BV 690, a new Bright Type II Cepheid

N. B. Sanwal & M. B. K. Sarma Centre of Advanced Study in Astronomy, Osmania University Hyderabad 500007

Received 1990 December 19; accepted 1991 April 26

Abstract. *B* and *V* observations of the suspected variable BV 690 = NSV 04298 are reported. The star shows light variations with a period of 1^d.2400 and with amplitudes of 0^m.27, 0^m.36 and 0^m.11 in *V*, *B*, and *B* – *V* respectively. The light curves show steeper rise than decline, and there is evidence for the presence of a bump in the descending branch around the phase of 0.35. From considerations of the period, spectral type, presence of the bump and high tangential velocity we conclude that BV 690 belongs to the BL Herculis class of Type II Cepheids.

Key words: light curves—ephemeris—type II—Cepheid variable—individual

The light variability of BV 690 (NSV 04298, HD 76296, BD -22 2440, CD -23 7878, SAO 176679) was reported by Strohmeier, Knigge & Ott (1965) who found the star to show light variations of amplitude 0^m.3 from photographic observations. As the nature of its light variation was not established, this star was included in our observing programme for occasional observations in between our regular observing programme of eclipsing binary stars. These observations were made on 35 nights from 1974 to 1976 with a photoelectric photometer attached to the 1.2 m reflecting telescope of the Japal-Rangapur Observatory. The photometer used had an unrefrigerated EMI 6256B photomultiplier, whose output was fed to a GR 1230A dc amplifier and recorded on a Honeywell-Brown chart recorder. The comparison and three check stars used with BV 690 are listed in Table 1. Observations of all the stars in B and V filters were reduced to fluxes outside the atmosphere using nightly extinction coefficients obtained from the observations of the comparison star. The differential magnitudes of the variable and the check stars with respect to the comparison star were then transformed to Johnson's standard UBV system using the transformation relations obtained from the observations of a number of UBV standards on several nights. The average values of the V magnitude and (B - V) colour of the comparison and check stars in the UBV system determined by us are given in Table 1, along with the number of observations on which these determinations are based.

The individual differential magnitudes of the check stars with respect to the comparison star have been published by Sanwal *et al.* (1990). Our observations do not indicate any significant variation in any of these stars. The average values of the magnitude difference between the check and the comparison stars are given in Table 2 along with the number of observations of the check stars. From our observations of the check stars we estimate the standard error of a single Δm observation to be less than

Table 1. V magnitudes and (B - V) colours of the comparison and the check stars observed with BV 690.

Star	HD	BD/CD	$\cdot V$	(B-V)	'n
Comparison	76104	-22 2431	8.07	0.04	15
Check	76136	-22 2434	8.48	0.21	5
Check	76043	-21 2623	8.09	0.44	1
Check	76512	-23 7902	6.44	0.16	1

 Table 2. Magnitude differences with respect to the comparison star.

Star	ΔV	n	ΔB	n
Variable (max)	-0.897		-0.432	
Variable (min)	-0.626		-0.071	_
HD 76136	0.407	101	0.584	95
HD 76043	0.050	40	0.442	38
HD 76512	-1.636	12	1.521	11

 0^{m} .01 both in *B* and *V*. Table 2 also gives the values of ΔV and ΔB for the variable star at its maximum and minimum brightness.

The magnitude differences ΔV and ΔB between BV 690 and the comparison star are listed in Table 3 along with the heliocentric Julian date and the phase of each observation. The observations of individual nights show slow but systematic changes in brightness. Observations of different nights were combined to form normal light curves for a large number of trial periods, and the smoothest normal light curve was obtained with a period of l^d.2400. We find that the following light elements represent observations in both the filters satisfactorily:

Time of maximum (hel. JD) = $2442359.490 + 1^{d}.2400$ E.

These light elements have been used to calculate the phases of individual V and B observations listed in Table 3. This table also gives the derived values of $\Delta(B - V)$ and its phase. The light variations of the star in B and V filters as well as in (B - V) colour are shown in Figs 1–3 respectively. The small scatter in the light curves and the absence of any systematic difference between 1974–75 and 1975–76 observations indicate that the star has a stable period. The amplitude of light variations is $0^{m}.27$ in V and $0^{m}.36$ in B. The duration of the ascending branch is $0^{p}.4$ while that of the descending one is $0^{p}.6$. The light variation is fairly smooth but there is an indication of a small bump in the descending branch of the light curve near the phase 0.35. Presence of a bump is also supported by the nature of (B - V) variations near this phase.

The light maximum in *B* occurs earlier than the light maximum in *V* by about $0^{p}.01$. The epoch of maximum light used by us for the calculation of phases corresponds to an average value of the times of maximum for the two colours.

Using the V and (B - V) values for the comparison star given in Table 1, we find that the V magnitude of BV 690 varies from 7^{m} .17 at maximum occurring at phase 0.00 to 7^{m} .44 at minimum occurring at phase 0.60. Similarly, the B magnitude varies from

Hel. JD 2440000+	Phase	ΔV	Hel. JD 2440000+	Phase	ΔB	Phase	$\Delta(B-V)$
2359.4500	0.9677	-0.884	2359.4495	0.9673	-0.423	0.9675	0.461
.4665	.9810	891	.4652	.9800	431	.9805	.460
2360.4002	0.7340	-0.686	2360.3996	0.7335	-0.171	0.7338	0.515
.4025	.7359	686	.4020	.7355	176	.7357	.509
.4183	.7486	713	.4178	.7482	181	.7484	.532
.4193	.7494	711	.4187	.7490	194	.7492	.517
.4346	.7618	693	.4359	.7628	191	.7623	.501
.4366	.7634	709	.4371	.7638	193	.7636	.516
2366.4127	0.5828	-0.631	2366.4121	0.5823	-0.074	0.5826	0.558
.4141	.5840	629	.4136	.5835	074	.5838	.555
.4212	.5897	628	.4221	.5904	074	.5900	.554
.4235	.5915	624	.4240	.5919	066	.5917	.558
2367.4032	0.3816	-0.739	2367.4027	0.3812	-0.203	0.3814	0.536
.4050	.3831	734	.4044	.3826	206	.3828	.528
2387.3096	0.4352	-0.764	2387.3103	0.4357	-0.190	0.4354	0.574
.3193	.4430	716	.3189	.4427	170	.4428	.546
.3272	.4494	731	.3266	.4489	160	.4491	.571
2393.3735	0.3254	-0.786	2393.3744	0.3261	-0.231	0.3258	0.555
.3908	.3394	747	.4055	.3512	191	.3453	.556
.4207	.3635	755	.4196	.3626	225	.3630	.530
.4285	.3698	748	.4269	.3685	228	.3691	.520
.4365	.3762	736	.4374	.3769	218	.3766	.518
.4423	.3809	737	.4438	.3821	187	.3815	.550
2394.3627	0.1231	858	2394.3610	0.1218	-0.382	0.1225	0.477
.3632	.1235	857	.3648	.1248	370	.1242	.487
.3833	.1398	842	.3825	.1391	376	.1394	.466
.3843	.1406	845	.3852	.1413	374	.1409	.471
.3957	.1498	849	.3975	.1512	356	.1505	.493
.3968	.1506	844	.3984	.1519	357	.1513	.487
.4071	.1590	844	.4053	.1575	343	.1582	.502
.4080	.1597	838	.4062	.1582	351	.1590	.487
.4230	.1718	838	.4216	.1706	346	.1712	.492
.4242	.1727	839	.4251	.1735	345	.1731	.494
.4381	.1840	824	.4372	.1832	334	.1836	.490
.4402	.1856	836	.4393	.1849	333	.1853	.503
.4523	.1954	830	.4539	.1967	340	.1960	.490
.4562	.1985	832	.4550	.1976	336	.1981	.496
2395.3546	0.9231	-0.851	2395.3526	0.9215	-0.425	0.9223	0.426
.3599	.9273	876	.3537	.9223	426	.9248	.451
.3609	.9281	856	.3616	.9287	392	.9284	.464
.3719	.9370	895	.3626	.9295	417	.9333	.478
.3730	.9379	897	.3736	.9384	411	.9381	.486
.3743	.9390	893	.3749	.9394	408	.9392	.486
.3787	.9425	871	.3791	.9428	411	.9427	.460
.3802	.9437	868	.3797	.9433	406	.9435	.462
.3878	.9498	875	.3871	.9493	416	.9496	.459
.3894	.9511	874	.3890	.9508	425	.9510	.449
.3982	.9582	887	.3987	.9586	427	.9584	.460
.3998	.9595	883	.4004	.9600	437	.9598	.445

Table 3. Magnitude differences (BV 690 -BD -22 2431).

Hel. JD 2440000+	Phase	ΔV	Hel. JD 2440000+	Phase	ΔB	Phase	$\Delta(B-V)$
2395.4103	0.9680	-0.896	2395.4098	0.9676	-0.430	0.9678	0.466
.4142	.9711	903	.4130	.9702	432	.9706	.471
.4219	.9773	903	.4224	.9777	456	.9775	.447
.4239	.9790	921	.4246	.9795	458	.9792	.464
.4382	.9905	915	.4392	.9913	450	.9909	.466
.4421	.9936	908	.4433	.9946	445	.9941	.463
2400.3534	0.9544	-0.878	2400.3528	0.9539	-0.424	0.9541	0.454
.3550	.9556	884	.3544	.9552	422	.9554	.462
.3664	.9648	902	.3658	.9644	439	.9646	.463
.3688	.9668	898	.3682	.9663	427	.9665	.471
.3780	.9742	899	.3784	.9745	429	.9744	.470
.3796	.9755	903	.3803	.9760	431	.9758	.472
.3880	.9823	904	.3875	.9819	439	.9821	.465
.3896	.9835	902	.3890	.9831	429	.9833	.473
.4250	.0121	898	.4246	.0118	442	.0119	.456
.4265	.0133	889	.4262	.0131	434	.0132	.455
.4347	.0199	885	.4351	.0202	426	.0201	.459
.4361	.0210	884	.4367	.0215	431	.0213	.453
2401.3146	0.7295	-0.680	2401.3153	0.7301	-0.164	0.7298	0.516
.3166	.7311	697	.3172	.7316	180	.7314	.517
.3274	.7398	679	.3267	.7393	178	.7396	.501
.3294	.7415	685	.3287	.7409	174	.7412	.510
.3420	.7516	689	.3425	.7520	177	.7518	.512
.3439	.7531	694	.3446	.7537	182	.7534	.512
.3598	.7660	720	.3591	.7654	207	.7657	.513
.3618	.7676	714	.3626	.7682	202	.7679	.512
.3793	.7817	728	.3803	.7825	212	.7821	.516
.3821	.7840	721	.3828	.7845	214	.7842	.506
.3960	.7952	719	.3952	.7945	209	.7948	.509
.3994	.7979	720	.3975	.7964	215	.7971	.504
.4087	.8054	743	.4094	.8060	236	.8057	.506
.4110	.8073	747	.4118	.8079	246	.8076	.501
.4228	.8168	748	.4232	.8171	259	.8169	.489
.4245	.8181	756	.4253	.8188	258	.8185	.499
2416.3390	0.8460	-0.773	2416.3381	0.8452	-0.300	0.8456	0.473
.3416	.8481	774	.3424	.8487	314	.8484	.460
.3558	.8595	769	.3563	.8599	277	.8597	.492
.3580	.8613	764	.3587	.8619	283	.8616	.481
.3776	.8771	805	.3770	.8766	336	.8769	.469
.3798	.8789	797	.3793	.8785	347	.8787	.450
.4057	.8998	843	.4050	.8992	377	.8995	.466
.4080	.9016	847	.4072	.9010	375	.9013	.472
.4217	.9127	841	.4222	.9131	388	.9129	.453
.4236	.9142	845	.4242	.9147	389	.9144	.456
.4482	.9340	853	.4468	.9329	409	.9335	.444
.4510	.9363	867	.4494	.9350	412	.9356	.455
.4566	.9408	868	.4573	.9414	412	.9411	.456
.4587	.9425	881	.4579	.9419	415	.9422	.466
2417.2568	0.5861	-0.616	2417.2561	0.5856	-0.087	0.5858	0.529
.2586	.5876	633	.2589	.5878	088	.5877	.545

Table 3. Continued.

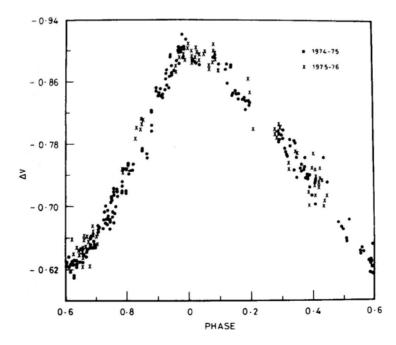
Hel. JD 2440000+	Phase	ΔV	Hel. JD 2440000+	Phase	ΔB	Phase	$\Delta(B-V)$
2417.2732	0.5994	-0.653	2417.2754	0.6011	-0.098	0.6002	0.555
.2893	.6123	636	.2888	.6119	068	.6121	.568
.2919	.6144	625	.2904	.6132	076	.6138	.549
.3028	.6232	631	.3036	.6239	069	.6235	.563
.3054	.6253	620	.3058	.6256	065	.6255	.555
.3203	.6373	624	.3197	.6369	075	.6371	.549
.3223	.6390	627	.3216	.6384	072	.6387	.555
.3317	.6465	636	.3323	.6470	084	.6468	.552
.3338	.6482	630	.3343	.6486	084	.6484	.546
.3456	.6577	631	.3445	.6569	089	.6573	.543
.3484	.6600	638	.3473	.6591	090	.6596	.548
.3580	.6677	637	.3587	.6683	081	.6680	.557
.3605	.6698	644	.3612	.6703	089	.6700	.555
.3756	.6819	649	.3749	.6814	121	.6817	.528
.3777	.6836	653	.3768	.6829	117	.6833	.536
.3891	.6928	649	.3904	.6939	111	.6933	.538
.3924	.6955	649	.3930	.6960	113	.6957	.536
.4093	.7091	672	.4087	.7086	139	.7089	.533
.4111	.7106	675	.4105	.7101	135	.7103	.540
.4331	.7283	694	.4339	.7290	169	.7286	.525
.4357	.7304	701	.4365	.7310	181	.7307	.520
.4549	.7459	673	.4541	.7452	167	.7456	.505
.4570	.7476	682	.4562	.7469	169	.7473	.512
.4677	.7562	681	.4697	.7578	197	.7570	.484
.4711	.7590	724	.4718	.7595	206	.7592	.517
2428.4319	0.5983	-0.615	2428.4310	0.5976	-0.032	0.5979	0.583
.4433	.6075	627	.4443	.6083	074	.6079	.553
.4462	.6098	623	.4469	.6104	066	.6101	.557
.4614	.6221	614	.4593	.6204	068	.6213	.546
2429.2875	0.2883	-0.797	2429.2869	0.2878	-0.269	0.2881	0.528
.2894	.2898	793	.2888	.2894	267	.2896	.526
.2989	.2975	784	.2995	.2980	266	.2977	.518
.3008	.2990	792	.3019	.2999	262	.2995	.530
.3148	.3103	775	.3140	.3097	251	.3100	.523
.3166	.3118	771	.3158	.3111	252	.3115	.519
2451.2872	0.0300	-0.888	2451.2884	0.0310	-0.410	0.0305	0.478
.2908	.0329	882	.2890	.0315	410	.0322	.472
2457.2996	0.8787	-0.824	2457.2992	0.8784	-0.340	0.8785	0.484
.3003	.8793	822	.3017	.8804	344	.8798	.479
.3160	.8919	849	.3138	.8902	352	.8910	.497
.3169	.8927	853	.3146	.8908	358	.8917	.495
.3349	.9072	844	.3326	.9053	374	.9063	.470
.3361	.9081	852	.3383	.9099	371	.9090	.482
.3565	.9246	864	.3593	.9269	403	.9257	.461
.3571	.9251	871	.3599	.9273	396	.9262	.475
2458.1991	0.6041	-0.626	2458.1964	0.6019	-0.054	0.6030	0.572
.1996	.6045	630	.1970	.6024	062	.6035	.568
.2147	.6167	618	.2128	.6152	063	.6159	.555
.2153	.6172	627	.2135	.6157	064	.6165	.563
.2292	.6284	627	.2271	.6267	074	.6275	.553

Table	3.	Continued.
	•••	contracta.

Hel. JD 2440000+	Phase	ΔV	Hel. JD 2440000+	Phase	ΔB	Phase	$\Delta(B-V)$
2458.2300	0.6290	-0.613	2458.2278	0.6273	-0.082	0.6281	0.530
.2379	.6354	632	.2364	.6342	078	.6348	.554
.2383	.6357	626	.2369	.6346	074	.6352	.553
2459.1187	0.3457	-0.737	2459.1201	0.3469	-0.247	0.3463	0.490
.1226	.3489	764	.1215	.3480	224	.3484	.540
.1380	.3613	745	.1359	.3596	230	.3604	.515
.1385	.3617	750	.1367	.3602	229	.3610	.521
.1519	.3725	763	.1504	.3713	227	.3719	.536
.1524	.3729	751	.1508	.3716	223	.3723	.528
.1642	.3824	739	.1624	.3810	196	.3817	.543
.1646	.3827	741	.1629	.3814	192	.3821	.549
.1708	.3877	725	.1692	.3865	191	.3871	.534
.1712	.3881	740	.1697	.3869	193	.3875	.547
.1835	.3980	715	.1814	.3963	192	.3971	.523
.1841	.3985	714	.1822	.3969	183	.3977	.531
.1953	.4075	703	.1936	.4061	191	.4068	.512
.1962	.4082	731	.1942	.4066	182	.4074	.550
.1969	.4088	733	.1983	.4099	187	.4094	.546
.2176	.4255	709	.2185	.4262	155	.4258	.555
.2208	.4281	731	.2194	.4269	168	.4275	.563
2463.1861	0.6259	-0.637	2463.1875	0.6270	-0.077	0.6265	0.561
.1897	.6288	632	.1884	.6277	074	.6283	.559
.2444	.6729	649	.2474	.6753	102	.6741	.547
.2458	.6740	645	.2486	.6763	099	.6752	.546
.2541	.6807	661	.2553	.6817	099	.6812	.562
.2575	.6835	663	.2565	.6827	093	.6831	.570
.2720	.6952	658	.2706	.6940	122	.6946	.536
.2736	.6965	653	.2745	.6972	119		.534
.2868	.7071	670	.2856	.7061	123	.7066	.547
.2880	.7081	673	.2897	.7094	134	.7088	.539
.3048	.7216	673	.3061	.7227	156	.7221	.517
.3080	.7242	685	.3071	.7235	155	.7238	.530
.3245	.7375	688	.3230	.7363	162	.7369	.525
.3254	.7382	686	.3264	.7390	173	.7386	.513
.3368	.7474	706	.3381	.7485	191	.7479	.515
.3407	.7506	709	.3391	.7493	191	.7499	.518
.3482	.7566	720	.3470	.7556	207	.7561	.513
.3493	.7575	714	.3503	.7583	205	.7579	.508
.3585	.7649	717	.3596	.7658	209	.7654	.507
.3618	.7676	723	.3608	.7668	210	.7672 .7829	.513
.3814	.7834	719	.3802	.7824	224		.496
.3826	.7844	732	.3837	.7852	237	.7848 .7915	.496 .496
.3923	.7922 .8032	749 754	.3907 .4048	.7909 .8023	253 275	.8027	.490
.4060 .4072	.8032	754 755	.4048	.8023	273	.8027	.479
2464.2498	0.4837	-0.680	2464.2488	0.4829	-0.106	0.4833	0.574
.2506	.4844	681	.2520	.4855	121	.4849	.561
.2625	.4940	674	.2636	.4948	109	.4944	.565
.2654	.4963	671	.2642	.4953	112	.4958	.560
.2782	.5066	656	.2770	.5056	107	.5061 .5076	.549 .558
.2788	.5071	658	.2801	.5081	101	.5076	.338

Table 3. Continued.

Hel. JD 2440000+	Phase	ΔV	Hel. JD 2440000+	Phase	ΔB	Phase	$\Delta(B-V)$
	0.0140	0.001		0.6150	0.111	0.6174	0.672
2464.2910	0.5169	-0.684	2464.2921	0.5178	-0.111	0.5174	0.573
.3356	.5529	644	.3342	.5518	078	.5523	.566
.3363	.5535	641	.3375	.5544	081	.5540	.561
.3425	.5585	648	.3435	.5593	094	.5589	.554
.3456	.5610	643	.3447	.5602	087	.5606	.557
2511.1304	0.2906	-0.783	2511.1329	0.2927	-0.246	0.2917	0.537
.1312	.2913	786	.1344	.2939	244	.2926	.542
.1458	.3031	799	.1453	.3027	269 274	.3029	.530 .517
.1471	.3041	791	.1465	.3036	274 234	.3039	
.1607	.3151	766 764	.1614 .1627	.3156	234	.3154 .3164	.532 .531
.1619 .1739	.3160 .3257	778	.1746	.3167 .3263	233	.3260	.535
.1753	.3269	779	.1761	.3205	243	.3272	.532
.1918	.3209	785	.1911	.3396	247	.3399	.540
.1918	.3402	783	.1926	.3408	243	.3399	.539
2512.1086	0.0795	-0.892	2512.1093	0.0801	-0.411	0.0798	0.482
.1105	.0810	892	.1111	.0815	411	.0813	.482
.1566	.1182	876	.1573	.1188	386	.1185	.490
.1586	.1198	883	.1593	.1204	384	.1201	.500
.1775	.1351	881	.1769	.1346	399	.1348	.483
.1790	.1363	878	.1782	.1356	390	.1360	.488
2745.3692	0.1929	-0.864	2745.3683	0.1922	-0.362	0.1925	0.501
.3722	.1953	848	.3710	.1944	337	.1948	.511
.3865	.2069	800	.3895	.2093	285	.2081	.514
2765.3154	0.2785	-0.794	2765.3135	0.2770	-0.271	0.2778	0.523
.3160	.2790	796	.3144	.2777	272	.2784	.524
.3306	.2908	802	.3285	.2891	261	.2900	.541
.3311	.2912	806	.3294	.2898	261	.2905	.546
.3448	.3023	786	.3428	.3006	253	.3015	.533
.3458	.3031	787	.3431	.3009	254	.3020	.533
.3681	.3210	757	.3703	.3228	214	.3219	.543
.3690	.3218	750	.3711	.3235	222	.3226	.528
2777.3154	0.9560	-0.881	2777.3160	0.9565	-0.413	0.9562	0.468
.3174	.9576	872	.3183	.9583	420	.9579	.452
.3319	.9693	904	.3327	.9699	427	.9696	.477
.3335	.9706	894	.3340	.9710	417	.9708	.477
.3494	.9834	897	.3484	.9826	424	.9830	.473
.3519	.9854	888	.3512	.9848	428	.9851	.460
.3655	.9964	904	.3647	.9957	423	.9960	.482
.3672	.9977	910	.3665	.9972	425	.9975	.486
.3806	.0085	884	.3793	.0075	421	.0080	.463
.3815	.0093	889	.3831	.0106	423	.0099	.466
.3956	.0206	892	.3976	.0223	436	.0215	.456
.3964	.0213	892	.3985	.0230	434	.0221	.458
.4117	.0336	889	.4139	.0354	425	.0345	.464
.4125	.0343	896	.4148	.0361	426	.0352	.470
.4318	.0498	898	.4338	.0515	426	.0506	.472
.4325	.0504	897	.4346	.0521	420	.0512	.477
.4496	.0642	881	.4519	.0660	408	.0651	.473
.4504	.0648	877	.4526	.0666	403	.0657	.474


Table 3. Continued.

Hel. JD 2440000+	Phase	ΔV	Hel. JD 2440000+	Phase	ΔB	Phase	$\Delta(B-V)$
2777.4666	0.0779	-0.908	2777.4688	0.0797	-0.393	0.0788	0.515
.4673	.0785	897	.4696	.0803	385	.0794	.511
.4752	.0848	889	.4775	.0867	404	.0858	.485
.4761	.0856	892	.4781	.0872	401	.0864	.491
.4893	.0962	883	.4912	.0977	402	.0970	.482
.4901	.0969	883	.4922	.0985	391	.0977	.492
2785.3113	0.4043	-0.714	2785.3122	0.4050	-0.183	0.4046	0.531
.3138	.4063	728	.3144	.4068	190	.4065	.538
.3286	.4182	730	.3277	.4175	161	.4179	.569
.3311	.4202	726	.3304	.4197	173	.4200	.553
.3397	.4272	735	.3404	.4277	168	.4275	.567
.3421	.4291	732	.3440	.4306	159	.4299	.573
.3628	.4458	715	.3621	.4452	166	.4455	.549
2794.3017	0.6546	-0.624	2794.3004	0.6535	-0.076	0.6541	0.548
.3048	.6571	635	.3039	.6564	072	.6567	.564
.3185	.6681	650	.3167	.6667	075	.6674	.575
.3210	.6702	662	.3193	.6688	103	.6695	.559
.3289	.6765	654	.3268	.6748	111	.6757	.543
.3325	.6794	625	.3296	.6771	116	.6783	.509
.3442	.6889	676	.3425	.6875	108	.6882	.569
.3468	.6910	666	.3449	.6894	105	.6902	.561
.3606	.7021	653	.3578	.6998	114	.7010	.539
						.7015	
.3614 .3639	.7027 .7048	661 664	.3584 .3622	.7003 .7034	110 125	.7013	.551 .539
2801.2742	0.2776	-0.799	2801.2755	0.2786	-0.259	0.2781	0.540
.2774	.2802	790	.2760	.2790	259	.2796	.531
.3590	.3460	770	.3599	.3467	207	.3463	.563
.3617	.3481	770	.3606	.3473	220	.3477	.550
2802.2639	0.0757	-0.885	2802.2622	0.0744	-0.414	0.0750	0.471
.2645	.0762	899	.2629	.0749	411	.0756	.488
.2869	.0943	883	.2858	.0934	405	.0938	.479
.2875	.0948	875	.2884	.0955	398	.0951	.477
2828.2195	0.0077	-0.894	2828.2170	0.0056	-0.420	0.0067	0.474
.2201	.0081	900	.2181	.0065	426	.0073	.474
.2397	.0240	904	.2362	.0211	430	.0225	.474
.2410	.0250	899	.2381	.0227	433	.0238	.466
2829.1825	0.7843	-0.747	2829.1804	0.7826	-0.228	0.7834	0.519
.1838	.7853	745	.1813	.7833	236	.7843	.509
.1977	.7965	749	.1956	.7948	250	.7957	.499
.1995	.7980	751	.1967	.7957	249	.7969	.502
2835.2053	0.6414	-0.645	2835.2030	0.6395	-0.085	0.6404	0.560
.2063	.6422	639	.2041	.6404	086	.6413	.553
.2186	.6521	646	.2166	.6505	080	.6513	.566
.2198	.6531	645	.2179	.6515	091	.6523	.554
2836.1568	0.4087	-0.748	2836.1546	0.4069	-0.178	0.4078	0.570
.1578	.4095	738	.1561	.4081	185	.4088	.553
.1707	.4199	750	.1702	.4195	179	.4197	.571
.1729	.4217	734	.1721	.4210	167	.4214	.567

Table 3. Continued.

Hel. JD 2440000+	Phase	ΔV	Hel. JD 2440000+	Phase	ΔB	Phase	$\Delta(B-V)$
2836.1893	0.4349	-0.708	2836.1901	0.4356	-0.158	0.4352	0.550
.1908	.4361	702	.1915	.4367	156	.4364	.546
2844.1157	0.8272	-0.788	2844.1172	0.8284	-0.309	0.8278	0.479
.1193	.8301	802	.1182	.8292	309	.8296	.493
.1335	.8415	800	.1347	.8425	317	.8420	.483
.1367	.8441	813	.1358	.8434	316	.8438	.497
.1508	.8555	806	.1534	.8576	312	.8565	.494
.1517	.8562	811	.1545	.8585	320	.8573	.491
2845.1030	0.6234	-0.658	2845.1005	0.6214	-0.107	0.6224	0.551
.1040	.6242	659	.1014	.6221	100	.6231	.560
.1046	.6247	638	.1192	.6365	093	.6306	.545
.1212	.6381	648	.1199	.6370	084	.6375	.564
.1221	.6388	658	.1232	.6397	101	.6392	.558
.1455	.6577	659	.1473	.6591	105	.6584	.554
.1491	.6606	662	.1479	.6596	100	.6601	.563
2898.1308	0.3877	-0.702	2898.1329	0.3894	-0.200	0.3886	0.503
.1317	.3885	719	.1336	.3900	196	.3892	.522
.1454	.3995	750	.1471	.4009	202	.4002	.548
.1460	.4000	769	.1477	.4014	200	.4007	.569

Table 3. Continued.

Figure 1. BV 690: Light variation in yellow. Filled circles represent the observations for 1974–1975 and those for 1975–76 are plotted as crosses.

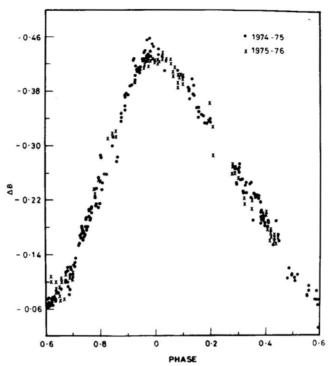
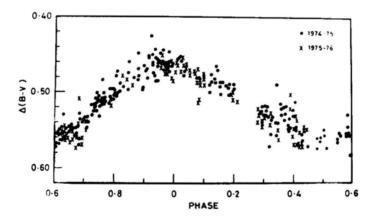



Figure 2. BV 690: Light variation in blue. Filled circles represent the observations for 1974–1975 and those for 1975–76 are plotted as crosses.

Figure 3. BV 690: (B - V) colour variation. Filled circles represent the observations for 1974–1975 and those for 1975–76 are plotted as crosses.

 $7^{\rm m}.68$ at maximum to $8^{\rm m}.04$ at minimum. The (B - V) colour of BV 690 varies by $0^{\rm m}.11$, from $0^{\rm m}.50$ occurring at the phase 0.92 to $0^{\rm m}.61$ occurring at the phase 0.49. Thus the star reaches extremes of temperature slightly before it reaches extremes of brightness. For BV 690 the values of brightness averaged over one cycle are found to be $7^{\rm m}.30$, $7^{\rm m}.85$ and $0^{\rm m}.55$ for $\langle V \rangle$, $\langle B \rangle$ and $\langle B - V \rangle$ respectively.

In the HD catalogue the spectral type of BV 690 is given as G0, and in Nancy Houk's reclassification of the HD stars, HD 76296 is assigned a spectral type of F3/5 III. From the calibration given by Schmidt-Kaler (1982) the $(B - V)_0$ and M_v values corresponding to this spectral type are + 0.40 and + 0.90 respectively. As the (B - V) colour and the V magnitude of this star are known to vary by 0.11 and 0.27 magnitudes and the phase of observation of the spectral type is not known to us, we expect the mean $(B - V)_0$ of BV 690 to lie in the range + 0.34 to + 0.46 and the mean M_v to lie in the range + 0.76 to + 1.04.

BV 690 has a period in the range $l^d < P < 3^d$ where one finds a mixture of different types of pulsating variables. Diethelm (1983) has classified variables in this period range into the following four classes: (i) RR Lyrae stars (RRd), (ii) W Virginis stars (CW), (iii) BL Herculis stars (BL), and (iv) Classical Cepheids (C δ). In the *General Catalogue of Variable Stars*, (1985) the *W* Virginis Cepheids of periods less than eight days and the BL Herculis objects are grouped together as the type CWB.

Properties of Cepheid variables are summarized by Duerbeck & Seitter (1982, hereafter DS). Cepheids differing in the form of their light curves, amplitudes, absolute magnitudes, colour indices, spectra, radial velocity curves, space motions and stability of periods can be associated with either of the two stellar populations. The low galactic latitude of BV 690 ($b = 13^{\circ}.6$) would indicate the likelihood of its being a classical Cepheid. However, according to Hoffmeister, Richter & Wenzel (1985) the classical Cepheid with the shortest period currently known in our Galaxy is V 473 Lyr (HR 7308) with $P = 1^{d}.49$. On the other hand a number of Type II Cepheids have periods smaller than this. Moreover, according to DS, a bump is generally present in the light curves of Type I Cepheids having periods greater than seven days, while a bump is present in the descending branch of the light curves of Type II Cepheids of even shorter periods.

In DS the period luminosity (P–L) and the period-colour-luminosity (P–C–L) relations are given separately for the Type I and Type II Cepheids. The mean period-colour (P-C) relation for Type I Cepheids is:

$$\langle B \rangle_0 - \langle V \rangle_0 = 0.27 + 0.47 \log P.$$

From this relation we estimate $\langle B - V \rangle_0 = 0^{\text{m}}.31$ for BV 690. This value is outside the range of $0^{\text{m}}.34$ to $0^{\text{m}}.46$ estimated earlier from the spectroscopic observations. Considering the possibility of error introduced in extrapolating the *P*-*C* relation, we have adopted $\langle B - V \rangle_0 = 0^{\text{m}}.34$. Combining this with the observed value $\langle B - V \rangle$ = $0^{\text{m}}.55$ we estimate a colour excess of $0^{\text{m}}.21$ and an interstellar absorption A_V = $3.3 E_{B-V}$ of about $0^{\text{m}}.70$ and $0^{\text{m}}.90$ in *V* and *B* bands respectively.

In DS the linear P–C–L relations for Type I Cepheids in the period range $0.4 < \log P < 1.9$ is given as:

$$M_{\langle V \rangle} = -3.425 \log P + 2.52 (\langle B \rangle_0 - \langle V \rangle_0) - 2.459.$$

$$M_{\langle B \rangle} = -3.425 \log P + 3.52 (\langle B \rangle_0 - \langle V \rangle_0) - 2.459.$$

Using the above P–C–L relations we estimate $M_{\langle V \rangle} = -1.99$ and $M_{\langle B \rangle} = -1.69$. Combining these results with the observed values $\langle V \rangle = 7.30$ and $\langle B \rangle = 7.85$ and taking into account the interstellar absorption estimated above we derive a distance of 1000 parsec and 1200 parsec from V and B light curves of BV 690, The estimated interstellar absorption seems to be appropriate for the mean distance of about 1.1 kpc derived for this system. However, the absolute magnitude M_V derived from the P–C–L relation differs by about 3 magnitudes from the range of $0^{\text{m}}.76$ to $1^{\text{m}}.04$ for M_V estimated from the observed spectral type of the system.

On the other hand if we assume BV 690 to be a Type II Cepheid, then we have the following P-C relation:

$$\langle B \rangle_0 - \langle V \rangle_0 = 0.31 + 0.18 \log P.$$

This yields an intrinsic colour of 0.33, which is also outside the range of 0.34 to 0.46 estimated from the spectral type. Again adopting $\langle B - V \rangle_0 = 0.34$, we have a colour excess of 0.21 and a total visual absorption of 0^m.70. The P–L relation for Type II Cepheids given in DS is:

$$M_{\langle V \rangle} = -0.08 - 1.59 \log P.$$

This gives an absolute magnitude $M_{\langle V \rangle} = -0.23$, and yields a distance of about 450 parsec for BV 690. This estimate of $M_{\langle V \rangle}$ is closer to, though still outside, the range of $0^{\text{m}}.76$ to $1^{\text{m}}.04$ inferred from the spectroscopic criteria. We feel that this difference is tolerable in view of some uncertainty in $M_{\langle V \rangle}$ obtained by extrapolating the P–L relation and considering the lower accuracy of MK spectral types determined from objective prism spectra. In any case, the assumption of a Type II Cepheid results in much better agreement with spectroscopic absolute magnitude than the assumption of a Type I Cepheid.

The position and proper motion of BV 690 (SAO 176679) appear in the Smithsonian Astrophysical Observatory (SAO) Star Catalogue (1966). These have been taken from the Transactions of the Astronomical Observatory of Yale University (1943) where the star has the number 6884. In SAO the proper motion components of the star reduced to the FK4 system are given as $\mu_{\alpha} = 0^{\circ}.0005 \pm 0''.0018$ and $\mu_{\delta} = 0''.049 \pm 0''.018$. Combining these with the distance of 1100 parsec derived above for a Type I Cepheid, the tangential velocity of the star turns out to be about 260 km s⁻¹, very high for a classical Cepheid. The proper motion of BV 690 is also given in the Publications of U.S. Naval Observatory (1948), under the star number 2061 as $\mu_{\alpha} = 0^{s}.001$ and μ_{δ} =0".027 in the FK3 system, from which we derive a tangential velocity of about 160 km s⁻¹, also quite high for a classical Cepheid. However, if we use a distance of about 450 parsec appropriate to its being a Type II Cepheid, then the estimated tangential velocities would be about 100 km s⁻¹ and 60 km s⁻¹ for proper motions given in the SAO and USNO catalogues. It may be emphasized that in view of the large errors quoted for the proper motion, the tangential velocities derived above are highly uncertain. However, when this information is combined with conclusions based on its short period, relatively low luminosity as indicated by its spectral type, and the presence of a bump in its descending branch, it seems quite likely that BV 690 belongs to the BL Herculis group of Type II Cepheids. Several studies have been made on theoretical models for Type II Cepheids and on their comparison with observations (for example, see references given in Peterson & Diethelm 1986). As most of the stars belonging to the BL Her group are faint objects, BV 690 which is brighter than BL Herculis by about 3 magnitudes would be very useful for a detailed study of the properties of this kind of Cepheids. On the other hand if from high resolution spectroscopic studies, it is found to be a Type I Cepheid then it would be a classical Cepheid with the shortest known period and would be an important object to define the blue edge of the instability strip.

Acknowledgement

Authors wish to thank the referees for their critical review of this paper and for their suggestions for improvement of an earlier version of the manuscript.

References

Diethelm, R. 1983, Astr. Astrophys., 124, 108.

Duerbeck, H. W., Seitter, W. C. 1982, in *Landolt-Börnstein*, Eds K. Schaifers & H. H. Voigt, New Series, Group VI, Volume 2, Subvolume 6, Springer-Verlag, Berlin, p. 197.

General Catalogue of Variable Stars 1985, Ed. P. N. Kholopov, Nauka, Moscow.

Hoffmeister, C., Richter, G., Wenzel, W. 1985, in Variable Stars, Springer-Verlag, Berlin, p. 29.

Peterson, O., Diethelm, R. 1986, Astr. Astrophys., 156, 337.

Publ. US Nav. Obs. 1948, Second Ser., XV, p. 282.

Sanwal, N. B., Sarma, M. B. K., Pandey, U. S., Rao, P. V. 1990, Contribution from the Nizamiah and Japal-Rangapur Observatories. No. 25.

Schmidt-Kaler, Th. 1982, in *Landolt-Börnstein*, Eds K. Schaifers & H. H. Voigt, New Series, group VI, Volume 2, Subvolume 6, Springer-Verlag, Berlin, p. 1.

Smithson. Astrophys. Obs. Star Catalogue, 1966, Part 3, Washington.

Strohmeier, W., Knigge, R., Ott, H. 1965, Inf. Bull. Var. Stars, No. 107.

Trans, astr. Obs. Yale Univ. 1943, 14, 130.