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Abstract −−−−The absolute and differential pressure fluctuations in gas-solid fluidized beds have been analyzed by
statistical and deterministic chaos methods. Linear low-density polyethylene (LLDPE) particles with a mean diameter
of 1.23 mm were used as a fluidizing material. The statistical methods are composed of the mean, standard deviation,
skewness and kurtosis, and the deterministic methods are composed of autocorrelation, mutual information function,
pseudo-phase space and correlation dimension. The minimum slug velocity of LLDPE particles is found to be 0.34 m/s
by using the statistical and deterministic methods. As slugs appear and grow with increasing gas velocity, pressure
fluctuations in the fluidized bed of LLDPE are oscillated and more periodic.
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INTRODUCTION

Fluidized beds have been used widely for combustion, FCC re-
generators, and polymerization, to name but a few. Mostly, fluid-
ized beds used for polymerization are operated in bubbling bed state
at the given operation conditions. However, bubble size increases
with increasing gas velocity (Ug); slugs are thereby formed that may
increase friction among the particles and column walls [Lee et al.,
2001, 2002].

To determine the fluidizing state, time-dependent variables such
as histories of pressure or temperature have been used to character-
ize the fluidizing state. However, the nature of pressure fluctuation
has not been fully understood due to the enormous complexity and
lack of satisfactory mathematical tools [Karamavruc et al., 1995;
Karamavruc and Clark, 1997]. For analyzing pressure fluctuation,
the classical statistical analyses such as its mean, standard deviation,
skewness and kurtosis, have been employed [Lee and Kim, 1987].
Also, the auto-correlation function and frequency spectrums of pres-
sure fluctuations have been used to analyze fluidized bed behavior.
Recently, to analyze pressure fluctuation, deterministic chaos anal-
yses such as the mutual information, pseudo-phase space trajectory
and correlation dimension have been employed [Karamavruc et al.,
1995; Karamavruc and Clark, 1995, 1996; Bai et al., 1997]. There-
fore, in this study, pressure fluctuations are analyzed by the classi-
cal statistical and deterministic chaos analyses in a fluidized bed of
polymer powders.

THEORY

1. Mutual Information Function
The mutual information function is based on the concept of en-

tropy [Shannon and Weaver, 1949]. Entropy is a good measu
determine uncertainty about outcome of a probabilistic experim
If one is absolutely certain about the outcome of an event, then
entropy will be zero. However, if one is absolutely uncertain ab
the outcome of an event, then entropy will exhibit a maximum va
In other words, if one knows the outcome with certainty befor
happens, the probability will be a maximum and, as a result,
entropy will have a minimum value.

The mutual information measures the dependence betwee
successive measurements [Fraser and Swinney, 1986]. When
delay is zero, the mutual information function has a maximum p
and it decreases as time delay is increased. The mutual inform
function of a chaotic data will lie between absolutely random d
and truly periodic data [Karamavruc and Clark, 1996].

A typical discrete data set can be obtained by an experime
observation such as x(t)={x(t1), x(t2), …, x(tN)}. Values of x may
be divided into bins, each with a range in x(t), and denoted by va
x1, x2, … xN. For any data set, the probability of any value of x fallin
into a specific bin is P(xi). Hence, a set of probabilities P(x1), P(x2),
…, P(xN) can be created from the original data set. If delayed ti
is τ, the data set becomes x(t+τ)={x(t1+τ), x(t2+τ), …, x(tN+τ)}
and the set of probabilities becomes P(x*1), P(x*2), …, P(x*N).

The mutual information function is defined as [Mansuripur, 198

(1)

where

(2)

(3)

(4)

where X denotes the whole system that consists of all the m

I X X  + τ,( ) = H X( )  + H X  + τ( )  − H X X  + τ,( )

H X( )  = − P xi( )log2P xi( )
i = 1

N

∑

H X  + τ( )  = − P xj( )log2P xj( )
j = 1

N

∑

H X X,  + τ( )  = − P xi x, j( )log2P xi x, j( )
j

M

∑
i

N

∑
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ured data and N and M are the number of possible outcomes. H(X)
and H(X+τ) are the average entropy corresponding to x(t) and x(t+τ).
H(X, X+τ) is the joint entropy for any measurement of x(t) will
fall into bin xi and its delayed version will fall into xj [Karamavruc
and Clark, 1996].
2. Pseudo Phase Space Method

When only one variable is measured, the time delayed pseudo
phase space trajectories method or the embedding space method
is used for analyzing the signals. In the method, a plot of signal x(t)
vs. signal from the same source, but shifted in time by an incre-
ment τ, is used. The pseudo phase space trajectories method ex-
amines the relationship between x(t+τ) and dx(t)/dt, x(t+2τ) and
d2x(t)/dx2, and so on [Packard et al., 1980]. The choice of time con-
stant τ is not obvious and according to the size of τ, the trajectories
can be stretched or compressed around a diagonal. According to
Takens [1981], almost any choice of delay time (τ) may be accept-
able, whereas Roux et al. [1983] claimed that quality of the phase
portraits depends on the choice of τ. According to Fraser and Swin-
ney [1986], the first minimum of mutual information, I(X, X+τ) as
described below, is the best choice of τ. However, this does not
work for all the cases, because τ exhibits any minimum value instead
of following a decaying value with increasing τ value.
3. Correlation Dimension

The measured signals can be characterized by dimension of the
attractor if one exists. An attractor is described as a stable structure
of long-term trajectories in a bounded region of a multi-dimensional
pseudo-phase-space plane [Thompson and Stewart, 1987]. The cor-
relation dimension of an attractor characterizes the spatial corre-
lation between the measured points on the attractor [Karamavruc
and Clark, 1997]. For time series xi (I=1 to N), we can reconstruct
a d-dimensional space with M points {Xi} in the phase space where
M is the length of vector, Xi and N are the number of points. The
distances between the pairs of points ||Xi−Xj|| can be calculated (i
and j are integers).

A correlation integral is defined [Grassberger and Procaccia, 1983]
as

 {number of pairs of points (i, j) with distance ||Xi−Xj||<r}

where Xi is the d-dimensional reconstructive vector, defined as

X i={x i, xi+τ, …, xi+(d−1)τ} (i=1, 2, …, M) (5)

(6)

It can be shown that C(r) is proportional to rDc when r, the radius
of the hyper-sphere, is small compared with the size of attractor.
The correlation dimension is then defined as the usual practice to
select random pairs of (Xi, Xj). A plot of logC(r) vs. log(r) is then
produced for a given embedding dimension, and the correlation di-
mension is calculated from slope of line in the linear part. The em-
bedding dimension of the attractor then increases and another cor-
relation dimension can be calculated. The slope or the correlation
dimension becomes independent of the embedding dimension when
the latter is sufficiently large [Bai et al., 1997].

EXPERIMENTAL

Experiments were carried out in a fluidized bed (0.38 m-I.D
4.3 m-high) and the apparatus consisted of three sections: blo
fluidized bed and cyclone [Lee et al., 2001, 2002]. Airflow rat
were measured by a flow meter (Tri-Sense Model No. 37000
Cole-Parmer Co.) in the range of 0-0.56 m/s. The solid partic
used in this study were 1.23 mm linear low-density-poly-ethyle
(LLDPE) particles having density of 919kg/m3. The distributor used
in this study was a perforated plate having 76 holes in 5 mm dia
ter to provide uniform air distribution in the bed. Pressure taps w
mounted flush with the wall of the column at 0.1 m height inte
vals from 0.55 m above the distributor [Lee et al., 2001, 2002

The opening of pressure tap was covered with a screen (400 m
to prevent leakage of LLDPE particles from the bed. The other 
of the tap was connected to one of the input channels of diffe
tial pressure transducer (Validyne P306D) from which an out
voltage proportional to pressure difference between two chan
was obtained. The remaining channel was exposed to the a
sphere so that the absolute pressure drop fluctuations across the
bed were measured. Differential pressure drop fluctuations w

C r( ) = 
1

M2
-------

M ∞→
lim

Dc = 
lnC r( )

lnr
---------------

r 0→
lim

Fig. 1. Typical response signals of absolute pressure fluctuations
Korean J. Chem. Eng.(Vol. 19, No. 6)
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measured between two pressure taps. The output signal from the
pressure transducer was monitored by an oscilloscope, and sent it
via A/D converter to a microcomputer for digital recording. The
sampling interval of the signals was selected at 10 ms and 6,000
samples were collected during a sampling period of 60 s for each
experimental condition.

RESULTS AND DISCUSSION

Typical pressure fluctuations in a fluidized bed of polymer par-
ticles are shown in Fig. 1 where oscillations of pressure fluctuations

increase with increasing gas velocity (Ug) due to the formation of
bubbles and slugs in the bed [Lee et al., 2001; Cho et al., 2001

As can be seen in Fig. 2, the mean values of absolute pres
and its fluctuations increase due to the slug formation and the
expansion with increasing Ug [Lee et al., 2001, 2002]. However,
the mean values of absolute pressure fluctuations decreased
increasing bed height due to lack of particles.

The standard deviations of absolute pressure fluctuation with 
iation of Ug are shown in Fig. 3. As can be seen, the standard
viations increase with square root of Ug due to the presence of bub
bles and slugs in the bed. The increase of standard deviation in 
sure fluctuations might be attributed to increase in bubble size w
increasing Ug [Lee and Kim, 1988]. However, the determination 
minimum slug or onset slug velocity is difficult from the analys
of pressure fluctuation, mean values and standard deviations. T
fore, the other analyses of pressure fluctuations are applied in
study.

Variation of skewness in pressure fluctuations with gas velo
in the bed of LLDPE particles is shown in Fig. 4. As can be se
skewness of the absolute pressure fluctuations and differential 
sure fluctuations decreases with an increase in Ug in the fixed and
bubbling fluidized beds, but those increase with a further incre
in Ug in the slugging fluidized bed. The size and shape of bubb
vary and skewness of both the absolute and differential pres
fluctuations decrease with Ug in bubbling fluidized beds as found
previously [Lee and Kim, 1988]. However, the distribution of pre
sure fluctuations lies around the mean of pressure fluctuation
the slugging fluidized beds. Consequently, skewness of both
absolute and differential pressure fluctuations increases with incr
ing Ug. Therefore, the minimum points of skewness with gas vel
ity might represent the transition gas velocity from bubbling to slu
ging fluidized beds.

The effect of gas velocity on kurtosis of pressure fluctuations
the bed of LLDPE particles is shown in Fig. 5. As can be seen, 

Fig. 2. Effect of gas velocity on the mean pressure drop of abso-
lute pressure fluctuations.

Fig. 3. Effect of gas velocity on the standard deviation of absolute
pressure fluctuations. Fig. 4. Effect of gas velocity on the skewness values.
November, 2002
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tosis of the absolute pressure fluctuations and that of differential
pressure fluctuations exhibit a maximum value with increasing Ug.
The variation of kurtosis is found to be opposite to that of skew-
ness with increasing Ug. The increase of kurtosis with increasing
Ug in bubbling fluidized beds can be attributed to deviation from
the mean value in the major distribution of probability densities due
to the increase of bubble size in bubbling fluidized beds [Lee and
Kim, 1988]. However, the major probability densities of pressure
fluctuations appeared to be located at its mean value and kurtosis

decreases in the slugging fluidized beds. In contrast to skewn
the maximum point of kurtosis with gas velocity might be utilize
to determine the transition velocity from bubbling to slugging flui
ized beds.

Various autocorrelation coefficients with time lag at different g
velocities (0.17, 0.25, 0.34 and 0.56 m/s) are shown in Fig. 6.
can be seen, the autocorrelation coefficients of the absolute pre
fluctuations are similar with those of differential pressure fluctu
tions. When the gas velocity is at 0.17 m/s, the autocorrelation
efficients damp to zero value almost immediately, which may in
cate a low degree of correlation between the neighboring value
pressure fluctuations. But the autocorrelation coefficients pronou
slow oscillation, which indicates a high degree of correlation w
increasing Ug. Because of formation and coalescence of bubb
and slugs, pressure fluctuations produce periodic signals [Karama
and Clark, 1997]. Therefore, the autocorrelation coefficients exh
slow oscillation.

The mutual information function of pressure fluctuations wi
gas velocity is shown in Fig. 7. The number of bins used is un
1% of total data because the choice of the number of bins was b
on the evaluation of the most suitable time shifting constant τ [Ka-
ramavruc and Clark, 1997]. The mutual information functions exh
stronger gradient with Ug that may represent chaotic nature of pre
sure fluctuations with increasing Ug. The final steady levels of the
mutual information function of pressure fluctuations increase w
an increase in Ug which may indicate the pressure fluctuations a
more periodic [Karamavruc et al., 1995; Karamavruc and Cla
1997]. In this figure, the final states of mutual information fun
tions increase sharply when the gas velocity at 0.34 m/s. It m
indicate that the pressure fluctuation at 0.34 m/s is more peri
than those at lower gas velocities. It might imply that the state
fluidized beds changes from bubbling to slugging in the bed. W
a further increase in Ug, pressure fluctuations became more pe
odic due to the coalescence of slugs with increasing slug size 

Fig. 5. Effect of gas velocity on the kurtosis values.

Fig. 6. The autocorrelation coefficient of pressure fluctuations.
Fig. 7. The mutual information function of differential pressure

fluctuations.
Korean J. Chem. Eng.(Vol. 19, No. 6)
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ramavruc et al., 1995; Karamavruc and Clark, 1997].
It is known that the first minimum value of mutual information

functions provide a better criterion to determine the appropriate time
delay for reconstruction of pseudo phase space portrait than choos-
ing the first zero of the auto-correlation function [Fraser and Swin-
ney, 1986; Karamavruc et al., 1995]. As can be seen in Fig. 7, the
mutual information function reaches the first minimum time delay
that is found to be 6. By using this time delay, the pseudo phase
space trajectories of differential pressure fluctuations in various gas

velocities are reconstructed as shown in Fig. 8. As can be see
phase space trajectories become larger with increasing Ug. Ampli-
tude of the pressure fluctuations is short at gas velocity of 0.17
As the gas velocity is increased, amplitudes of pressure fluctua
become higher due to bubble coalescence. At the gas veloci
0.34 m/s, the phase space trajectories reach lower-pressure re
due to slug formation. Compared with the phase space traject
at Ug=0.34 m/s, the phase space trajectories at Ug=0.56 m/s became
larger owing to an increase of slug size.

The correlation dimension as a function of the embedding dim
sion for the absolute pressure fluctuations is shown in Fig. 9 
Fig. 10. As can be seen, at the given gas velocities, the correl
dimensions reach a limiting value with increasing the embedd
dimension. It might indicate that the present fluidized bed syst
in the given gas velocity range is the deterministic chaos sys
Also, the correlation dimensions decrease with increasing Ug. Com-
pared with the correlation dimension at Ug=0.17 m/s, the correla-
tion dimensions at Ug=0.30 m/s decrease sharply. It might indica
that the state of fluidization changes due to the formation of la
bubbles and slugs.

CONCLUSIONS

The absolute and differential pressure fluctuations in a slugg
fluidized bed resulted in the following conclusions.

The transition velocity from bubbling to slugging fluidized regim
has been determined by the statistical and deterministic chaos m
ods. With these methods, the minimum slugging velocity of LLDP
particle is found to be 0.34m/s. From the auto-correlation and mu
information functions, it has been found that the pressure fluc
tions become periodic with increasing gas velocity. By using 
phase space trajectories, it is found that the slug properties 
changed with gas velocity. It has been found that the determin
chaos analysis is the additional method to quantify the hydro
namics of fluidized beds.

Fig. 8. Phase space construction on pressure fluctuations.

Fig. 9. Log-log plot of C(r) of absolute pressure fluctuation (Ug=
0.56 m/s, bed height=65 cm).

Fig. 10. Correlation dimension of absolute pressure fluctuations.
November, 2002
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