interval are available ().

Fig. 6. — The 2Pb(n,y) experimental
and caleulated cross-sections vs. the pro-
ton energy. The points are the exper-

imental data quoted in ref. (*%).

total capture, — —— collective cap-

ture, ----- direct capture, —.—.— in-
terference term.

Here, the

theoretical predictions give satisfactory results.
So, the calculations show that the contribution of the interference between
direct and collective capture improves the agreement between theory and

experiment.

We are grateful to Profs. E. CLEMENTEL and V. BEnzI and to Dr. N. P,

Karasanigov for fruitful discussions.
programming the required computations.

Thanks are due to Dr. F. FABBRI for

(%) E. L. KgLLy: Report UCRL-1044 (1950), Table IV.
15y J. Csikar, G. PEro, M. Buczxd, Z. MiLicY and N. A. E1ssa: Nucl. Phys., A 95,

229 (1967).
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RIASSTUNTO

Si ricava l’espressione del termine di interferenza fra la cattura radiativa dipolare
diretta e collettiva da parte dei nuclei. Lia sezione d’urto & scritta nella forma di Breit-
Wigner come somma di tre termini: cattura diretta, cattura collettiva o di «risonanza »
e termine di interferenza. 8i studia 1’espressione di questo ultimo termine e si danno
le condizioni di interferenza costruttiva, distruttiva e nulla. 8i caleolano le sezioni
d’urto di cattura di nucleoni per il 13Te, il 42Ce ed il 208Pb. Tenendo conto dell’in-
terferenza fra i processi diretto e collettivo si ottiene un migliore accordo fra teoria ed
esperimento.

I/IHTep(bepeHmm MeEKAY KOJUIEKTMBHBIM H IIDAMBIM pPaJHANHOHHBIM 3aXBATOM HYKJIOHOB.

Pesiome (*). — BwBomutcs uHIepdepeHUMOHHBIH YIEH MEXAy HPSIMBIM M KOJUIEK-
THBHBIM IUIIOJBHBIM PAJTHALIMOHHBIM 32XBATOM HYKJIOHOB snpamu. IlonepeyHoe ceveHue
3anuceiBaeTcs B ¢dopme bpaiita-Buraepa, kak cymMma Tpex WIEHOB: IIPSIMOIO 3axBaTa,
KOJIJICKTUBHOIO WM « PE30HAHCHOIO » 3axBaTa M MHTepdepeHUMOoHHOrO 4ieHa. Mccne-
JIyeTCsl BbIpakeHue AJIA MOCJIEAHEr0 4JIeHA, W TIPHBOMIATCS YCIOBUS AN IOJIOKMTEJILHOM,
OTPHILATENbHON M HYJIeBOM MHTEephepeHUMH. BbIYUCIMIOTCA MONEpeyHble CEYEHHs 3axBaTa
HYKNOHOB anst 13Te, 142(Ce p 205Pb., VuuTpiBas uHTEp(EpEHONIO MEXOY TNPAMBIM U
KOJUJIEKTHBHBIMH IIPOLIECCaAMH, II0JIy4aeTcs Jiyyllee COIJIacHe MeXIy TeOpueH M IKcme-
PHUMEHTOM.

(*) Hepesedeno peoaxyueii.



